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Abstract

Modern control systems are limited in their ability
to react flexibly and autonomously to changing situations
by the complexity inherent in analysing situations where
many variables are present.

We present an architecture based on a combination
of agent languages and hybrid systems for managing high
level decisions in such systems. A preliminary case study
suggests that the complexity of the code of such a system
increases much more slower in the face of inreasing com-
plexity of the underlying system, than in a more traditional
approach based on finite state machines.

1 Introduction

Modern control systems are limited in their ability
to react flexibly and autonomously to changing situations
by the complexity inherent in analysing situations where
many variables are present.

We are particularly interested in the control of satel-
lite systems. Consider the problem of a single satellite at-
tempting to maintain a geostationary orbit. Current satel-
lite control systems maintain orbits using feedback con-
trollers. These implicitly assume that any errors in the or-
bit will be minor and easily corrected. In situations where
more major errors occur, e.g. caused by thruster malfunc-
tion, or where changes in mission priorities occur, it is
desirable to modify or change the controller or other as-
pects of the physical system. The complexity of the de-
cision task is a challenge to the imperative programming
approach.

There is a long standing tradition, pioneered by the
PRS system [14], of using agent languages (and other
logic programming approaches – e.g. [22]) to control and
reason about such systems. We therefore approach the
problem from the perspective of rational agents and hybrid
systems. We consider a satellite to be an agent which con-
sists of a discrete (rational decision making) engine and a
continuous (calculation) engine. The rational engine uses
the Belief-Desire-Intention (BDI) theory of agency [20] to
both generate discrete abstractions from continuous data
and to use those abstractions to govern the high level deci-
sions about when to generate new feedback controllers or
modify hardware. The continuous, calculational engine is

used to derive controllers, perform predictive simulations
and to calculate information from continuous data which
can be used in forming abstractions.

1.1 BDI Agents
We view an agent as an autonomous computational

entity making its own decisions about what activities to
pursue. Often this involves having goals and commu-
nicating with other agents in order to accomplish these
goals [23]. Rational agents make decisions in an explain-
able way, making it easier for debugging, diagnostic and
monitoring processes to account for an agent’s actions at
a high level.

Following BDI theory, we often describe each agent’s
beliefs and goals which in turn determine the agent’s in-
tentions (a set of actions it intends to take). Such agents
make decisions about what action to perform next, given
their current beliefs, goals and intentions.

1.2 Control Systems
A fundamental component of control systems tech-

nology is the feedback controller. This measures, or
estimates, the current state of a system through a dy-
namic model and produces subsequent feedback/feedfor-
ward control signals. In many cases difference/differential
equations can be used to elegantly manage the process.
These equations of complex dynamics make changes to
the input values of sub-systems and monitor the outcomes
on various sensors.

We are investigating systems which require some de-
cision making system to be integrated with the feedback
controller. It is by now well established that using a sepa-
rate discrete and logical decision making process for this
aspect is preferable to greatly extending the basic control
system [1, 2]. Overall systems with these characteristics
are often referred to as hybrid control systems, in that they
integrate discrete, logical decision processes with physical
system dynamics.

Unfortunately, the control of hybrid systems using
traditional programming methods can become increas-
ingly unwieldy. Often the decision process is represented
as an inflexible tree (or graph) of possible situations. Ex-
ecution then involves tracing through a branch of this tree
which matches the current situation and then executing the



feedback controller (or making other changes to the sys-
tem) found at the relevant leaf of the tree.

Programming these decisions from state to state is of-
ten time-consuming and error prone and can lead to the
duplication of code where the same actions need to be
taken in several slightly different situations.

2 Architecture

Our aim is to produce a hybrid system embedding
existing technology for generating feedback controllers
and configuring satellite systems within a decision mak-
ing part based upon agent technologies and theories. The
link is to be controlled by an abstraction layer which con-
verts data between continuous values appropriate for real
time control and discrete values appropriate for reasoning.
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Figure 1. Hybrid Agent Architecture

Figure 1 shows an architecture for our system. Real
time control of the satellite is governed by a traditional
feedback controller drawing its sensory input from the en-
vironment. This forms a Physical Engine (Π). This engine
communicates with an agent architecture consisting of an
Abstraction Engine (A) that filters and discretizes infor-
mation. To do this A may a use a Continuous Engine (Ω)
to make calculations involving the continuous informa-
tion. Finally, the Rational Engine (R) contains a “Sense-
Reason-Act” loop. Actions involve either calls to the Con-
tinuous Engine to calculate new controllers (for instance)
or instructions to the change hardware configuration of the
Physical Engine. These instructions are passed through
the Abstraction Engine for reification.

