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A b s t r a c t  

This paper presents a review of recent experimental and numerical 
studies which deal with the analysis of form-induced stress in rough wall 
turbulent boundary layers. The aim of the paper is to assess the impor-
tance of this stress for various rough wall geometries and flow condi-
tions. Analysis of the significance of form-induced stress is first per-
formed by comparing its magnitude with the magnitude of Reynolds 
stress for each data set available in literature. Then, by selecting a special 
set of data, we analyze the comparison between the gradients of both 
stresses. We point out that the comparison of stress gradients gives a dif-
ferent perspective on the role of form-induced stress in rough wall 
boundary layers.  

Key words: form-induced stress, rough wall boundary layers, Reynolds 
stress. 

1. INTRODUCTION 

Double Averaged (DA) transport equations have proved to be an efficient 
tool for investigating transport processes occurring within the roughness 
layer of rough wall boundary layers. So far, most studies have focused on the 
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use of the DA momentum equations to interpret data obtained from experi-
ments and numerical simulations. In these studies, the contribution of differ-
ent terms was assessed in order to highlight the dominant momentum trans-
port mechanisms. In this context significant attention has been paid to 
quantify the importance of the “Form-Induced” (FI) stress (also called “Dis-
per-sive Stress” by the atmospheric science community). FI stress is a prod-
uct of spatial averaging, just as the Reynolds stress is a product of time aver-
aging. It represents the stress which arises from the covariance of the spatial 
fluctuations of the time-averaged flow.  

In numerical studies based on DA momentum equations, FI stress is 
usually neglected, since it is considered much smaller than the Reynolds 
stress. Behind this assumption there is the hypothesis that most of the mo-
mentum within the roughness layer is carried by turbulence. Although this 
hypothesis is often valid, various studies have shown that FI stress cannot 
always be neglected and that in certain cases it can have a magnitude compa-
rable with that of the Reynolds stress. In existing literature, the significance 
of FI stress has been investigated for various roughness geometries and flow 
conditions and it is the aim of this paper to review the results obtained from 
recent experiments and numerical simulations. These results are then re-
interpreted, where possible, by analyzing momentum balance based on stress 
gradients rather than on stress values. This type of analysis gives a different 
perspective on the importance of FI stress.  

The paper starts by defining the DA momentum equations used as the 
basis for reviewing results from the literature. The review of existing data is 
presented, as is usually done, by assessing the magnitude of FI stress for var-
ious rough surfaces and flow conditions. In the discussion section we select a 
special data set to show how significantly different insight is gained on eva-
luating the contribution of FI stress to momentum balance, if stress gradients 
rather than stress magnitudes are compared. In this section we also discuss 
the difficulties which arise when one wants to parameterize the FI stress 
term in the momentum balance equation.  

2. DOUBLE  AVERAGED  MOMENTUM  EQUATION 

In this paper we use the equations presented in Nikora et al. (2007), for two-
dimensional, steady, uniform and turbulent open channel flow conditions 
over a rough wall. For these flow conditions, the DA momentum equation in 
the streamwise direction is given as 

 xz
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and fx is the total drag per unit volume. In the above equations the straight 
over-bar and the angle brackets denote respectively the time and spatial av-
erage of flow variables whereas the prime and the wavy over-bar denote re-
spectively the time fluctuations and the spatial disturbances, i.e., u u u′ = −
and u u u= −� ; x, z are the stream wise and bed normal coordinate respec-
tively (x is positive in the mean direction of the flow whereas z is positive 
from the wall towards the boundary layer top); u and w are the velocity 
components along x and z, respectively; ρ is the density; g is the gravity ac-
celeration; Sb is the bed slope; ν is the kinematic viscosity; φ is the porosity 
equal to the ratio between the volume occupied by the fluid and the total av-
eraging volume (φ = 1 above the roughness top). Volume averaging intro-
duces additional terms with respect to the traditional time-averaged Rey-
nolds equations. These are the FI stress uwρ− � � , which becomes a part of 
the fluid shear stress given by eq. (2), and the total drag fx. The latter 
represents the sum of the form drag and the viscous drag, i.e., the drag that 
the fluid exerts on individual roughness elements (per unit height and unit 
plan area of the flow) due to pressure and viscous forces; fx is non zero only 
below the roughness elements. The FI stress is a product of spatial averaging 
just as Reynolds stress is a product of time averaging and represents the 
momentum flux induced by the heterogeneity of the time-averaged flow.  

