Addendum to quasi-ideal transversals of abundant semigroups and spined products

Jehan Al-Bar and James Renshaw* Email: j.h.renshaw@maths.soton.ac.uk jaal_bar@hotmail.com

It has been brought to our attention that a very similar result to that of [2, Theorem 2.8] has recently been published in [5] by Xiangjun Kong.

Theorem 1 ([5, Theorem 3.1]) Let L and R be abundant semigroups with a common adequate transversal S^0 . Suppose that S^0 is a right ideal of L and a left ideal of R. Let $R \times L \to S^0$ described by $(a, x) \mapsto a * x$ be a mapping such that for any $x, y \in L$ and any $a, b \in R$

- 1. $(a*x)y = a*xy \ and \ b(a*x) = ba*x;$
- 2. if $x \in S^0$ or $a \in S^0$, then a * x = ax;
- 3. For any $b_1, b_2 \in R^1, y_1, y_2 \in L^1$ if $x_1 \mathcal{R}^* x_2$ in L, then $y_1(b_1 * x_1) = y_2(b_2 * x_1)$ if and only if $y_1(b_1 * x_2) = y_2(b_2 * x_2)$; if $a_1 \mathcal{L}^* a_2$ in R, then $(a_1 * y_1)b_1 = (a_1 * y_2)b_2$ if and only if $(a_2 * y_1)b_1 = (a_2 * y_2)b_2$.

Note that we have changed the notation slightly as Kong's use of R (resp. L) coincides with our use of L (resp. R). Although the results appear at first glance to be slightly different, it is possible to recover Kong's result from ours and vice-versa. We briefly demonstrate how to do this below. As mentioned in [2] we have based our approach on a similar result for inverse transversals given by Saito and described in [6], together with the spined product outline by Blyth in [4, Page 37] and the basic properties of R, L and quasi-ideals found in [1]. Kong's approach is similar to the split band approach of Blyth and McFadden in [3], which in turn is quoted by Saito in [6] and may be the inspiration for the previously mentioned outline in [4].

Lemma 2

- 1. Let S be an abundant semigroup with an adequate transversal S^0 . Then S^0 is a right ideal of S if and only if S^0 is a quasi-ideal of S and S is left adequate.
- 2. Let S^0 , R and L be as in the statement of Theorem 1. Then for all $y, z \in L, a, b \in R$ with $\overline{y} = \overline{b}$, $(a * y) f_b * z = a * e_y (b * z)$.
- 3. Let S^0 , R and L be as in the statement of [2, Theorem 2.8]. Then
 - (a) for any $x, y \in L$ and any $a, b \in R$ (a * x)y = a * xy and b(a * x) = ba * x;
 - (b) for any $b_1, b_2 \in R^1, y_1, y_2 \in L^1$ if $x_1 \mathcal{R}^* x_2$ in L, then $y_1(b_1 * x_1) = y_2(b_2 * x_1)$ if and only if $y_1(b_1 * x_2) = y_2(b_2 * x_2)$; if $a_1 \mathcal{R}^* a_2$ in R, then $(a_1 * y_1)b_1 = (a_1 * y_2)b_2$ if and only if $(a_2 * y_1)b_1 = (a_2 * y_2)b_2$.

^{*}School of Mathematics, University of Southampton, Southampton, SO17 1BJ, England

Proof.

- 1. Suppose that S^0 is a right ideal of S. Then $S^0SS^0 \subseteq S^0S^0 \subseteq S^0$ and so S^0 is a quasi-ideal of S. Now if $x \in S$ then $x = e_x \overline{x} f_x \in LS^0S \subseteq LS^0 \subseteq L$ and so from [1, Theorem 3.14] it follows that S is left adequate. Conversely, if S is left adequate and S^0 is a quasi-ideal of S then from [1, Corollary 3.6 and Theorem 3.14] we have $S^0S = S^0LR = S^0SS^0 \subseteq S^0$ as required.
- 2. Let $y, z \in L, a, b \in R$ with $\overline{y} = \overline{b}$. Then $(a*y)f_b*z = (a*y)(f_b*z) = (a*e_y\overline{y})(f_b*z) = (a*e_y)\overline{y}(f_b*z) = (a*e_y)(\overline{y}f_b*z) = (a*e_y)(\overline{b}f_b*z) = (a*e_y)(b*z) = a*e_y(b*z)$.
- 3. (a) From [2, Lemma 2.10] we see that $a*x=(a*x)f_x=(a*x)f_{\overline{x}}$ and so $(a*x)y=(a*x)*y=(a*x)f_{\overline{x}}*y=a*e_x(\overline{x}*y)=a*(e_x\overline{x}y)=a*xy$.
 - (b) The proof follows a similar argument to that of [2, Lemma 2.9], making use of [1, Lemma 1.6] and is left as an exercise.

Consequently we can see that the conditions in [2, Theorem 2.8] imply those given by Kong in Theorem 1 and vice-versa. Moreover we see that property (3) of Theorem 1 is actually unnecessary and, from the proof of (2) above, that property (1) of Theorem 1 can be replaced by

(1') for any $a \in R, x \in L, b, y \in S^0, (a * x)y = a * xy$ and b(a * x) = ba * x.

In addition we can use the lemma above to construct variants of the results in [2, Sections 3 & 4] by replacing property (1) with the corresponding property (1) of Theorem 1 (or (1') if preferred), or by applying Lemma 2(1) above.

References

- [1] Jehan Al-Bar and James Renshaw On adequate transversals, Communications in Algebra, 37 (7) (2009), 2309–2324.
- [2] Jehan Al-Bar and James Renshaw Quasi-ideal transversals of abundant semigroups and spined products, Semigroup Forum, DOI: 10.1007/s00233-010-9223-4, (2010).
- [3] T.S. Blyth and R. McFadden Regular semigroups with a multiplicative inverse transversal, Proceedings of the Royal Society of Edinburgh, 92A, 253–270, 1982.
- [4] T.S. Blyth, 'Inverse Transversals A Guided Tour' in Proceedings of the International Conference on Semigroups, Braga Portugal 18-23 June 1999, Ed. Paula Smith, Emilia Giraldes, Paula Martins, World Scientific (2000) 26-43.
- [5] Kong Xiangjun, Abundant semigroups with quasi-ideal adequate transversals. Adv. Math. (China) 37 (2008), no. 1, 31–40.
- [6] Tatsuhiki Saito, Regular semigroups with a weakly multiplicative inverse transversal, Proc. 8th Symposium on Semigroups, Shimane University (1985), 22–25.