In this way, R is a traditional BDI system dealing with
discrete information, Π and Ω are traditional control sys-
tems, typically generated by MatLab/Simulink, while A
provides the vital “glue” between all these parts.

3 Scenario: Maintaining Geostationary
Orbit with Thruster Failure

A Simulink model of a satellite in geostationary or-
bit [18], was implemented. MatLab functions, composed
via English [21], were made available to the continu-
ous part of the agent. These functions were capable of

completing trivial computations such as whether a given
set of coordinates were within an acceptable distance of
the satellite’s desired orbital position, comp_distance,
as well as more complex processing tasks such as comput-
ing a fuel optimal return path to a desired orbital position,
plan_approach_to_centre.

The satellite was simulated with three thrusters (X,
Y and Z), each of which contained two fuel lines; one of
these fuel lines was redundant enabling the agent to switch
fuel lines if the other was ruptured (detectable by a drop in
pressure on the output fuel line). Redundant thrusters (up
to five in the X direction) were also introduced, allowing
the agent to switch to a redundant thruster if both fuel lines
appeared broken.

Controls were made available in the Physical Engine
which could send a particular named activation plan to
the feedback controller, set_control, switch thrusters
on and off, set_x1_main, set_x2_main, set_y1_main,
etc., control the valves that determined which fuel line
was being utilised, set_x1_valves, etc. and change the
thruster being used in any direction set_x_bank, etc.

A BDI-style language was developed, based on the
Gwendolen programming language [8] and used to pro-
gram both the abstraction and reasoning engines. A key
feature of this style of programming is that it allows reac-
tions to several events, or circumstances, to be handled in
an interleaved fashion, so the system can continue to mon-
itor incoming data while, for instance, calculating a new
path and can react to, say, the malfunction of two thrusters
without needing to specify the precise order in which the
malfunctions are dealt with.

The agent programming language was implemented
in J and communication between the MatLab and J
parts of the system was managed via sockets. MatLab sent
information over the socket consisting of a tag followed by
a stream of numbers, on the J side this is constructed
into a predicate to be used by the abstraction engine.

A semantics for interaction between the components
of the system was implemented, based on that outlined
in [9]. This included a set of shared beliefs that were ac-
cessible from both the abstraction and reasoning engines.

3.1 The Abstraction Engine
The Abstraction Engine code consisted of two parts.

There was a generic part which was used in all examples
in the case study and a specific part which was modified
each time a new thruster was added.

A, slightly tidied up, version of the generic code fol-
lows:

Code fragment 3.1 Geostationary Orbit:Abstraction Engine

1+ location (L1, L2, L3, L4, L5, L6) : {B bound info(V1)} ←
2calc (comp distance(L1, L2, L3, L4, L5, L6), Val ),
3+bound info(Val );
4

5+bound info(in) : {B proximity to centre (out )} ←
6−bound info(out ),
7−Σ proximity to centre (out ),
8+Σ proximity to centre ( in );
9



10+bound info(out) : {B proximity to centre ( in )} ←
11−bound info(in ),
12−Σ proximity to centre ( in ),
13+Σ proximity to centre (out );
14

15+!maintain path : {B proximity to centre ( in )} ←
16run( set control (maintain ));
17+!execute(P) : {B proximity to centre (out )} ←
18run( set control (P ));
19

20+! plan approach to centre (P) :
21{B location (L1, L2, L3, L4, L5, L6)} ←
22calc ( plan approach to centre (L1, L2, L3, L4, L5, L6), P),
23+Σ plan approach to center (P);
24

25−broken(X) :
26{B thruster bank line (X, N, L),
27B thruster (X, N, C, V, P), P1 < 1} ←
28+Σ(broken(X));
29

30+ thruster (X, N, C, V, P):
31{˜ B broken(X),
32B thruster bank line (X, N, L), P1 < 1} ←
33+Σ broken(X);
34+ thruster (X, N, C, V, P):
35{B broken(X),
36B thruster bank line (X, N, L), 1 < P1} ←
37−Σ broken(X).
38

39+! change fuel line (T, 1) :
40{B thruster bank line (T, B, 1)} ←
41run( set valves (T, B, off , off , on, on )),
42−Σ thruster bank line (T, B, 1),
43+Σ thruster bank line (T, B, 2),
44−Σ broken(T);
45+!change bank(T) : {B thruster bank line (T, B, L)} ←
46B1 is B + 1;
47run( set bank (T, B1)),
48run( set main (T, B, off )),
49run( set main (T, B1, on )),
50−Σ thruster bank line (T, B, L),
51+Σ thruster bank line (T, B1, 1),
52−Σ broken(T);

We use a standard BDI syntax: +b indicates the addition
of a belief; !g indicates a goal, g, and +!g the commitment
to the goal. A plan e : {g} ← b consists of a trigger event,
e, a guard, g, which must be true before the plan can be
executed and a body b which is executed when the plan
is selected. The use of Bb in a plan guard indicates a test
that b is believed by the agent.