3. REVIEW  OF  EXISTING  DATA  ON  FORM-INDUCED  STRESS 

FI stress depends on the details of the time-averaged flow around individual 
roughness elements, which in turn depends on the roughness geometry and 
the features of the turbulent flow above the roughness. In this section we 
present results on FI stress for flows over vertical rods, cubes, spheres, two-
dimensional artificial dunes and gravel having different spacings and ar-
rangements. All these roughness geometries are not easy to identify by gen-
eral parameters which take into account, shape, spacing and dimension of 
each roughness element composing the surface. Furthermore, some of them 
have well defined shapes (cubes, spheres, artificial dunes and rods) whereas 
other resemble more a random field of elevations (gravel beds). For these 
reasons we proceed with the analysis by commenting results case by case 
without labeling each roughness with a series of parameters describing it. An 
attempt to identify the roughness characteristics most influencing FI stress 
behavior is however presented in the section devoted to discussion.  

Since the work of Wilson and Shaw (1977), the Double Averaging (he-
reafter we use DA as an abbreviation for either “Double Averaged” or 
“Double Averaging”) methodology has become a standard for data interpre-
tation in canopy flows. It seems therefore reasonable to start our analysis 
from this class of rough wall boundary layers. Canopy flows are usually con-
sidered to be those turbulent boundary layers occurring over trees or plants. 
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In laboratory studies such type of roughness is usually modelled as simple 
vertical rods which, despite lacking in leaves and branches, still induce flow 
properties similar to real plant canopies. Many detailed velocity data sets are 
available in literature within the roughness layer of rod type roughness. The 
recent experiments of Poggi et al. (2004a) and (2004b) provide an extensive 
data set which has been used to investigate the dependence of turbulence 
characteristics on canopy density. Velocities were measured in a water flume 
with varying canopy density from 67 to 1072 rod/m2 (equivalent to an ele-
ment area index  a = 0.27-4.27, where  a = nbHcp /S,  n is equal to the num-
ber of roughness elements, b their width, Hcp is their height and S is the total 
area).Velocity measurements were performed at many points above and 
within the roughness layer and therefore FI stress could be estimated reason-
ably well throughout the boundary layer depth. It was noted by Poggi et al. 
(2004a) that FI stress was negative close to the canopy top and positive be-
low, indicating upward and downward “Form-Induced” momentum transport 
near the canopy top and bottom, respectively. For dense canopy density FI 
stress was found to be negligible hence substantiating the data of Raupach 
(1994) and Kaimal and Finnigan (1994). Instead, for sparse roughness FI 
stress reached up to 30% of the total stress in the lower part of the canopy 
(z/Hcp < 0.5, where  z = 0  at the canopy bottom). Non negligible FI stress in 
sparse canopies was also found by Bohm et al. (2000). Above the canopy 
top, FI stress was found to be negligible for all the roughness densities inves-
tigated.  

Among the atmospheric science community, the DA technique has been 
recently applied for the study of boundary layers over urban-like rough sur-
faces. In a recent paper, Coceal et al. (2006) present results from Direct Nu-
merical Simulations (DNS) performed for turbulent boundary layers over 
cubes arranged in staggered and aligned configurations. The simulated flow 
is maintained by a constant pressure gradient and the roughness Reynolds 
number, (i.e., Re* = u*Hc /ν, where Hc is the cubes height and u* is the shear 
velocity) is within the fully rough regime. The roughness geometries used in 
this study resemble the structure that buildings and streets form in real cities 
and hence is used as a reference model for the study of transport mechanisms 
in urban environments.  

