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We show that the formation of a vortex lattice in a weakly interacting Bose condensed gas can be
modeled with the nonlinear Schrédinger equation for both 7 = 0 and finite temperatures without the
need for an explicit damping term. Applying a weak rotating anisotropic harmonic potential, we find
numerically that the turbulent dynamics of the field produces an effective dissipation of the vortex
motion and leads to the formation of a lattice. For T = 0, this turbulent dynamics is triggered by a
rotational dynamic instability of the condensate. For finite temperatures, noise is present at the start of
the simulation and allows the formation of a vortex lattice at a lower rotation frequency, the Landau
frequency. These two regimes have different vortex dynamics. We show that the multimode interpre-

tation of the classical field is essential.
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Vortex lattices exist in many domains of physics, from
neutron stars to superconductors or liquid helium. In none
of these systems has the formation of the lattice been
understood at the level of a microscopic theory. Several
groups have recently observed the formation of a vortex
lattice in weakly interacting Bose gases [1-4] and are
able to monitor this formation in real time. This gives us
the chance to understand the problem of lattice formation
in a relatively simple system. Indeed there have been
theoretical attempts to understand the formation process
[5—8] with simulations of the Gross-Pitaevskii equation
for the condensate wave function. All of them stress the
need for explicitly including a damping term representing
the noncondensed modes to which the vortices have to
give away energy to relax to a lattice configuration. In this
Letter, we consider this problem in the framework of the
classical theory of a complex field [9] whose exact equa-
tion of motion is the nonlinear Schrodinger equation
(NLSE). First, we show that lattice formation is predicted
within this framework without the addition of damping
terms. Second, we provide two distinct scenarios of vor-
tex lattice formation (dynamics, temperature dependence
of the formation time, and critical rotation frequency)
that can be directly compared with the experiments. We
study the formation of the lattice in 3D from an initially
nonrotating Bose condensed gas both at 7 = 0 and at
finite temperature. Contrary to the common belief, we
find that the dynamic instability, which was predicted in
[10] to occur above a certain threshold value of the trap
rotation frequency, leads to the formation of a vortex
lattice. The formation time is in this case only weakly
dependent of the temperature and the observed scenario
and time scales are comparable to those seen in present
experiments. For a lower trap rotation frequency corre-
sponding to the Landau frequency, but only at finite
temperature, we identify a new scenario not yet observed
experimentally in which the vortices enter a few at a time
and gradually spiral towards the center.
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We start our simulations with the nonrotating classical
field in thermal equilibrium. For 7 = 0, the system ini-
tially is a pure condensate and the field is proportional to
the condensate wave function ¢ given by the Gross-
Pitaevskii equation in the absence of rotation, ¢ =
Ny, where N, is the condensate atom number. For
finite temperatures, we sample the initial thermal equi-
librium in the Bogoliubov approximation at a given tem-
perature T for a fixed number N, of condensate particles.
In this approximation, the classical field is given by
y(r,0) = \/Nyop(r) + ¢ (r). The random field ¢ | (r) or-
thogonal to ¢ [11] representing the thermal noise is given
by

Y1(r) = D bu,(r) + b (r), (1)

where u, and v, are the Bogoliubov mode functions
associated with ¢ and b, are independent random c
numbers taken from a Gaussian distribution that obeys
the classical equipartition formula, (b}b,) = kzT/€,, €,
being the Bogoliubov energy of mode n. In practice, to
sample this distribution we use the Brownian motion
method described in [11]. In our work, the field ¢ is to
be interpreted not as the condensate wave function but as
the whole matter field. We present here results from single
realizations of the field ¢ which experimentally corre-
spond to single runs. We have checked that different
realizations lead to similar results.

In our simulations, we consider a Bose condensed gas
initially trapped in a cigar-shaped harmonic potential
with oscillation frequencies whose ratio is 1:1:0.25, with
10° atoms of mass m and a coupling constant g = 0.0343
in units of ﬁwag, where  is the radial frequency and
ap = /hi/mw is the oscillator length. The corresponding
chemical potential is u = 8/iw. We start each simulation
with the gas in thermal equilibrium. We abruptly turn on
the trap anisotropy which leads to a change in the radial
frequencies: w2, = w*(1 ¥ €), where € = 0.025. Then
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the rotation frequency ()() of this anisotropy is slowly
increased from zero to a final value Qf over 500w ™!, to
follow Procedure I in [10]. After that, we let the gas
evolve in the presence of the rotating anisotropy until
the angular momentum of the gas reached a steady state.

The calculation is performed in the rotating frame so
that the NLSE takes the form

h2
oy = |~ 5o A+ UG + gl = Q0L b @)

where L, is the angular momentum operator along z, and
U is the anisotropic harmonic potential. The field ¢ is
subject to periodic boundary conditions in the rotating
frame [12]. Our grid size is 32 X 32 X 128 corresponding
to an energy cutoff of 32iw per spatial direction,
although we have also run simulations on a 64 X 64 X
256 grid (see below).