In addition to regular BDI syntax we use +Σb and
−Σb to indicate the addition and removal of shared beliefs
which are used by both the Abstraction and the Reasoning
engines. The actions calc and run trigger communica-
tion with the MatLab processes. calc requests the calcu-
lation of a value from the Continuous Engine achieved by
calling an M-file with the appropriate name, while run
activates controls in the physical engine.

The Abstraction engine performs two functions, con-
verting the data from the Physical and Continuous Engine
into a form suitable for reasoning (e.g. the location infor-
mation is converted into the abstract judgment of whether
the satellite is within bounds in lines 1–13 and judgments
over whether a thruster is broken are made in lines 30–37)
and converting requests from the reasoning engine into in-
structions for the physical or continuous engine (e.g. the
change_bank requestion is converted into a sequence of

three run instructions in lines 45–52).
Requests from the reasoning engine are modelled as

goal commitments. So +!change_fuel_line(T, 1) in-
dicates that the abstraction engine has received a request
from the reasoning engine to change a fuel line.

For example the code in lines 45–52 describes how
to change a thruster in bank T following a request from
the reasoning engine, if the thruster used by the bank is
believed to be B. The Physical engine is instructed to set
the bank to thruster B+1 (set_bank(T, B1)) then switch
off thruster B, switch on thruster B+1, and then change the
shared beliefs so it no longer beliefs that the bank is using
thruster B but believes the bank is using thruster B+ 1. At
the same time it removes any beliefs that the thruster is
broken.

The code in fragment 3.1 was the same in all versions
of the system, but for each additional thruster we had to
add code to convert from the input data about that thruster
to a more generic predicate. Below is the code used for
the 1st thruster in the X bank.

Code fragment 3.2 Geostationary Orbit:X Thruster 1 Code

1+xthruster1 (L11, L21, P1, Volt1 , Curr1):
2{˜ B thruster (x, 1, L2, L1, P, V, C)} ←
3+ thruster (x, 1, L11, L21, P1, Volt1 , Curr1);
4+xthruster1 (L11, L21, P1, Volt1 , Curr1):
5{B thruster (x, 1, L2, L1, P, V, C)} ←
6− thruster (x, 1, L2, L1, P, V, C),
7+ thruster (x, 1, L11, L21, P1, Volt1 , Curr1);

As can be seen the data coming from the physical en-
gine tags each thruster’s data with a label specific to the
thruster (xthruster1 in this case) but the abstraction and
reasoning engine wish to apply the same reasoning to all
thrusters and so convert this into a predicate, thruster,
that is parameterised by the bank (x in this case) and the
thruster within that bank (1 in this case). Two cases are
needed depending on whether or not the abstraction en-
gine already has a belief about this thruster.

3.2 The Reasoning Engine
The reasoning engine code is as follows and remained

the same for any number of redundant thrusters:
Code fragment 3.3 Geostationary Orbit: Reasoning Engine

1+ proximity to centre (out) : {> } ←
2− proximity to centre ( in ),
3+! get to centre ;
4+ proximity to centre ( in ) : {> } ←
5− proximity to centre (out ),
6perform( maintain path );
7

8+! get to centre : {B proximity to centre (out )} ←
9query( plan approach to centre (P )),
10perform(execute (P )),
11−Σ plan approach to centre (P);
12

13+broken(X): {B thruster bank line (X, N, 1)} ←
14perform( change fuel line (X, N));
15+broken(X): {B thruster bank line (X, N, 2)} ←
16perform(change bank(X, N));

We use the same syntax as we did for the Abstraction En-
gine. Here the actions, ‘perform’ and ‘query’, request
that the Abstraction Engine forward an instruction to the



Reasoning engine or a calculation to the continuous en-
gine (respectively).

