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The pair correlation function of an expanding gas is investigated with an emphasis on the BEC-BCS
crossover of a superfluid Fermi gas at zero temperature. At unitarity quantum Monte Carlo simulations
reveal the occurrence of a sizable bunching effect due to interactions in the spin up-down channel which,
at short distances, is larger than that exhibited by thermal bosons in the Hanbury-Brown–Twiss effect. We
propose a local equilibrium ansatz for the pair correlation function which we predict will remain isotropic
during the expansion even if the trapping potential is anisotropic, in contrast with the behavior of the
density. The isotropy of the pair correlation function is an experimentally accessible signature, which
makes a clear distinction with respect to the case of noninteracting gases and can be understood as a
consequence of the violation of scaling.
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Recent experimental studies of two-body correlations in
an expanding atomic cloud are opening new perspectives
in the study of quantum-statistical effects in ultracold
gases. These include the measurement of the Hanbury-
Brown–Twiss effect [1] in a dilute Bose gas, both concern-
ing spatial and temporal correlations [2,3], measurements
in the Mott insulating phase of ultracold gases in an optical
lattice [4], as well as the study of atomic pair correlations
in a Fermi gas after dissociation of molecules near a
Feshbach resonance [5]. In some cases the measured quan-
tities are related to the real space properties (i.e., to the pair
correlation function), whereas in other cases they refer to
correlations in momentum space. In all cases, measure-
ments are done after a period of free expansion since the
gas in situ does not provide sufficient optical resolution.

The pair correlation function is defined as

 g�2���0 �r1; r2� �
n�2��r1; �; r2; �

0�

n�r1; ��n�r2; �0�
; (1)

where

 n�2��r1; �; r2; �
0� � h y��r1� 

y
�0 �r2� �0 �r2� ��r1�i (2)

is the second order correlation function and n�r; �� is the
density of the� spin component. The spin indices�,�0 are
used if there is more than one species of atoms present. The
pair correlation function is a key quantity in many-body
physics, being sensitive to both statistical and interaction
effects. The statistical effects appear, for example, in non-
interacting gases of identical bosons above the critical
temperature, where they are responsible for a characteristic
bunching effect which has been recently the object of
experimental measurements [2].

In this Letter we discuss the case of a Fermi gas, with
equal population of two spin states, close to a Feshbach
resonance where the value of the scattering length a can be
tuned by varying the external magnetic field. The opposite
spin g�2�"# correlation function is strongly affected by inter-

actions and for a homogeneous system has been calculated
using fixed-node diffusion Monte Carlo simulations [6].
The result at T � 0 is shown in Fig. 1 where g�2�"# �s� is
plotted as a function of the dimensionless variable kFs for
various configurations. In the inset we plot the integrated
quantity N"#�s� � n

R
s
0 4�r2drg�2�"# �r� giving the average

number of atoms of opposite spin within a sphere of radius
s around a given atom. Here n � k3

F=�6�
2� is the single

spin density and kF is the Fermi momentum. On the BEC
side of the resonance (kFa � 0:25, dashed line) there is a
pronounced bunching effect at short distances due to the
presence of diatomic molecules and the pair correlation
function rapidly approaches the uncorrelated value

FIG. 1 (color online). Spin up-down pair correlation function
g�2�"# �s� of a homogeneous system. Dashed line (red online):
Fermi gas in the deep BEC regime (1=kFa � 4); solid line
(blue online): Fermi gas at unitarity (1=kFa � 0); dotted line
(green online): ideal Bose gas with density n � k3

F=�6�
2� at the

Bose-Einstein critical temperature; thin solid line (black online):
uncorrelated gas with g�2��s� � 1. Inset: integrated pair correla-
tion function N"#�s� for the same configurations.
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g�2�"# �s� � 1 (thin solid line) at distances of the order of the
scattering length. As a consequence, the integrated proba-
bility N"#�s� reaches 1 at kFs� 0:25 in contrast to the
uncorrelated gas where the same value is reached much
later, at kFs � 2:4. In the unitary limit (1=kFa � 0, solid
line) g�2�"# is a universal function of kFs, the inverse of kF
providing the only length scale of the problem. In this case
the bunching effect is reduced as compared with the BEC
case, but is still important (for example, at kFs � 1 the
value of N"#�s� is 0.5 whereas the noninteracting value is
negligible). For comparison we plot the pair correlation
function for a gas of noninteracting bosons with density
n � k3