Zero initial temperature—This set of simulations can
be divided into two groups: those for which the final
rotation frequency is /@ =0.7 and those with
QO /w = 0.75. Between these two values lies the thresh-
old for the dynamic instability of the condensate which
changes the subsequent dynamics dramatically [10,13]. In
the first group, as the rotation frequency gradually in-
creases with time, the condensate adiabatically follows a
steady state, apart from excitations of the surface modes
leading to a very small oscillation of the angular momen-
tum [see curve for {); = 0.7w in Fig. 2(a) (below)]. With
increasing (), the condensate’s final state becomes more
and more elliptically deformed, surrounded by a ring of
vortices which, however, never enter it. The second group
shows a completely different behavior when Q(r)/w =
0.75 (see left column of Fig. 1): The instability sets in;
the condensate becomes slightly S-shaped at ¢ =~ 450 !
before being highly deformed and undergoing very tur-
bulent motion [5]. This is accompanied by a large increase
in angular momentum of the gas from almost zero
when Q(7) <0.75w to between 5A-7h per particle [see
Fig. 2(a)]. At this point (f =~ 670w~ ") several vortices
enter the high density region and, in less than 200w !,
settle down to form a well-defined lattice. After this, a
period of relaxation of around 800w ™' begins with
the initially rotating lattice finally stopping in the
rotating frame. There remains a small random motion
of the vortices around their equilibrium positions in the
lattice together with density fluctuations in and around
the condensate.

At the end of the simulation, damping of the vortex
motion has occurred and the initial energy of the vortex
motion has been transferred in an effectively irreversible
way to other degrees of freedom of the field. A similar
phenomenon has been observed for the relative motion of
two condensates [15]. If we assume that the field has
reached a thermal distribution, we can calculate the
temperature of the system by taking the final state of
the simulation and evolving it with the conjugate gradient
method in a trap rotating at {),. This reduces its energy
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FIG. 1 (color online). Cut along the radial plane (z = 0) of
the system spatial density at different times. Crosses (circles)
indicate the position of vortices of positive (negative) charge
[14]. Left column: T = 0, 3, = 0.8w. Top to bottom: initial
state; near instability; turbulent behavior; end of simulation.
Right column: kzT = 8fiw, 1y = 0.6w. Top to bottom: initial
state; entry of first vortex; entry of second vortex; end of
simulation with a three-vortex lattice.

and takes it to the local minimum associated with the
vortex lattice. We then calculate the energy difference AE
between the final state of the simulation and the one at the
minimum. Assuming that Bogoliubov theory is valid, AE
must correspond to the energy of a classical thermal
distribution of weakly coupled harmonic oscillators of
amplitude b, which obeys the equipartition formula
(b;b,)e, = kgT, with n being the Bogoliubov mode num-
ber. So, if N is the number of modes in the system (and
keeping in mind that we have to subtract the one corre-
sponding to the condensate), then we have

AE =Y (bb,)e, = (N — 1kgT. 3)

The final temperature is 0.616/iw for ), = 0.75w and
0.754hw for )y = 0.8w, in other words it is extremely
small, less than a tenth of the chemical potential.
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FIG. 2. Total angular momentum of the system in units of 7
per atom as a function of wt. The arrows marked E and C
indicate the entry of the vortices into the condensate and the
crystallization of the lattice for 0y = 0.8w. (a) T = 0, solid
lines from bottom to top: /w = 0.7(0),0.75(7), 0.8(10);
dashed line: ¢/w = 0.8(10) with a grid size of 64 X 64 X
256. All other curves were done on a 32 X 32 X 128 grid. In
parenthesis is the number of vortices in the lattice at the end of
the simulation. (b) kzT = 4hw, (/w0 = 0.4(0), 0.45(0), 0.5(0),
0.55(1), 0.6(1), 0.65(2), 0.7(6), 0.75(7), 0.8(10). (c) kzT = 8hw,
Qr/w = 0.4(0), 0.5(1), 0.55(1), 0.6(3), 0.7(7), 0.75(7), 0.8(10).
The arrows correspond to the approximate entry time of the
vortices for ), = 0.6w as shown in Fig. 1. Note that the total
angular momentum shows no signature of the entries.

We have also carried out a simulation on a larger grid
(64 X 64 X 256) to check the dependence on size. We
chose (), = 0.8w and compared it with the one on the
32 X 32 X 128 grid. The vortex nucleation and crystalli-
zation phases are very similar and occur at roughly the
same times. At longer times, two differences arise: First,
there are large underdamped oscillations of the angular
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momentum [see Fig. 2(a)]. An analysis of the simulation
suggests that these oscillations are those of the scissors
mode. Second, the final temperature (0.094/w) differs by
the ratio of the number of modes as expected: At time t =
500w~ when Q(r) = Qy, & had not yet reached the
boundary in the smaller grid case and so the evolution
of ¢ on both grids was identical up to this time with the
same total energy which was conserved at later times
resulting in the same value of AE. This exemplifies the
fact that, in classical field theories, the relationship be-
tween energy and temperature depends on the energy
cutoff.

