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This thesis presents results of lattice QCD computations of the K → π

semi-leptonic (Kl3) and pion electromagnetic form factors using partially

twisted boundary conditions. These form factors parameterize low-energy

non-perturbative strong interaction effects and cannot therefore be calcu-

lated in perturbative QCD. The pion electromagnetic form factor provides

information on its charge distribution. The Kl3 form factor at zero momen-

tum transfer (q2 = 0) can be used in the determination of the |Vus| element

of the CKM matrix. An accurate determination of these form factors is

therefore important. Using partially twisted boundary conditions we cal-

culate the Kl3 form factor directly at q2 = 0, removing the need for the q2

interpolation required in previous lattice QCD simulations, thus eliminat-

ing one source of systematic error in this calculation. We also use partially

twisted boundary conditions to calculate the pion form factor at values of

q2 close to q2 = 0 allowing for a direct evaluation of the charge radius of the

pion. The simulations are performed on an ensemble of the RBC/UKQCD

collaboration’s gauge configurations with Domain Wall Fermions and the

Iwasaki gauge action with an inverse lattice spacing of 1.73(3) GeV at light

quark masses corresponding to a pion mass of 330 MeV. We calculate the

form factors at these simulated quark masses and then use chiral pertur-

bation theory to extrapolate our results to physical light quark masses.

We find for the charge radius of the physical pion 〈r2
π〉 = 0.418(31) fm2,

in agreement with the experimentally determined result. For the value of

the Kl3 form factor, fKπ+ (q2), at q2 = 0 and physical quark masses we

find fKπ+ (0) = 0.960(+5
−6). This result is then used to determine a value

for |Vus|. Together with a recent determination of |Vud| we find that the

current results are consistent with unitarity of the CKM matrix.
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Chapter 1

Introduction

The idea that all matter is composed of elementary particles has been

around since the sixth century BC. It was first suggested by the Greek

philosopher Democritus who proposed that all matter is comprised of tiny

“atoms”, from the Greek word “átomos” meaning indivisible. Today we

know that atoms are not the smallest building blocks of nature. With

the discovery of the electron by J. J. Thompson in 1898 and the atomic

nucleus by Rutherford in 1911 it became clear that in fact atoms are mostly

empty space with a small positively charged nucleus containing most of

the mass of the atom and small mass negatively charged electrons orbiting

this nucleus. It was later discovered that the nucleus itself is composed of

protons and neutrons, which themselves belong to a large family of particles

called “hadrons”.

During the 1950’s and 1960’s a huge number of hadrons were discovered

in particle experiments. Physicists literate in group theory, most notably

M. Gell-Mann [7], were able to see that the patterns of symmetries in

this ‘zoo’ of particles suggested that the huge number of hadrons being

discovered could be neatly organized by the principles of group theory,

and that the resulting patterns could be explained in terms of a quark

model of particles with fractional electric charge, carrying some other type

of charge that physicists now call colour. This led to the development of

quantum chromodynamics, or QCD for short, the quantum field theory

of the strong interaction, which describes the interactions of quarks and

gluons (the force carriers of the strong interaction). Quarks and gluons

have however never been observed as free particles in nature, a phenomenon

known as confinement. They are permanently bound inside hadrons due

to the strongly interacting forces between them.
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Meanwhile during the 1960’s Glashow, Weinberg and Salam [8–10] were

successful in combining two of the fundamental forces of nature, the electro-

magnetic and weak interactions, into a single unified quantum field theory

known as the quantum electroweak theory, for which they shared the 1979

Nobel prize in physics. According to the Glashow, Weinberg and Salam

(GSW) model the electroweak force is carried by the photon, the Z0 and

the W± bosons. An additional scalar field is however also required in the

electroweak theory to generate the masses of the quarks, leptons and the

W and Z bosons via spontaneous symmetry breaking. This additional

spin-0 boson is the famous Higgs boson, which to this day has not been

discovered, and the mechanism of mass generation is known as the Higgs

mechanism [11–14].

The combined QCD and quantum electroweak theories became known

as the Standard Model (SM) of particle physics. The SM embodies our

current understanding of all the known fermionic matter particles (plus

the Higgs boson) and their interactions via three of the four fundamental

forces of nature: electromagnetic, weak and strong, mediated by spin-1

gauge bosons. The SM however, falls short of being a complete theory of

fundamental interactions because it does not incorporate gravity. Further-

more, it also does not correctly account for neutrino oscillations and their

masses. Nevertheless, despite these and other shortcomings, the SM has

been highly successful in explaining a huge range of experimental data and

has been tested to remarkable precision.

If QCD correctly accounts for the quark-gluon interactions, confinement

of quarks and the observed hadron spectrum should naturally follow from

it. However, as was first proved by Gross and Wilczek [15], QCD exhibits

asymptotic freedom which implies that the coupling constant of QCD in-

creases with decreasing energy scale. This means that we cannot study low

energy physics such as the hadron spectrum using the usual perturbative

techniques of quantum field theory and must resort to non-perturbative

methods. Furthermore, the study of various weak interaction processes is

also burdened by the influence of non-perturbative effects from the strong

interaction. Of relevance to this work is the study of the semi-leptonic

weak decay K → πlνl (known as a Kl3 decay, where l is a lepton and νl the

corresponding neutrino), where the non-perturbative features of the strong

interaction are prominent due to the typical energy scales of the particles

involved. To correctly account for the low energy non-perturbative effects
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of the strong interaction, we employ lattice QCD.

Lattice QCD is based on the Euclidean formulation of QCD and can

be understood as a regularization method that discretises spacetime with a

finite lattice spacing a. The advance of modern computer technologies, to-

gether with Monte Carlo methods allows us to numerically evaluate, within

a reasonable amount of time, the path integral of lattice QCD formulated

in a finite volume.

It turns out however that the computational cost of simulating fully

dynamical fermions in lattice QCD increases as 1/m2
f , where mf is the

fermion mass. This means that at present we are unable to simulate QCD

on a lattice with physical light quark masses. Instead we have to do lat-

tice simulations with light quark masses heavier than the physical ones

and resort to chiral perturbation theory, an effective field theory based on

the approximate chiral symmetry of the light quark QCD Lagrangian, to

extrapolate to the physical point.

In this work we use lattice QCD with Nf = 2 + 1 dynamical flavours

of quarks (i.e. 2 light degenerate quarks and 1 heavy quark) at light quark

masses corresponding to a pion with mass mπ = 330 MeV to calculate the

pion electromagnetic (e.m.) form factor and the form factors forKl3 decays.

We then make use of chiral perturbation theory formulae to extrapolate the

results to physical light quark masses.

The K → πlνl decay channel is an important channel for precision stud-

ies of SM parameters. As we will discuss later in this introductory chapter,

the Kl3 form factor at zero momentum transfer (q2 = 0) can be used in

the determination of |Vus|, an element of the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [16, 17] that relates the strong and weak interaction eigen-

states. An accurate determination of |Vus| is important as it allows us to

impose constraints on some unknown parameters of possible physics mod-

els beyond the SM that are relevant to guide direct searches at high energy

particle colliders, e.g. those planned at the Large Hadron Collider (LHC) at

CERN (see for example [18, 19]). In particular, an accurate determination

of |Vus| allows us to test the unitarity of the CKM matrix. The situation

prior to the work presented in this thesis began, pointed towards a possi-

ble violation of unitarity of the CKM matrix with the lattice results and

experimental measurements at the time (see for example [20] for a review

of these results).

Precise determinations of the Kl3 form factor are therefore important.
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Previous lattice calculations of the Kl3 form factor were not able to calcu-

late it directly at q2 = 0 due to the use of periodic boundary conditions.

They relied on an interpolation between q2
max = (mK − mπ)

2 and several

negative values of q2, as allowed by periodic boundary conditions, to de-

termine the form factor at q2 = 0. This introduces a systematic error due

to the choice of interpolating function used. In this work we update and

improve on previous lattice calculations of the Kl3 form factor by using

partially twisted boundary conditions to calculate the form factor directly

at q2 = 0 thus eliminating this source of systematic error.

In this work we also use partially twisted boundary conditions in a lat-

tice QCD calculation of the pion e.m. form factor. The pion e.m. form

factor has previously been studied on the lattice using periodic boundary

conditions. This limits the momentum resolution that one can achieve to

the discrete Fourier momentum values that result from periodic boundary

conditions. The use of partially twisted boundary conditions allows us to

calculate the form factor at any desired value of the momentum transfer q2

and in particular at low values of q2 below the minimum value obtainable

with periodic boundary conditions. In contrast to previous studies this

allows for a direct evaluation of the charge radius of the pion.

The rest of this thesis will be structured as follows:

• For the remainder of this chapter, I will briefly introduce the aspects

of the SM that are relevant to this thesis, namely QCD, electroweak

interactions and the CKM matrix. I will also introduce in this chapter

the form factors that are investigated in this thesis.

• In chapter 2, I will briefly describe lattice QCD. I will introduce

the gauge field and fermion actions used in the generation of the

configurations used for the measurements done in this work, namely

the Iwasaki gauge action and the Domain Wall fermion action.

• In chapter 3, I introduce Monte Carlo methods for gauge field configu-

ration generation and discuss how to measure the required correlation

functions on these gauge configurations, for the calculation of pseudo-

scalar meson form factors. I finish the chapter with a brief discussion

of the techniques used for analyzing the resulting data.

• Chapter 4 gives an overview of chiral perturbation theory and its

applications to the pion electromagnetic and the Kl3 form factors.
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The derivation of the relevant chiral perturbation theory formulae is

outlined.

• Chapter 5 introduces twisted and partially twisted boundary con-

ditions and discusses their application in the calculation of pseudo-

scalar meson form factors at any desired value of q2.

• The results of the lattice simulations carried out in this work at light

quark masses corresponding to a pion with mass mπ = 330 MeV are

presented in chapter 6.

• In chapter 7 we extrapolate our data to physical light quark masses

using the chiral perturbation theory formulae discussed in chapter 4.

A discussion of the systematic errors in our results is also given in

this chapter.

• Chapter 8 presents the conclusions as well as future prospects for the

calculations presented in this work.

1.1 Standard Model

The Standard Model (SM) of particle physics describes the interaction of

the known fundamental matter particles (plus the Higgs boson) via the

strong, electromagnetic and weak forces. In the SM there are three genera-

tions of quarks and leptons. The Standard Model Lagrangian is constructed

by imposing a local SU(3)C × SU(2)L × U(1)Y internal gauge symmetry.

The local SU(3)C gauge symmetry gives rise to the strong interaction and

the SU(2)L × U(1)Y local gauge symmetry gives rise to the electroweak

interaction. The matter and gauge fields fall into different representations

of the various symmetry groups of the SM. An additional scalar field, the

Higgs boson, is also included to generate the fermion and gauge boson

masses. Upon writing the most general Lagrangian invariant under this

symmetry group, one finds that the dynamics depend on 19 parameters,

whose numerical values are established by experiment. We now describe

the different sectors of the SM, namely the quantum chromodynamics and

electroweak sectors.
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1.1.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory of the strong nuclear force,

which describes the interactions of quarks (spin-1
2

fermions) and gluons

(spin-1 massless gauge bosons). In QCD there are six quark flavours

(u, d, c, s, t, b), split into three generations (u, d), (c, s) and (t, b). QCD

is a non-abelian SU(3) gauge theory. Each quark has a hidden three-

valued quantum number known as colour and transforms as the fundamen-

tal triplet representation of SU(3) in colour space. There are eight gluons

that transform as the adjoint representation of SU(3) in colour space.

The QCD Lagrangian density is given by

LQCD =
∑
f

ψ̄f,a(x)(iγ
μDμ −mf )abψf,b(x)− 1

4
F c,μνF c

μν , (1.1)

where a, b and c are colour indices and a and b run from 1 to 3 (fundamental

representation) while c runs from 1 to 8 (adjoint representation), the sum

over f is taken over the six flavours of quarks f ∈ (u, d, c, s, t, b) and spinor

indices have been suppressed.

The covariant derivative is defined as

(Dμ)ab = ∂μδab − ig(Aμ)ab, (1.2)

where g is the bare strong coupling constant. The gauge field Aμ comprises

of eight gluon fields

Aμ = Aaμλ
a, (1.3)

where λa are the eight generators of SU(3) satisfying the commutation

relations [λa, λb] = ifabcλc (where fabc are the structure constants) and the

normalization condition Tr(λaλb) = δab

2
.

The gauge field strength tensor Fμν is given in terms of the gluon fields

by

F a
μν = ∂μA

a
ν − ∂νAaμ + g[Abμ, A

c
ν ]f

abc. (1.4)

We can readily check that the QCD Lagrangian is invariant under the local

gauge transformations:

ψ(x) → ψ′(x) = Λ(x)ψ(x), (1.5)

Aμ(x) → A′
μ(x) = Λ(x)Aμ(x)Λ

†(x) +
i

g
Λ(x)∂μΛ

†(x), (1.6)
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Λ(x) = e−iλ
aαa(x) ∈ SU(3). (1.7)

Since the gluons also carry colour charge, they are self-interacting. The

way that the gluons interact among themselves has dramatic effects. The

strength of the strong coupling increases as the distance scale increases.

This means that it is not possible to observe quarks or gluons as free

particles and they are permanently confined in bound states known as

hadrons, such as the proton or neutron. This is a property known as con-

finement. However, at very high energies (corresponding to short distances)

the strength of the interaction is small. This is known as asymptotic free-

dom. This means that at high energies we can use perturbation theory

to do calculations in QCD. At low energies however we must use non-

perturbative methods to study the bound states of the theory. The domi-

nant non-perturbative method used for the study of QCD at low energies

is the lattice formulation of QCD.

1.1.2 Symmetries of the light quark QCD Lagrangian

The six quark flavours in QCD can be split into two groups according to

their masses as there is a substantial mass difference between the light

(u, d, s) quarks and the heavy (c, b, t) quarks. We will now look at the sym-

metries of the QCD Lagrangian in flavour space that arise from considering

only the light quark part of the QCD Lagrangian.

SU(3) flavour symmetry and isospin

The light quark part of the QCD Lagrangian is given by

LQCD = ψ̄(γμDμ −M)ψ, (1.8)

where

ψ =

⎛
⎜⎝

u

d

s

⎞
⎟⎠ , M =

⎛
⎜⎝

mu 0 0

0 md 0

0 0 ms

⎞
⎟⎠ , (1.9)

and we have dropped colour indices for simplicity.

If we make the assumption that all the light quarks are degenerate in

mass mu = md = ms = ml = (mu +md +ms)/3, then

M = mlI, (1.10)
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where I is the identity matrix, and the light quark QCD Lagrangian is

invariant under global U(3) transformations in flavour space

ψ → ψ′ = Uψ, U = eiβ
aλa

, eiα ∈ U(3), (1.11)

where the λa are the generators of SU(3). The light QCD Lagrangian

therefore has a symmetry group SU(3)×U(1). The U(1) symmetry leads

to conservation of baryon number. The SU(3) flavour symmetry classi-

fies the spectrum of hadrons made up of u, d and s quarks, all of which

can be grouped into different representations of SU(3), like for example

the octets of 0− mesons (π+, π−, π0, η,K+, K−, K0, K̄0) and 1
2

+
baryons

(n, p,Σ+,Λ0,Σ0,Σ+,Ξ−,Ξ0). SU(3) flavour symmetry is only an approx-

imate symmetry. Since m̂/ms ≈ 1/25 (where m̂ = (mu + md)/2), the

dominant contribution to SU(3) flavour symmetry breaking is the mass of

the strange quark. A much better symmetry comes from considering only

the u and d quarks since mu and md are much closer together. The light

quark QCD Lagrangian is then invariant under global SU(2) transforma-

tions in flavour space, and this symmetry is known as isospin symmetry.

Chiral symmetry

Define the left and right handed fermion fields

ψL = PLψ =
1− γ5

2
ψ ; ψR = PRψ =

1 + γ5

2
ψ (1.12)

ψ̄L/R = ψ̄PR/L. (1.13)

In terms of these fields the light quark QCD Lagrangian can be written

as

ψ̄(iγμDμ−M)ψ = ψ̄Liγ
μDμψL+ ψ̄Riγ

μDμψR−ψ̄RMψL−ψ̄LMψR. (1.14)

If we now set the light quark masses to zero, then we can see that

the light quark QCD Lagrangian is invariant under the independent U(3)

global transformations of left and right handed fermion fields

ψL → ψ′
L = ULψ ; ψR → ψ′

R = URψ (1.15)

where

UL = eiβ
a
Lλ

a

, eiαL ; UR = eiβ
a
Rλ

a

, eiαR . (1.16)
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The Lagrangian therefore has a symmetry group SU(3)L × SU(3)R ×
U(1)L × U(1)R and each of the above transformations has an associated

Noether current

Jaμ,L(x) = ψ̄L(x)γμλ
aψL(x), (1.17)

Jaμ,R(x) = ψ̄R(x)γμλ
aψR(x), (1.18)

Jμ,L(x) = ψ̄L(x)γμψL(x), (1.19)

Jμ,R(x) = ψ̄R(x)γμψR(x). (1.20)

Equivalently we can transform the ψ and ψ̄ fields by

ψ → V ψ ; ψ̄ → ψ̄V (1.21)

where

V = ULPL + URPR, UL,R ∈ U(3)L,R (1.22)

which leads to the conserved vector and axial vector currents

Jaμ(x) = Jaμ,L(x) + Jaμ,R(x) = ψ̄(x)γμλ
aψ(x), (1.23)

Jaμ5(x) = Jaμ,L(x)− Jaμ,R(x) = ψ̄(x)γμγ5λ
aψ(x), (1.24)

Jμ(x) = Jμ,L(x) + Jμ,R(x) = ψ̄(x)γμψ(x), (1.25)

Jμ5(x) = Jμ,L(x)− Jμ,R(x) = ψ̄(x)γμγ5ψ(x). (1.26)

Note that the axial current (1.26) is only conserved in the classical

theory. Quantum effects lead to a non-zero divergence of the axial current,

a phenomenon known as the axial anomaly [21]. The Lagrangian therefore

has a symmetry group SU(3)V × SU(3)A × U(1)V . This chiral symmetry,

which should be approximately satisfied in the light quark sector, is however

not seen in the hadronic spectrum. Although hadrons can be classified in

SU(3)V representations, degenerate multiplets with opposite parity do not

exist. Furthermore, the octet of pseudo-scalar mesons is much lighter than

all other hadronic states. To be consistent with experiment, the SU(3)L ×
SU(3)R symmetry must be broken by the ground state of QCD and thus the

symmetry is spontaneously broken down to SU(3)V , which leads to eight

Goldstone bosons, one for each generator of the broken SU(3) symmetry.

Since mf 	= 0 chiral symmetry is only an approximate symmetry, and the

Goldstone bosons have non-zero masses. These eight Goldstone bosons are

identified as the pseudo-scalar meson octet, which have much lighter masses
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than the rest of the hadron spectrum. Similar considerations with the u and

d quarks only, lead to an SU(2) chiral symmetry which leads to the isospin

triplet of the relatively light pions. The approximation ms = 0 is less

accurate than assuming zero mass for the u and d quarks and consequently

the pions are lighter than the kaons or the η. The question of whether chiral

SU(3) or chiral SU(2) is a better approximation has important implications

for the application of chiral perturbation theory to lattice calculations. We

will discuss the applications of chiral SU(3) and SU(2) perturbation theory

to the Kl3 and pion form factors in this thesis.

1.1.3 Electroweak theory

In the GSW electroweak model [8–10], unification of the electromagnetic

and weak interactions is accomplished through a Lagrangian invariant un-

der a local SU(2)L ×U(1)Y internal gauge symmetry with the correspond-

ing gauge bosons (W 1
μ ,W

2
μ ,W

3
μ) in the adjoint representation of the weak

isospin group SU(2)L and the gauge boson Bμ of the weak hypercharge

group U(1)Y . The W i
μ gauge bosons couple only to doublets of the left-

handed components of quark and lepton fields,

(
νe

e−

)
L

(
νμ

μ−

)
L

(
ντ

τ−

)
L

(
u

d′

)
L

(
c

s′

)
L

(
t

b′

)
L

, (1.27)

where d′, s′ and b′ are weak interaction eigenstates, which are related to the

strong interaction eigenstates d, s and t via the CKM matrix which we will

describe in section (1.1.4).

The Bμ gauge field couples to both left and right handed fermions with

an interaction strength proportional to the weak hypercharge Y defined by

Y = Q− I3, (1.28)

where Q is the electromagnetic charge and I3 is the third component of

weak isospin, i.e. ±1
2

for the upper/lower component of a weak isospin

doublet (left-handed) and 0 for a weak isospin singlet (right-handed).

Since the left-handed fermions are weak isospin doublets and the right-

handed ones are singlets a Lagrangian constructed in this way does not

allow for fermion mass terms. Furthermore the gauge bosons of this theory

are massless which is inconsistent with experiment. For these reasons, an

additional scalar field Φ, the Higgs boson [11–14], has to be introduced into
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the Lagrangian. The Higgs field is a weak isospin doublet of complex scalar

fields and has a non-zero vacuum expectation value v. With the addition of

the Higgs field, the vacuum state of the theory is no longer invariant under

SU(2)L × U(1)Y . The SU(2)L × U(1)Y symmetry is spontaneously broken

down to the group U(1)Q of electromagnetism. The gauge bosons W 3
μ and

Bμ mix to form the Z0
μ boson and the photon Aμ. The W±

μ gauge bosons

are given by W±
μ = 1√

2
(W 1

μ ∓ iW 2
μ ). The W± and the Z0 bosons acquire a

mass through this Higgs mechanism by absorbing the Goldstone bosons of

the broken symmetry while the photon remains massless corresponding to

the unbroken U(1)Q symmetry. The Higgs field couples to the fermions via

Yukawa type interactions and generates their masses through its vacuum

expectation value.

Of the many terms in the electroweak Lagrangian after spontaneous

symmetry breaking, the only ones of relevance to this work are the charged

current interactions LCC and the electromagnetic current interactions Lem

given by

LCC = − gw√
2

[
ūiγ

μ1

2
(1− γ5)d′i + ν̄iγ

μ1

2
(1− γ5)li

]
W+
μ + h.c., (1.29)

Lem = eQf

∑
f

f̄γμfA
μ, (1.30)

where the ui are up-type quarks, namely the u, c and t quarks, the d′i
are down-type weak interaction eigenstate quarks, namely the d′, s′ and

b′ quarks, the li are the leptons e−, μ− and τ− with their corresponding

neutrinos νi, gw is the weak coupling constant and f is a fermion with

charge Qf . The charged current interactions allow for flavour changing via

the exchange of W± bosons.

