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Collision of two spin-polarized fermionic clouds
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We study the collision of two spin-polarized Fermi clouds in a harmonic trap using a simulation of the
Boltzmann equation. As observed in recent experiments, we find three distinct regimes of behavior. For
weak interactions the clouds pass through each other. If interactions are increased they approach each other
exponentially and for strong interactions they bounce oft each other several times. We thereby demonstrate that
all these phenomena can be reproduced using a semiclassical collisional approach and that these changes in
behavior are associated with an increasing collision rate. We then show that the oscillation of the clouds in the
bounce regime is an example of an unusual case in quantum gases: a nonlinear coupling between collective
modes, namely, the spin dipole mode and the axial breathing mode, which is enforced by collisions. We also
determine the frequency of the bounce as a function of the final temperature of the equilibrated system.
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Recently, spin transport has become a much studied field
in solid-state systems, for example, in mesoscopic phenom-
ena, where the electronic spin degree of freedom is used
to create new devices. Understanding the spin relaxation,
diffusion, and other transport properties is of fundamental
importance in such fields. In atomic gases it has been studied
mainly in spinor Bose gases [1,2]. There has been renewed
interest in spin transport in Fermi gases which are a clearer
parallel to electronic systems [3-8]. An important advantage
of cold gases in such studies is the simplification due to the
absence of relaxation mechanisms for spin currents apart from
direct collisions between atoms of different spin, unlike, e.g., in
a solid, where collisions with the ionic lattice can be important.
In addition, the atomic interaction and initial temperature of
the clouds are easily tunable parameters. Finally, as we shall
see, very large spin polarizations can be easily created, leading
to large spin currents.

Here we study the collision of two clouds with op-
posite spin polarization following the recent experiments
of Sommer et al. [7]. We confine ourselves to the semi-
classical regime, using a Boltzmann equation simulation.
In contrast, a recent theoretical study has instead used a
hydrodynamic approach based on a many-body equation of
state [9].

One of the most striking experimental observations was
the bouncing of the clouds off each other. Here we will
demonstrate that this phenomenon can be understood purely
in terms of semiclassical collisions, without recourse to, e.g.,
mean fields or other more complicated effects. For instance,
our approach predicts that all quantities considered here
depend only on the square of the scattering length and not on
its sign. Also, as we will show, the bouncing oscillations can
be understood as an example of a nonlinear coupling between
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collective modes which, to the best of our knowledge, has not
been studied in Fermi gases.'

We consider a system of two-component fermions labeled
by the spin index s = {1, |} with equal mass m. We seth =
kp = 1 throughout. Fermions of opposite spin can interact
via s-wave collisions, and the cross section is given by o =
4ra’/(1 + apZ,/4), where a is the scattering length and e
the relative momentum of the two atoms. The fermions are
confined in a cigar-shaped harmonic trap with potential V (r) =
%m(a)ixz + w§y2 + a)gzz), where 0, < 0, = w,.

We assume that the system is in the normal phase
and that the temperature is sufficiently high, so that the
two spin distributions can be described semiclassically in
terms of functions f;(r,p,?). The initial distributions are
created by sampling a Fermi-Dirac distribution f(r = 0) =
[P’ /2m+V®=0)/Twe 4 1]=! normalized to N/2 = N; = Ny,
where Ty is the temperature and w the chemical potential.
The atom number N for each species is held fixed during the
simulation. Then each spin distribution is displaced in opposite
directions along the z axis by dp/2. In the subsequent time
evolution, the clouds begin to move toward the center under
the harmonic trapping force, resulting in a collision between
them. After a sufficiently long time the center-of-mass energy
will be transformed into the internal energy of the gas and
a different equilibrium state will be reached, characterized
by a Fermi-Dirac distribution with temperature T, (and a
chemical potential wgn,). Note that Tjhq is a function of only
the atom number, Ty and dy, and can be calculated exactly
from these values using energy conservation.