Results on the momentum balance for both cube arrangements are shown 
in Fig. 1. As for canopy flows, FI stress is negligible above the roughness 
elements, but becomes significant below the roughness tops reaching up to 
20% of the total shear stress τ0 , where  τ0 = τxz (z = Hc), and  z = 0  at the 
cubes bottom. FI stress for the two roughness configurations shows signifi-
cant differences in magnitude and also in sign (the sign varies with height for 
the aligned configuration), indicating a strong dependence of FI stress on 
roughness arrangement.  
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Fig. 1. FI (dashed lines) and Reynolds stress (solid lines) for the staggered (thick 
lines) and aligned (thin lines) cube arrangement (data from Coceal et al. 2006); Hc is 
the cube height;  z/Hc  = 1 at the roughness tops; τ0 is the shear stress measured at the 
roughness tops. 

In hydraulics, the DA methodology is receiving considerable attention 
for the study of open channel flow hydrodynamics (e.g., Nikora et al. 2001, 
2007, Maddux et al. 2003, Campbell et al. 2005, McLean and Nikora 2006, 
Manes et al. 2007). Recently, McLean and Nikora (2006) have applied the 
DA methodology for interpreting existing data consisting of detailed velocity 
measurements in open channel flows over two-dimensional artificial dunes 
and cobble beds. Dune experiments were carried out by varying flow condi-
tions and bed form aspect ratio (details on the experimental set up can be 
found in McLean et al. 1994). The aspect ratio, i.e., the wavelength λ to dune 
height Hd ratios were 20 and 10. It was observed that, FI stress reached up to 
50 and 75% of the bed shear stress for λ/Hd = 10 and 20, respectively (the 
bed shear stress was determined from the extrapolation of the Reynolds 
stress profile to the mean bed level). The contribution of FI stress appeared 
significant (i.e., comparable to the Reynolds stress) throughout the dune 
height for  λ/Hd = 20  whereas it was rapidly decaying with z for λ/Hd = 10. 
Interestingly, FI stress was negative at the dune crests for both roughness 
spacings, indicating once again an upward momentum transport contribution 
to the total flux. It was shown that the higher contribution of FI stress for the  
λ/Hd = 12  spacing was due to a significant increase in the spatial variations 
of the stream-wise velocity components, i.e., 2 2

*u u< >� . McLean and Niko-
ra (2006) related this increase to a smaller relative extension of the separated 
flow region in the case of the longer dunes.  

The data on the cobble bed presented by McLean and Nikora (2006) re-
late only to the flow region above the roughness crests where FI stress was 
observed to be extremely small. However, recent studies suggest that FI 
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stress might be non negligible (i.e., up to 30% of the bed shear stress) in 
open channel flows over gravel beds both above (Campbell et al. 2005) and 
below the roughness tops (Aberle 2006).  

As one can see, most of the information on FI stress behavior comes 
from empirical observations and theoretical arguments are lacking. To the 
author’s knowledge, the only study presenting a theoretical approach is that 
by Gimenez-Curto and Corniero Lera (1996). In this work, the authors point 
out that a necessary condition for FI stress to be non-zero is the presence of 
vorticity in the time-averaged flow. Furthermore, their theoretical considera-
tions lead to the conclusion that the contribution of FI stress to the total shear 
stress may increase with decreasing relative submergence of the flow, i.e., 
the ratio between flow depth and roughness height. This theoretical finding 
is somewhat substantiated by the experimental data of Manes et al. (2007). 
In this study, experiments were carried out in open channel flows over 1 
layer of spheres packed in a cubic pattern. Streamwise and vertical velocities 
were measured by means of Particle Image Velocimetry (PIV) in two central 
cross sections of the flume (Fig. 2), one over the tops of the spheres (top sec-
tion) and another over the points at which they touch (Valley section). This 
was done in order to capture adequately the spatial heterogeneity of the flow 
within the roughness layer. Two flow conditions were investigated with two 
different values of relative submergence, namely  D/Hs = 1.8  and 3.5, where 
D is the flow depth measured from the spheres tops to the free surface and 
Hs is the spheres height. For the lower submergence case, the relative magni-
tude of FI stress (i.e., 2