1.1.4 The CKM matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [16, 17] is a matrix that

relates the quark flavour eigenstates of the weak interaction to the quark

mass eigenstates (the eigenstates of the strong interaction). The CKM

matrix is a unitary matrix that parameterizes the relative strength of tran-

sitions between different quark flavours. It is defined by
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⎛
⎜⎝

d′

s′

b′

⎞
⎟⎠ =

⎛
⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠
⎛
⎜⎝

d

s

b

⎞
⎟⎠ = VCKM

⎛
⎜⎝

d

s

b

⎞
⎟⎠ , (1.31)

where the elements Vij are complex. The CKM matrix is a unitary matrix,

so it has at most N2 components, where N is the number of generations of

quark flavours. 2N − 1 of these parameters are not physically significant,

because one phase can be absorbed into each quark field but an overall

common phase is unobservable. Hence, the total number of free parameters

independent of the choice of the phases of basis vectors is (N − 1)2. The

CKM matrix is therefore described by only four free parameters one of

which is a complex phase which allows for CP violation within the SM.

Unitarity of the CKM matrix implies that the sum of the squares of the

row (or column) elements is one. Of particular interest to this thesis is the

unitarity relation

|Vud|2 + |Vus|2 + |Vub|2 = 1. (1.32)

Weak decays are normalized to the Fermi coupling GF =
√

2g2
w/8m

2
W ,

which is determined from muon decay μ− → e−νeνμ. In the SM, GF is

universal for quarks and leptons, thus as well as testing the unitarity of the

CKM matrix, equation (1.32) also tests the universality of weak interactions

between quarks and leptons. Any deviation from one in equation (1.32)

would be a sign for physics beyond the SM.

In the unitarity relation (1.32), the contribution from |Vub|2 is at least

an order of magnitude smaller than the current errors on |Vud|2 or |Vus|2
and can therefore be safely neglected (|Vub| = 0.00389(44) [22]). Thus with

the currently achievable precision the unitarity relation (1.32) reduces to

|Vud|2 + |Vus|2 = 1. (1.33)

The |Vud| matrix element can be determined very precisely from super

allowed 0+ → 0+ nuclear beta decays (see [23] for a recent determination

giving |Vud| = 0.97425(22)). The |Vus| matrix element can be determined

using the following two methods:

1. From the ratio of the kaon and pion leptonic decay rates we obtain [24,

12



25]
ΓK→lν

Γπ→lν

=
|Vus|2
|Vud|2

f 2
K

f 2
π

mK(1−m2
l /m

2
K)2

mπ(1−m2
l /m

2
π)

2
(1 + δEM), (1.34)

where fK and fπ are the kaon and pion decay constants and δEM

denotes the effect of long-distance electromagnetic effects. The ratio

of the decay rates can thus be used to extract the ratio

|Vus|2
|Vud|2

f 2
K

f 2
π

, (1.35)

and one can then extract |Vus| using lattice determinations of the

ratio fK/fπ and experimental measurements of |Vud|.

2. The decay rate of the semi-leptonic decay K → πlνl (Kl3) is given

by [26]

ΓKl3
=
G2
Fm

5
K

192π3
C2
KISEW

[
1 + δEM + δSU(2)

]2 |Vus|2|fKπ+ (0)|2, (1.36)

where GF is the Fermi coupling constant, I is a phase-space integral,

δSU(2), SEW, δEM contain the isospin breaking, short distance elec-

troweak and long distance electromagnetic corrections respectively,

CK is a Clebsch-Gordan coefficient (1 for K0 and 1/
√

2 for K± de-

cays) and fKπ+ (0) is the K → π vector form factor at zero momentum

transfer which we will define in section 1.2.1. From the measured

decay rate one can extract |VusfKπ+ (0)| and a theoretical calculation

of fKπ+ (0) is then required to extract |Vus|.
Prior to the work presented in this thesis was carried out the experi-

mental measurements and lattice QCD results at that time showed signs

of a possible deviation from one in the unitarity relation (1.33) (see for

example [20]). This highlights the importance for precision calculations of

fKπ+ (0) for the determination of |Vus|. In this work we calculate the fKπ+ (0)

form factor in lattice QCD using partially twisted boundary conditions.

1.2 Pseudo-scalar meson form factors

The matrix element 〈Pf(pf)|jμ|Pi(pi)〉 of the vector current jμ between

initial and final states consisting of pseudo-scalar mesons Pi and Pf re-

spectively, must by Lorentz invariance, be a four-vector function of only

the two momentum four-vectors pμi and pμf as the pseudo-scalar mesons
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have spin zero. The most general such four-vector function takes the

form of a linear combination of pμi and pμf , or equivalently of pμi + pμf and

pμi − pμf , with scalar coefficients. As we will be considering only mesons

that are on-shell the scalars p2
i and p2

f are fixed at the values p2
i = m2

i and

p2
f = m2

f . Thus the scalar variables that can be formed from pμi and pμf
can only be functions of pi · pf , or equivalently of the momentum transfer

q2 = (pi− pf)2 = (m2
i +m2

f )− 2pi · pf . Thus the matrix element must take

the general form

〈Pf(pf )|jμ|Pi(pi)〉 = f
PiPf

+ (q2)(pi + pf)μ + f
PiPf

− (q2)(pi − pf )μ , (1.37)

where the functions f
PiPf

+ (q2) and f
PiPf

− (q2) are known as the vector form

factors of the transition Pi → Pf . The form factors f
PiPf

+ (q2) and f
PiPf

− (q2)

parameterize the non-perturbative QCD effects and cannot therefore be

calculated using perturbative QCD methods.

1.2.1 Kl3 form factor

For K → πlνl semi-leptonic decays, jμ is the weak current s̄γμu and the

hadronic matrix element is

〈π(pf)
∣∣jμ∣∣K(pi)〉 = (pi + pf)μf

Kπ
+ (q2) + (pi − pf)μfKπ− (q2) . (1.38)

As we will discuss in chapter 4, the form factors can be calculated in

chiral perturbation theory. In the SU(3) flavour limit (mu = md = ms) the

conservation of the vector current implies that fKπ+ (0) = 1. We can thus

expand around the SU(3) chiral limit (mu = md = ms = 0) in powers of

the light quark masses

fKπ+ (0) = 1 + f2 + f4 + ... (1.39)

where fn = O(mn
u,d,s/(4πf0)

n) and f2 and f4 are the next-to-leading or-

der (NLO) and next-to-next-to-leading order (NNLO) corrections in chi-

ral perturbation theory (see section 4.3.1 for an expression for f2). The

Ademollo-Gatto Theorem [27], implies that f2 is completely specified in

terms of light pseudo-scalar meson masses and the decay constant f0 in

the chiral limit. Furthermore, |fKπ+ (0)− 1| will be at least of second order

in the expansion in powers of the mass difference ms −mu,d and therefore

f2 and f4 will be small (f2 = −0.023 [26] using the physical pion decay
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constant fπ = 131 MeV as an estimate for f0). Difficulties arise in the

calculation of Δf , the sum of the corrections beyond NLO

Δf = fKπ+ (0)− (1 + f2), (1.40)

to the sub-1% precision level using analytical methods only. The quantity

Δf depends on the low energy constants of chiral perturbation theory and

thus requires model input. A model independent determination of Δf with

a reliable error estimate is required.

The standard approach of computing fKπ+ (0) in lattice QCD uses pe-

riodic boundary conditions and was first developed by Becirevic et al.

in [28, 29]. It involves determining the scalar form factor fKπ0 (q2) defined

by

fKπ0 (q2) = fKπ+ (q2) +
q2

m2
K −m2

π

fKπ− (q2), (1.41)

at q2
max = (mK −mπ)

2 and several negative values of q2 as allowed by the

periodic boundary conditions and then interpolating the results to q2 = 0 to

calculate fKπ+ (0) = fKπ0 (0). In [2] this method is used at a variety of quark

masses and the result is then chirally extrapolated to the physical pion and

kaon masses. The final result quoted is fKπ+ (0) = 0.9644(33)(34)(14) where

the first error is statistical, and the second and third are estimates of the

systematic errors due to the choice of parameterization for the interpolation

and lattice artefacts respectively.

In this work we use partially twisted boundary conditions to calculate

the form factor directly at q2 = 0, thereby removing the systematic error

due to the choice of parameterization for the interpolation in q2.

1.2.2 Pion electromagnetic form factor

For the π → π transition, jμ is the electromagnetic current 2
3
ūγμu− 1

3
d̄γμd,

both Pi and Pf are pions and current conservation implies that fππ− (q2) = 0.

Thus we have a single form factor, the electromagnetic form factor of the

pion fππ(q2), defined by

〈π(pf)|jμ|π(pi)〉 = (pi + pf )μ f
ππ(q2). (1.42)

Clearly fππ(0) = 1 as we can see by setting pi = pf . fππ(q2) provides

information on the internal structure of the pion and in particular on its
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charge distribution. From the slope of the form factor at q2 = 0 we can

calculate the pion’s electromagnetic charge radius, which is defined by

〈r2
π〉 ≡ 6

d

dq2
fππ(q2)

∣∣
q2=0

. (1.43)

Prior to the work presented in this thesis the pion form factor had been

studied in lattice QCD using periodic boundary conditions (the European

Twisted Mass Collaboration (ETMC) did however present preliminary re-

sults with Nf = 2 dynamical flavours using twisted boundary conditions

in [30] before the work presented in this thesis was published. Their final

results were then later published in [31]). As will be discussed in chapter 5,

this limits the momentum resolution that one can achieve. In particular the

smallest non-zero value of Q2 = −q2, obtainable with periodic boundary

conditions is Q2
min = 2mπ(

√
m2
π + (2π/L)2 −mπ). In our simulations this

corresponds to Q2
min ≈ 0.15 GeV2. In this work we use partially twisted

boundary conditions to calculate the form factor at arbitrarily small values

of the momentum transfer and explore the region 0 < Q2 < Q2
min. The

smallest values of Q2 at which we calculate the form factor are lower than

those explored by any other collaboration so far (we calculate the form

factor down to Q2 = 0.013 GeV2, while the smallest value at which the

ETMC collaboration calculates the form factor is Q2 ≈ 0.05 GeV2).
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Chapter 2

Lattice QCD

QCD is an asymptotically free theory. This means that at low energies

the strength of the interaction is large and we cannot therefore use per-

turbation theory. We are thus forced to use non-perturbative methods to

do calculations in QCD in this regime. One such method is lattice QCD,

where we simulate QCD on a discrete Euclidean spacetime lattice, with

the quarks placed on lattice sites and the gluons on the links connecting

the lattice sites. Discretizing spacetime regulates both the infrared and

ultraviolet divergences in the path integrals that we will describe in sec-

tion 2.1. Furthermore, on a finite spacetime lattice path integrals become

finite dimension integrals (albeit with a large number of dimensions) which

we can evaluate using Monte Carlo techniques.

When we discretise the QCD action, we must ensure that two conditions

are met. First, we must preserve gauge invariance and secondly the lattice

QCD action must have the correct continuum limit.

In this chapter we begin by showing how one can evaluate observables

in QCD using path integrals in section 2.1. We then proceed to discretise

the gauge field part and fermion part of the QCD action in sections 2.2 and

2.3 respectively, in order to turn the path integral into a finite dimensional

integral which we can then evaluate using Monte Carlo methods.

2.1 Path integral formulation

In the path integral formulation of QCD we can calculate the vacuum

expectation value of an operator O by starting from the generating func-
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tional [21]:

Z[η, η̄, J ] =

∫
DAμDψDψ̄ exp

[
i

∫
d4x[LQCD + JAμ + η̄ψ + ψ̄η]

]
, (2.1)

and taking functional derivatives with respect to the source terms J , η, η̄

〈0|O |0〉 =
1

Z

δ

δJ

δ

δη

δ

δη̄
Z[J, η, η̄]

∣∣∣∣
J=η=η̄=0

(2.2)

=
1

Z

∫
DAμDψDψ̄O exp

[
i

∫
d4xLQCD

]
. (2.3)

In lattice QCD we evaluate these path integrals numerically in a finite

volume, using statistical techniques. To do so we must first perform a Wick

rotation from Minkowski spacetime into Euclidean spacetime,

tM → −itE . (2.4)

The path integral (2.3) then becomes

〈0| O |0〉 =
1

Z

∫
DAμDψDψ̄Oe−SE

QCD , (2.5)

where the Euclidean QCD action SEQCD, is given by

SEQCD =

∫
d4x

[∑
f

ψ̄f,a(x)(γ
E,μDμ +mf )abψf,b(x) +

1

4
F a,μνF a

μν

]
. (2.6)

Here γEμ are the Euclidean gamma matrices, which satisfy γEμ
†

= γEμ ,

{γEμ , γEν } = 2δμν and γE5 is defined as γE5 = γE1 γ
E
2 γ

E
3 γ

E
4 . From now on

we will be working in Euclidean space only and therefore we drop the

superscript E.

The quark fields ψ and ψ̄ are Grassmann variables and we can integrate

them out. The partition function in Euclidean space then becomes

Z[η, η̄, J ] =

∫
DAμDψDψ̄ exp

[
−
∫
d4x[LQCD + JAμ + η̄ψ + ψ̄η]

]
(2.7)

=

∫
DAμ det(D) exp

[
−
∫
d4x[η̄D−1η + LG + JAμ]

]
. (2.8)

Here LG is the gauge field kinetic term part of the Euclidean QCD La-
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grangian density and for one fermion flavour D is

D = γμDμ +mf . (2.9)

We can now calculate vacuum expectation values of operators from

the partition function by functional differentiation. For example, we can

calculate the quark propagator

〈0|ψ(x)ψ̄(y) |0〉 =
δ

δη(x)

δ

δη̄(y)
Z

∣∣∣∣
η=η̄=0

(2.10)

=
1

Z

∫
DAμG(x, y) det(D)e−SG , (2.11)

where

G(x, y) = D−1(x, y), (2.12)

is the Feynman quark propagator, which is the amplitude of propagation of

a quark from one point in spacetime to another. The quark propagator is of

particular importance, as we will show later in section 3.2, as we can write

any observable involving quark fields in terms of the quark propagator.

The Euclidean formulation of the path integral thus takes the form of

a statistical ensemble average with a Boltzmann factor detDe−SG. We can

therefore use statistical mechanics techniques to evaluate the path integral.

2.2 Gauge bosons on the lattice

2.2.1 Wilson gauge action

To represent the gauge field Aμ(x) on a lattice we use a link variable

U(x, x+ aμ̂) related to the gauge field by

U(x, x+ aμ̂) ≡ Uμ(x) = eiagA
b
μ(x)λb . (2.13)

Here a is the lattice spacing, μ̂ is a unit vector in one of the four space-

time directions, g is the bare coupling constant and λb are the eight gen-

erators of SU(3). The link variable Uμ(x) is thus an SU(3) matrix and

provides a path-dependent connection between the lattice site x and the

lattice site x + aμ̂. The conjugate U †
μ(x) connects the two lattice sites in
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the opposite direction

U †
μ(x) = e−iagA

b
μ(x)λb = U(x+ aμ̂, x). (2.14)

Each link matrix transforms according to

Uμ(x)→ Λ(x)Uμ(x)Λ
†(x+ aμ̂). (2.15)

where Λ(x) ∈ SU(3). We can construct a gauge invariant action from the

trace of a closed loop of gauge links. The simplest such loop is the plaquette

Pμν = Uμ(x)Uν(x+ aμ̂)U †
μ(x+ aν̂)U †

ν (x). (2.16)

The plaquette is used to define the Wilson gauge action [32] as follows:

SWG =
β

Nc

∑
x;μ<ν

ReTr[1− Pμν(x)], (2.17)

where β = 2Nc/g
2 and Nc is number of colours (Nc = 3 in this case).

It is easy to check that this action is invariant under the SU(3) gauge

transformation (2.15). Inserting (2.13) into (2.16) and expanding as a

series in the lattice spacing a we get

Pμν(x) = 1 + iga2Fμν(x)− g2a4

2
F 2
μν(x) + ... (2.18)

Plugging this into the Wilson gauge action (2.17) and taking the limit

a→ 0

SWG = a4

(∑
x

1

4
F a,μν(x)F a

μν(x) +O(a2)

)
(2.19)

→
∫
d4x

1

4
F a,μν(x)F a

μν(x). (2.20)

we see that the Wilson gauge action has the correct continuum limit and is

thus an appropriate lattice gauge action. We can also see from the above

equation that with the Wilson action lattice artifacts contribute at O(a2).

2.2.2 Iwasaki gauge action

The Wilson gauge action is not a unique lattice gauge action. Other gauge

invariant choices are possible. Any arbitrary closed loop of links can be
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used to construct a lattice gauge action. Consequently it is possible to

design lattice gauge actions from linear combinations of closed loops such

that the discretization errors are reduced.

One example is to add a term based on a six link rectangle to the Wilson

action

Rμν = Uμ(x)Uμ(x+aμ̂)Uν(x+2aμ̂)U †
μ(x+aμ̂+aν̂)U †

μ(x+aν̂)U †
ν(x). (2.21)

The gauge action is then given by [33, 34]

SG =
β

Nc

∑
x;μ<ν

ReTr[1− cplPμν(x) − crtRμν(x)]. (2.22)

where the constants cpl and crt satisfy cpl + 8crt = 1 in order to preserve

the correct continuum limit.

In this work we used the renormalization group improved gauge action

of Iwasaki, defined by setting crt = −0.331 [35, 36]. As well as reducing

discretization errors this gauge action is also chosen because it has been

shown to reduce the residual chiral symmetry breaking that arises from the

domain wall fermion action [37,38] which we will describe in section 2.3.3.

2.3 Fermions on the lattice

2.3.1 Naive fermions

The simplest way to construct a lattice action for fermions is to replace

derivatives in the continuum Euclidean fermion action by symmetric dif-

ferences. We define the lattice difference operator

Δ+
μ (x, y) =

1

a
[δy,x+aμ̂ − δy,x] , (2.23)

and the lattice symmetric difference operator

Δμ(x, y) ≡ 1

2
[Δ+

μ (x, y) + Δ−
μ (x, y)] =

1

2a
[δy,x+aμ̂ − δy,x−aμ̂] . (2.24)

In analogy with the covariant derivative for the continuum theory we

define a lattice covariant difference operator by using link variables to con-
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nect neighboring sites as follows:

∇+
μ (x, y) =

1

a
[Uμ(x)δy,x+aμ̂ − δy,x] , (2.25)

and a symmetric lattice covariant difference operator

∇μ(x, y) =
1

2
[∇+

μ (x, y) +∇−
μ (x, y)] =

1

2a

[
Uμ(x)δy,x+aμ̂ − U †

μ(x)δy,x−aμ̂
]
.

(2.26)

The naive lattice fermion action is then given by

SF = a4
∑
x,y

ψ̄(x)D(x, y)ψ(y), (2.27)

where

D(x, y) =
∑
μ

γμ∇μ(x, y) +mfδx,y. (2.28)

It is easy to check that this action has the correct continuum limit by

Taylor expanding in small lattice spacing a. This will also show that the

discretization errors are of O(a2) [39]. A problem with this action occurs

however if we calculate the quark propagator in the free field theory, where

Uμ(x) = 1. In this case the free quark propagator is given by

G(x, y) = D−1(x, y) =

∫ π/a

−π/a

d4k

(2π)4
e−ik.(x−y)G(k), (2.29)

where

G(k) = D−1(k) =

(
i
∑
μ

γμk̃μ +mf

)−1

, k̃μ =
1

a
sin(akμ). (2.30)

We see that in addition to the poles of the continuum theory at kμ = 0

the propagator also has poles at the corners of the Brillouin Zone kμ =

±π/a. Therefore we see that such an action describes a theory with 24 = 16

fermions. This is known as the fermion doubling problem. Several improve-

ments over the naive fermion action have been proposed in order to remove

the doubling problem. Here we will discuss two of them: Wilson fermions

and Domain Wall fermions.
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2.3.2 Wilson fermions

In order to overcome the fermion doubling problem Wilson introduced an

extra dimension five term. The addition of this term is irrelevant in the

continuum limit as it vanishes linearly as a → 0. The Wilson fermion

action [40] is given by

SWF = SF +
ar

2

∑
x,y,z,μ

∇+
μ (x, y)ψ̄(y)∇+

μ (x, z)ψ(z), (2.31)

where r is the Wilson parameter 0 ≤ r ≤ 1. The Wilson action can be

rewritten as

SWF = a4
∑
x,y

ψ̄(x)DW (x, y)ψ(y), (2.32)

where

DW (x, y) = −1

2

∑
μ

[(r
a
− γμ
)
Uμ(x)δy,x+aμ̂ +

(r
a

+ γμ

)
U †
μ(x)δy,x−aμ̂

]

+

(
mf +

4r

a

)
δx,y. (2.33)

If we again consider the fermion propagator in the free field theory,

where Uμ(x) = 1 we get

G(k) = D−1(k) =

(
i
∑
μ

γμk̃μ +M(k)

)−1

, (2.34)

where

M(k) = mf +
2r

a

∑
μ

sin2 akμ
2
. (2.35)

We can see that for kμ ≈ ±π/a, M(k) diverges for a → 0. Thus the

addition of the Wilson term has the effect of raising the masses of the

unwanted doublers to the order of the cutoff O(1/a) and they are therefore

eliminated in the continuum limit.

The Wilson fermion action can therefore remove doublers from the naive

discretization of the QCD action. However, it does so at the expense of

breaking chiral symmetry at finite lattice spacing, as we can see that the

second term in (2.31) is not invariant under chiral transformations. This

makes it difficult to do calculations where chiral symmetry is important,

as is the case for the calculation of the pion and Kl3 form factors. It is
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therefore more desirable to use an action that preserves chiral symmetry.

