The University of Southampton
University of Southampton Institutional Repository

Phenomenological aspects of the E6SSM

Hall, Jonathan (2011) Phenomenological aspects of the E6SSM University of Southampton, Faculty of Physical and Applied Sciences: Theoretical Partical Physics Group, Doctoral Thesis , 166pp.

Record type: Thesis (Doctoral)


The work in this thesis explores various phenomenological aspects of the E6SSM with a particular focus on the inert neutralino sector of the model and on the dark matter implications. The E6SSM is a string theory inspired supersymmetric extension to the Standard Model with an E6 grand unification group. The model provides a solution to the hierarchy problem of the Standard Model, provides an explanation for neutrino mass, and has automatic gauge anomaly cancellation. The inert neutralino sector of the E6SSM and the dark matter that naturally arises from this sector is studied for the first time. Limits on the parameter space from experimental and cosmological observations relating to the inert neutralino dark matter are explored and the consequences for Higgs boson phenomenology are investigated. In plausible scenarios it is found that the couplings of the lightest inert neutralinos to the SM-like Higgs boson are always rather large. This has major implications for Higgs boson collider phenomenology and leads to large spin-independent LSP-nucleon cross-sections. Because of the latter, scenarios in which E6SSM inert neutralinos account for all of the observed dark matter are now severely challenged by recent dark matter direct detection experiment analyses. In plausible scenarios consistent with observations from both cosmology and LEP the lightest inert neutralino is required to have a mass around half of the Z boson mass if it contributes to cold dark matter and this means that tan(?) cannot be too large. A new variant of the E6SSM called the E6ZS 2 SSM is also presented in which the dark matter scenario is very different to the inert neutralino cold dark matter scenario and in which the presence of supersymmetric massless states in the early universe modifies the expansion rate of the universe prior to Big Bang Nucleosynthesis. The new dark matter scenario is consistent with current observations and the modified expansion rate provides a better explanation of various data than the SM prediction. The prospects for a warm dark matter scenario in the E6SSM are also briefly discussed

PDF thesis_-_hall.pdf - Other
Download (1MB)

More information

Published date: November 2011
Organisations: University of Southampton, Theoretical Partical Physics Group


Local EPrints ID: 205509
PURE UUID: 37ad27a0-7307-4947-8788-727f40e89e72

Catalogue record

Date deposited: 09 Dec 2011 14:09
Last modified: 18 Jul 2017 11:04

Export record


Author: Jonathan Hall
Thesis advisor: Stephen King

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.