0 */f uw uτ τ = − � � , where τ0 is the shear stress meas-
ured at the spheres top) is almost twice as big as for the higher submergence 
case (Fig. 3a). However, this increase of FI stress is not accompanied by a 
significant relative increase of spatial variations of the flow (Fig. 3b and 3c), 
contrary to what is predicted by Gimenez-Curto and Corniero Lera (1996). 
Manes et al. (2007) relate this increase rather to the development of different 
flow patterns around the roughness elements which induce higher FI stress 
for lower D/Hs. It should be noted that the data on 2-D dunes presented by 
McLean and Nikora (2006) partly substantiate this argument. In fact, for the 
λ/Hd = 20  case FI stress increases significantly below the dunes crest (i.e., 
for  z/Hd ≤ 0.3)  by lowering  D/Hd  from  13.65 to 3.95.  Furthermore,  as  in 

Fig. 2.  Location of the measurement sections in Manes et al. (2007). 
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Fig. 3. Dependence of form-induced stress on relative submergence. Lines with cir-
cles stand for experiment with  D/Hs = 3.5, whereas lines with asterisks for the expe-
riments having  D/Hs = 1.8 (data from Manes et al. 2007); τ0 is the shear stress 
measured at the roughness tops and  * 0 /u τ ρ= ;  z/Hs = 1  at the sphere tops. 

Manes et al. (2007), this increase is not accompanied with an increase in 
spatial variations of the flow, i.e., 2

*u u< >�   and  2
*w u< >� . In contrast to 

this, for the steeper dunes, i.e.,  λ/Hd = 10, the relative magnitude of FI stress 
does not vary with flow conditions. This suggests that the dependence of FI 
stress on flow conditions should be verified by more experimental or numer-
ical tests since the available data and theoretical considerations lead to con-
tradictory results. Indeed, FI stress is generally difficult to estimate and noisy 
data might give a wrong perspective. Furthermore, it is not clear, from the 
physical point of view, why the relative submergence should be the non-
dimensional parameter most influencing the relative magnitude of FI stress.  

It is rather more intuitive to infer just that the relative magnitude of FI 
stress, i.e., 2

0 */f uw uτ τ = − � �  varies with flow conditions if these can signifi-
cantly influence the time-averaged flow patterns developing around the 
roughness elements. Due to the complicated nature of the flow within the 
roughness layer it is difficult to predict how this can happen and what are the 
nondimensional flow parameters controlling such process. To shed some 
light into this issue, we make use of the spatial quadrant analysis technique 
developed by Pokrajac et al. (2007), to analyze the data from Manes et al. 
(2007) and explore possible causes responsible for variations in the time-
averaged flow structures associated with changes in flow conditions.  
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We restrict our analysis to the measurements taken at the height were the 
maximum in the FI stress profile occurs for the two flow conditions, i.e., 

/ 0.87sz H ∼  and (Fig. 3). Quadrant analysis for */u u�  and */w u�  show that 
spatial perturbations pertaining to top and valley sections reside in two well 
separated groups (Fig. 4).  

Fig. 4. Quadrant analysis at  / 0.87sz H ≈  for the experiments of Manes et al. 
(2007). Symbols are like in Fig. 3. 

Valley points are all placed in quadrant 4 and they all contribute to a 
negative spatial correlation and therefore to a positive FI stress. In contrast, 
top points are spread in quadrant 2 and 3 which have, respectively, a nega-
tive and positive contribution to spatial correlation (i.e., a positive and nega-
tive contribution to FI stress). For the flow conditions with higher submer-
gence the contribution of quadrant 3 is larger than in the case with low 
submergence, and that weakens the overall magnitude of FI stress.  

The positioning of top points in the quadrant plot is associated to a wake-
type mean flow pattern occurring in the top section (Fig. 5). Within the wake 
region, the flow forms a stationary vortex for which, in the low submergence 
case, upward vertical velocities are larger than the downward components. 
In contrast, downward velocities are larger in the high submergence case. 
Therefore, the uneven spread of points into quadrant 2 and 3 for the top sec-
tions is due to development of an “asymmetric” vortex downstream the 
sphere tops. The different asymmetry influences the positive or negative 
contribution to FI stress and therefore its overall magnitude. In the case of a 
perfectly symmetric wake, the contribution to the total FI stress from top 
points would be zero. 