For a long time it was thought that preserving chiral symmetry and

simultaneously removing doublers was not possible, due to the Nielsen and

Ninomiya no-go theorem [41]. Ginsparg and Wilson however, found a way

to circumvent this no-go theorem [42] by imposing that the lattice Dirac

operator D with mf = 0, satisfy the following condition,

{γ5, D} = 2aDγ5D, (2.36)

and defining a lattice chiral transformation as

ψ → eiαγ
5(1−aD)ψ; ψ̄ → ψ̄eiα(1−aD)γ5

, (2.37)

which becomes the usual chiral transformation in the continuum limit. It is

easy to verify that the massless lattice QCD Lagrangian is indeed invariant

under this transformation if (2.36) is satisfied. This violates one of the

assumptions of the no-go theorem where the right hand side of (2.36) is

zero, allowing for the possibility of chiral symmetry while simultaneously

removing doublers. One fermion Lagrangian formulation that satisfies the

Ginsparg-Wilson relation is the domain wall fermion formulation, which we

will discuss in the next section.

For convenience we will use lattice units as defined by

ψ̃ = a3/2ψ,

m̃f = amf , (2.38)

x̃ = x/a.

(and drop the ∼’s) from here onwards, unless otherwise stated.

2.3.3 Domain wall fermions

The domain wall fermion (DWF) formulation is a method of simulating

fermions on a lattice that preserves chiral symmetry at finite lattice spac-

ing and simultaneously removes doublers. DWF was first introduced by

Kaplan [43] who showed that it was possible to have light chiral fermions

in 2n dimensions as surface states in a 2n+1 dimensional theory. The DWF

action used in this work is a variant of Kaplan’s formulation, originally pro-

posed by Shamir [44, 45]. In the following I will give a brief description of

24



the theory and describe how these surface states originate. For a more

comprehensive treatment of the theory, the reader is referred to [44–46].

I will follow the conventions of Shamir [45] and denote coordinates in the

usual four dimensions by x, and the coordinate in the fifth dimension by

s. The number of sites in the fifth dimension will be denoted by Ls and s

will run from 0 to Ls − 1. The five-dimensional fermion fields are denoted

by Ψ(x, s) and Ψ̄(x, s).

The domain wall fermion action is then given by [45]

SDWF = −
∑

x,x′,s,s′
Ψ̄(x, s)D(x, s; x′, s′)Ψ(x′, s′), (2.39)

where

D(x, s;x′, s′) = δ(s − s′)D‖(x, x′) + δ(x− x′)D⊥(s, s′), (2.40)

D‖(x, x′)=
1
2

4∑
μ=1

[
(1− γμ)Uμ(x)δ(x + μ̂− x′) + (1 + γμ)U †

μ(x
′)δ(x′ + μ̂− x)

]
+(M5 − 4)δ(x − x′), (2.41)

D⊥(s, s′) =
[
PLδ(s + 1− s′) + PRδ(s − 1− s′)− 2δ(s − s′)

]
− mf

[
PLδ(s − Ls − 1)δ(0 − s′) + PRδ(s − 0)δ(Ls − 1− s′)

]
= PLM(s, s′) + PRM †(s, s′)− δ(s − s′), (2.42)

where M is the Ls × Ls matrix [46]

M(s, s′) = δ(s+ 1− s′)−mfδ(s− Ls − 1)δ(0− s′). (2.43)

Here, mf is the 4-d bare quark mass that explicitly couples the s = 0

and s = Ls − 1 walls. Note the D‖ is just the Wilson fermion action with

r = 1 and a negative mass −M5. M5 is the domain wall height in Kaplan’s

original formulation [43]. In the free field case, if 0 < M5 < 1, there will be

a single fermion flavour with the left-hand chirality state bound to s = 0

and the right-hand chirality state bound to s = Ls − 1.

The four-dimensional quark fields ψ(x) and ψ̄(x) are then constructed

from the five-dimensional fermion fields Ψ(x, s) and Ψ̄(x, s) as

ψ(x) = PLΨ(x, 0) + PRΨ(x, Ls − 1)

ψ̄(x) = Ψ̄(x, Ls − 1)PL + Ψ̄(x, 0)PR. (2.44)
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To understand how the states bound to the four dimensional walls at

the boundaries of the fifth dimension arise, let us look at the spectrum of

the free field DWF Dirac operator. In the free field case Uμ(x) = 1, and

we can see that in momentum space (2.40) is

D(k; s, s′) = PLM(s, s′) + PRM
†(s, s′)− (b(k) + iγμk̃

μ)δ(s− s′), (2.45)

where

b(k) = 1−M5 +
∑
μ

(1− cos kμ). (2.46)

The operator D is not hermitian. We will consider instead the second

order operatorDD† as this operator is hermitian and non-negative and look

at its eigenvalue spectrum. The propagator for D can then be constructed

from the propagator for DD† from GF = D†G, where GF is the propagator

of D and G is the propagator of the second order operator DD† [44]. We

can show that [46]

DD† = PLΩ− + PRΩ+, (2.47)

where

Ω+ = MM † − b(M +M †) + b2 + k̃2, (2.48)

Ω− = M †M − b(M +M †) + b2 + k̃2. (2.49)

Writing M in explicit matrix form

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 ... 0

0 0 1 ... 0

... ... ... ... ...

0 0 0 ... 1

−mf 0 0 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.50)

we can see that M † = R5MR−1
5 ⇒ Ω− = R5Ω+R

−1
5 where R5 is a reflection

in the s-direction about the midpoint s = (Ls − 1)/2. Thus if Ω+ has an

eigenvector φ with eigenvalue λ then Ω− has a corresponding eigenvector

R5φ with the same eigenvalue λ. Thus we can write an eigenvector Ψ of

DD† as

Ψ = PLR5φ+ PRφ, (2.51)

and it suffices to solve the eigenvalue equation Ω+φ = λφ to find the spec-
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trum of the operator DD†.

In explicit matrix form Ω+ is given by

Ω+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + b2 + k̃2 −b ... 0 mfb

−b 1 + b2 + k̃2 ... 0 0

... ... ... ... ...

0 0 ... 1 + b2 + k̃2 −b
mfb 0 ... −b m2

f + b2 + k̃2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(2.52)

We can diagonalize Ω+ by choosing

φ(s) = Aeαs +Be−αs, (2.53)

and we can then show that λ is given by

λ = 1 + b2 + k̃2 − 2b coshα. (2.54)

λ must be real since Ω+ is hermitian, but since α appears in the expres-

sion for λ as coshα, α can be real, imaginary or α = iπ+β where β is real

and non-zero. If α is imaginary then we have eigenvectors that propagate

in the s-direction. If α is real then we have eigenvectors that decay expo-

nentially in the s-direction and are bound to the s-direction boundaries. If

α = iπ+ β then we also have decaying bound states, but they change sign

from one site to the next in the s-direction.

We can see that the decaying state φ is bound to the wall at s = Ls−1 by

looking at the ratio of the eigenvector’s amplitudes at s = 0 and s = Ls−1:

A+B

Aeα(Ls−1) +Be−α(Ls−1)
=

eα − e−α
eαLs − e−αLs

. (2.55)

For the decaying states where α is not pure imaginary this ratio is very

small. We conclude then that for the decaying states of DD† the right-

handed component is bound to the s = Ls−1 boundary. Similarly the left-

handed component will be bound to the s = 0 boundary. This is consistent

with how we defined the 4-d quark field ψ(x). All physical observables

are defined on the s-direction boundaries. Physics is therefore represented

by the decaying states in the DWF formalism. It can be shown that the

operator D has these same types of states as DD† [44,46]. Furthermore, by

considering the spectrum of DD† it can be shown that if 0 < M5 < 1, then
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we have exactly just one decaying state at the origin of the Brillouin zone,

while all other states are propagating states in the s-direction [44]. The

DWF action with the condition 0 < M5 < 1 is therefore free of doublers.

Since the chiral states decay exponentially in the fifth dimension, at

finite Ls there is a finite overlap between them and the fermion theory is

not fully chiral. Full lattice chiral symmetry is recovered however in the

limit Ls → ∞ where there is no overlap. At finite Ls the degree of chiral

symmetry is governed by the overlap between these states. The degree

of chiral symmetry breaking is measured by the residual mass mres which

can be found through the Ward-Takahashi identity [45]. This leads to an

additive quark mass renormalization mq = mf + mres, where mq is the

true quark mass and mf is the bare mass parameter that appears in the

DWF action [47]. Thus for DWF at finite Ls the chiral limit is defined as

mf +mres = 0 as opposed to mf = 0 as is the case in the continuum limit.

As well as describing a light decaying state with opposite chiralities

bound to the boundaries of the fifth dimension, DWF formulation also

describes an extra Ls − 1 propagating heavy states that can propagate in

the fifth dimension. These must be canceled out as they lead to bulk type

infinities in the Ls → ∞ limit [45]. Regulator fields are introduced to

remove these infinities. One way to do this is to introduce a set of bosonic

Pauli-Villars fields into the lattice QCD action which share the same Dirac

matrix as the fermionic fields but have a mass mpv [46]. The partition

function then gets an extra determinant in the denominator and becomes

Z =

∫
DU detD(mf)

detD(mpv)
e−Sg[U ]. (2.56)
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Chapter 3

Numerical Methods

In chapter 2 we discussed how to design lattice gauge boson and fermion

actions. In this chapter we describe how to compute physical observables

given a lattice QCD action. We begin with a brief discussion of Monte Carlo

methods. For a more comprehensive introduction to Monte Carlo methods

for dynamical fermions the reader is referred to [48]. We then go on to

show how the problem of computing correlation functions on the lattice

can be reduced to that of computing the quark propagator and we proceed

to show how to obtain phenomenologically relevant observables, such as

meson masses and hadronic matrix elements, from correlation functions.

We finish the chapter with a discussion of the data analysis techniques

used for dealing with statistical errors and model fitting to lattice data.

3.1 Monte Carlo Methods

As we saw in section 2.1 we can calculate any physical observable O in

QCD from the path integral

〈O〉 =
1

Z

∫
DUDψDψ̄O(U, ψ, ψ̄)e−SF (U,ψ,ψ̄)−SG(U) (3.1)

where the partition function Z is given by

Z =

∫
DUDψDψ̄e−SF (U,ψ,ψ̄)−SG(U)

=

∫
DU det [D(U)]e−SG(U) (3.2)
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and U is the gauge field, SG is the gauge action and SF = ψ̄Dψ is the

fermion action. In the second line of equation (3.2) we perform the inte-

gration over the Grassman variables ψ and ψ̄ to bring down the determinant

of the matrix D in the fermion action.

In the lattice formulation of QCD this path integral has a finite number

of integration variables since spacetime has been discretized. However, its

exact evaluation is computationally prohibitive due to the huge number

of integration variables. We can resort to Monte Carlo methods to evalu-

ate such integrals numerically. Monte Carlo methods use the average on

randomly selected points within the integration domain to estimate the

integral. These sample points are called “gauge field configurations”. One

configuration specifies the value of the gauge field on all lattice points.

In order to efficiently calculate the integral, “importance sampling”

techniques are used which, instead of using the simple average from points

drawn from a uniform distribution of the configurations, select a repre-

sentative subset of points {U (0), U (1), ..., U (N)} drawn from a probability

distribution P (U) ∝ det[D(U)]e−SG(U) such that the path integral is well

estimated on this subset. This ensures that more points are drawn from

where the path integral is large and therefore more important to the en-

semble average. The vacuum expectation value 〈O〉 can then be estimated

from the ensemble average over the N gauge configurations:

〈O〉 ≈ 1

N

N∑
n=1

O(U (n)). (3.3)

The law of large numbers then tells us that the configuration average tends

to the expectation value 〈O〉 as N tends to infinity. Furthermore, by the

central limit theorem, the sample average tends to become Gaussian dis-

tributed with expectation value 〈O〉 and standard deviation that falls of as

∼ 1/
√
N .

In order to perform this sampling of gauge configurations a Markov

chain technique can be used (see for example [48]). In generating a Markov

Chain, one starts with an initial field configuration and approaches the

desired probability distribution through a series of prescribed random up-

dates of the field values. The limiting probability distribution is called the

“equilibrium distribution” and the process of reaching it is called “equili-

bration”. The expectation value of the observable is then calculated after

the distribution is first suitably equilibrated. A sufficient (but not neces-
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sary) condition for the generated sequence of gauge configurations to be a

Markov chain is detailed balance

R(U ′ ← U)P (U) = R(U ← U ′)P (U ′) (3.4)

where R(U ′ ← U) is the transition probability from configuration U to

U ′. A simple way of implementing detailed balance is using the Metropolis

algorithm [49], where we select a candidate configuration U ′ at random and

then accept it with probability

R(U ′ ← U) = min

(
1,
P (U ′)
P (U)

)
(3.5)

or otherwise reject it and keep the initial configuration U as the next config-

uration in the Markov chain. It is easy to show that this method generates

a transition probability that satisfies detailed balance.

Another method of achieving detailed balance is to update the gauge

links at different lattice sites one by one according to the probability distri-

bution P (U ′). As each update is independent of the previous configuration,

the transition probability is just

R(U ′ ← U) ∝ P (U ′). (3.6)

This method is called the heatbath algorithm.

Generating gauge configurations by Markov chain methods however

means that consecutive gauge field configurations are ‘autocorrelated’ i.e.

they are not independent and one must therefore take care when estimating

the statistical error. Only configurations with an adequate separation in

Monte Carlo time can be taken as independent.

The fermion determinant in the probability distribution P (U) is highly

non-local, so computing its change under a change in the gauge field is very

expensive. One solution, used in the early days of lattice QCD, is to set

the fermion determinant to 1. This is known as the quenched approxima-

tion [50] and in perturbation theory, it is equivalent to ignoring the fermion

loops to all orders. This results in uncontrolled systematic errors that can

be as large as 30% [51].

With advances in computing power it became possible to include the

fermion determinant into the simulations. Various methods have been de-

veloped and refined to deal with the fermion determinant. A full treat-
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ment of such methods is beyond the scope of this thesis and the reader is

referred to [48] for an introduction into Monte Carlo algorithms for dynam-

ical fermions. Typically such methods re-express the fermion determinant

as an integration over bosonic-valued fields φ and φ†, known as ‘pseudo-

fermions’, via

detD(U) =

∫
Dφ†Dφ exp(−φ†D−1φ) (3.7)

or make use of the matrix identity ln(detA) = Tr lnA to absorb the fermion

determinant into an effective gauge action. The condition number of the

fermion matrix increases as 1/m2
f and the resulting increase in computa-

tional cost of inverting the fermion matrix means that at present simula-

tions at physical light quark masses are not possible.

The current state-of-the-art for gauge configuration generation is the

Rational Hybrid Monte Carlo (RHMC) algorithm [52–55]. The gauge con-

figurations used for the correlation function measurements in this thesis

were generated by the RBC-UKQCD collaboration using the RHMC algo-

rithm.

3.2 Correlation functions on the lattice

3.2.1 Propagators as building blocks

Consider the lattice hadron two-point correlation function with a momen-

tum �p at time t = tf − ti defined by

CH(t, �p) =
∑
�xf ,�xi

ei�p·(�xf−�xi)〈OH(tf , �xf )O
†
H(ti, �xi) 〉, (3.8)

where the operator O†
H(ti, �xi) creates a hadron H at the source (ti, �xi) and

OH(tf , �xf ) destroys it at the sink (tf , �xf).

For mesons the operator OH(t, �x) takes the form

OH(t, �x) = ψ̄2(t, �x)Γψ1(t, �x), (3.9)

where Γ is a combination of γ matrices that gives the desired spin and parity

quantum numbers for the meson (see table 3.1 for the possible γ-matrix

structures). In this work we will only consider pseudo-scalar mesons for

which the operator has the structure OH = ψ̄2γ5ψ1 for general momentum �p

(e.g. for the pion and kaon Oπ = q̄γ5q and OK = s̄γ5q respectively).
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State JP Γ

scalar 0+ I, γ4

pseudoscalar 0− γ5, γ4γ5

vector 1− γi, γiγ4

axial vector 1+ γiγ5

tensor 2+ σμν

Table 3.1: Table of the possible γ-matrix structures for the different meson
states at �p = �0. The tensor γ-matrix structure is given by σμν = 1

2 (γμγν−γνγμ).

Inserting (3.9) into (3.8) and performing Wick contractions we get

CH(t, �p) =
∑
�xf ,�xi

ei�p·(�xf−�xi)〈ψ̄2(tf , �xf)Γψ1(tf , �xf)ψ̄1(ti, �xi)Γ
†ψ2(ti, �xi)〉

=
∑
�xf ,�xi

ei�p·(�xf−�xi)Tr
[
ΓG2(ti, �xi; tf , �xf )Γ

†G1(tf , �xf ; ti, �xi)
]
(3.10)

where Gj(tf , �xf ; ti, �xi) is the propagator for a quark of flavour j from (ti, �xi)

to (tf , �xf ) as defined in equation (2.12) and the trace is over spin and

colour indices. Note that for flavour-singlet mesons, where ψ1 = ψ2, there

is a second term consisting of disconnected self-contractions of quark fields.

We will however not consider these here.

The Dirac operator satisfies γ5D
†γ5 = D, thus we can relate the back-

ward propagator Gj(ti, �xi; tf , �xf ) to the forward one by

Gj(ti, �xi; tf , �xf) = γ5G
†
j(tf , �xf ; ti, �xi)γ5, (3.11)

and the expression for the meson two-point correlation function becomes

CH(t, �p) =
∑
�xf ,�xi

ei�p·(�xf−�xi)Tr
[
Γγ5G

†
2(tf , �xf ; ti, �xi)γ5Γ

†G1(tf , �xf ; ti, �xi)
]
.

(3.12)

Thus we only need to compute one quark propagator for each quark flavour

to determine the two-point function.

In order to calculate form factors we will also need to consider pseudo-

scalar meson three-point correlation functions of the form

C
(μ)
PiPf

(ti, t, tf , �pi, �pf)=
∑
�xf ,�x,�xi

ei�pf ·(�xf−�x)ei�pi·(�x−�xi)〈OPf
(tf , �xf) jμ(t, �x)O

†
Pi

(ti, �xi) 〉,

(3.13)
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where the operator O†
Pi

= ψ̄1γ5ψ3 creates a pseudo-scalar meson Pi at

(ti, �xi), O
†
Pf

= ψ̄3γ5ψ2 destroys a pseudo-scalar meson Pf at (tf , �xf ) and we

insert the vector current jμ = ψ̄2γμψ1 at (t, �x) to allow for the transition

Pi → Pf .

After Wick contraction the three-point function becomes

C
(μ)
PiPf

(ti, t, tf , �pi, �pf ) =
∑
�xf ,�x,�xi

ei�pf ·(�xf−�x)ei�pi·(�x−�xi) ×

×Tr [G3(ti, �xi; tf , �xf)γ5G2(tf , �xf ; t, �x)γ
μG1(t, �x; ti, �xi)γ5] . (3.14)

In lattice QCD calculations we typically work in the isospin limit mu =

md and thus we only need two different quark propagators in the expression

for the three-point function.

3.2.2 Point Sources

In order to compute the quark propagator from any source spacetime point

(ti, �xi) to any sink spacetime point (t, �x) we must invert the Dirac matrix

Dac
αγ(ty, �y; t, �x)G

cb
γβ(t, �x; ti, �xi) = δαβδ

abδty ,tiδ
3
�y,�xi

, (3.15)

where α, β, γ are spin indices and a, b, c are colour indices and summation

is implied over repeated indices. The dimension of the Dirac matrix in

lattice QCD simulations is usually very large, and it is impractical to solve

for the inverse directly. Instead, one usually calculates only a subset of the

elements of the propagator matrix from a subset of source points to obtain

a solution vector

Ga
α(t, �x) =

∑
ti,�xi

[
Dac
αγ(t, �x; ti, �xi)

]−1
ηcγ(ti, �xi) (3.16)

where η is a complex vector source in spin and colour spaces occupying some

region of space. This equation can be solved using an iterative method, such

as the conjugate gradient algorithm.

Traditionally this computation has been performed using the point

source consisting of unit spin and colour vectors on a single lattice space-

time point (t0, �x0). The 12 possible spin and colour source vectors are

usually written as a unit matrix in spin-colour space at the single lattice
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site (t0, �x0)

ηAB(�x) = δABδ�x,�x0δt,t0 (3.17)

where δAB are the components of the 12 × 12 unit matrix in spin-colour

space.

The solutions GAB(t, �x) evaluated from these sources are matrices con-

sisting of the subset of elements of the propagator from a single lattice site

to all other points on the lattice, for all combinations of spin and colour

indices at source and sink, thus requiring 12 inversions of the Dirac matrix.

These solutions are typically referred to as one-to-all propagators.

The propagators for the two-point correlation functions defined in sec-

tion 3.2 can all be computed using point sources in this way. The meson-two

point correlation function is then just given by

CH(t, �p) =
∑
�xf

ei�p·(�xf−�x0)Tr
[
Γγ5G

†
2(tf , �xf )γ5Γ

†G1(tf , �xf )
]
. (3.18)

For the three-point correlation function we can compute G1(t, �x; ti, �xi)

and G3(ti, �xi; tf , �xf) using a single point source. However, the propagator

G2(tf , �xf ; t, �x) involves many source points and cannot be computed in this

way. We can however employ a trick where we re-express the three-point

function in terms of the product of the propagator G1(t, �x; ti, �xi) and a

sequential source propagator [56] defined by

G′(ti, �xi; tf , �pf ; t, �x) =
∑
�xf

γ5

(
G2(t, �x; tf , �xf )γ

5G3(tf , �xf ; ti, �xi) e
−i�pf ·�xf

)†
γ5 .

(3.19)

The sequential source propagator can then be computed by inverting the

Dirac matrix upon the source GAB(t, �x).