The architecture lets us represent the high-level deci-
sion making aspects of the program in terms of the beliefs
and goals of the agent and the events it observes. So, for
instance, when the Abstraction Engine observes that the
thruster line pressure has dropped below 1, it asserts a
shared belief that the thruster is broken. When the Rea-
soning Engine observes that the thruster is broken, it then
either changes fuel line, or thruster bank. This is com-
municated to the Abstraction Engine which then sets the
appropriate valves and switches.

4 Comparison to Traditional Hybrid
Control Systems

As well as constructing a BDI style controller for
thruster malfunction we constructed a traditional finite
state machine controller using MatLab’s stateflow pack-
age. As we added additional redundant thrusters we were
able to compare how the size of the code increased in
the two systems, and hence the programming burden and
probability of error increased.
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As can be seen the increase in code size for the BDI
system is linear (the additional seven lines of code show
in fragment 3.2 which convert specific thruster predicates
into more general predicates) while the FSM increases
more than linearly as more redundant thrusters are added.

5 Future Work

The work on hybrid agent systems with declarative
abstractions for autonomous space software is only in its
initial stages and considerable further work remains to be
investigated.

5.1 Further Case Studies.
We are keen to develop a repertoire of case studies

which will provide us with benchmark examples upon

which to examine issues such as more sophisticated rea-
soning tasks, multi-agent systems, forward planning, ver-
ification and language design.

We have already started work on a more sophistacted
study involving a group of satellites attempting to main-
tain or change formation in low Earth orbit.

5.2 Custom Language.
At the moment the BDI language we are using for the

Abstraction Engine is not as clear as we might like and it
may prove that the BDI paradigm is not appropriate for the
abstraction task, which is not one based around decision
making. We are investigating the use of stream process-
ing technologies (from e.g. [3, 15]) and the use of tem-
poral logic statements as a better mechanism for forming
abstractions.

We are also interested in investigating other program-
ming languages for the Reasoning Engine – e.g. lan-
guages such as Jason [6] or 3APL [7] are similar to the
one we employ, but better developed and supported. Al-
ternatively it might be necessary to extend the custom lan-
guage with, for instance, the concept of a maintain goal.
Much of a satellite’s operation is most naturally expressed
in terms of maintaining a state of affairs (such as a remain-
ing on a particular path).

5.3 Planning and Model Checking.
At present the M-file employed to create a new con-

troller that will return the satellite to the desired orbit
uses a technique based on hill-climbing search [17]. We
are interested in investigating temporal logic and model-
checking based approaches to this form of planning for
hybrid automata based upon the work of Kloetzer and
Belta [16]. We are also interested in the use of simula-
tion as a form of predictive modelling that can assist in
decision making.

Model checking techniques also exist [5] for the ver-
ification of BDI agent programs which could conceiv-
ably be applied to the Reasoning Engine. Abstraction
techniques would then be required to provide appropri-
ate models of the continuous and physical engines and it
might be possible to generate these automatically from the
abstraction engine.

There is also a large body of work on the verification
of hybrid systems [1, 12] which would allow us to push
the boundaries of verification of such systems outside the
limits of the Reasoning Engine alone.

5.4 Multi-Agent Systems.
We are interested in extending our work to multi-

agent systems and groups of satellites that need to collabo-
rate in order to achieve some objective. For instance, there
are realistic scenarios in which one member of a group of
satellites loses some particular functionality meaning that
its role within the group needs to change and the group
itself needs to find a new formation. We believe this pro-
vides an interesting application for multi-agent work on
groups, teams, roles and organisations [10, 13, 11, 19],
and also provides an interesting test bed for using forward



planning and simulation techniques to inform the decision
making process.

5.5 Implementation in Hardware
We hope to evaluate our software on a physical satel-

lite simulation environment developed at the University of
Southampton. Although this environment constrains the
satellites to operate with 5 degrees of freedom, it allows
the software to be tested in a real physical environment
and to assess its ability to handle decision-making outside
of an entirely virtual implementation. This will be of par-
ticular interest when evaluating the predictive simulation
aspects of the system since the ability to handle differ-
ences between the simulated result of some action and the
actual result of some action will be a key requirement.

6 Conclusion

This paper has presented a hybrid-style achitecture for
the control of satellite systems.

A simple case study is presented demonstrating how
this style of programming copes with the increasing com-
plexity of the underlying system better than more tradi-
tional approaches to hybrid system programming based on
on Finite State Systems. This reduced complexity follows
from the systems ability to make use of parameterised sub-
tasks and to specify that sub-tasks are triggered by specific
system states and to allow several sub-tasks to be executed
in an interleaved fashion.
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