A definitive explanation to justify the development of different vortices 
for different flow conditions is difficult to provide here. However, we argue 
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that this could be the result of a shift in the separation point around the 
spheres. The following argument motivates this hypothesis. 

It has been shown by Poggi et al. (2004b) that the drag coefficient Cd of 
rods ion canopy flows, monotonically decreases with increasing local ele-
ment Reynolds number  /Re ud ν= , where u  is the local time averaged ve-
locity measured upstream from a rod of diameter d. This is in contrast to the 
classical behavior of an isolated cylinder for which Cd reaches a plateau for 
high Re (it is generally argued that such a phenomenon is caused by the shel-
tering of consecutive roughness elements, see Raupach and Thom 1981). We 
argue that a variation of Cd with Re may be related to a shift in the separation 
point around the singular roughness element. Let us assume that this argu-
ment may also apply to other roughness geometries. In the case of the 
spheres experiments, the increase in relative submergence is associated with 
an increase of the local Reynolds number at any height within the roughness 
layer (i.e., mean velocities below the sphere tops were higher for the high 
relative submergence case). Therefore, it is plausible to assume that a down-
stream shift in the separation point occurred between the low and the high 
submergence case. Figure 5 shows that, since the separation point is at the 
downstream half of the sphere, the downstream shift produces a downwards 
velocity which weakens the upward motion within the stationary vortex. 

We point out that a shift of the separation point may not be the only me-
chanism influencing the mean flow patterns among the roughness elements. 

Fig. 5. Time-averaged flow pattern in the top section for the sphere experiments of
Manes et al. (2007).  
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Therefore, it may not provide a general argument to explain the dependence 
of FI stress with flow conditions. Indeed, it is probably not appropriate to 
justify the variation of FI stress observed for the dune experiments of 
McLean and Nikora (2006). This is because a dependence of separation 
point with element Reynolds number is expected to be more significant for 
smooth roughness geometries, such as spheres, than for more irregular and 
sharp edged shapes, such as cubes or artificial dunes. This is substantiated by 
the data of Taylor (1988) who found that Reynolds number dependence of 
drag coefficients for various roughness geometries was stronger for smooth 
shaped roughness elements than for sharp edged shapes. Therefore, more de-
tailed experiments or numerical simulations are needed to reveal how the 
structure of the time-averaged flow can change by varying bulk flow condi-
tions. 

4. DISCUSSION 

The data presented in the previous section allow us to draw some conclu-
sions on the behavior of FI stress:  

 FI stress is often negligible above the roughness tops whereas it in-
creases significantly below this level.  

 Within the roughness layer of all the rough surfaces investigated, FI 
stress becomes significant but reaches at the very most the same magni-
tude as the Reynolds stress, being smaller most of the times.  

 FI stress is more significant when the roughness is more sparse. This is 
evident from the canopy flow experiments of Poggi et al. (2004a) and 
the dunes experiment of McLean and Nikora (2006).  

 FI stress scaled with the surface shear stress may depend on flow condi-
tions (Manes et al. 2007, McLean and Nikora 2006, and Fig. 3a).  

Among the conclusions listed above, the first and the second point seem 
to suggest that the FI stress is less important than Reynolds stress and that 
turbulence is generally the strongest driving force for vertical momentum 
transfer through rough wall boundary layers. However, one has to be careful 
since it is the gradient of the stress that enters the DA momentum equation 
(1), which governs the mean dynamics within the roughness layer. There-
fore, information on the roughness layer flow dynamics should be obtained 
from the analysis of the stress gradient terms rather than the stress compo-
nents. The same argument has been recently used by Wei et al. (2005) and 
Klevicki et al. (2007) who analyze the structure of smooth wall turbulent 
boundary layers by assessing the gradients of viscous and Reynolds stress. 
We now want to perform a similar analysis for the Reynolds and FI stress 
gradients. Estimating values of stress gradients requires very detailed veloci-
ty data which can only be provided by numerical simulations. In this review, 
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we take advantage of the DNS of Coceal et al. (2006) for flows over cubes 
(these data are also presented in Coceal et al. 2008 in this special issue). 
Figure 6a and 6b show the ratios between FI and Reynolds stress and the ra-
tio between their gradient. According to Pokrajac et al. (2008) care should 
be taken when assessing stress gradients at the roughness tops since at this 
level the stress might not be a continuous function of z. This implies that at 
this level τ(z) may not be differentiable and therefore its gradient may not be 
defined. In Figs. 6 and 7 we show the values of the stress gradients calcu-
lated at the roughness tops for completeness, however, we acknowledge that 
due to the aforementioned problem their values might just be a result of the 
discrete nature of the DNS data.  