3.2.3 Stochastic Sources

It has been shown in [57–59] that one can substantially reduce the com-

putational cost of computing meson correlators by using stochastic vector

sources, where the elements of the source vectors are randomly chosen from

a distribution D that is symmetric about zero. A set {ηjA(ti, �x) ∈ D|j =

1, . . . , N} of these sources has the property that in the limit N →∞,

1

N

N∑
j=0

ηjA(ti, �x)η
† j
B (ti, �y)→ δ�x,�y δA,B. (3.20)
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The studies of [57,58,60] suggest that the optimal choice is to use source

vectors with random elements from the set Z(2) for both real and imaginary

components i.e. D = Z(2) ⊗ Z(2). In [59] source vectors of this type are

implemented into existing code designed for dealing with 12× 12 matrices,

such as those for point sources. In this way existing propagator contraction

code can be reused without the need for further modifications. The source

vectors are placed on the first column of an empty 12× 12 matrix in spin-

colour space for all sites �y on the source time-slice. Thus we use matrix

sources of the form: ηjA,0(ti, �y) ∈ Z(2)⊗ Z(2). In this way the property of

equation (3.20) is retained for these matrix sources. With sources of this

form, the solution GAB(t, �x) for pseudo-scalar mesons requires only a single

inversion per valence quark mass rather than the 12 required for the point

source solution (note that this is only true for the pseudo-scalar mesons, for

the rest of the meson spectrum we require 4 inversions per valence quark

mass [59]). Using equation (3.20) we can then show that the pseudo-scalar

meson two-point correlator at zero momentum tends to the spatial average

of the point source solution [57, 58]

CP (t,�0) =

N∑
j=0

∑
�x

Tr
{
γ5Gj

1(t, �x)γ
5
(
γ5Gj

2(t, �x)γ
5
)†}

→
∑
�x,�y

Tr
{
γ5G1(t, �x; ti, �y)γ

5
(
γ5G2(t, �x; ti, �y)γ

5
)†}

.

(3.21)

Although this explicitly projects to zero momentum at source, partially

twisted boundary conditions can be used to induce a non-vanishing meson

momentum as we will see in chapter 5.

The properties of equation (3.20) are retained on average when the

sources ηj reside on different configurations, provided a large enough ensem-

ble of configurations is used, such that the stochastic sum can be included

in the ensemble average [59]. Therefore we require only a single stochastic

source per configuration, giving an overall factor of 12 cost reduction over

the traditional point source method.

This technique can be extended simply to three-point correlators using

the sequential source propagator method of equation (3.19), the solution

of which is again non-zero only on a single source spin-colour index, thus

requiring only one extra inversion. The stochastic cancellation with the

other source occurs at the source timeslice ti as in (3.21).
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3.3 Phenomenology from lattice correlators

3.3.1 Meson masses

Consider again the meson two-point correlation function

Ci(t, �p) =
∑
�x

e−i�p·�x〈Oi(t, �x)O
†
i (0,�0)〉 (3.22)

where Oi is the interpolating operator for the meson i and we have used

the translational symmetry of the lattice to shift the source to (0,�0). In

Euclidean space the operator Oi(t, �x) evolves as eHtO(0, �x)e−Ht with time

t. Thus if we insert a complete set of energy eigenstates normalized as

〈n|n′〉 = 2Enδnn′ into (3.22) we get

Ci(t, �p) =
∑
n

〈0|Oi(0,�0)|n〉〈n|O†
i (0,�0)|0〉e−Ent

2En

=
∑
n

|Zn|2e−Ent

2En
(3.23)

where n = 0, 1, 2... represents the n-th excited state, En =
√
m2
n + |�p|2 is

the energy of the n-th excited state and Zn = 〈n|O†
i (0,�0)|0〉.

The extent of the lattice is finite and there are therefore both forward

and backward time propagating contributions to the correlators. The cor-

relator therefore has the form

Ci(t, �p) =
∑
n

|Zn|2
2En

(
e−Ent + e−En(T−t)) , (3.24)

where T is the lattice size in the time direction. If t and T − t are large

enough, the contributions to the correlator from the heavier excited states

will damp out exponentially leaving the main contribution to the correlator

from the ground state

Ci(t, �p) =
|Z0|2
2E0

(
e−E0t + e−E0(T−t)) , (3.25)

In this work we will only be interested in the ground state and therefore

we will drop the subscript 0 from (3.25) and just write the correlator as

Ci(t, �p) =
|Zi|2
2Ei

(
e−Eit + e−Ei(T−t)) , (3.26)
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with Zi = 〈i|O†
i (0,�0)|0〉 and i = π or K.

We can now fit a meson two-point correlation function computed on the

lattice to the expression (3.26) to extract the ground state energy (or mass

for �p = �0). In order to determine an appropriate lower bound to the time

fitting range one can define the “effective mass”:

meff(t) = cosh−1

[
C(t+ 1) + C(t− 1)

2C(t)

]
. (3.27)

which should be a constant (i.e. the ground state energy) if the contribu-

tions from excited states in equation (3.24) can be ignored. Thus, a natural

criterion for the lower bound of the time fitting range is to check when the

effective mass first becomes constant. The effective mass is used as an aid

throughout this work to establish appropriate time fitting ranges for the

meson energies.

3.3.2 Hadronic form factors

As we will now show the matrix element of the vector current between

initial and final pseudo-scalar mesons Pi and Pf defined in equation (1.37)

can be extracted from the time-dependence of combinations of Euclidean

two- and three-point correlation functions.

As we did for the two-point function in section 3.3.1, for large enough

time intervals such that the lightest mesons give the dominant contribu-

tions, the three-point function for pseudo-scalar mesons Pi and Pf can be

written as [61]

C
(μ)
PiPf

(ti, t, tf , �pi, �pf ) =

= ZV
∑
�xf ,�x

ei�pf ·(�xf−�x)ei�pi·�x〈Of(tf , �xf ) jμ(t, �x)O
†
i (ti,�0) 〉

= ZV
Zi Zf
4EiEf

〈Pf(�pf ) | jμ(0) |Pi(�pi) 〉

×{θ(tf − t) e−Ei(t−ti)−Ef (tf−t)

+ cμ θ(t− tf) e−Ei(T+ti−t)−Ef (t−tf )
}
, (3.28)

where we have defined Zf = 〈 0 |Of(0,�0)|Pf 〉 and we have introduced the

constant cμ which is c4 = −1 (time-direction) and ci = +1 for i = 1, 2, 3.

We have also introduced the vector current renormalization factor ZV that

relates the bare vector current to the renormalized one and can be obtained
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as follows. For illustration we take 0 < t < tf < T/2, in which case ZV is

defined by

ZV =
C̃π(tf ,�0)

C
(B,μ)
ππ (ti, t, tf ,�0,�0 )

. (3.29)

In the numerator we use the function (here i = π) C̃i(t, �p) = Ci(t, �p) −
|Zi| 2
2Ei

e−Ei(T−t) where Zi and Ei are determined from fits to Ci(t,�0) and

using the dispersion relation Ei =
√
m2
i + |�pi|2 (for tf = T/2 it is natural

instead to use C̃i(t, �p) = 1
2
Ci(t, �p) in (3.29)). The superscript B in the

denominator indicates that we take the bare (unrenormalized) current in

the three-point function. We chose to use C̃i(t, �p) in place of Ci(t, �p) as we

found that with this choice we were able to achieve better plateaus for ZV

as well as for the ratios defined below. In the following we drop the labels

ti and tf (since they are fixed) and we combine the two- and three- point

functions into the ratios

R
(μ)
1, PiPf

(�pi, �pf) = N
√

C
(μ)
PiPf

(t,�pi,�pf )C
(μ)
Pf Pi

(t,�pf ,�pi)

C̃Pi
(tf ,�pi) C̃Pf

(tf ,�pf )
,

R
(μ)
3, PiPf

(�pi, �pf) =

N C
(μ)
PiPf

(t,�pi,�pf )

C̃Pf
(tf ,�pf )

√
CPi

(tf−t,�pi)CPf
(t,�pf ) C̃Pf

(tf ,�pf )

CPf
(tf−t,�pf )CPi

(t,�pi) C̃Pi
(tf ,�pi)

,

(3.30)

where N = 4ZV
√
EiEf and the ratios are constructed such that

R
(μ)
α, PiPf

(�pi, �pf) = f
PiPf

+ (q2)(pi + pf)μ + f
PiPf

− (q2)(pi − pf)μ , (3.31)

for α = 1, 3. For the ratios we use the naming convention of [61] but we

haven’t made use of ratio R2
1. For the pion electromagnetic form factor

fππ− (q2) = 0 for all q2 and thus fππ(q2) is readily obtained. For the Kl3

form factors once these ratios have been computed for some choices of �pi

and �pf while keeping q2 constant (of course we are particularly interested

in q2 = 0) the form factors fKπ+ (q2) and fKπ− (q2) can be obtained as the

solutions of the corresponding system of linear equations.

1We did not generate data for C
(μ)
PP (t, �p, �p)|q2=0 for P = π, K from which the forward

matrix elements 〈P |Vμ|P 〉 relevant for the construction of R2 can be extracted.
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3.4 Data analysis techniques

3.4.1 Correlations in simulation time

As described in section 3.1 the vacuum expectation value of an observable

O is estimated from the average Ō over N measurements on gauge field con-

figurations generated as a Markov Chain using Monte Carlo methods. The

gauge field configurations are inherently correlated in the simulation time.

This type of correlation is called ‘autocorrelation’. Due to autocorrelations

the usual ‘naive’ standard deviation for the observable O

σnaive =

√√√√ 1

N(N − 1)

N∑
i=1

(Oi − Ō)2 (3.32)

is typically an under-estimate of the true statistical error.

To deal with autocorrelations we usually bin the data into Nbins = N/b

bins, where b is the number of measurements in each bin. The optimal

bin size b can be found by steadily increasing it until the statistical error

estimate stops changing. The binned data is then considered to be inde-

pendent and the usual standard deviation of equation (3.32) can be used

with Nbins measurements to estimate the statistical error.

3.4.2 Correlations among observables

In lattice QCD calculations we often need to calculate physical observables

that depend on more than one quantity calculated on the same ensemble

of gauge field configurations. Such quantities will inevitably be correlated

with one another and thus we need a method that will allow us to prop-

agate the statistical errors in these quantities taking into account such

correlations. One such method is the jackknife technique.

For the jackknife technique used in this work, we re-sample the original

distribution of measurements {Xi; i = 1, ..., N} by removing one measure-

ment Xj and calculating the mean for the new distribution. We repeat

the process each time removing one Xj and going through the whole dis-

tribution of measurements to obtain a distribution {X̄j ; j = 1, ..., N} of

jackknife means. The jackknife means X̄j are therefore given by

X̄j =
1

N − 1

[
N∑
i=1

Xi −Xj

]
for j = 1, ..., N , (3.33)
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and we then calculate an error on the mean given by

σJ =

√√√√N − 1

N

N∑
j=1

(X̄j − 〈X̄〉)2 , (3.34)

where 〈X̄〉 is the average mean value.

3.4.3 Least χ2 fitting

We often need to fit lattice data {Xi} to a model F (Y, α1, α2, ...) where Y is

some variable such as meson mass or momentum and the αi’s are unknown

constants to be determined. The standard approach to fit correlated lattice

data to a model and determine the unknown constants is to minimize the

correlated χ2 defined as

χ2 =
M∑
i,j=1

[
X̄i − F (Yi, α1, α2, ...)

] (
Cov−1

)
ij

[
X̄j − F (Yj, α1, α2, ...)

]
(3.35)

where M is the number of points included in the fit, X̄i is the ensemble

average of the ith data point

X̄i =
1

N

N∑
k=1

Xik (3.36)

and Cov is the covariance matrix which can be approximated by

Covij =
1

N(N − 1)

N∑
k=1

(Xik − X̄i)(Xjk − X̄j). (3.37)

In the limit N → ∞ this approaches the true covariance matrix. The

covariance matrix accounts for the correlations between the different Xi’s.

Problems arise when the number of measurements N is not large enough,

which results in large fluctuations of the covariance matrix. In this work

we have used both frozen and unfrozen covariance matrices for correlated

χ2 fits. For the unfrozen case a covariance matrix is computed individually

for each jackknife sample, while in the frozen case we calculate a single

covariance matrix on the distribution of jackknife means. We also use

uncorrelated χ2 fits where the covariance matrix is just the unit matrix.
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Chapter 4

Chiral Perturbation Theory

We saw in section 1.1.2 that the QCD Lagrangian with Nf massless quarks

is invariant under the chiral group G = SU(Nf )L × SU(Nf)R and that

the chiral group G is spontaneously broken down to the subgroup H =

SU(Nf )V . This leads to N2
f − 1 pseudo-scalar Goldstone bosons identified

as the light pseudo-scalar mesons. Since there is a large mass gap between

the light pseudo-scalar mesons and the rest of the hadronic spectrum, we

can build an effective field theory where the Goldstone fields are the fun-

damental fields of the theory and the rest of the hadronic spectrum has

been integrated out. This effective field theory is known as Chiral Pertur-

bation Theory (ChPT). ChPT can be used to calculate the quark mass and

momentum dependence of hadronic observables, such as meson masses, de-

cay constants and form factors. ChPT is thus particularly useful in lattice

QCD for extrapolating lattice QCD results from unphysical quark masses

to the physical points. In this chapter I will outline how to write down Chi-

ral Lagrangians and then give a brief overview of the derivation of ChPT

formulae for the pion and Kl3 form factors to next-to-leading order (NLO).

I will also briefly describe partially quenched ChPT as we have generated

data partially quenched in the strange quark mass and used a partially

quenched ChPT formula for the Kl3 form factor extrapolation presented

in section 7.2. I finish the chapter with a brief discussion of finite volume

effects in ChPT.

4.1 Chiral Lagrangians

We want to construct a chiral Lagrangian that obeys the same symmetries

as the QCD Lagrangian. To do this we need to know how the Goldstone
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fields transform under G. The standard procedure to implement a symme-

try transformation of a groupG on Goldstone fields is to view the Goldstone

fields φ as coordinates of the coset space G/H , where H is the conserved

subgroup that G is spontaneously broken down to [62, 63]. An element g

of G then induces a transformation on ξ(φ) ∈ G/H of the form

ξ(φ)
G→ gξ(φ) = ξ(φ′)h(g, φ). (4.1)

The field h(g, φ) ∈ H , known as a compensator field, accounts for the

fact that a coset element is only defined up to an H transformation.

For the case of chiral symmetry G = SU(Nf )L×SU(Nf )R,H = SU(Nf)V

and we have φa(a = 1, ..., N2
f − 1) coordinates describing the Goldstone

fields. Left and right chiral transformations are related by parity and thus

we can write ξ(φ′) as [64]

ξ(φ′) = gRξ(φ)h†(g, φ) = h(g, φ)ξ(φ)g†L ; g = (gL, gR) ∈ G. (4.2)

The coset space G/H is not a group, but as a manifold it is homeo-

morphic to SU(Nf) [65] and as a result we can choose ξ(φ) to be a matrix

valued field in SU(Nf). It is more convenient however to work with the

square Σ(φ) = ξ(φ)2, for which the transformation is simply

Σ(φ)
G→ gRΣ(φ)g†L. (4.3)

A convenient parametrization for ξ(φ) is given by

ξ(φ) ≡ exp

(
iφ

f

)
, (4.4)

where f is a low energy constant (LEC) which can be shown to be equal to

the pion decay constant fπ at lowest order in ChPT. We choose a normal-

ization where fπ ≈ 131 MeV. The two conventional normalizations used in

ChPT can be related by fπ = fπ/
√

2 ≈ 93 MeV. Using this normalization,

for Nf = 3, φ is given by

φ(x) ≡
8∑
a=1

λaφa(x) =

⎛
⎜⎝

π0/
√

2 + η/
√

6 π+ K+

π− −π0/
√

2 + η/
√

6 K 0

K− K 0 −2η/
√

6

⎞
⎟⎠ ,

(4.5)

where φa are the real pseudo-Goldstone boson fields and λa are proportional
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to the Gell-Mann matrices. Similarly for Nf = 2, φ is given by

φ(x) ≡
3∑

a=1

σaφa(x) =

(
π0/
√

2 π+

π− −π0/
√

2

)
, (4.6)

where σa are the Pauli matrices. We can now write down the most general

low energy effective Lagrangian for massless QCD, involving Σ(φ) which is

consistent with chiral symmetry. To lowest order this is uniquely given by

L(2)
eff =

f 2

8
〈∂μΣ∂μΣ†〉, (4.7)

where 〈...〉 denotes the Nf -dimensional trace and the coefficient here is

chosen to give the conventional normalization to the meson kinetic term.

This effective Lagrangian gives us an effective field theory in terms

of Goldstone fields with exact chiral symmetry for massless quarks. In

nature we do not however observe exact chiral symmetry. In addition to

spontaneous symmetry breaking, chiral symmetry is explicitly broken by

non-zero quark masses and by the electroweak interactions. We can take

this into account by introducing couplings to external Hermitian matrix

valued fields vμ, aμ, s, p and treating these as perturbations. These external

fields can also be used to compute the realization of Green functions of

quark currents in this effective field theory [66, 67]. To this end the QCD

Lagrangian for massless quarks (L0
QCD) is extended to

LQCD = L0
QCD + q̄γμ(vμ + aμγ5)q − q̄(s− ipγ5)q. (4.8)

Defining the fields rμ ≡ vμ + aμ and lμ ≡ vμ − aμ the Lagrangian (4.8)

is invariant under the following set of local G transformations [64]:

qL → gLqL; qR → gRqR; s+ ip→ gR(s+ ip)g†L

lμ → gLlμg
†
L + igL∂μg

†
L; rμ → gRrμg

†
R + igR∂μg

†
R. (4.9)

We then build an effective Lagrangian containing these external sources

that is invariant under the local transformations (4.9). Imposing invariance

under local instead of global chiral transformations automatically ensures

gauge invariance when the external fields are used to introduce couplings

of the Goldstone fields to gauge fields. For the effective Lagrangian to be

invariant the external fields have to be introduced through the covariant
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derivatives

DμΣ = ∂μΣ− irμΣ + iΣlμ, DμΣ
† = ∂μΣ

† + iΣ†rμ − ilμΣ†, (4.10)

and through the field strength tensors

F μν
L = ∂μlν − ∂ν lμ − i[lμ, lν ], F μν

R = ∂μrν − ∂νrμ − i[rμ, rν ]. (4.11)

The lowest order effective Lagrangian that is invariant under (4.9) is

then given by [67, 68]

L(2)
eff =

f 2

8
〈DμΣD

μΣ† + Σ†χ+ χ†Σ〉, (4.12)

where

χ = 2B(s+ ip), (4.13)

andB is a constant which can be related to the quark condensate. Through-

out this chapter we will use the field χ to introduce the quark masses by

setting p to zero and s = M , where M is the relevant quark mass matrix

in the isospin limit, i.e.

M =

(
m̂ 0

0 m̂

)
for Nf = 2 and M =

⎛
⎜⎝

m̂ 0 0

0 m̂ 0

0 0 ms

⎞
⎟⎠ for Nf = 3 (4.14)

with m̂ = 1
2
(mu + md). Also from here onwards we will use f and f0 to

denote the LECs in the SU(2) and SU(3) chiral limits respectively.

At next order in momentum O(p4) the most general Lagrangian for

Nf = 3 is given by [67]

L(4)
eff = L1〈DμΣ

†DμΣ〉2 + L2〈DμΣ
†DνΣ〉〈DμΣ†DνΣ〉

+ L3〈DμΣ
†DμΣDνΣ

†DνΣ〉+ L4〈DμΣ
†DμΣ〉〈Σ†χ + χ†Σ〉

+ L5〈DμΣ
†DμΣ(Σ†χ+ χ†Σ)〉 + L6〈Σ†χ + χ†Σ〉2

+ L7〈Σ†χ− χ†Σ〉2 + L8〈χ†Σχ†Σ + Σ†χΣ†χ〉
− iL9〈F μν

R DμΣDνΣ
† + F μν

L DμΣ
†DνΣ〉 + L10〈Σ†F μν

R ΣFL,μν〉
+ H1〈FR,μνF μν

R + FL,μνF
μν
L 〉+H2〈χ†χ〉. (4.15)

The numerical values of the LECs Li and Hi are not determined by

chiral symmetry. They parameterize our inability to solve the dynamics
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of QCD in the non-perturbative regime. Their values can be fixed by

experimental measurements, lattice simulations and other methods. Except

for L3 and L7 the low-energy coupling constants Li and H1 and H2 are

required in the renormalization of the one-loop graphs [67]. It is possible

to absorb the one-loop divergences by an appropriate renormalization of

the coefficients Li and Hi [67]

Li = Lri +
Γi

32π2
R, (4.16)

Hi = Hr
i +

Δi

32π2
R, (4.17)

where R is defined by

R =
2

d− 4
− [ln(4π)− γE + 1]. (4.18)

with d denoting the number of space-time dimensions and γE = −Γ′(1)

being the Euler’s constant. The constants Γi and Δi are given by

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0, Γ4 =

1

8
, Γ5 =

3

8
,

Γ6 =
11

144
, Γ7 = 0, Γ8 = 5

48
, Γ9 =

1

4
, Γ10 = −1

4
,

Δ1 = −1

8
, Δ2 =

5

24
. (4.19)

The renormalized coefficients Lri depend on the scale μ introduced by di-

mensional regularization and their values at two different scales μ1 and μ2

are related by

Lri (μ2) = Lri (μ1) +
Γi

16π2
ln

(
μ1

μ2

)
. (4.20)

The scale dependence of the coefficients and the finite part of the loop-

diagrams however compensate each other in such a way that physical ob-

servables are scale independent.

The corresponding O(p4), most general Lagrangian for Nf = 2 is given

by [66]

L(4)
eff =

l1
4
〈DμΣ

†DμΣ〉2 +
l2
4
〈DμΣ

†DνΣ〉〈DμΣ†DνΣ〉

+
l3
16
〈χΣ† + Σχ†〉2 +

l4
4
〈DμΣD

μχ† +DμχD
μΣ†〉

+ l5

[
〈FR,μνΣF μν

L Σ†〉 − 1

2
〈FL,μνF μν

L + FR,μνF
μν
R 〉
]
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+ i
l6
2
〈FR,μνDμΣDνΣ† + FL,μνD

μΣ†DνΣ〉 − l7
16
〈χΣ† − Σχ†〉2

+
h1 − h3

16

{〈χΣ† + Σχ†〉2 + 〈χΣ† − Σχ†〉2 − 2〈χΣ†χΣ† + Σχ†Σχ†〉}
+

h1 + h3

4
〈χχ†〉 − 2h2〈FL,μνF μν

L + FR,μνF
μν
R 〉. (4.21)

In the Nf = 2 case the renormalized low energy constants are related

to the unrenormalized ones by

li = lri + γi
R

32π2
(4.22)

hi = hri + δi
R

32π2
(4.23)

where

γ1 =
1

3
, γ2 =

2

3
, γ3 = −1

2
, γ4 = 2, γ5 = −1

6
, γ6 = −1

3
, γ7 = 0,

δ1 = 2, δ2 = 1
12
, δ3 = 0. (4.24)

4.2 Pion form factor

The electromagnetic form factor of the pion has been studied extensively

in both SU(2) and SU(3) ChPT. NLO expressions appear in [66, 67] with

extensions to NNLO in [69–71] and we now briefly outline the derivation

of fππ(q2) defined in equation (1.42) in SU(3) ChPT to NLO. The corre-

sponding derivation in SU(2) ChPT is very similar and we will therefore

just quote the result in this case.