Simulations were carried out for N = 10000, a range
of initial cloud temperatures 0.2 < Tipit/ Tr < 10, interaction
strength 0.5 < |I€pa| < 10, and initial distances between the
centers of mass of the two clouds 0.40, < dy < 160,, where

'In Bose gases, nonlinear coupling between modes can lead to
damping of collective excitations, as in the case of Landau and Beliaev
damping.
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FIG. 1. Bottom panel: The normalized dipole mode d(¢)/dy (solid lines) and breathing mode b(¢)/b., (dashed lines) for the three different
behaviors: transmission (left), intermediate (middle), and bounce (right). Top panel: The corresponding collision rate per particle y /w, measured
in the region with |z| < o,/2 around the trap center, where o, = |/ Tinie/ mw?.

Tr = 12%-/2m = (3Na)xa)ya)z)1/3 and o, =

Tinit/ mw?. Our

coordinates of the particles respecting angular momentum

numerical setup is similar to the one described in Ref. [10].
Here we will only give a brief summary with a more detailed
paper to follow [11].

The time evolution of the distribution function f;(r,p,?) is
given by the Boltzmann equation

8tfv+(p/m)'vrfv _VrV'foy = _I[.fwaL (D

where the left-hand side represents the propagation of the
atoms in the potential and the right-hand side stands for the
collision integral

d’ ps do |ps—psl, , . , ,
o [aafS BBl ra - fa- g

—f A= [ = ] 2

The indices s and s label the two colliding atoms, the primed
variables refer to quantities after the collision, and € is
the solid angle between the incoming and outgoing relative
momenta.

In order to simulate the Boltzmann equation we introduce a
discrete time step. During each time step the atoms propagate
following their classical trajectories. At the end of each time
step collisions between the atoms are evaluated. The pointlike
atom picture is a discrete approximation of the continuous
distribution function f;(r,p,t). In order for this approximation
to be accurate we represent each fermion by several test
particles [10,12]. The higher the ratio N/N of test particles
to atoms, the more precisely the continuous distribution
will be approximated. In this Rapid Communication we use
N = 10N, which is sufficient for the range of parameters
considered.

The trajectories of the test particles are the same as the
trajectories of the atoms and are given by the solution to the
classical harmonic oscillator equations. We evaluate collisions
in the same way as described in Ref. [10]. First we test
whether a pair of test particles fulfills the classical conditions
for scattering. If this is the case we calculate the quantum
mechanical scattering probability given by the Pauli term
(1 — fHA — £7) and accept or reject the collision accordingly.
If a collision is accepted, we calculate the new phase space

Ifs, fs] =

conservation [13].

We performed several tests of the simulation. We en-
sured that the system thermalizes to the correct equilibrium
distribution (the Fermi-Dirac distribution in the presence of
Pauli blocking, or the Maxwell-Boltzmann distribution if the
quantum mechanical scattering probability is set to one). We
also checked the frequencies and the damping behavior of
several collective modes, namely, the dipole, the breathing,
and the quadrupole mode. A very important check is that
the equilibrium collision rate measured during a simulation
matches the theoretical prediction, as this will be crucial
to obtain the correct damping behavior for the oscillation
of two colliding clouds. We performed tests both with and
without Pauli blocking and obtained very good agreement
with the values obtained analytically from the Fermi-Dirac
distribution.

The behavior of the clouds during the simulation can be
studied by measuring the distance between their centers of
mass d(t) = (z4 — z,)(t). As in Ref. [7], we find that before
they come to rest at thermal equilibrium, the motion of the
clouds exhibits three typical behaviors—see Fig. 1 and the
Supplemental Material [14]. Transmission: For sufficiently
high temperatures and small interactions, the clouds oscillate
through each other (i.e., d(¢) crosses zero at short times) with
decreasing amplitude. Bounce: Atlow temperatures and strong
interactions the clouds bounce off each other several times
(in each bounce the motion of the center of mass of each
cloud is reversed at short times and without d(¢) crossing
zero) before a longer period of slow approach. Intermediate:
Between the transmission and bounce regimes there is a range
of temperatures and interactions where the slow approach
behavior is visible from the start and neither bounces nor
transmissions are observed.