Figure 6 shows that although the ratio between the stress magnitudes is 
always less than or equal to one, the ratio between the gradients of FI and 
Reynolds stress is much bigger for both roughness configurations. Indeed, 
for the aligned configuration it goes up to 20, maintaining large values for a 
significant part of the roughness height, i.e., for  0.52 < z/Hc < 0.72  and 
0.45 < z/Hc < 0.5 (the discontinuity of the gradient ratio for the aligned 
profile is caused by the fact that Reynolds stress becomes zero at  z/Hc = 0.5). 
For the staggered configuration the stress gradient ratio goes up to 5 and also 
keeps a value larger than 1 for a large part of the roughness height, i.e., 
0.05 < z/Hc < 0.35.  

Fig. 6: (a) Ratios of FI and Reynolds stresses; (b) Ratios between FI and Reynolds 
stress gradients. Circles and triangles relate to the staggered and aligned cube confi-
guration, respectively.  
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Clearly, the conclusions that one can draw from the standard stress and 
stress gradient analysis differ significantly. From the stress analysis one 
would say that FI and Reynolds stress are at the very most just comparable. 
Instead, from the stress gradient analysis one can definitely say that there are 
flow regions where FI fluxes represent the dominant mechanism. This means 
that, despite being smaller than the Reynolds stress, FI stress can have much 
steeper gradients and hence contributes more to the force exerted on the fluid 
at each elevation. Therefore, in order to gain insight into the dynamics of the 
roughness layer, this analysis shows that it might be misleading to evaluate 
the significance of FI stress just from its magnitude.  

In order to have a clear picture of the mean dynamics of the flow, we 
present the total force balance for both roughness configurations in Fig. 7. 
This includes the gradient of FI and Reynolds stress and also the total drag 
force per unit area. The data are presented normalized with the total pressure 
gradient (pressure gradient is analogous to gravity in eq. 1). Above the 
roughness tops, the force balance is between the Reynolds stress and pres-
sure gradient, in fact their ratio is equal to one. Below the roughness tops 
Fig. 7 further substantiates the arguments presented above. In particular that 
there are flow regions where the Reynolds stress gradients are almost zero 
and where therefore, it is conceivable to assume that the flow is maintained 
by a balance between the pressure gradient and the sum of drag and FI stress 
gradients.  

Fig. 7. Momentum balance for staggered and aligned cube configurations; τf stands 
for FI stress and τr for Reynolds stress. Data are normalized with the streamwise 
pressure gradient. 
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So far the effects of FI stress in numerical models have always been neg-
lected and only the Reynolds stresses were considered. The parameterization 
of the Reynolds stress is usually based on eddy viscosity theories which 
however do not work well within the roughness layer. In this flow region, 
they suffer the problem of non-local momentum exchange and the absence 
of a unique length scale influencing the turbulent motion. Eddy diffusivity 
approaches can be successfully applied only where turbulence is dominated 
by one length scale, e.g., in the log layer of turbulent boundary layers where 
the only length scale of turbulence is the distance from the wall. This implies 
that there is a large degree of tuning and uncertainty when matching turbu-
lence properties of the flow, eddy diffusivity and Reynolds stress within the 
roughness layer.  

We argue that, applying an eddy diffusivity technique for the paramete-
rization of FI stress (as suggested by Gimenez-Curto and Corniero Lera 
1996) is often impossible and where possible, not convenient. In fact, we 
have seen that FI momentum fluxes are often negative, reflecting an upward 
contribution to the momentum flux. However, the DA mean velocity gra-
dients are usually positive within the roughness layer, therefore one should 
include a rather non-intuitive negative FI eddy diffusivity to account for such 
an effect. Even in the case when counter gradient FI momentum fluxes are 
absent, dividing the effects of the two shear stress components would not be 
very beneficial. In fact, due to the pathology of eddy diffusivity techniques 
in the roughness layer, this would just add more uncertainty because it would 
imply including more tuning coefficients in the momentum equations which 
cannot be explicitly and easily linked with flow properties.  

