A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors


Chen, Zhi-Min (1993) A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors Chaos, Solitons & Fractals, 3, (5), pp. 575-582. (doi:10.1016/0960-0779(93)90007-N).

Download

Full text not available from this repository.

Description/Abstract

We show that the fractal dimension of a chaotic attractor is bounded from above by Kaplan-Yorke-type numbers, and provide a heuristic derivation on the inequality dimfrac (A) ? 2 - (l1(u0) + l2(u0))?13(u>0) = 2.4013, u0 = (0,0,0), where A is the Lorenz chaotic attractor and lk(u) represents local Liapunov exponents.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/0960-0779(93)90007-N
ISSNs: 0960-0779 (print)
Subjects:
Organisations: Fluid Structure Interactions Group
ePrint ID: 204443
Date :
Date Event
September 1993Published
Date Deposited: 30 Nov 2011 12:32
Last Modified: 18 Apr 2017 01:09
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/204443

Actions (login required)

View Item View Item