The dependence of the behavior on temperature and
interactions is related to the variation in the collision rate y
in the overlap region between the two clouds. As the collision
rate decreases, the system behavior changes from the bounce
regime to intermediate, and finally to the transmission regime.
From the top panel of Fig. 1 we see that in the bounce regime
the oscillations in the collision rate integrated over a volume
in the overlap region follow closely the oscillations of d(t),
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FIG. 2. (Color online) The transition between bounce and in-
termediate regimes (filled symbols, the lines to guide the eye) and
between intermediate and transmission regimes (open symbols). The
red circles correspond to dy = 43.1/,, the blue triangles to dy = 64.6l,
and the green squares to dy = 129.3[;, where I. =1/ /mw,. It
is clearly visible that the intermediate-transmission transition is
independent of dy. The dashed line corresponds to constant relaxation
time l/fdip = 1830):

whereas no such variation is apparent in the transmission
regime. In addition, we can compare the collision rate with
the typical time scale for macroscopic motion (a);l). We see
that the gas is strongly hydrodynamic in the bounce regime
(w;/y < 1) and becomes collisionless in the transmission
regime (w,/y ~ 1).

Figure 2 shows the transitions between these regimes in the
(T / TF)final» |k ralfna plane for a fixed aspect ratio and different
values of dy inunits [, = 1/,/ma;. Here the Fermi temperature
is defined as Tr = k%/2m = (37*n¢)* /2m, where ny is the
total atomic density ng = ny9 + 1o in the trap center. Note
that as the density is a function of the temperature, 7r and kg
change during the simulation and hence kpa varies during the
evolution. The quantities given here are equilibrium values for
t — o0.

The transition between transmission and intermediate
regimes is defined as d(¢) reaching but not crossing zero at
short times. It is clearly visible from Fig. 2 that this transition
is independent of dj and hence can be understood entirely from
the final equilibrium properties of the system. More precisely,
it can be understood as a consequence of the change in the
relaxation time 74, of the spin dipole mode of the dy =0
system, which is closely related to the collision rate per atom.
For sufficiently high temperatures 7 > T the relaxation time
can be calculated from the Maxwell-Boltzmann distribution
[15] and equals

1N w3f<1>7 )

Tdip 3nT? a’T

where fO)y=1—-y+ yzeyF(O,y) and rao,y) =
fyoo(e’f /t)dt is the generalized I" function. For a sufficiently
low collision rate (w,Tgp >> 1), the gas can be said to be
collisionless and therefore the clouds undergo independent
oscillations without interacting strongly with each other.
For 1/t4ip > 2w, the dipole mode is overdamped [15,16].
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To compare with the simulations, we calculate the value
of 7gjp for the various points lying on the curve separating
the transmission and intermediate regimes of Fig. 2 using
Eq. (3). We find that they lie on the curve of constant
1/zgip = 1.83(Dw,.

The transition between the intermediate and the bounce
regime is defined to occur when the first bounce ceases to
reverse the motion of the clouds, or, in other words, when
d(t) ceases to have a minimum and becomes a monotonically
decreasing function of ¢. This transition depends on dj. In
the bounce regime we typically see an initial strong collision
followed by oscillations of d(¢#) which eventually die out
as d(t) — 0. This oscillatory behavior continues into the
intermediate regime. The bottom panel of Fig. 1 shows plots
in the three regimes of the normalized amplitudes of the
dipole mode d(t)/dy and the breathing mode b(¢)/b,, Where
b(t) = (z% + zi)(z‘). In the bounce regime, the frequency of
d(t) is identical to the frequency of b(¢) (see Fig. 1 (right)),
and suggests the existence of a nonlinear coupling between the
two modes. However, in the transmission regime (see Fig. 1
(left)), the oscillation frequency of d(¢) becomes closer to that
of the dipole mode of the noninteracting gas w,, and so the
spin dipole mode decouples from the breathing mode.

