The University of Southampton
University of Southampton Institutional Repository

Double averaged open channel flows with small relative submergence

Double averaged open channel flows with small relative submergence
Double averaged open channel flows with small relative submergence
We investigate the turbulent structure of shallow open channel flows where the flow depth is too small (compared with the roughness height) to form a logarithmic layer but large enough to develop an outer layer where the flow is not directly influenced by the roughness elements. Since the log layer is not present, the displacement height d, which defines the position of the zero plane, and the shear velocity u* cannot be found by fitting the velocity data to the log law. However, these parameters are still very important because they are used for scaling flow statistics for the outer and roughness layers. In this paper we propose an alternative procedure for evaluating d in laboratory conditions, where d is found from additional experiments with the fully developed log layer. We also point out the appropriate procedure for evaluating the shear velocity u* for flows with low submergence. These procedures are applied to our own laboratory flume experiments with uniform sphere roughness, where velocities were measured using Particle Image Velocimetry. Results were interpreted within the framework of the double-averaged Navier–Stokes equations and include mean velocities, turbulence intensities, Reynolds stresses, and form-induced normal and shear stresses. The data collapse well and show that in flows without a developed log layer the structure of turbulence in the outer layer remains similar to that of flows with a log layer. This means that even though the roughness layer in the experiments reported herein was sufficiently high to prevent the development of the log layer, influence of the bed roughness did not spread further up into the outer layer. Furthermore, the results show that flow statistics do not depend on relative submergence except for the form-induced stresses which increase when relative submergence decreases
896-904
Manes, C.
7d9d5123-4d1b-4760-beff-d82fe0bd0acf
Pokrajac, D.
bf6480dd-6965-46f1-880b-8290c86f6965
McEwan, I.
c768d60c-6fe7-4b35-89a2-105cbf0a19b5
Manes, C.
7d9d5123-4d1b-4760-beff-d82fe0bd0acf
Pokrajac, D.
bf6480dd-6965-46f1-880b-8290c86f6965
McEwan, I.
c768d60c-6fe7-4b35-89a2-105cbf0a19b5

Manes, C., Pokrajac, D. and McEwan, I. (2007) Double averaged open channel flows with small relative submergence. Journal of Hydraulic Engineering, 133 (8), 896-904. (doi:10.1061/(ASCE)0733-9429(2007)133:8(896)).

Record type: Article

Abstract

We investigate the turbulent structure of shallow open channel flows where the flow depth is too small (compared with the roughness height) to form a logarithmic layer but large enough to develop an outer layer where the flow is not directly influenced by the roughness elements. Since the log layer is not present, the displacement height d, which defines the position of the zero plane, and the shear velocity u* cannot be found by fitting the velocity data to the log law. However, these parameters are still very important because they are used for scaling flow statistics for the outer and roughness layers. In this paper we propose an alternative procedure for evaluating d in laboratory conditions, where d is found from additional experiments with the fully developed log layer. We also point out the appropriate procedure for evaluating the shear velocity u* for flows with low submergence. These procedures are applied to our own laboratory flume experiments with uniform sphere roughness, where velocities were measured using Particle Image Velocimetry. Results were interpreted within the framework of the double-averaged Navier–Stokes equations and include mean velocities, turbulence intensities, Reynolds stresses, and form-induced normal and shear stresses. The data collapse well and show that in flows without a developed log layer the structure of turbulence in the outer layer remains similar to that of flows with a log layer. This means that even though the roughness layer in the experiments reported herein was sufficiently high to prevent the development of the log layer, influence of the bed roughness did not spread further up into the outer layer. Furthermore, the results show that flow statistics do not depend on relative submergence except for the form-induced stresses which increase when relative submergence decreases

Text
Manes_et_al_2007.pdf - Version of Record
Restricted to Repository staff only
Request a copy

More information

Published date: August 2007
Organisations: Energy & Climate Change Group

Identifiers

Local EPrints ID: 204093
URI: http://eprints.soton.ac.uk/id/eprint/204093
PURE UUID: 632a1eb1-fbb6-4bc5-a379-b5e1d9ad1525

Catalogue record

Date deposited: 24 Nov 2011 11:13
Last modified: 14 Mar 2024 04:30

Export record

Altmetrics

Contributors

Author: C. Manes
Author: D. Pokrajac
Author: I. McEwan

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×