In order to calculate the form factor in SU(3) ChPT we identify the

external vector fields in the chiral Lagrangian with the photon field Aμ

lμ = rμ = −eQAμ, Q =

⎛
⎜⎝

2/3 0 0

0 −1/3 0

0 0 −1/3

⎞
⎟⎠ . (4.25)

With these definitions, the covariant derivative and the field strength ten-

sors of equations (4.10) and (4.11) become

DμΣ = ∂μΣ + ieAμ[Q,Σ],

FL
μν = FR

μν = −e(∂μAν − ∂νAμ)Q. (4.26)
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γ

π π

γ

π π

Figure 4.1: Tree level diagrams contributing to the pion electromagnetic form
factor in SU(3) ChPT. A • represents a vertex from L(2)

eff while a ⊗ represents
a vertex from L(4)

eff .

The Feynman rules are then derived by expanding Σ = exp(2iφ/f) in

L = L(2)
eff + L(4)

eff to second order in the Goldstone boson fields φ. We can

then calculate the current operator for the chiral Lagrangian from taking

the derivative

Jμ = − 1

e

∂L
∂Aμ

∣∣∣∣
Aμ=0

, (4.27)

and use this to compute the matrix element of equation (1.42) for the chiral

Lagrangian. This will allow us to calculate the form factor to NLO.

We can see that to O(p4) the L(2)
eff Lagrangian will give both tree-level

and one loop contributions, while the L(4)
eff Lagrangian will only give a tree

level contribution. The contributions to the current operator Jμ at tree

level from the L(2)
eff and L(4)

eff parts of the Lagrangian are given by

J
(2)
2,μ = − i

2
〈Q[φ, ∂μφ]〉, (4.28)

J
(2)
4,μ = −16iL4

f 2
0

〈Q[φ, ∂μφ]〉〈BM〉 − 16iL5

f 2
0

〈BMQ[φ, ∂μφ]〉

−4iL9

f 2
0

〈Q∂ν [∂μφ, ∂νφ]〉. (4.29)

The corresponding Feynman diagrams are shown in figure 4.1.

The contributions from these diagrams to the form factor give

fππtree(q
2) = 1 +

1

f 2
0

[
16(2m2

π − 2m2
K + 3m2

η)L4 + 16m2
ηL5 + 4L9q

2
]
. (4.30)

Here we made use of the relations m2
π = 2m̂B, m2

K = (m̂ + ms)B and

m2
η = 2/3(m̂+ 2ms)B which are correct to this order in ChPT.

There are two types of loop diagrams resulting from the expansion of

L(2)
eff in φ. These are shown in figures 4.2 and 4.3. The tadpole diagram

of figure 4.2 results from the interaction vertex of the photon with four
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γ

π π

π,K

Figure 4.2: One-loop tadpole diagram contributing to the pion electromagnetic
form factor in SU(3) ChPT.
Goldstone bosons coming from the part of the current given by

J
(4)
2,μ =

i

12f 2
0

〈Q (φ2[φ, ∂μφ]− 2φ[φ, ∂μφ]φ+ [φ, ∂μφ]φ2
)〉. (4.31)

This diagram has two contributions, one from a pion loop and one from a

kaon loop. The resultant contribution to the form factor is given by [72]

fππtad(q
2) = −10I(m2

π, μ
2)

3f 2
0

− 5I(m2
K , μ

2)

3f 2
0

, (4.32)

where the loop integral I(m2, μ2) is given by

I(m2, μ2) = μ(4−d)
∫

ddk

(2π)d
i

k2 −m2 + iε

=
m2

16π2

(
R+ ln

m2

μ2

)
+O(4− d), (4.33)

where μ is the renormalization scale and dimensional regularization is used

with the MS scheme for removal of the pole.

The two-vertex loop diagram of figure 4.3 results from the contraction

of the current operator of equation (4.28) with the interaction vertex of

four Goldstone bosons given by

L4
2 =

1

12f 2
0

〈[φ, ∂μφ]φ∂μφ) +BTr(φ4M)〉. (4.34)

The contribution from this diagram to the form factor is [72]

fππver(q
2) =

2I(m2
π, μ

2)

f 2
0

+
I(m2

K , μ
2)

f 2
0

+
1

f 2
0

(
4Hππ(q

2) + 2HKK(q2)− Rq2

32π2

)
,

(4.35)
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π π

π,K

γ

Figure 4.3: One-loop two vertex diagram contributing to the pion form factor
in SU(3) ChPT.

where

HPP (q2) = − q2

192π2

[
ln
m2
P

μ2
+

1

3
+

(
1− 4

m2
P

q2

)
H

(
q2

m2
P

)]
, (4.36)

and the function H(x) is given by

H(x) =

∫ 1

0

ln[1 + x(y2 − y)]dy

= −2 +

√
x− 4

x

[
ln

(√
(x− 4)/x+ 1√
(x− 4)/x− 1

)]
, (4.37)

for x < 0 (we consider only a space-like form factor for which x = q2/m2
P

is negative) and (x− 4)/x > 1 so that the logarithm is real.

The result for the renormalized matrix element for the pion is then ob-

tained by adding up all these contributions and multiplying by the wave-

function renormalization constant Zπ. It can be shown that Zπ is given

by [72]

Zπ = 1− 1

f 2
0

[
16(2m2

π − 2m2
K + 3m2

η)L4 + 16m2
ηL5

]
+

4I(m2
π, μ

2)

3f 2
0

+
2I(m2

K , μ
2)

3f 2
0

+O(p4). (4.38)

Thus the renormalized expression for the pion electromagnetic form factor

to NLO is given by [67, 68]

fππNLO(q2) = 1 +
1

f 2
0

(
4Lr9q

2 + 4Hππ(q
2) + 2HKK(q2)

)
. (4.39)

The derivation of the NLO form factor expression in SU(2) ChPT is
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very similar to this derivation with the difference that now only pions are

involved in the Feynman diagram loops. The resulting expression is [66]

fππSU(2),NLO(q2) = 1 +
1

f 2

[−2lr6 q
2 + 4Hππ(q

2)
]
, (4.40)

where f is the pion decay constant in the SU(2) chiral limit.

We can now calculate the SU(2) and SU(3) NLO expressions for the

charge radius of the pion using equation (1.43) to get

〈r2
π〉SU(2),NLO = −12lr6

f 2
− 1

8π2f 2

(
ln
m2
π

μ2
+ 1
)
, (4.41)

〈r2
π〉SU(3),NLO =

24Lr9
f 2

0

− 1

8π2f 2
0

(
ln
m2
π

μ2
+ 1
)
− 1

16π2f 2
0

(
ln
m2
K

μ2
+ 1
)
.

(4.42)

Comparing the expressions for the charge radius gives the relation between

the SU(2) and SU(3) NLO LEC’s [67]:

lr6(μ) = −2Lr9(μ) +
1

192π2

(
ln
m̄2
K

μ2
+ 1
)
, (4.43)

where m̄2
K is the kaon mass in the chiral limit for the light quarks. Using the

ρ mass for the renormalization scale, μ = mρ, the second term on the right

hand side of this relation is very small compared to the expected (power-

counting) size of the LECs, so that lr6(mρ) ≈ −2Lr9(mρ). A word of caution

should be added however. In deriving equation (4.43) from equations (4.41)

and (4.42) we have set f0 = f which is correct at this order. In ref. [73] it

was found that f/f0 � 1.23 and so we may expect significant corrections

to (4.43).

4.3 Kl3 form factor

The form factors fKπ+ (q2) and fKπ− (q2) defined in equation (1.38) have been

calculated to one and two-loop order in SU(3) ChPT in [68] and [74] respec-

tively and the reader is referred to these papers for detailed derivations.

The behaviour of the form factors at q2 = 0 and q2
max = (mK −mπ)

2 has

also been studied using SU(2) ChPT in [75]. For the calculation of |Vus|
we are particularly interested in the value of fKπ+ (q2) at q2 = 0. In this

section I give a brief outline of the derivation of fKπ+ (0) to one-loop order
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in SU(3) and SU(2) ChPT.

4.3.1 Derivation in SU(3) ChPT

For the case of Kl3 decays the external field is the W boson which we

introduce by setting lμ and rμ to

lμ = − gw√
2
(W+

μ T +W−
μ T

†), rμ = 0, (4.44)

where gw is the weak coupling constant, related to the Fermi constant GF

by GF/
√

2 = g2
w/8m

2
W and T is the matrix

T =

⎛
⎜⎝

0 Vud Vus

0 0 0

0 0 0

⎞
⎟⎠ (4.45)

The calculation then proceeds in an analogous fashion to the pion form

factor calculation. We expand in φ to derive the Feynman rules, calculate

Jμ from

Jμ =
∂L
∂lμ

∣∣∣∣
lμ=0

, (4.46)

and use it to calculate the matrix element by contracting with the external

K and π fields. The Feynman diagrams to one-loop order that result are

given in figure 4.4. Adding up the contributions from these diagrams,

together with wavefunction renormalization results in the following NLO

expression for the fKπ+ (q2) form factor [67, 68]

fKπ+ (q2) = 1 +
3

2
HKπ(q

2) +
3

2
HKη(q

2) + 4
Lr9
f 2

0

q2, (4.47)

where

HPQ(t) =
t

f 2
0

[
1

6
(t− 2ΣPQ)J̄(t) +

Δ2
PQ

6t2
(
J̄(t)− 4tJ̄ ′(0)

)− 1

3
k +

1

144π2

]
.

(4.48)

The constants ΣPQ, ΔPQ and k are given by:

ΣPQ = m2
P +m2

Q, ΔPQ = m2
P −m2

Q

k =
1

32π2

m2
P ln(m2

P/μ
2)−m2

Q ln(m2
Q/μ

2)

m2
P −m2

Q

, (4.49)

53



W

K π

W

K π

W

K π

K π

W

Figure 4.4: Feynman diagrams contributing to the Kl3 form factor in SU(3)
ChPT up to one-loop order.

and the function J̄(t) is given by

J̄(t) = − 1

16π2

∫ 1

0

ln

[
m2
P − ty(1− y)− (m2

P −m2
Q)y

m2
P − (m2

P −m2
Q)y

]
dy (4.50)

=
1

32π2

[
2 +

ΔPQ

t
ln
m2
Q

m2
P

− ΣPQ

ΔPQ
ln
m2
Q

m2
P

− ν

t
ln

(t+ ν)2 −Δ2
PQ

(t− ν)2 −Δ2
PQ

]
,

(4.51)

where

ν2 = [t− (mP +mQ)2][t− (mP −mQ)2]. (4.52)

From the integral representation in equation (4.50) we can show that

the derivative of J̄(t) at t = 0 is

J̄ ′(0) =
1

32π2

[
Σ2
PQ

Δ2
PQ

+ 2
m2
Pm

2
Q

Δ3
PQ

ln
m2
Q

m2
P

]
. (4.53)

It is easy to verify that if we let mQ = mP then J̄(t) reduces to H(x) of

equation (4.37) for x = t/m2
P and HPQ(q2) becomes HPP (q2) of equation

(4.36) as we would expect.
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Using equation (4.50) it is easy to show that

lim
t→0
{J̄(t)} = 0; lim

t→0
{tJ̄(t)} = 0; (4.54)

lim
t→0

{
1

t
J̄(t)

}
=

1

16π2

∫ 1

0

y(1− y)
m2
P − (m2

P −m2
Q)y

dy

=
1

32π2

[
m4
P −m4

Q + 2m2
Pm

2
Q ln(m2

Q/m
2
P )

(mP −mQ)3(mP +mQ)3

]
. (4.55)

Using these results we can see that if we set q2 = 0 in (4.47) the form

factor fKπ+ (q2) at NLO reduces to

fKπ+ (0) = 1 + f2, (4.56)

where

f2 =
3

2
HKπ +

3

2
HKη, (4.57)

and

HPQ = − 1

64π2f 2
0

[
m2
P +m2

Q + 2
m2
Pm

2
Q

m2
P −m2

Q

ln
m2
Q

m2
P

]
. (4.58)

We can see that f2 is completely specified in terms of mπ, mK , mη and

f0, and takes the value f2 = −0.023 at the physical values of the meson

masses [26] and using fπ as an approximation for f0. This is a result of the

Ademollo-Gatto Theorem [27], which states that f2 receives no contribution

from local operators appearing in the effective theory.

4.3.2 Derivation in SU(2) ChPT

The Kl3 form factor has conventionally been studied using SU(3) ChPT.

However, following the study of the quark mass dependence of physical

quantities computed in a lattice simulation using Domain Wall Fermions

in [73], it has been suggested that SU(2) ChPT may be more appropriate

for the chiral extrapolations of some quantities. This is mainly due to large

one-loop effects in SU(3) ChPT found for the leptonic decay constant of

pions with masses in the range in which the simulations were performed.

SU(2) ChPT with kaons was introduced by Roessl in [76] for the study

of pion-kaon scattering and further developed by the RBC and UKQCD

collaborations in [73] for the study of the dependence on the pion mass

of the mass of the kaon mK , the leptonic decay constant fK and the BK-

parameter describing the non-perturbative QCD effects in K0−K̄0 mixing.
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It was then applied to Kl3 decays in [75] and has recently been generalized

by Bijnens for K → ππ decays in [77]. Here we will briefly outline the

derivation of fKπ+ (0) in SU(2) ChPT as given in [75].

Introducing kaons in SU(2) chiral perturbation theory

In order to calculate the Kl3 form factor in SU(2) ChPT we must add the

kaon field as an extra ‘heavy meson field’ as it is not a pseudo-Goldstone

boson in SU(2) chiral perturbation theory. We parametrize the kaon in

terms of the physical particle fields as

K =

(
K+

K0

)
. (4.59)

Since kaons have isospin 1/2, the action of the chiral group G on the

kaon fields K is defined as [76]

K → hK. (4.60)

where h ∈ H = SU(2)V is the compensator field defined in equation (4.1).

We then systematically construct all independent terms involving the fields

Σ, χ and K that are invariant under local chiral transformations. For the

pion fields the lowest order Lagrangian L(2)
ππ is just given by equation (4.12).

For the interaction of kaons with soft pions the lowest order Lagrangian is

given by [76]

L(1)
πK = DμK

†DμK − m̄2
KK

†K, (4.61)

where the kaon covariant derivative is defined by

DμK = ∂μK + ΓμK → hDμK (4.62)

with Γμ =
1

2

{
ξ†(∂μ − irμ)ξ + ξ(∂μ − ilμ)ξ†

}
. (4.63)

As the theory stands, however, we are not yet able to calculate the Kl3 form

factor. This is because we cannot use the external source fields lμ and rμ

in the same way we did for the SU(3) case to account for the strangeness-

changing left handed weak current

JLμ = q̄LγμsL = q̄γμ
1

2
(1− γ5)s where q = u or d (4.64)

in the underlying QCD theory. To couple strangeness-changing axial cur-
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rents to external sources in the ChPT SU(2) Lagrangian, we need to match

the left handed current of equation (4.64) to a left handed current in the

effective theory with the same chiral transformation properties. We can do

this by making q a two component vector with components u and d and

introducing a two component constant spurion vector t which projects out

u and d as required. The current (4.64) is then invariant under SU(2)L

transformations if t transforms as t → gLt. The current in the effective

theory is now constructed from a linear combination of operators that are

linear in t and invariant under SU(2)L. At lowest order the left handed

current in the effective theory is then given by [73, 75]

JμL = −LA1(DμK)†ξ†t+ iLA2K
†Aμξ†t, (4.65)

where LA1 and LA2 are low energy constants, Aμ is the pion axial vector

field defined by

Aμ =
i

2
(ξ†∂μξ − ξ∂μξ†)→ hAμh

†, (4.66)

and we have now set the external source fields lμ and rμ to zero.

We match the right handed current in the same way by taking the

transformation on t to be t→ gRt and demanding invariance under SU(2)R.

This gives

JμR = LA1(DμK)†ξt+ iLA2K
†Aμξt. (4.67)

The vector Jμ and axial vector J5
μ currents can now easily be determined

Jμ = JRμ + JLμ = LA1(DμK)†(ξ − ξ†)t+ iLA2K
†Aμ(ξ + ξ†)t, (4.68)

J5
μ = JRμ − JLμ = LA1(DμK)†(ξ + ξ†)t+ iLA2K

†Aμ(ξ − ξ†)t. (4.69)

Kl3 form factor at q2 = 0

When considering theKl3 form factor at q2 = 0 in SU(2) chiral perturbation

theory a problem arises. Consider the momentum pπ of an external pion.

Then 2pπ.pK = m2
K + m2

π ≈ m2
K , so that the energy of the pion in the

rest frame of the kaon Eπ ≈ m2
K/2 is not small for m2

K � m2
π. Since

SU(2) ChPT is an expansion in powers of masses and momenta of the

pions, the fact that the external pion in K → π decays is hard, implies

that we cannot neglect operators with an arbitrary number of derivatives

on external pion fields, thus complicating the power counting. However, it

has been shown in [75] that an expansion in small masses and momenta is
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still possible due to the fact that chiral logarithms are caused by internal

soft pion propagators, i.e. the momenta of internal pions is of O(mπ). By

integrating by parts, they show in [75], that operators with an arbitrary

number of covariant derivatives can be related to leading order operators,

up to corrections of O(m2
π), by replacing the low energy constants LA1 and

LA2 with unknown coefficients L̃A1 and L̃A2 which depend on ms but not

on the light quark masses. In this way they are able to calculate the chiral

logarithms, i.e. the corrections of O(m2
π ln(m2

π)).

To leading order at q2 = 0 the K → π matrix element is thus given by

〈π(pπ)| q̄γμs |K(pK)〉 =

= 〈π(pπ)| L̃A1(DμK)†(ξ − ξ†)t+ L̃A2K
†Aμ(ξ + ξ†)t |K(pK)〉 (4.70)

where L̃A1 and L̃A2 are unknown constants that cannot be determined

from LA1 and LA2 alone. Expanding in φ one can now use this expression

and calculate the matrix element to one-loop order. The resulting NLO

expression for the K → π matrix element at q2 = 0 [75] is

〈π(pπ)| q̄γμs |K(pK)〉 = FKp
μ
K

[
1− 3

4
L+ cKm

2
π

]
+Fπp

μ
π

[
1− 3

4
L+ cπm

2
π

]
,

(4.71)

where FK = 2L̃A1/f , Fπ = 2L̃A2/f , cK,π are LECs and the chiral logarithm

L is defined by

L =
m2
π

16π2f 2
ln

(
m2
π

μ2

)
. (4.72)

From this we deduce that the chiral behaviour of the form factors is given

by

f 0(0) = f+(0) = F+

(
1− 3

4
L+ c+m

2
π

)
, (4.73)

f−(0) = F−

(
1− 3

4
L+ c−m2

π

)
, (4.74)

where F± = 1/2(FK ± Fπ) and c± = 1/2(cK ± cπ).

4.4 Partial quenching

Partial quenching has become common practice in many lattice QCD simu-

lations. In partially quenched lattice QCD simulations we introduce differ-
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ent masses for the sea quarks (the quark masses appearing in the fermion

determinant of equation (3.2), used for the gauge configurations genera-

tion) and the valence quarks (the quark masses in the Dirac matrix that is

inverted to generate the propagators as in equation (3.15)). The advantage

of this is that, since the numerical cost of calculating correlators is much

smaller than generating gauge configurations, one can calculate lattice cor-

relators for a range of different valence quark masses at a much lower cost

than if we had to generate gauge configurations with matching sea quark

masses for every valence quark mass.

This unphysical theory corresponding to QCD where the external quarks

have different masses to those appearing in loops also has an effective field

theory description, known as Partially Quenched Chiral Perturbation The-

ory (PQChPT), which is a generalisation of the ChPT discussed in this

chapter.

In PQChPT, ghost quarks with the same quantum numbers as the va-

lence quarks are introduced into the Lagrangian, in order to ensure that

only determinants of the sea quarks appear in the path integral. A the-

ory with NS sea quarks and NV valence quarks will now obey a graded

SU(NS +NV |NV )L × SU(NS + NV |NV )R chiral symmetry [78]. The ξ(x)

field of equation (4.4) is then generalised to include the different mesons

that can now be made up of the 2NV +NS different valence, sea and ghost

quarks. It is given by

ξ = exp

[
iΦ

f

]
(4.75)

where Φ is the generalised (2NV + NS) × (2NV + NS) meson field matrix

which can be written in block form as [78]

Φ ≡
(
φ χ†

χ φ̃

)
(4.76)

where φ is an (NV + NS) × (NV + NS) matrix consisting of the mesons

that can be constructed from the normal valence and sea quarks, φ̃ is an

NV ×NV matrix containing the mesons made up of ghost quarks only and

χ is an (NV +NS)×NV matrix of Goldstone fermions made up of normal

quarks and ghost anti-quarks. All of the operators in PQChPT can then

be constructed in terms of Σ = ξ2 and other auxiliary matrices such as the
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mass matrix

M = diag
(
m(V )
u , m

(V )
d , m(V )

s , m(S)
u , m

(S)
d , m(S)

s , m(V )
u , m

(V )
d , m(V )

s

)
, (4.77)

where the superscript S stands for sea quark and V for valence quark. The

transition from ChPT to PQChPT is then made by replacing φ with Φ and

traces with supertraces in the ChPT Lagrangians [78] of section 4.1, where

the supertrace is similar to a normal trace but a minus sign is introduced

for the sum of the diagonal elements in the ghost quark sector.

By constructing a PQChPT in this way the LEC’s of the partially

quenched Lagrangians share the same numerical values as those in the

unquenched theory [79]. Thus partially quenched simulations can be used

to determine the LEC’s of the unquenched theory.

In this work we have calculated the Kl3 form factors for both un-

quenched and partially quenched QCD where the partial quenching is in

the strange quark mass only.