For a more quantitative analysis we fit to the function

d(t) = Be /€1 + De "E sin(wt + ¢)]. 4)

The first term is related to the spin-drag coefficient measured
in Ref. [7]. It dominates the overdamped behavior of d(¢)
at long times with a characteristic time scale C which we
will analyze elsewhere [11]. The second term describes the
coupling between the spin dipole and the breathing mode.

The oscillations of the axial size of the cloud are fitted using
the dependence

b(t)/bso = 1+ D'e”""F sin(w't + ¢). (5)

From the fit to our simulations, we observe that D’ >~ 2D, E’ ~
E, o >~ w,and ¢’ >~ ¢. We interpret this result by describing
the density profile of the gas by the ansatz n,(z,t) = an,(az =
B,0), where o = «(t) and B = B(¢) represent the breathing
and spin dipole modes, respectively. Using this expression,
we can calculate b(r) and d(¢) as functions of o and $, and
in the weakly nonlinear regime we obtain d(¢) >~ 28/« and
b(t) ~ 1/a?. Assuming that B(¢) is overdamped and a(z) is
a damped oscillator, we then obtain the time dependence in
Eqgs. (4) and (5) and the corresponding relations between the
fit coefficients.

We are also able to study the temperature dependence of
the frequency of the two modes (see Fig. 3). We obtain the
frequency by fitting to the functions (4) for the dipole mode
and (5) for the breathing mode. Since the frequency shows a
weak time dependence we ignore early times by imposing a
cutoff d. = 2 x 0.70, on the amplitude and fitting only times
t > t. for which d(t) < d.. Since the function d(t) is not
monotonic, the corresponding time cutoff 7. is not continuous
with changing dj, which leads to a small systematic error.
We estimate this error from the cutoff dependence of w. The
statistical error of the fit is several orders of magnitude smaller
and hence negligible.
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FIG. 3. (Color online) The frequency w/w, of the dipole mode
d(t) (red circles) and the breathing mode b(z) (blue triangles) vs the
final temperature for |kra| = 1. All data were obtained for equal
initial temperature T}, = 0.47 by varying dy. The solid line is the
prediction from Ref. [17].

At low temperature, the common frequency of the spin
dipole and breathing modes is close to the hydrodynamic
prediction /12/5w, &~ 1.55w, [17,18], as observed experi-
mentally [7]. As we increase temperature, the frequency ap-
proaches 2w, , the noninteracting value. At higher temperatures
the spin dipole mode frequency becomes ill-defined due to
large damping. If we continue to increase the temperature, the
damping becomes progressively smaller and the dipole mode
frequency approaches w,, the value for the noninteracting gas.
We also compare our results with an earlier prediction for the
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frequency of the breathing mode [17]. The two dependencies
are close to each other although some discrepancy remains.
‘We attribute it to the fact that, to estimate the collisional rate in
the cloud, Ref. [17] neglects the Pauli principle and assumes
a Gaussian phase-space density.

In conclusion, we have studied the collision of two spin-
polarized fermionic clouds using a Boltzmann equation simu-
lation. We found various regimes of behavior, characterized the
transitions between them as a function of interaction strength
and temperature, and related them to the collision rate in the
overlap region between the clouds. In particular, we showed
that the bounces can be explained purely as a semiclassical
collisional phenomenon, without the need for more complex
many-body effects. We also demonstrated that the bounces
are a rare example of nonlinear mode coupling, in which
the spin dipole and breathing modes interact. In future we
aim to extend this study to other closely related problems,
such as the collision of clouds with unequal populations [19],
between clouds of atoms with unequal masses [20], and to the
Fermi-liquid regime at T < TF, using the Landau-Boltzmann
equation.
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