F=�6�
2� at the Bose-Einstein critical temperature Tc

(dotted line). At short distances g�2��s� � 2 and the corre-
sponding integrated probability N�s�, while larger than that
of the uncorrelated gas, is still quite small compared to the
unitary case [7]. The sizable effect exhibited by the g�2�"# �s�
correlation function in interacting Fermi gases is due to the
presence of correlations resulting in a 1=s2 behavior as s!
0 [8] which characterizes not only the deep BEC limit, but
the whole crossover [9]. The short range behavior of g�2�"#
has recently been the subject of experimental studies using
spectroscopic techniques [10]. At unitarity, the s! 0 limit
of s2g�2�"# �s� is fixed by many-body effects and the quantum

Monte Carlo simulation yields the value �kFs�2g
�2�
"# �s� !

2:7. At 1=kFa � �1, on the BCS side of the resonance,
one finds instead �kFs�2g

�2�
"# �s� ! 0:36. In the BEC limit

the short range behavior of g�2�"# is determined by the
molecular wave function and one gets the result
�kFs�2g

�2�
"# �s� ! 3�=�kFa�. Interestingly, the Bethe-

Peierls boundary conditions on the many-body wave func-
tion [see Eq. (9) below] imply that �s2g�0=s2g � �2=a,
which is a nontrivial constraint on g.

As already mentioned, it is difficult to directly measure
the pair correlation function in real space while the atomic
gas is confined in the trap since the cloud is too small to
optically resolve features at interatomic distances [11]. The
gas needs to be released, undergoing an expansion, before
any measurement can be made. If the scattering length is
kept constant during the expansion, the calculation of the
time dependent evolution of the pair correlation function is
strongly affected by interactions and represents a challeng-
ing theoretical problem for which few exact solutions are
known. One of them is the unitary Fermi gas released from
an isotropic harmonic potential [12,13]. In the more gen-
eral case (including anisotropic traps or systems which are
not at unitarity) the behavior of the expansion can be
nevertheless predicted if the system is in the hydrodynamic
(HD) regime, corresponding to a local equilibrium condi-
tion. In this case one can use the ansatz

 g�2��r1; r2; t� � g�2�hom�s; n�r; t��; (3)

for the pair correlation function, based on a local density

approximation. Here r � �r1 � r2�=2 and s � r1 � r2 are,
respectively, the center of mass and relative coordinates
and g�2�hom is the pair correlation function for a homogeneous
gas with density n�r; t�. From an experimental point of
view the ansatz (3) relates the locally measured density
n�r; t� to the locally measured g�2�. From a theoretical
perspective it gives us the value of g�2� during the expan-
sion if we know the equilibrium form of g�2�hom�s� (from,
e.g., quantum Monte Carlo calculations) and the time
evolution of the local density n�r; t�. In particular, at uni-
tarity, where g�2�hom depends only on the combination kFs,
the expansion acts like a microscope, the value of kF /
n1=3 being reduced as a function of time.

The dynamics of the density n�r; t� can be analyzed
employing the HD theory. This theory has been quite
successful in predicting the behavior of n�r; t� in several
important configurations. For example, in the case of a
dilute Bose gas, the hydrodynamic predictions for the
time evolution of the density agree in an excellent way
with the exact solutions of the Gross-Pitaevskii equation
and with experiments [see, for example, Ref. [14] ]. They
have been used to study, among others, the collective
oscillations [15] and the expansion after release from the
trap [16–18]. If the trapping has the harmonic form V�r� �P
i�x;y;zm!