We suggest that a separate parameterization of the two terms should be 
done only in case the perturbed time-averaged flow is dominated by a unique 

Fig. 8. DA velocity profiles and total fluid shear stress for staggered (dashed lines) 
and aligned (solid lines) cubes configuration. 
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length scale (imposed by the rough surface), which can be consistently 
linked with a “FI eddy viscosity” of the DA flow. Unless this happens it is 
definitely more desirable to consider the sum of the effects of the Reynolds 
and FI stresses in just one total shear stress term. In fact when considering 
the sum of the stresses at least one does not encounter the problem of coun-
ter gradient fluxes because the total fluid shear stress is always positive and 
hence consistent with a positive gradient of DA velocities (Fig. 8).  

From the above analysis, it is clear that the modelling of FI fluxes re-
mains an unsolved problem which probably does not have an easy solution. 
Predicting FI stress by using standard parameterization implies having a 
theoretical tool able to describe flows among obstacles which is extremely 
difficult to do. Only detailed turbulence models, such as Large Eddy Simula-
tion (LES) and DNS are capable of dealing with such tasks. However, the 
computational cost to compute environmental flows with such models still 
far exceeds the capability of available computers and a more reasonable al-
ternative has to be found.  

5. CONCLUSIONS 

DA momentum equations have been recently applied to interpret experimen-
tal and numerical data in order to investigate momentum transport mechan-
isms occurring within the roughness layer of rough wall turbulent boundary 
layers. DA momentum equations are obtained by averaging the standard 
Navier-Stokes equations first in time and then in space. Spatial averaging 
gives rise to a stress term produced by the spatial covariance of the time-
averaged velocities, i.e., the FI stress term. In the literature, the significance 
of FI stress has been investigated for various rough wall geometries and this 
paper reviews the results obtained from recent experiments and numerical 
simulations. The main outcomes from this review can be summarized in 
three points:  

 FI stress is often negligible above the roughness elements whereas it 
can increase significantly below this level. In all of the rough surfaces inves-
tigated, FI stress reached at the very most the same magnitude as the Rey-
nolds stress being smaller most of the times. This analysis might lead to the 
conclusion that turbulence is generally the strongest driving force for mo-
mentum transport in rough wall turbulent boundary layers. However, we 
point out that, it is the gradient of stress which enters the DA equations 
which governs the mean flow dynamics in a turbulent boundary layer. 
Therefore, information on the dominant momentum transport mechanisms 
should be obtained by analyzing stress gradients rather than stress compo-
nents. By selecting a special data set obtained from DNS of turbulent boun-
dary layers over cubes, we show how in flow regions below the roughness 
tops, the vertical gradient of FI stress can be much larger than the gradient of 
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Reynolds stress (up to 20 times larger). This clearly gives a different pers-
pective on the role of FI stress and shows how an analysis based on stress 
components could be misleading for assessing the dominant momentum 
transfer mechanisms. This also suggests that further experimental studies on 
FI stress should involve flow measurements with a very high spatial resolu-
tion in order to be able to properly estimate stress gradients. In this context 
the use of PIV may be helpfull.  

 The magnitude of FI stress clearly depends on roughness arrange-
ment. Recent experiments on open channel flows over rods and artificial 
dunes indicates that the magnitude of FI stress increases significantly with 
increasing roughness spacing.  

 The relative magnitude of FI stress might depend on flow conditions. 
Once again we stress that this hypothesis should be confirmed by more expe-
riments or numerical simulations since available data lead to contradictory 
results. Indeed, dependence on flow conditions does not occur consistently 
for all roughness geometries investigated. Despite these inconsistencies, we 
attempt to identify a potential cause which can justify such dependence. We 
suggest that a change in the position of the separation point around rough-
ness elements could be responsible for a significant variation of the time-
averaged flow pattern, which in turn causes the change in the relative magni-
tude of FI stress.  
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