Becirevic et al. [80] calculated fKπ+ (0) at NLO using a PQChPT La-

grangian, as defined in [78, 81], with three dynamical flavours of quarks

having two sea quark masses m
(S)
s , m

(S)
d and two valence quark masses

m
(V )
s , m

(V )
d in the isospin limit. The expression they derive for f2 using

this PQChPT with Nf = 2+1 dynamical flavours of quarks is given in the

appendix for completeness. We make use of this expression in our analy-

sis of the partially quenched data presented in chapters 6 and 7, setting

m
(V )
d = m

(S)
d as our data is partially quenched in the strange quark only.

We note that this expression reduces to the usual unquenched ChPT result

of equation (4.57) when we set m
(V )
s = m

(S)
s and m

(V )
d = m

(S)
d .

4.5 Finite Volume effects in ChPT

The discussions of ChPT in this chapter have thus far assumed an infi-

nite volume. Lattice simulations are however performed in a finite vol-

ume, which means the momenta will be discrete. As a result we must

sum over all the possible discrete momenta, which will lead to corrections

to the chiral logarithms of the ChPT formulae presented in this chap-

ter. For the unquenched case, it can be shown (see for example [82]) that

for quark fields obeying periodic boundary conditions, to one loop order

the chiral logarithm m2 ln(m2/μ2) receives a finite volume correction of
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∼ L−3/2 exp(−mL). In principle, we should use finite volume ChPT for-

mulae when looking at observables calculated in a finite volume. In practice

however, since the finite volume corrections are exponentially small, if we

make the volume in which the simulations are performed large enough, we

can regard finite volume corrections as negligible when compared to the

statistical precision of the simulations and use the infinite volume ChPT

formulae as a reasonable approximation. In this work we use infinite vol-

ume ChPT formulae in the extrapolations of our lattice data and briefly

discuss the systematic errors involved in doing so.
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Chapter 5

Boundary Conditions in

Lattice QCD

Lattice QCD simulations are performed in a finite volume. One must there-

fore choose boundary conditions (BCs) for the quark fields, which means

that the spatial components of the hadronic momenta will be quantized.

The BCs most commonly used for the quarks fields are periodic BCs in the

spatial directions

ψ(xi + L) = ψ(x), i = 1, 2, 3. (5.1)

This leads to the quantized spatial momenta

pi = ni
2π

L
(5.2)

where ni are integers. The smallest non-zero value of momentum that

one can achieve with periodic BCs is therefore 2π/L. This presents a

limitation on the momentum resolution that can be achieved in the cal-

culation of momentum dependent quantities such as form factors. For

the pion electromagnetic form factor this means that the minimum non-

zero value of the momentum transfer Q2 = −q2 that one can achieve is

Q2
min = 2mπ(

√
m2
π + (2π/L)2−mπ), which for the parameters of our simu-

lation is about 0.15 GeV2. For the Kl3 form factor this means that we can

only calculate the form factor at q2
max = (mK −mπ)

2, which for our sim-

ulations is about 0.06 GeV2, and at negative values of q2 thus introducing

the need for an interpolation to reach the form factor at q2 = 0.

In [83], Bedaque proposed that by applying twisted BCs one can simu-

late hadrons with any desired momentum thus improving the momentum

resolution in the calculation of momentum dependent quantities. It was
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later independently shown in [84] and [85] that one can achieve the same

result by applying only partially twisted BCs, which give valence and sea

quarks different BCs, thus removing the need for generating a new set of

gauge configurations for each value of the twisting angle. A numerical study

of the use of partially twisted BCs for the spectrum of pseudo-scalar and

vector mesons as well as their leptonic decay constants was subsequently

done in [86]. They confirmed the expected momentum shift for mesons with

partially twisted BCs and concluded that using partially twisted BCs does

not increase statistical errors in any appreciable way. The feasibility of ap-

plying partially twisted BCs in the calculation of weak and electromagnetic

form factors was then demonstrated in [61]. In this chapter we will define

both twisted and partially twisted BCs and look at the consequences of

their application. We will then look at the application of partially twisted

BCs in the calculation of hadronic form factors.

5.1 Twisted boundary conditions

Periodic BCs are often chosen in lattice field theories as they ensure that

the fermion fields are single valued thus avoiding boundary terms. This is

however not a necessary condition in order to avoid boundary terms. It is

sufficient to only require that observables be single valued, implying that

the fermion fields only have to obey the following BCs [85]

ψ(xi + L) = Uiψ(xi) (5.3)

where Ui is a symmetry of the action and we are not summing over i. We

can therefore choose Ui ∈ U(Nf )V such that the BCs for the fermion fields

are then given by

ψ(xi + L) = Uiψ(xi) = eiΘ
a
i T

a

ψ(xi) ≡ eiθiψ(xi) (5.4)

where the T a’s are the generators of U(Nf )V . If we now Fourier transform

equation (5.4) we can immediately see that imposing twisted BCs implies

ei(pi− θi
L

)L = 1⇒ pi =
θi
L

+
2πni
L

. (5.5)

The quark momentum is therefore shifted by θi/L when twisted BCs are

imposed.
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Imposing twisted BCs on the quark fields is equivalent to coupling a

constant background vector field Bμ to quark fields satisfying periodic BCs.

We can easily see this if we redefine the quark fields such that,

ψ(x) ≡ V (x)ψ̃(x) where V (x) ≡ exp

(
i
θi
L
xi

)
(5.6)

and let the fields ψ̃(x) satisfy periodic BCs, so that ψ(x) satisfies twisted

BCs. We can show that in terms of these fields the Dirac term in the

(Euclidean) QCD Lagrangian is given by [85]

L =
¯̃
ψ(x)(γμD̃μ +M)ψ̃(x) (5.7)

where

D̃μ = Dμ + iBμ with Bi =
θi
L

for i = 1, 2, 3 and B4 = 0. (5.8)

This is the Lagrangian of QCD with quark fields satisfying periodic BCs

interacting with a constant background vector field which couples to quarks

with charges determined by the phases in the twisted BCs.

In the chiral Lagrangian of equation (4.12) the twisted BCs on the quark

fields imply that the chiral field of equation (4.4) satisfies the BCs

Σ(xi + L) = UiΣ(xi)U
†
i . (5.9)

If we again redefine the fields by

Σ(x) ≡ V (x)Σ̃(x)V †(x) (5.10)

with Σ̃(x) satisfying periodic BCs, we can show that the chiral Lagrangian

becomes [85]

L(2)
eff =

f 2

8
〈D̃μΣ̃D̃

μΣ̃† + Σ̃†χ+ χ†Σ̃〉 (5.11)

where

D̃μΣ̃ ≡ ∂μΣ̃ + i[Bμ, Σ̃] (5.12)

which again is just the standard chiral Lagrangian for fields satisfying peri-

odic BCs coupled to an external constant vector field Bμ. As shown in [85],

this implies that for a charged meson composed of a quark q1 and an an-

tiquark q̄2, satisfying twisted BCs with twist angles �θ1 and �θ2 respectively,
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the corresponding meson momentum is given by

�p =
2π

L
�n−

�θ1 − �θ2
L

. (5.13)

Using the chiral Lagrangian of (5.11), it is shown in [85] that for physical

quantities without final state interactions, such as masses, decay constants

and form factors with only one final state hadron, the flavour symmetry

breaking induced by the twist only affects the finite-volume corrections,

which although do depend on the BCs, remain exponentially small as is

the case for periodic BCs.

5.2 Partially twisted boundary conditions

The practical difficulty in using twisted BCs in lattice simulations with dy-

namical quarks is that it requires the generation of a new set of gauge field

configurations for every choice of twisting angle. In [85] the effects of ap-

plying partially twisted BCs, i.e. imposing twisted boundary conditions for

the valence quarks but periodic BCs for the sea quarks, are investigated.

They find that breaking the valence-sea symmetry by applying different

twists is analogous to the violation of unitarity in partially quenched QCD

and that for many physical quantities the use of partially twisted BCs in-

duces finite volume effects which are exponentially small. The physical

quantities for which this is true include those with at most a single hadron

in the initial and final states. For these processes the finite-volume effects

depend on the twisting angles but remain exponentially small. For such

physical quantities one can therefore use partially twisted BCs, thus elim-

inating the need for new simulations for every choice of the twist angles

making the technique practically feasible.

With partial twisting the dispersion relation for a meson takes the same

form as for full twisting

E =

√
m2 +

(
�pn +

�θ

L

)2

(5.14)

where m is the meson mass, �pn is the Fourier momentum and we have

applied a twist �θ to the valence quark only, leaving the valence antiquark

untwisted, which will be sufficient for the purposes of this work.
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5.3 Pseudo-scalar meson form factors with

partially twisted BCs

A sketch of the quark-flow diagram for the transition in equation (1.37),

with the final-state meson Pf composed of valence quarks (q1q̄3) and the

initial-state meson Pi with valence quarks (q2q̄3) is shown in figure 5.1. For

K�3 decays, each of the three valence quarks has a different flavour, and we

can introduce three independent twisting angles for the three flavours. In

particular we set the twisting angle of the spectator (anti-)quark q3 to zero

so that it satisfies periodic boundary conditions, which will be sufficient

for the purposes of this work, and we give the quark q2 a twist of �θi and

the quark q1 a twist of �θf as shown in figure 5.1. The initial and final

state momenta are therefore given by �pi = �pn,i+ �θi/L and �pf = �pn,f + �θf/L

respectively. The momentum transfer between initial and final state mesons

is then given by

q2 = (pi − pf )2 = (Ei(�pi)−Ef (�pf))2 − (�pi − �pf)2. (5.15)

For the electromagnetic form factor of the pion however, q1 has the

same flavour as q2, and so it would appear that one can not use three

independent twist angles in this case. However it was shown in [61], that

this is in fact still possible. This is shown in [61] by considering the matrix

element 〈π(pf) | jμ | π(pi)〉 in the partially quenched three flavour theory

with m
(V )
u = m

(V )
d = m

(S)
u = m

(S)
d = m

(V )
s and m

(V )
s 	= m

(S)
s (in which the

matrix element is correctly evaluated since the valence strange quark plays

no role in its evaluation), and then exploiting the SU(3) flavour symmetry of

the valence quark sector to show that in this partially quenched theory the

pion’s form factor is equivalent to the form factor of the K → π transition

(note that the degeneracy of the three flavours of valence quarks in this

partially quenched theory implies that there is only a single form factor for

the K → π transition). We can therefore use the same strategy as for the

K → π transition of giving q2 a twist of �θi, q1 a twist of �θf and q3 a twist

of zero. From here onwards we will refer to the twists as being applied to

the mesons as we are only applying twists to the valence quarks in different

initial and/or final state mesons.

In order to obtain q2 = 0 for the Kl3 form factor we set the Fourier

momenta of the mesons to zero and make the following two choices of the
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q2(�θi) q1(�θf )

q3(�0)

jμ

Pi(pi) Pf(pf)

Figure 5.1: Quark flow diagram for a three-point function with initial and final
states Pi and Pf , respectively. Our strategy for applying the twisting angles in
the three point function is also shown.

twisting angles [61]:

|�θK | = L

√(
m2

K+m2
π

2mπ

)2

−m2
K and �θπ = �0 ,

and |�θπ| = L

√(
m2

K+m2
π

2mK

)2

−m2
π and �θK = �0 .

(5.16)

The form factors fKπ+ (0) and fKπ− (0) are then calculated by solving the

simultaneous linear equations (3.31) using these twist angle choices, which

both independently give q2 = 0.

A number of other twisting angles are also used to allow a computation

of the Kl3 form factors in the range 0 < q2 < q2
max and the pion form

factor in the range 0 < Q2 < Q2
min. The choices of twisting angles used is

discussed in chapter 6.

68



Chapter 6

Lattice results at light-quark

masses corresponding to

mπ = 330 MeV

6.1 Simulation parameters

The computations described in this thesis were performed using a gauge

configuration ensemble jointly generated by the RBC-UKQCD collabora-

tions using the QCDOC computers [87–90] at Edinburgh and Brookhaven

National Laboratory on a lattice volume of (L/a)3×T/a×Ls = 243×64×16.

The ensemble used was generated with Nf = 2 + 1 dynamical flavours

of quarks with an input light quark mass of amu = amd = 0.005 and

strange quark mass of ams = 0.04 using the Iwasaki gauge action de-

scribed in section 2.2.2 [35, 36] with a coupling of β = 2.13, and the do-

main wall fermion action described in section 2.3.3 [43, 44] which is found

to have a residual chiral symmetry breaking given by a residual mass of

amres = 0.00315(2) [52].

In [73] the physical quark masses mud, ms and the lattice spacing a for

this ensemble are determined by comparing the results of SU(2) ChPT fits

for the hadron masses mπ, mK andmΩ, to their physical values. The inverse

lattice spacing is found to be a−1 = 1.73(3) GeV (a = 0.114(2)fm) [52,73].

The simulated strange quark mass turned out to be slightly heavier than

the physical value ams = 0.0343(16) found in [73]. The resulting pion

mass for this ensemble was found to be mπ ≈ 330 MeV. A detailed study

of the light-hadron spectrum and other hadronic quantities using these

configurations can be found in ref. [73].
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set trajs on tsrc =0 Δ tsrc Nmeas

P4 900– 4460 20 0, 16, 32, 48 700
P3 900– 4460 20 0, 16, 32 537
Z2(4) 1000 – 6840 40 0, 54, 20, 14, 56, 26, 44, 34 1176
Z2(4)′ 1000 – 6440 40 0, 20, 56, 44 548
Z2(3) 1000 – 6840 40 0, 54, 20, 14, 56, 26, 44, 34 1176

Table 6.1: Details of measurements for the different data sets of correlation
functions used. The quoted range of trajectories is the one for tsrc = 0 and Δ
is the separation in units of trajectories between subsequent measurements for
each source position tsrc.

The majority of the correlation functions measured on this ensemble

for the form factor calculations presented in this thesis were evaluated on

the UK Research Councils’ HECToR Cray XT4 computer, with the set

completed using a University of Edinburgh BlueGene/L system as well

as QCDOC. The pion form factor results described in this and the next

chapter were published in [4] while the Kl3 form factor results were recently

published in [5].

We distinguish five sets of correlation functions as summarized in table

6.11. Sets P3 and P4 were generated with point sources and sinks. Set

P3 is a subset of set P4. The pion form factor correlation function mea-

surements with point sources were performed on the data set P3 and then

later a fourth point source was added to make the data set P4 on which

we performed the Kl3 form factor correlation function measurements. For

the set P3(P4) measurements were started for three(four) different source

positions on trajectories 900, 905, 910 (and 915), respectively, measuring

on every 20th trajectory in each case and averaging three(four) consecutive

measurements over the sources into one bin in order to reduce autocorrela-

tion effects. For these data sets the initial/final state meson carries Fourier

momentum |�p| = 0, 2π
L

or
√

22π
L

and no twisted boundary conditions are

used.

For data sets Z2(4) and Z2(3) we use a Z(2)×Z(2) [4,59] stochastic wall

source as explained in section 3.2.3 and a point sink with valence strange

quark masses ams = 0.04 and ams = 0.03, respectively. The data set

Z2(4) corresponds to a unitary simulation point, i.e. where the sea and

valence strange quark masses are the same, while set Z2(3) corresponds to

1Data sets P3, Z2(4) and Z2(4)′ are the data sets A, B and C respectively in ref. [4].
Data sets Z2(4) and Z2(3) are referred to as Z4PSs4 and Z4PSs3 respectively in ref. [5].
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a partially quenched parameter choice. For these data sets we started the

measurement chains for the eight source positions specified in table 6.1 on

trajectories 1000, 1005, 1010, . . . , 1035. Data set Z2(4)′ is a subset of Z2(4)

which starts with four source positions on trajectories 1000, 1010, 1020 and

1030, respectively. In each case we measured on every 40th trajectory

and averaged the correlation functions over the chains into bins of eight

measurements for Z2(4) and Z2(3), and four measurements for Z2(4)′ to

reduce autocorrelation effects. The reason for distinguishing the subset

Z2(4)′ originated from the fact that we inadvertently simulated with the

wrong sign for the meson twist angles in the remaining correlation functions

of set Z2(4). This however only affects the data where both initial and

final state mesons are twisted as can be seen from the equation for the

momentum transfer (5.15), and we can therefore use the full set Z2(4)

of correlation functions for calculations where only one of the mesons is

twisted. The set Z2(4)′ has the correct twist angle sign and is used for

calculations where both initial and final states are twisted.

The correlation functions obtained using stochastic sources were com-

puted with zero Fourier momentum and the momenta of the initial and/or

final meson were induced by twisting one of the meson’s valence quarks.

For each measurement we applied the full twist along one of the spatial

directions. In order to reduce correlations we applied twists for the trajec-

tories 1000, 1010, 1020, ... along the x-direction, for the trajectories 1005,

1025, 1045, ... along the y-direction and for the trajectories 1015, 1035,

1055, ... along the z-direction. In the cases in which both the initial and

the final meson carried a twist, �θi and �θf were chosen to be anti-parallel.

Our choices of twisting angles are summarized in tables 6.2 and 6.4. In

order to obtain q2=0 for the Kl3 form factor we use the twisting angles

given by equation (5.16). As input to these formulae we have used the

estimates for the central values of the kaon masses amK = 0.2990 (Z2(3))

and amK = 0.3328 (Z2(4)) and for the pion mass amπ = 0.1907 (for

both datasets). These values were determined from a preliminary study of

the gauge field ensemble considered here (After a detailed analysis by the

RBC/UKQCD collaboration on their data set of choice, called the FPQ

data set in [73], the pion mass was quoted as 0.1915(8).).

The momenta of the mesons are given by �pK = �θK/L and �pπ = �θπ/L.

In addition to the values of |θπ| and |θK | in equation (5.16), propagators

were generated for other values of the twisting angles. In particular, for
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Figure 6.1: Examples for the quality of the plateaus for the ratio R
(0)
1,ππ with

just one of the pions having a twist (left) and with both pions twisted (right).

the kinematical situation where the kaon is at rest and the pion is moving

due to the additional ad hoc twist angle θπ = 1.600 (chosen to give a q2

approximately in the middle of the range 0 < q2 < q2
max for both valence

strange quark masses) we determined the corresponding values for θK which

yield the same q2 also when the pion is at rest. The contractions of these

propagators into two- and three-point functions allow a computation of

fKπ+ (q2) for additional values of the momentum transfer in the range from

about q2 = 0 to q2
max (cf. table 6.4). These choices give us the three pion

twisting angles 2.6823, 2.1285 and 1.6, which we use to sample the region

0 < Q2 < Q2
min for the pion form factor, as summarized in table 6.2.

All statistical errors presented in this and the next chapter were calcu-

lated using the jackknife technique presented in section 3.4.2.

6.2 Results for the pion form factor

We calculated the pion form factor at a range of values of Q2 using the ratio

R
(0)
1,ππ as defined in equation (3.30). This ratio was chosen as it was found

to give the best quality of plateaus. Examples of the plateaus we obtained

using this ratio are given in figure 6.1. We performed both uncorrelated

and correlated (frozen covariance matrix) χ2 fits to our pion form factor

data, and found similar statistical errors for both approaches. For this

reason we opted for uncorrelated χ2 fits and all fits to our pion form factor

data presented in this and the next chapter were performed in this way.

The results of our computation of the form factor of a pion with mπ =

330 MeV for a range of low values of Q2 (obtained from data sets P3,

Z2(4) and Z2(4)′), are presented in table 6.2 and plotted in figure 6.2. The

upper plot of figure 6.2 shows the results for all the Q2 values at which
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set |�pi|L |�pf |L aEπ(�pi) aEπ(�pf ) Q2 (GeV2) fππ(q2)

Z2(4) 0 0 0.1910(4) 0.1910(4) 0 1
Z2(4) 0 1.6 0.1910(4) 0.2023(4) 0.013 0.9804(15)
Z2(4) 0 2.1285 0.1910(4) 0.2106(4) 0.022 0.9660(24)
Z2(4) 0 2.6823 0.1910(4) 0.2213(4) 0.035 0.9477(36)
Z2(4)′ 1.6 1.6 0.2023(6) 0.2023(6) 0.053 0.9189(75)
Z2(4)′ 2.1285 1.6 0.2106(5) 0.2023(6) 0.072 0.8943(88)
Z2(4)′ 2.1285 2.1285 0.2106(5) 0.2106(5) 0.094 0.867(10)
Z2(4)′ 2.6823 1.6 0.2213(5) 0.2023(6) 0.094 0.864(11)
Z2(4)′ 2.6823 2.1285 0.2213(5) 0.2106(5) 0.120 0.838(12)
Z2(4)′ 2.6823 2.6823 0.2213(5) 0.2213(5) 0.150 0.802(15)
P3 0 0 0.1912(7) 0.1912(7) 0 1
P3 2π 0 0.3242(4) 0.1912(7) 0.152 0.809(14)
P3

√
2 2π 0 0.4167(3) 0.1912(7) 0.258 0.711(26)

Table 6.2: Table of accessible values of Q2 = −q2 for the matrix element
〈π(pf )|jμ|π(pi)〉 together with the values of fππ(q2) . For data sets Z2(4) and
Z2(4)′ we also determined the correlation functions with momenta |�pi| = |�θi|/L
and |�pf | = |�θf |/L interchanged.

we calculated the form factor using all three data sets. The lower plot is

a zoom into the very low Q2 region. The vertical dashed line represents

the position of the lowest value of Q2 which can be reached with periodic

boundary conditions (Q2
min � 0.15 GeV2). From the figure it is satisfying to

observe that at Q2
min the results obtained with partially twisted boundary

conditions join smoothly onto the data obtained by performing a Fourier

sum with momentum of magnitude 2π/L.

Our results from datasets Z2(4) and Z2(4)′ are well represented in the

range 0 ≤ Q2 ≤ Q2
min by the phenomenological pole formula

fππpole(q
2) =

1

1− q2/M2
pole

. (6.1)

From the slope of the form factor at q2 = 0 we obtain the pion’s electro-

magnetic charge radius as defined by equation (1.43). The best fit, which

is shown as the blue curve in figure 6.2, gives 〈r2
π〉330MeV = 6/M2

pole =

0.382(37)(12)(15) fm2 = 0.382(42) fm2, where the first error is statistical

and the second is due to the uncertainty in the lattice spacing. The

third error is to account for our lack of a continuum extrapolation (as

we will discuss in chapter 7). This result corresponds to a pole mass of

(aMpole)
2 = 0.202(20).