2
i r

2
i =2 and the chemical potential follows a

power law dependence on the density, ��n� / n� the HD
predictions for the expanding density profile can be written
in the scaled form

 n�r; t� �
1

bxbybz
n0�x=bx; y=by; z=bz�; (4)

with the scaling coefficients bi obeying the system [16,17]

 

�b i �
!2
i

bi�bxbybz��
� 0; (5)

of nonlinear coupled equations with the initial conditions
bi�t � 0� � 1 and n0�r� � n�r; t � 0�. The polytropic de-
pendence of the chemical potential applies both to the case
of a dilute Bose gas (� � 1) and to the unitary limit of a
Fermi gas (� � 2=3). When released from an anisotropic
trap, the aspect ratio of the expanding density profile
exhibits an inversion from the cigar to the disc geometry
(and vice versa) as a consequence of the HD forces which
are more active along the directions where the gradient of
the density is larger. Therefore, the density profile at long
times will be anisotropic. On the other hand, we see from
Eq. (3) that the pair correlation function will keep its
isotropy as a function of s. We should also point out that
the gas does not need to be superfluid in order to be in the
HD regime and to exhibit isotropy of g�2� during expansion
[19]).

The ansatz (3), which assumes local equilibrium for the
description of the expansion, requires more stringent con-
ditions compared to the usual local density approximation
applied to stationary configurations. In the latter case, the
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only relevant condition is that the typical length scale,
where g�2� approaches the uncorrelated value g�2� � 1, be
much smaller than the size of the cloud. The use of Eq. (3),
instead, also requires that adiabaticity be ensured during
the expansion. In the superfluid regime, HD theory pro-
vides a justification for the local equilibrium approxima-
tion. We might, however, wonder whether superfluidity is
preserved during the expansion. In a Fermi gas at T � 0,
the disappearance of superfluidity could take place through
pair breaking mechanisms. Since a large number of quan-
tized vortices are observed after expansion, recent experi-
ments [20] suggest that the system remains superfluid
during the expansion on the BEC side of the crossover.
The robustness of superfluidity is also suggested by the fact
that the gap is much larger than the typical oscillator
frequency (whose inverse is the time scale of the expan-
sion) and that, as a consequence, pairs cannot easily break
during the expansion. This argument holds also at unitarity
where the gap is of the order of the Fermi energy. On the
other hand, superfluidity is more fragile on the BCS side
because the gap becomes exponentially small during the
expansion. For a measurement of the pairing gap in ultra-
cold Fermi gases along the BEC-BCS crossover, see
Ref. [21].

The experimental measurement of the pair correlation
function and the verification of Eq. (3) requires that certain
conditions be met. In particular, the expansion time should
be long enough for features at the interatomic level to be
resolved. By choosing, for example, a trapped gas with
central density equal to n ’ 1013 cm�3 (corresponding to
an inverse Fermi momentum equal to k�1

F ’ 100 nm) and
isotropic trapping, we find that, after a time equal to !t ’
20, the density is reduced to a value �109 cm�3 corre-
sponding to k�1

F � 3 �m. This value is compatible with
the present limits of optical resolution [22]. At the same
time, if we choose a large value of the scattering length the
system will keep the condition of unitarity kFa� 1 also at
the observation time.

The HD description of the expansion points out the
occurrence of important qualitative differences in the ex-
pansion of interacting and noninteracting gases. In fact,
one of the easiest ways of seeing the effects of interactions
in experiments is to measure the isotropy or anisotropy in
the spatial profiles of observable quantities.

A summary of our predictions is given in Table I.
Contrary to what happens in the HD regime, when released
from an anisotropic trap, the density of a noninteracting
gas (e.g., fermions or uncondensed thermal bosons) be-

comes isotropic at long times during the expansion, reflect-
ing the isotropy of the initial momentum distribution [23].
The pair correlation function also exhibits drastic differ-
ences. In fact, in a noninteracting gas the dependence of
g�2� on the relative coordinate s will undergo an anisotropic
expansion. For example, for noninteracting bosonic or
fermionic gases trapped in a harmonic potential at tem-
peratures much higher than that of quantum degeneracy,
the pair correlation function can be shown to exhibit the
following behavior [19]

 g�2��s; t� � 1	 exp
�
�2�

X
i�x;y;z

s2
i

�2
T�!

2
i t

2 � 1�

�
; (6)

where �T �
��������������������������
2�@2=mkBT

p
is the thermal de Broglie wave-

length. Here the plus sign is for bosons, revealing a bunch-
ing effect (as discussed previously), while the minus sign is
for fermions which exhibit antibunching as a consequence
of the Pauli principle. For large times, the typical value of
the decay length of these statistical correlations depends on
direction and scales as �T!it �

�������
4�
p

@t=�mRi�, a value that
has recently been used to analyze the data in the experi-

ment of [2] with thermal bosons. Here Ri �
������������������������
2kBT=m!