Since the thermal occupation of the modes is directly
proportional to the temperature, we expect that all re-
laxation processes which involve scattering from or into
those modes (such as Landau-Beliaev damping) will be
reduced. We are thus led to the conclusion that, for our
simulations starting at 7 = 0, relaxation rates in the
period after the formation of the lattice could depend
on the size of the grid. However, with the present numeri-
cal results, we were not able to demonstrate this.

Finite initial temperature.—We performed simulations
starting with k3T = 4hw and kzT = 8fiw. Now not only
the condensate but also other modes are occupied in the
initial state, with a thermal distribution. For a final rota-
tion frequency below that of the dynamic instability, the
situation is quite different from that of the zero tempera-
ture case: The condensate is never deformed and the
vortices do enter the condensate if ;= 0.55w for
kgT = 4hiw and if Oy = 0.5 for kzT = 8/iw. In con-
trast to the 7 = 0 case at a frequency below that of the
dynamic instability, all the noncondensed modes are now
thermally occupied allowing the condensate to exchange
particles, energy, and angular momentum with the non-
condensed cloud. Therefore, as soon as (), is greater than
the Landau frequency (at which the vortex-free conden-
sate is no longer a minimum of the energy [6]), the
condensate moves gradually toward an energy minimum
with one or more vortices. We have found numerically by
imaginary time evolution that the Landau frequency is
0.51w. During the real time evolution corresponding to
Qf = 0.6w (right column of Fig. 1), we find that the
vortices enter only one at a time. That is, as the angular
momentum of the cloud increases, one vortex out of the
group of vortices that surrounds the condensate will enter
it and spiral slowly clockwise towards the center on a
time scale of hundreds of w~!. After that vortex has
reached the center, a second one enters slowly, repeating
the trajectory of the first until it starts to interact with it,
and the two orbit around each other for a while after
which a third will enter. At the end of the simulation,
coinciding with the achievement of the plateau in angular
momentum, the lattice becomes stationary in the rotating
frame and no further vortex enters the condensate. For
Q = 0.7, we find that the condensate deforms itself
elliptically after which three vortices enter at the same
time and form a rotating lattice. After that, and spaced by
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several hundred w™!, a fourth and then a fifth vortex
enter. Finally, two further vortices enter simultaneously
to form the final seven vortex lattice. At each intermedi-
ate stage there is always a well-defined lattice present
although it is not stationary in the rotating frame.
We should contrast this with the scenario of [6,7], where
a large number of vortices enter all at once into the
condensate in a ring configuration and then some of
them form a lattice while others are shed and leave the
condensate.

For (), above the dynamic instability frequency, the
situation is quite similar to the corresponding one at
T = 0. Once the instability has set in the lattice is formed
for both temperatures in about 200w ™! as in the T =0
case [see Figs. 2(b) and 2(c)]. This weak temperature
dependence was also found experimentally [16]. We find
a time for the lattice to stop rotating on the order of
100w ™!, much shorter than at 7 = 0.

It is important to emphasize the multimode interpre-
tation of the field. Transposing Penrose and Onsager’s
definition to the classical field theory, the condensate
wave function is defined as the eigenvector corresponding
to the largest eigenvalue of the one-body density matrix
(y*(r")p(r)) where the average is over an ensemble of
initial states. If the system becomes turbulent because it
encounters an instability, the trajectories of the neighbor-
ing realizations will diverge exponentially. However,
after averaging, we believe that the condensate wave
function will not be a turbulent function. For T = 0, there
is only one initial state and so we replace ensemble
averaging by one over time in the steady state regime
[17]. In our simulations with {) ; = 0.8w, the system must
therefore be understood as becoming intrinsically multi-
mode even though we started at 7 = 0 with a pure con-
densate. This shows that any theoretical model which
singles out the condensate mode for separate treatment
with a Gross-Pitaevskii—type equation could run into
trouble in turbulent situations since the separation be-
tween condensed and noncondensed modes would be
hard to keep.

Conclusions.—We have identified two very different
scenarios for the crystallization of the vortex lattice in
the classical field model. In the first one, the vortex and
the subsequent lattice formation are triggered by a dy-
namic instability which sets in for a threshold value of
the rotation frequency of the trap. Many vortices enter the
condensate at the same time and settle into a lattice in
about 200w ~!. In this scenario, the lattice formation time
is essentially the same for both 7 = 0 and finite tempera-
tures in agreement with experimental observation [16]. In
the second scenario, observed only at finite temperatures,
vortices appear for a lower value of the rotation fre-
quency corresponding to the Landau frequency, and so
no dynamic instability occurs. The vortices enter one by
one into the condensate and settle into a lattice before the
entry of the following one. Thus far, there has been no
experimental check of this second scenario.
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Note added—We have been informed that crystalliza-
tion of the vortex lattice has also been observed in a
simulation without a damping term by the group of
Bigelow [18].
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