We compare our results to those of the UKQCD/QCDSF collabora-

tion [1] who determined the pion form factor for a number of unphysical
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Figure 6.2: Results for the form factor fππ(q2) for a pion with mπ = 330MeV.
The upper plot shows the results for all the Q2 values at which we calculated
the form factor using all three data sets. The lower plot is a zoom into the
very low Q2 region. The blue solid curve is a pole fit to the data, while the red
dashed curve shows the prediction for a 330MeV pion using results from the
QCDSF/UKQCD collaboration [1].
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pion masses mπ ≥ 400 MeV using periodic boundary conditions. For each

pion mass, they fit their data to the pole form in (6.1) and hence determine

the dependence of the pole mass Mpole on the pion mass. Their results are

well described by the ansatz,

M2(m2
π) = c0 + c1m

2
π , (6.2)

for which they determined c0 = 0.517(23) GeV2 and c1 = 0.647(30). Thus,

for a pion of mass 330 MeV they predict 〈r2
π〉UKQCD/QCDSF

330MeV = 0.396(15) fm2.

This result, which we also illustrate in figure 6.2, is compatible with ours.

Although the pole formula (6.1) is a good representation of our data

for the full range Q2 ≤ Q2
min, we find that the points at the smallest values

of Q2 tend to give a smaller central value for the charge radius. We will

take as our best estimates of 〈r2
π〉330 MeV the value obtained by applying

SU(2) ChPT to the points at small Q2 as explained in section 7.1 (we find

〈r2
π〉330MeV = 0.354(31) fm2, see table 7.1 ). If we limit the fits to the points

at small Q2, the slope at Q2 = 0 (and hence the charge radius) is not

sensitive to the precise form of the fitting function. To illustrate this we

present in table 6.3 the results obtained by fitting our results for the form

factor at the lowest three values of Q2 to the pole form (6.1) as well as to

linear, quadratic and cubic polynomials. In the final row of table 6.3 we

present the value of 〈r2
π〉330MeV obtained by applying the same fits to all 9

points up to Q2
min.

set max Q2 linear quadratic cubic pole
Z2(4) 0.013 GeV2 0.354(28)(11) − − 0.361(29)(12)
Z2(4) 0.022 GeV2 0.354(26)(11) 0.353(35)(11) − 0.364(27)(12)
Z2(4) 0.035 GeV2 0.353(25)(11) 0.355(32)(11) 0.351(41)(11) 0.366(27)(12)
Z2(4)′ 0.150 GeV2 0.332(28)(11) 0.387(44)(13) 0.406(56)(13) 0.382(37)(12)

Table 6.3: Results for 〈r2
π〉330 MeV obtained by fitting to linear, quadratic or

cubic functions of Q2 and by using the pole ansatz (6.1). In the first row we
use only the single point at the lowest value of Q2 (Q2 = 0.013GeV2), in the
second we use the two points at the lowest values of Q2 (Q2 = 0.013GeV2 and
Q2 = 0.022GeV2) and in the third row we use the points at the lowest three
values of Q2 (Q2 = 0.013GeV2, Q2 = 0.022GeV2 and Q2 = 0.035GeV2). The
final row corresponds to fits to all 9 points with Q2 ≤ Q2

min. The two quoted
errors are statistical and that due to the uncertainty in the lattice spacing.
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6.3 Results for the Kl3 form factor

In our analysis of the data generated for the calculation of the Kl3 form fac-

tor we computed covariance matrices for the correlation functions and the

ratios Rμ
α,Kπ(α = 1, 3), for use in the fits (frozen covariance matrix). Un-

freezing the covariance matrix, i.e. using the covariance matrix computed

individually for each jackknife sample destabilized the fits. We interpret

this as a reflection of the fact that we have an insufficient set of measure-

ments and that the fluctuations of the covariance matrix are therefore large.

We found that the results we get with the frozen covariance matrix agree

within (similar) errors with the results we would get when neglecting any

correlations.

We found that for the spatial component of the vector current in the

three-point function, i.e. for R
(i)
α,Kπ, the plateaus for α = 1, 3 are of com-

parable quality (cf. figure 6.3) - in the analysis we opted to use R
(i)
3,Kπ. For

the time-component however in the cases where only one of the initial and

final states carries a twist the quality of the ratios varies. Here we decided

to use R
(0)
1,Kπ for the case where only the pion carries the twist and R

(0)
3,Kπ

in all other cases (cf. figure 6.3).

Table 6.4 summarises the kinematical points which we analysed. The

kaon masses for the full statistics of Z2(3) and Z2(4) turn out to be amK =

0.2987(4) and amK = 0.3327(4), respectively and the pion mass in both

cases is amπ = 0.1903(4)2. From table 6.4 we see that there are degeneracies

in q2, i.e. we have data for the same q2 but from three-point functions

with different kinematical parameters for the kaon and pion. With these

degeneracies in q2 we can then just solve the simultaneous equations (cf.

equation (3.31)):

R
(μ)
α,Kπ(�pK ,�0) = f+

Kπ(q
2)pK,μ + f−

Kπ(q
2)pK,μ,

R
(μ)
α,Kπ(�0, �pπ) = f+

Kπ(q
2)pπ,μ − f−

Kπ(q
2)pπ,μ , (6.3)

for each of the μ components to calculate f+
Kπ(q

2) and f−
Kπ(q

2). We find

however that by computing the form factors in this way the errors in the

form factors are much larger than the errors in the ratios R
(μ)
α,Kπ. In our

analysis we opt instead to perform a χ2 minimization to find the values of

the form factors that best fit the overdetermined system of equations of all

2While agreeing within errors, the central values differ slightly from those quoted
in [73] because the number of measurements and the measurement techniques differ.
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Figure 6.3: Examples for the quality of the ratios R
(μ)
α,Kπ(α = 1, 3), once with

either the pion/kaon moving and the kaon/pion at rest.

the μ components together. We find that the errors we obtain for the form

factors in this way are comparable to the errors in the ratios R
(μ)
α,Kπ.

The form factor data generated in this work extends the previous data

calculated from correlation functions in the data set P4 presented in [2]

by a number of new points for fKπ0 (q2) in the range 0 � q2 ≤ q2
max for

two valence strange quark masses ams = 0.04 (unitary) and ams = 0.03

(partially quenched). The results are illustrated in the plot in figure 6.4 by

the red/blue, right/left-pointing arrows, respectively. The plot also shows

the Fourier momentum data points obtained using the point source data

set P4 presented in [2] together with a fit to this data using a pole-ansatz,

fKπ0 (q2)|pole =
fKπ+ (0)|pole

1− q2/M2
, (6.4)

and plots of the results of using the global fit ansatz used in ref. [2], (which

we will discuss in section 7.2.1 and is given by equation (7.4)), with the

two kaon masses from the Z2(4) and Z2(3) data sets.

In the analysis in ref. [2] the results for the form factors at each simu-

lated pion mass are used to determine two estimates for fKπ+ (0) = fKπ0 (0),
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θπ θK q2/GeV2 fKπ
0 (q2) fKπ

+ (q2) fKπ
− (q2)

ams = 0.04

0 4.6810 0.0002(2) 0.9758(44) 0.9758(44) -0.0997(93)2.6823 0 0.0004(3)

2.1285 0 0.0216(2) 0.9898(34) 0.9975(42) -0.081(17)

1.6 0 0.0381(2) 1.0030(20) 1.0213(32) -0.108(11)0 2.7922 0.0382(2)

0 0 0.0607(2) 1.0185(15)

ams = 0.03

2.6823 0 -0.0192(3) 0.9677(49) 0.9613(41) -0.054(14)

0 3.3373 0.0001(5) 0.9867(30) 0.9867(30) -0.0771(77)2.1285 0 0.0001(3)

1.6 0 0.0149(3) 0.9986(21) 1.0066(27) -0.0852(96)0 2.5087 0.0150(4)

0 0 0.0352(4) 1.0124(10)

Table 6.4: Table of twisting angles used in this study, together with the corre-
sponding values of q2 and the results for the Kl3 form factors.

one from an interpolation in q2 with a pole-ansatz and one from an interpo-

lation of f0(q
2) with a 2nd order polynomial (cf. table IV in [2]). The sys-

tematic error due to the phenomenological interpolation is then estimated

by taking the difference between the two results. The new data points for

ams = 0.04 nicely agree with both the pole dominance and polynomial fits

as can be seen in the following comparison:

results for amq = 0.005, ams = 0.04

fKπ+ (0)|pole = 0.9774(35) [2] ,

fKπ+ (0)|polynomial = 0.9749(59) [2] ,

fKπ+ (0)|thiswork = 0.9757(44) .

In [2] the spread fKπ+ (0)|pole − fKπ+ (0)|polynomial ≈ 0.0024 is used as an esti-

mate of the systematic error due to the phenomenological q2-interpolation.

As simulations move closer to the physical pion mass, the value of q2
max =

(mK −mπ)
2 increases. Therefore the interpolation to q2 = 0, which cru-

cially depends on the high precision which one is able to achieve for the

form factor at q2
max, will become increasingly sensitive to the ansatz one

makes. One therefore expects the systematic error due to the interpola-

tion to increase. We emphasise that the approach advocated here entirely
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Figure 6.4: Summary of simulation results of fKπ0 (q2). The black circles and
the (solid line) pole interpolation correspond to the results of [2] while the results
represented by the left- and right pointing arrows, correspond to the results of
this work for ams = 0.04 and ams = 0.03 respectively. The red and blue dashed
curves represent the result from the global fit ansatz of ref. [2] (given by equation
(7.4)), once for m0.03

K and m0.04
K .

removes this uncertainty.

6.4 Comparison of the cost of using point

source and Z(2)-wall source propagators

In this study we have used two different formulations of the source in the

computation of the quark propagators. The correlation functions on data

sets P3 and P4 have been computed from point source propagators while

the correlation functions on data sets Z2(4), Z2(4)′ and Z2(3) have been

data set inversions ZV fππ(–Q2
min)

P3 12888 0.7148(9) 0.809(14)
Z2(4)′ 1096 0.7136(8) 0.802(15)

Table 6.5: Comparison of the computational cost of using point and stochastic
sources for the calculation of ZV and fππ(−Q2

min).
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am nprops nθ nsrc nconfig s-c Ntot fKπ+ (0)

P4 2 × 2 × 1 × 4 × 175 ×12 = 33600 0.9774(35)
Z2(4) 2 × 2 × 2 × 8 × 147 × 1 = 9408 0.9757(44)

Table 6.6: Comparison of the computational cost of using point and stochastic
sources for the calculation of fKπ+ (0).

computed using the noise source technique briefly described in section 3.2.3.

In this section we compare the relative computational cost of each ap-

proach in order to achieve similar statistical errors for standard observables

relevant for the phenomenology of light mesons. We compare the costs for

both approaches in the calculations of ZV , fππ(−Q2
min) and fKπ+ (0). The

comparisons are shown in tables 6.5 and 6.6.

Table 6.5 shows the total number of inversions of the Dirac matrix that

were required to achieve similar statistical errors with both source types for

ZV and fππ(−Q2
min). For point sources 12 spin-colour inversions are nec-

essary per measurement. We used 179 measurements per point source and

used 3 point sources. We calculate two propagators per configuration (one

normal and one sequential source propagator), thus the total number of

inversions using point sources is 179×12×3×2 = 12888. For the stochas-

tic sources we only require a single spin-colour inversion per measurement.

We used 137 measurements per source and used 4 sources, thus we require

137× 4× 2 = 1096 inversions using stochastic sources in order to achieve

similar statistical errors to those using point sources. This indicates that

the same statistical error for ZV and fππ(−Q2
min) can be achieved with only

about 1/12th of the computational cost when using the stochastic source

technique.

We have also tried to study the error for point-source and stochastic

source correlators at fixed cost, i.e. for a given number of inversions. The

cost of the 1176 measurements which we carried out with the stochastic

sources (data set Z2(4)) corresponds to 1176/12 = 98 point source mea-

surements. While we could carry out reliable fits to the correlators on data

set Z2(4) this was not the case for the subset of 98 measurements of data

set P3 and no quantitative comparison seems possible. This observation

shows however that the statistical properties of the correlation functions

determined with stochastic source propagators are better at the same com-

putational cost.
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In table 6.6 we compare the cost of the simulations for the two ap-

proaches to the computation of fKπ+ (0). For data set P4, for each quark

mass am = amq, ams one normal and one sequential source propagator,

one twist (periodic boundary conditions), four positions of the point source

on 175 configurations and 12 spin-colour inversions were necessary. Since

with point sources a Fourier transformation between the source and the

point of the current insertion can be performed almost for free, one can

directly interpolate to q2 = 0 at no additional cost. This is not the case

when using the stochastic source technique as for Z2(4) and Z2(3) since we

need an inversion of the Dirac matrix for each twist angle we use. How-

ever, since we only need a single spin-colour inversion for each choice of

twist angle, as we can see from table 6.6 we can achieve a similar precision

for fKπ+ (0) using stochastic sources, with only 28% of the computational

cost when using point sources. We also note that in general the quality of

plateaus is significantly enhanced when using the stochastic volume source

technique.
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Chapter 7

Chiral extrapolations to

physical light quark masses

7.1 Results of extrapolations for the pion

form factor

ChPT describes the behaviour of the pion form factor as a function of both

the momentum transfer and the quark masses, providing that these are

sufficiently small. In ref. [73], the RBC/UKQCD collaboration use SU(2)

and SU(3) ChPT formulae in fits to lattice data for the pion masses and

decay constants at a range of quark masses. From these fits they determine

a number of LEC’s of ChPT, of which f and f0 the decay constants in

the SU(2) and SU(3) chiral limits respectively, are of relevance to this

work. They find that although both SU(2) and SU(3) ChPT fit the data,

in the SU(3) case the NLO corrections were very large casting doubt on

the convergence of the chiral expansion. For this reason, in ref. [73] the

main results were obtained using SU(2) ChPT and the result for the decay

constant in the chiral limit, af = 0.0665(47), includes both the statistical

and systematic errors. The corresponding result for the decay constant in

the SU(3) limit, af0 = 0.0541(40), on the other hand, includes only the

statistical error.

Since we only have data for the form factor at one pion mass we will use

these values for af and af0 as input into the ChPT formulae of equations

(4.40) and (4.39) respectively and fit our data at fixed quark masses (i.e.

for the pion with mass 330 MeV) as a function of q2 to determine the LECs

lr6 and Lr9. Having obtained the LECs in this way, we then use the ChPT
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Q2
max[ GeV2] 0.013 0.022 0.035

100 lr6(mρ) −0.932(79)(03)(63)(40)−0.933(73)(03)(63)(40)−0.932(71)(03)(63)(40)
〈r2

π〉330 MeV 0.354(28)(12)(00)(14) 0.354(26)(12)(00)(14) 0.354(25)(12)(00)(14)
〈r2

π〉χ 0.418(28)(12)(04)(14) 0.419(26)(12)(04)(14) 0.418(25)(12)(04)(14)

100 Lr
9(mρ) 0.307(26)(03)(49)(13) 0.308(24)(03)(49)(13) 0.308(23)(03)(49)(13)

〈r2
π〉330 MeV 0.354(28)(12)(00)(14) 0.355(26)(12)(00)(14) 0.355(25)(12)(00)(14)
〈r2

π〉χ 0.460(28)(12)(16)(14) 0.460(26)(12)(16)(14) 0.460(25)(12)(16)(14)

Table 7.1: Results from the SU(2) (top three rows) and SU(3) (bottom three
rows) ChPT fits. The charge radii are quoted in fm2. The first error is statistical,
the second is from the uncertainty in the lattice spacing, the third is due to the
uncertainty in af for SU(2) fits and af0 for SU(3) fits (only statistical uncertainty
is known for af0) and the final error is due to the uncertainty from the continuum
extrapolation. The three columns correspond to using the data at the lowest,
the lowest two and the lowest three non-zero values of Q2 respectively, while
Q2

max denotes the largest value of Q2 used in the determination.

formulae to determine the form factor (and hence the charge radius) of a

physical pion (mπ = 139.57 MeV [91]).

The results of the SU(2) and SU(3) chiral extrapolations are summa-

rized in table 7.1. The first column corresponds to the result of fitting

only to the data point at our lowest value of Q2 (Q2 = 0.013 GeV2) to

determine the single LEC (lr6(mρ) or Lr9(mρ)) and the charge radius. In

the second column we use the data points at the lowest two values of Q2

(Q2 = 0.013 GeV2 and 0.022 GeV2) and in the final column we fit the data

for the lowest three values of Q2. The results in the three columns do not

show any dependence on the chosen fit range at these small values of Q2 .

Based on the experience of ref. [73] and because we only know the

statistical error for af0, we take for our best estimate the result from the

fit to the SU(2)L × SU(2)R expression at NLO including the three data

points at Q2 = 0.013, 0.022 and 0.035 GeV2,

lr6(mρ) = −0.0093(10), 〈r2
π〉330 MeV = 0.354(31), 〈r2

π〉χ = 0.418(31) .

(7.1)

Comparison of our values for lr6(mρ) and Lr9(mρ) in table 7.1 with the

SU(2)–SU(3) conversion formula in equation (4.43) reveals deviations up

to around 50%. By this we mean that the LECs obtained directly from the

fits differ from the values extracted using the conversion formula with the

other LEC as input. Large SU(3) NLO corrections were seen in the analysis

in [73], and indeed the discrepancy can be reduced very significantly by
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collaboration technique 〈r2
π〉χ[ fm2]

PDG [22] 0.452(11)
QCDSF/UKQCD [1] Nf = 2 Clover 0.441(19)
JLQCD [92] Nf = 2 Clover 0.396(10)
JLQCD [93] Nf = 2 Overlap 0.409(44)
RBC/UKQCD this work Nf = 2 + 1 Domain Wall 0.418(31)
ETMC [31] Nf = 2 Wilson 0.456(38)

Table 7.2: Comparison of our result for the charge radius of a physical pion
to the experimental value and computations by other collaborations (excluding
quenched lattice results).

using equations (4.41) and (4.42) without setting f = f0.

In table 7.2 and figure 7.1 we compare our result for the charge radius

to the one determined from experiment and to other recent computations.

Note that the previous lattice results were obtained with 2 flavours of sea

quarks (Nf = 2) and using periodic boundary conditions so that the val-

ues of Q2 are much larger than in this work. The value obtained by the

ETMC collaboration published in [31] after this work was published also

uses twisted boundary conditions (with Nf = 2). The minimum value of

Q2 for which they calculate the form factor is however Q2 ≈ 0.05 GeV2. We

emphasize that in our study we have calculated the form factor at three

values of Q2 lower than this, and our calculation of the charge radius is

based on the NLO SU(2) ChPT fit to these three small values of Q2 for

which we are confident in the convergence of the SU(2) ChPT formula.

0.35 0.4 0.45 0.5

PDG
QCDSF/UKQCD

JLQCD (Clover)

JLQCD (Overlap)

this work

ETMC

〈r2
π〉χ[ fm2]

Figure 7.1: Comparison of our result for the charge radius of a physical pion
to the experimental value and computations by other collaborations (excluding
quenched lattice results).

In figure 7.2 we plot our lattice data for the 330 MeV pion and the form
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Figure 7.2: Comparison of experimental results (magenta diamonds) for the
form factor fππ(q2), lattice results at mπ = 330MeV (grey triangles and dash-
dotted grey line) and the extrapolation of the lattice results to the physical point
(blue solid line) using NLO SU(2) chiral perturbation theory. In addition we also
represent the PDG world average for the charge radius using the black dashed
line.

factor of a physical pion obtained from this data using SU(2)ChPT. The

experimental data from ref. [94] is also plotted together with the ChPT

formula with the PDG world average for the charge radius (see also table

7.2).

7.1.1 Discussion of systematic errors

Our simulation was performed at a single value of the lattice spacing and we

cannot therefore extrapolate our results to the continuum limit. However,

our action has O(a2) discretization errors and we follow [73] by assigning a

systematic uncertainty of 4% to measured quantities, representing an esti-

mate of (aΛQCD)2 for our lattice spacing. Thus we assign a 4% error from

this source to our values for 1− fππ(q2). This relative error is propagated

to our results for the LECs and 〈r2
π〉, where it appears as the last error

quoted in table 7.1.
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The ChPT formulae used here are obtained in infinite volume. Jiang

and Tiburzi have used partially quenched, partially twisted SU(2) chiral

perturbation theory to evaluate the finite-volume effects in the case where

only one of the valence quarks is twisted [95]. This is the case for our three

points at the lowest values of Q2 (Q2 = 0.013 GeV2, Q2 = 0.022 GeV2, and

Q2 = 0.035 GeV2), which are the points which we use to determine the

charge radius and the LECs lr6 and Lr9 . From figures 7 and 8 of [95] we see

that for the pion mass (mπ = 330 MeV) and volume, (2.74 fm)3, used in

our simulation, the finite volume effects in 〈r2
π〉 and in 1− fππ(q2) are less

than 1%. Since the remaining errors quoted for these quantities for a pion

with mπ = 330 MeV are 7–8%, we feel confident in neglecting the finite

volume effects in our analysis.

We end this section with a discussion of another source of uncertainty

which the use of chiral perturbation theory can help to estimate. The

mass of the (sea) strange quark (ms) in the simulation is different from the

physical one (ams = 0.04 in the simulation compared to the physical value

0.0343(16) found in ref. [73]). In SU(3) ChPT we use the mass of the kaon

as found from our simulation and hence obtain the value of the LEC Lr9
without the need for further corrections. The LEC lr6 of SU(2) ChPT on

the other hand depends on the mass of the strange quark and, since this

is our preferred approach, we need to understand the amount by which lr6
could be shifted due to the different value of ms. Using equation (4.43)

and the value of the mass from [73] to estimate m̄K , we find that the shift

in lr6(mρ) is about 0.9% and is hence negligible compared even to the 9%

statistical error (11% total error) that we find for lr6(mρ) (this is also the

case if we use equations (4.41) and (4.42) without setting f = f0, when the

relative error grows to 1.3%). We therefore neglect this uncertainty.