2
i

q
is the in situ radius of the thermal cloud in the ith direction.

Let us finally discuss the problem of the expansion from
the general point of view of scaling, characterized by a
coordinate transformation of the type:

 x! x=bx�t�; y! y=by�t�; z! z=bz�t�: (7)

An exact scaling solution is known to be obeyed by the
many-body wave function of a unitary Fermi gas released
from an isotropic harmonic potential [12]. In this case
all correlation functions exhibit the same scaling behavior
and one finds n�r; t� � n0�r=b�=b3 and n�2��r1; r2; t� �
n�2��r1=b; r2=b; 0�=b

6, with b �
�������������������
!2t2 � 1
p

. The HD pic-
ture reproduces this behavior; in fact, Eqs. (4) and (5), with
!i � !, bi�t� � b�t�, and � � 2=3, yield the same time
dependence for the density profile. Agreement is also
found for the time dependence of the pair correlation
function. In fact at unitarity the correlation function eval-
uated for a homogeneous medium depends only on the
combination kFs / n1=3s so that Eq. (3) can be written in
the scaled form

 g�2��r1; r2; t� � g�2�hom
n
1=3
0 �r=b�s=b�; (8)

which, for isotropic harmonic trapping, agrees with the
scaling result g�2��r1;r2;t��g�2��r1=b;r2=b;0�. Naturally
the agreement holds only for values of s much smaller
than the size of the system where the local density approxi-
mation can be properly applied.

The validity of scaling to describe the expansion of the
pair correlation function is, however, not general. At dis-
tances much shorter than the interparticle separation, but
much larger than the effective range of interatomic inter-
actions, the wave function is determined up to a propor-

TABLE I. Role of anisotropy in the expansion of the density
and of the pair correlation function of a trapped gas.

Behavior after expansion n�r; t� g�2��s; t�

Ideal gas isotropic anisotropic
(bosons T > Tc or fermions)
Hydrodynamic regime anisotropic isotropic
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tionality constant by the Bethe-Peierls boundary condition:
for any value of the scattering length a and for all pairs of
atoms ij, the many-body wave function � obeys the
condition

 ��jri � rjj ! 0� /
1

jri � rjj
�

1

a
; (9)

which is in general incompatible with scaling. This bound-
ary condition has two characteristic features: (i) it is iso-
tropic and (ii) it introduces a length scale a. From (i) we
can now better understand the behavior of g�2� summarized
in the table. It implies that g�2� must remain isotropic (at
least for small jr1 � r2j) for all interacting gases whereas
in the noninteracting limit this constraint is removed and
g�2� is allowed to exhibit the anisotropic scaling of Eq. (6).
On the other hand, (ii) means that a rescaling of the
coordinates would change the ratio a=jri � rjj which is
required to be fixed. Such an argument applies to g�2� and
to all higher order correlation functions as they all obey the
boundary condition (9). However, it does not affect the
density n�r; t� for which scaling laws do exist, e.g., for HD
systems. In particular, (ii) leads to a dramatic difference
between the BEC and unitary regimes. The latter has
perfect scaling of g�2�"# if the gas is isotropic, while the
molecular gas has not, even though the density n�r; t�
scales during the expansion as in ordinary Bose-Einstein
condensates, since it now contains information about the
molecular bound state whose size is fixed only by the
scattering length a.

In conclusion, we investigated the spin up-down pair
correlation function of a Fermi gas at T � 0 in the BEC-
BCS crossover. Under the condition that local equilibrium
is ensured during the expansion, we addressed the non-
trivial problem of the time dependence of the correlation
function after release of the gas from the confining poten-
tial. In contrast to the behavior of noninteracting gases, the
pair correlation function violates the scaling solution (7)
and is predicted to remain locally isotropic during the
expansion even for anisotropic trapping. At unitarity, the
absence of other relevant length scales beside k�1

F makes
the expansion act like a magnification lens as the average
distance between particles becomes visible.
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[3] A. Öttl, S. Ritter, M. Köhl, and T. Esslinger, Phys. Rev.
Lett. 95, 090404 (2005).
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