We note however that since carrying out the analyses presented in this

work the RBC-UKQCD collaboration has adopted the reweighting tech-

nique of correcting for the difference in the simulated sea strange quark

mass to the physical one [96]. The reweighting technique [97,98] allows us

to make small post-simulation changes to the sea quark masses. It involves

measuring an observable on a gauge configuration ensemble generated with

sea strange quark mass m
(sim)
s with a reweighting factor w multiplied, and

then relating it to the observable at the target sea strange quark mass ms

via

〈O〉ms =
〈Ow〉

m
(sim)
s

〈w〉
m

(sim)
s

. (7.2)
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The reweighting factor w(U) for each configuration U is just the ratio of

the determinants of the Dirac matrices D(U,ms) and D(U,m
(sim)
s ) with the

two strange quark masses. This factor is then stochastically evaluated on

each configuration using a complex random Gaussian vector.

7.2 Results of extrapolations for theKl3 form

factor

7.2.1 Extrapolation models

We do not really know how light the quarks must be for the chiral expansion

at a fixed order to represent the mass dependence of physical quantities to

a given level of precision. In principle, lattice computations at very light

quark masses, could answer this question. Our present calculations how-

ever, involve masses in a regime where NNLO terms of the SU(3) expansion

are non-negligible as was suggested by the studies in [73], and yet we have

insufficient data to determine these terms and all the corresponding LECs.

We therefore follow the approach in [2] and model higher order contribu-

tions using the ansatz

fKπ+ (0) = 1 + f2(f0, m
2
π, m

2
K) + (m2

K −m2
π)

2(A0 + A1(m
2
K +m2

π)) , (7.3)

where we use the Nf = 2 + 1 expression for f2, partially quenched in the

strange quark, as determined in [80] and given in the appendix. The form

of this ansatz is motivated by the fact that we know from the Ademollo-

Gatto theorem [27] that to leading order Δf ∝ (ms − mu,d)
2, thus we

expect equation (7.3), which incorporates the correct SU(3)flavour limit, to

be a good phenomenological ansatz for the mass dependence of fKπ+ (0).

In order to gain maximum information from limited data, we incor-

porate equation (7.3) into a global fit ansatz based on pole dominance

(equation (6.4) with a quark mass dependent term included) to simulta-

neously fit for the q2 and quark mass dependencies. Our global fit ansatz

is [2]

fKπ0 (q2) =
1 + f2 + (m2

K −m2
π)

2 (A0 + A1(m
2
K +m2

π))

1− q2/ (M0 +M1(m2
K +m2

π))
2 . (7.4)

Since the kaon mass appears explicitly, after fitting (7.4) to our lattice data,

any values for mπ and mK can be inserted into equation (7.4) to obtain a
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value for fKπ0 (q2). Hence, by inserting the physical values for mπ and mK ,

we automatically correct for the difference in the sea strange quark mass

from its physical value.

In view of the slow convergence of SU(3) chiral perturbation theory

observed for some quantities (cf. e.g. [73]) it seems useful to compare

the present extrapolation strategy to one incorporating the SU(2) ChPT

formula of equation (4.73) derived in [75]. Similarly to the case of SU(3)

chiral perturbation theory we use the ansatz,

fKπ0 (q2) =
F+(1− 3

4
L+ c2m

2
π + c4m

4
π)

1− q2/
(
M̃0 + M̃1m2

π

)2 , (7.5)

where the chiral logarithm L is as defined in equation (4.72) and in com-

parison to the original work we have added an additional term proportional

to m4
π. Note that the parameters in this fit ansatz depend on the value of

the strange quark mass.

7.2.2 Results

Combining the data sets P4, Z2(3) and Z2(4) and carrying out the global

fit (7.4) we find that the data is well described with

A0 = −0.34(9)GeV−4 , A1 = 0.28(12)GeV−6 ,

M0 = 0.94(10)GeV , M1 = 0.54(18)GeV−1 .
(7.6)

Inserting the unitary and partially quenched kaon mass which we simulated

here together with these parameters into the phenomenological ansatz (7.4)

we can predict the form factor that is to be expected for ams = 0.03

and ams = 0.04 with amq = 0.005 as illustrated in terms of the blue

(dot-dashed) and red (dashed) curve in figure 6.4. Both curves are nicely

compatible with the new blue and red data points, thus confirming that

the ansatz parameterizes the dependence of the form factor on a partially

quenched strange quark well.

We can now update the value of fKπ+ (0) that was calculated in ref. [2]

(which uses the physical pion decay constant fπ = 131 MeV as an approx-

imation for f0) by inserting the physical pion and kaon masses into (7.4).

We find fKπ+ (0) = 0.9644(33) → fKπ+ (0) = 0.9630(34) (statistical errors

only) at the physical point.

In figure 7.3 we plot the result of the global fit ansatz (solid black line)
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Nf = 2 + 1 (243) [2]
Z2,ms = 0.04
Z2,ms = 0.03
1 + f2

m2
π[GeV2]

f
K

π
0

(0
)

Figure 7.3: Result of global fit based on SU(3) chiral perturbation theory using
f2(115MeV,mK ,mπ). The vertical dashed line is the physical pion mass.

at q2 = 0 as a function of m2
π with mK fixed at its physical value1. We also

overlay in figure 7.3 the results for fKπ+ (0) calculated here on the data sets

Z2(4) and Z2(3) using twisted boundary conditions as well as the results

presented in table IV of ref. [2] obtained with pole dominance interpolations

to q2 = 0 of Fourier momentum data points on ensembles with Nf = 2 + 1

dynamical flavours and sea light quark masses amu,d = 0.03, 0.02, 0.01 and

0.005 and the same sea strange quark mass and lattice volume used here2.

The chiral extrapolation of the lattice data is well constrained by the

natural hinge-point fKπ+ (0)|mK=mπ = 1. As can be seen in figure 7.3, the

data as well as the global SU(3) fit ansatz (7.4) nicely approach this point

for mπ → mK . In contrast, in SU(2) chiral perturbation theory one ex-

pands the form factor around vanishing pion mass at a fixed strange quark

mass [75] (in fact, all strange quark mass dependence resides in the low en-

ergy constants). The limit fKπ+ (0)|ms=mq = 1 is not naturally implemented

1Note that in here we use f0 = 115 MeV for the reasons that will be explained in
section 7.2.3.

2Note however that all the points in this figure have been shifted to the physical
sea strange quark mass. Since this is lighter than the simulated sea strange quark, the
SU(3) breaking effects are smaller and hence the value of the form factor moves up.
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in this expansion. Studies of SU(2) fits to other pion and kaon observ-

ables in [73] suggest that such an expansion describes the lattice data reli-

ably only below mπ ≈ 400MeV. Here we only have data for two values of

the pion mass below this cut-off and extrapolations are therefore not well

constrained. Alternatively one can include data at heavier pion masses.

However we find that we cannot obtain reliable fits with these heavier pion

masses. Given these considerations, we refrain from presenting fit results

based on SU(2) chiral perturbation theory.

7.2.3 Discussion of systematic errors

A potential source of systematic error which to our knowledge has not been

taken into account systematically in any previous computation of fKπ+ (0)

is the choice of the decay constant entering in the SU(3) NLO prediction

for the form factor as we now explain.

We observe that the interchange symmetry fKπ+ (q2) = fπK+ (q2) is held

in the SU(3) expansion order by order and also in non-perturbative data

to all orders. The SU(3) chiral expansion in terms of the unknown, but

in principle unambiguous, LEC f0 has this symmetry manifest in each

term. However, we have the freedom to repartition terms of this expan-

sion between different orders: for example to use an alternative expansion

parameter f ′
0 differing from f0 beyond leading order

fKπ+ (0) = 1 + f2(f
′
0, m

2
K , m

2
π) + . . . . (7.7)

In fact, the NLO term f2 is usually quoted as f2(fπ, m
2
K , m

2
π) � −0.023,

with the physical pion decay constant used in place of the unknown LEC

f0. For SU(3) chiral perturbation theory to correspond to QCD when all

terms in the chiral expansion are summed, using fπ instead of f0 must leave

the total sum of all terms to all orders in the chiral expansion unchanged.

Thus the replacement f0 → fπ implies that the terms at different orders

in the chiral expansion must change in such a way that there is an overall

cancellation when we sum the terms to all orders in the chiral expansion.

The replacement f0 → fπ results in an NNLO correction term

δNNLO = f2(f0, m
2
K , m

2
π)− f2(fπ(f0, mud, ms), m

2
K , m

2
π) , (7.8)

which breaks the symmetry under π ↔ K interchange. The form of the
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NNLO terms must therefore change to compensate for this and restore this

symmetry.

Using f2(fπ = 131MeV, m2
K , m

2
π) but failing to adjust the forms ap-

pearing at NNLO is inconsistent with QCD in the chiral limit as it actively

changes the series.

We could alternatively estimate the systematic error in using fπ as an

estimate for f0 by allowing for fπ to vary over a range of values. This allows

for the NNLO form to remain unchanged and the interchange symmetry of

our global fit ansatz to remain manifest.

This discussion impacts the analysis in [2] in which fπ = 131 MeV is

used and no variation in fπ is allowed, nor is the form of the global fit ansatz

at NNLO modified to admit breaking of the mass interchange symmetry.

Lacking a precise value of the decay constant in the SU(3) chiral limit

we opt to estimate this systematic error by repeating the global fit for

the three choices f0 = 100, 115, 131 MeV which in our opinion cover a

conservative range and take for our central value the value obtained using

f0 = 115 MeV. For these choices we found for the central values of the form

factor fKπ+ (0) = 0.9556, 0.9599, 0.9630, respectively. In each case the fit

was of very good quality. This is quite a sizeable variation in the central

value which is illustrated in figure 7.4.

We found that the choice of decay constant particularly changes the

slope of fKπ+ (0) with respect to m2
π in the region of small pion masses

where we do not have data. In order to study the behaviour at NNLO

more systematically, one can use the FORTRAN computer code written

by Bijnens3 that can provide SU(3) NNLO terms in terms of numerical

integration routines (see also [99] for form factor fits based on this code).

Our experience from using the code is that for our limited set of lattice data

points there are too many free parameters (low energy constants from the

O(p4) and the O(p6) chiral Lagrangian) to be able to carry out reliable fits.

Lacking a better analytical understanding of NNLO effects we prefer as the

central value the one corresponding to f0 = 115 MeV. As an estimate for

the uncertainty in the chiral extrapolation we use the interval defined by the

result for fKπ+ (0) as obtained when using f0 = 100MeV and f0 = 131 MeV,

respectively. In this way we obtain fKπ+ (0) = 0.9599(34)(+31
−43)(14).

The new data presented here confirms the ansatz for the q2-interpolation

3 the programs for f+(q2) and f−(q2) used in Ref. [74] are available on request from
Johan Bijnens
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Figure 7.4: Illustration of the dependence of the fit result (with the ansatz in
equation (7.4)) on the choice of the decay constant. The horizontal red lines
indicate our estimate of the resulting systematic uncertainty.

for the smallest mass used in ref. [2], i.e. amq = 0.005. Since q2
max increases

as mq decreases, it is at this mass that q2
max is the largest (and therefore

furthest away from q2 = 0) and hence the interpolation is the least con-

strained. This gives us confidence that the pole ansatz also describes well

the form factor data at the other simulated points presented in [2] (where

q2
max is closer to the origin). Further supporting evidence is provided by

the result which one obtains when using a polynomial ansatz for the q2 de-

pendence rather than the pole ansatz (see eqn. (13) in [2]): In this case we

obtain a result for the form factor which is by 0.002 smaller and we add this

negative shift quadratically into the systematic error. With χ2/d.o.f= 0.8

in both cases the fits are of good quality.

Our result is therefore,

fKπ+ (0) = 0.9599(34)(+31
−47)(14) , (7.9)

where the first error is statistical, the second is due to the chiral extrapola-
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tion and the third error is an estimate of the uncertainty due to the finite

lattice spacing for which we use the same error estimate used in [2]. We

note that the quoted uncertainty due to the chiral extrapolation covers the

central value of the result which one obtains when extrapolating instead

with f2(fπ(mud, ms), m
2
K , m

2
π) in (15), i.e. with the decay constant as input

that corresponds to each of our simulations points (c.f. [73]). Adding all

errors in quadrature we obtain

fKπ+ (0) = 0.960(+5
−6) . (7.10)

We believe that the systematic error due to the chiral extrapolation dis-

cussed above is conservative but still a more rigid statement would be

desirable. To this end a better understanding of the NNLO terms in the

chiral expansion and additional simulation points at smaller pion masses

are mandatory.

7.2.4 Determining |Vus| and testing CKM unitarity

In ref. [3] the most recent value of |VusfKπ+ (0)| is calculated from the average

of the measured decay rates of the possible K → πlνl decay modes. The

value quoted is |VusfKπ+ (0)| = 0.2163(5). Using this value together with

our result for fKπ+ (0) we get

|Vus| = 0.2253(+13
−15). (7.11)

Using the current PDG value for |Vud| (|Vud| = 0.97425(22) [23]) we find

the deviation from one in the unitarity relation (1.33) to be

δCKM = 1− |Vus|2 − |Vud|2 = 0.0001(+7
−8). (7.12)

We see therefore that the current results are perfectly consistent with uni-

tarity of the CKM matrix. This is further illustrated in the plot of figure

7.54. In this plot the authors show the results of global fits to |Vud|, |Vus| and

|Vus/Vud| using our result for fKπ+ (0) (with a symmetrized error) together

with the most recent experimental measurements of |VusfKπ+ (0)|, |Vud| and

|Vus/|Vud|×fK/fπ and the most recent lattice results for fK/fπ. Two global

fit results are shown, one that also assumes the unitarity constraint and

4Many thanks to M. Antonelli et al. for granting permission to use the plot shown
in figure 7.5. This plot was originally published in [3].
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Figure 7.5: Results of global fits to |Vud|, |Vus| and |Vus/Vud| from ref. [3].

one that doesn’t. The unitarity relation (1.33) is also plotted in this figure

for comparison. We see also from this figure that the latest results are

compatible with unitarity of the CKM matrix.
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Chapter 8

Conclusions and Outlook

In this thesis I have presented work done as part of the RBC-UKQCD col-

laboration, in which we have successfully used partially twisted boundary

conditions in lattice QCD simulations, with Nf = 2 +1 dynamical flavours

of quarks, to calculate the electromagnetic (e.m.) form factor of a pion

with mπ = 330 MeV at low values of Q2 = −q2 and the kaon semi-leptonic

decay (Kl3) form factors directly at the phenomenologically relevant kine-

matical point of q2 = 0. The use of partially twisted boundary conditions

has allowed us to calculate the pion e.m. form factor at values of Q2 below

those accessible with periodic boundary conditions. Furthermore, using

partially twisted boundary conditions makes our computation of fKπ+ (0),

at mπ = 330 MeV, completely independent of any phenomenological ansatz

for the interpolation in the momentum transfer. In this way one significant

source of systematic error has been removed in the computation of the Kl3

form factor.

In our calculation we have used quark propagators computed using sin-

gle time-slice Z(2)⊗Z(2) stochastic sources. We find that when using these

sources we can calculate fππ(−Q2
min) and fKπ+ (0) at 8.5% and 28% respec-

tively, of the computational cost of computing these quantities using the

traditional point sources.

We fit our results for the pion form factor at the lowest three values of

Q2 to the NLO SU(3) and SU(2) ChPT formulae, of equations (4.39) and

(4.40) respectively, to determine the low energy constants lr6 and Lr9. Based

on the studies in ref. [73] in which SU(3) NLO corrections are found to be

large, we choose to use only the SU(2) ChPT formula to extrapolate our

results to calculate the physical form factor and charge radius of the pion

(see equation (7.1)). The results which we obtain are in good agreement
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with the experimentally determined pion form factor which gives us fur-

ther confidence in the use of SU(2) chiral perturbation theory in the mass

range below 330 MeV (indeed the value of f which we use in the chiral

extrapolation was obtained with pion masses up to 420 MeV in ref. [73]).

Although the mass and momentum transfers are sufficiently small to

expect that NLO SU(2) ChPT is a good approximation, it would be nice

to be able to check this explicitly. It is not clear whether in practice

a full NNLO calculation can be performed with sufficient precision (i.e.

whether the NNLO LECs will be determined sufficiently accurately) but,

as it becomes possible to reach lighter quark masses, in the future we will be

able to check the stability of the results. The finite-volume corrections for

our mass and volume are small [95] and with our precision can be neglected.

The Kl3 form factor data generated in this work for both unitary and

partially quenched strange quark masses extends the previous data pre-

sented in ref. [2] by a number of new points for fKπ0 (q2) in the range

0 � q2 ≤ q2
max. The use of these new data points reinforces our confidence

in the use of the global fit ansatz of equation (7.4) for a simultaneous fit

to both the q2 and quark mass dependencies of the form factor. Using the

global fit ansatz with this new data we update the result presented in [2]

where fπ is used as an approximation to f0 the decay constant in the chiral

limit.

We reconsidered the estimates of the systematic uncertainties of the cal-

culation presented in [2]. Currently, chiral extrapolations of lattice results

for the kaon semi-leptonic form factor are based on NLO chiral perturba-

tion theory. We show that ambiguities in the parameterisation of the NLO

expression can lead to additional systematic effects which we include into

our revised estimate of the systematic uncertainties. This ambiguity also

applies to any other lattice computation of fKπ+ (0). We want to stress that

the interpretation of lattice data for the K → π form factors would profit

from the availability of their expressions at NNLO in chiral perturbation

theory in a more transparent form.

One limitation of the current calculation of both the pion and Kl3 form

factors is that it was performed at a single value of the lattice spacing,

albeit with an action for which the discretization errors are of O(a2) and

with good chiral and flavour properties.

The RBC-UKQCD collaboration is currently finalizing a set of measure-

ments of correlation functions for both Kl3 and pion form factor calcula-
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tions with partially twisted boundary conditions on a gauge configuration

ensemble with the same gauge and fermion actions as used in this work but

at a finer lattice spacing and larger volume of 323×64×16. The pion mass

measured on this ensemble is lighter than the one in this work (mπ ∼ 290

MeV). A combined analysis of all data is the next step in RBC-UKQCD’s

program of a precise computation of the K → π and pion form factors in

Nf = 2 + 1 flavour lattice QCD.

The dominant systematic error in the calculation of the Kl3 form factor

is the chiral extrapolation error. For this reason it would be desirable to

perform this calculation at even lighter pion masses. The RBC-UKQCD

collaboration is currently generating gauge configuration ensembles with

pion masses as low as mπ ∼ 180 MeV. To get down to such low pion

masses coarser lattices are being used to allow for a small pion mass while

keeping a large volume. This results in a greater residual chiral symmetry

breaking by the DWF action which is compensated for by using a new

modified Iwasaki gauge action [100]. A calculation of the Kl3 form factor

on these new ensembles would be the natural next step.

We conclude with our determination of |Vus|. Using our result for

fKπ+ (0) together with the latest experimental result for |VusfKπ+ (0)| we find

|Vus| = 0.2253(+13
−15). Together with the latest determination of |Vud| we find

that to within errors the latest results show no deviation from unitarity in

the first row of the CKM matrix.
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Appendix

This appendix presents the PQChPT expression for f2, the NLO correction

to fKπ+ (0), for Nf = 2 + 1 dynamical flavours of quarks with sea quark

masses of m
(S)
s , m

(S)
d and valence quark masses of m

(V )
s , m

(V )
d as calculated

by Becirevic et al. in [80]. The meson masses in this partially quenched

theory at leading order are given by

m2
π = 2Bm

(V )
d , m2

K = B
(
m(V )
s +m

(V )
d

)
m2
dd = 2Bm

(S)
d , m2

ss = 2Bm(S)
s

where B is the LEC of the leading order Lagrangian as in equation (4.12).

The expression for f2 in this PQChPT is given by

fpq
2 =m2

K

[
(2m2

K −m2
π)
(
6m2

K(2m2
K −m2

π)2

−m2
ss((2m2

K −m2
π)(11m2

K −m2
π) + 4m2

Km2
ss)
)

− 2
(
(5m2

K −m2
π)(2m2

K −m2
π)2 − 3(2m2

K −m2
π)(3m2

K −m2
π)m2

ss

+ (3m2
K −m2

π)m4
ss

)
m2

dd +
(
m2

πm2
ss + m2

K(4m2
K − 2m2

π − 3m2
ss)
)
m4

dd

]
×

×
ln
(

2m2
K−m2

π

m2
π

)
32π2f2

0 (m2
K −m2

π)2(3m2
π + 2m2

ss + m2
dd − 6m2

K)2

−
m4

K(m2
K −m2

ss)(m2
K −m2

dd) ln
(

m2
K

m2
π

)
8π2f2

0 (m2
K −m2

π)2(3m2
K − 2m2

ss −m2
dd)

+
(2m2

K −m2
π + m2

ss)(m2
π + m2

ss) ln
(

2m2
K−m2

π+m2
ss

m2
π+m2

ss

)
128f2

0 (m2
K −m2

π)

+
(2m2

K −m2
π + m2

dd)(m
2
π + m2

dd) ln
(

2m2
K−m2

π+m2
dd

m2
π+m2

dd

)
64π2f2

0 (m2
K −m2

π)

−
3m2

K(m2
K −m2

π)2(m2
ss −m2

dd)
2(2m2

ss + m2
dd) ln

(
2m2

ss+m2
dd

3m2
π

)
4π2f2

0 (3m2
K − 2m2

ss −m2
dd)(2m2

ss + m2
dd − 3m2

π)2(3m2
π + 2m2

ss + m2
dd − 6m2

K)2

+
26m4

K − (2m2
ss + m2

dd + 3m2
π)(m2

ss + 2m2
dd)

64π2f2
0 (3m2

π + 2m2
ss + m2

dd − 6m2
K)

− m2
K(39m4

π − 8m4
ss − 18m2

π(m2
ss + 2m2

dd) + m2
dd(18m2

ss + 5m2
dd))

64π2f2
0 (3m2

π − 2m2
ss −m2

dd)(3m2
π + 2m2

ss + m2
dd − 6m2

K)
.

We use this formula for lattice QCD data partially quenched in the

strange quark, by setting m2
dd = m2

π. This expression reduces to the un-

quenched result of equation (4.57) if we also set m2
ss = 2m2

K −m2
π corre-

sponding to setting m
(V )
s = m

(S)
s .
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[4] P. Boyle, J. Flynn, A. Jüttner, C. Kelly, C. Maynard, H. Pedroso de

Lima, C. Sachrajda, and J. Zanotti, The pion’s electromagnetic

form factor at small momentum transfer in full lattice QCD, JHEP

07 (2008) 112, [0804.3971].
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