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DOCTOR OF PHILOSOPHY

CHIRAL SYMMETRY BREAKING TRANSITIONS IN HOLOGRAPHIC DUALS

by Astrid Gebauer

Generalisations of the AdS/CFT Correspondence are used to study chiral

symmetry breaking in dual gauge theories. We use the D3/D7 and D3/D5 systems

to model both 3+1 and 2+1 dimensional, strongly coupled, gauge theories with

quark fields. We show that chiral symmetry breaking is induced by either an

imposed running coupling/dilaton profile or a background magnetic field. We

explore the low energy effective theory of the pions of these models deriving simple

integral equations for low energy parameters in the spirit of constituent quark

model results. We also explore the phase structure of these models, with respect to

temperature, chemical potential and applied electric field. The phase diagrams

contain regions with broken and restored chiral symmetry separated by first order,

second order and BKT transitions. There is an extra transition associated with the

melting of the meson states into the background plasma. Finally we use the

phenomenological dilaton profile to engineer holographic descriptions of theories

with QCD-like phase diagrams.
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Chapter 1

Introduction

1.1 Overview

The laws of nature and the world of physics have been fascinating humankind for

thousands of years. The more scientists find out about physics the more they

admire the beauty and simplicity of the physics which surrounds us. There are four

different forces in nature: the electromagnetic force, the weak nuclear force, the

strong force and gravity. Ever since James Clerk Maxwell identified electricity and

magnetism to be different manifestations of the same phenomena it has been the

goal of many researchers to unify all forces of nature. Gauge theories included in

the Standard Model of Particle Physics (SM) are the commonly accepted theory of

how the electromagnetic, the weak and the strong force interact with matter.

A gauge theory is in general a type of field theory which is invariant under a group

of local transformations. These transformations are called gauge transformations.

One example of a gauge theory is Quantum Electrodynamics (QED). The QED

Lagrangian is invariant under local phase rotations of the fermion fields. It is very

interesting that one must introduce a gauge field in order to keep the Lagrangian,

containing fermion fields, invariant under gauge transformations. This gauge field

represents the photon. QED is an Abelian gauge theory, i.e. it does not matter in

which order two successive gauge transformations are applied to the fermion fields.

The theory of the strong nuclear force is formulated using non-Abelian gauge

1



theories [1], i.e. the order of the gauge transformations is important. This

particular theory is called Quantum Chromodynamics (QCD).

General Relativity is currently the best theoretical description of gravity. It

describes gravity on large length scales and it is experimentally well tested. Up to

now scientists have not found a way of describing gravity on a quantum level,

neither are there tests of gravity on short distance scales, because it is very weak

compared to the other forces of nature. It is hard to exclude the other forces, e.g.

the electrostatic force, well enough. This makes it hard to build an experimental

set-up in which gravity is the only force acting. We are in need of a different theory

of gravity on the quantum level as general relativity can not be quantised.

The aim still stands to unify these two theories of nature into one single theory of

everything. The best candidate for such a theory of everything is string theory. It

naturally incorporates all four forces of nature and is able to give a short scale

definition of gravity. It is even more remarkable that there exist gauge/gravity

dualities arising from string theory, which propose that some strongly coupled

theories describe the same physics as dual gravitational theories. In the following

we will discuss QCD and string theory a little further and introduce gauge/gravity

dualities.

1.2 QCD

QCD [2, 3, 4], the theory of the strong force, is the current model for the

interactions between quarks and the strong force carriers the gluons. The charge

associated with the strong force is the colour charge, i.e. red, green and blue.

Quarks can never be found on their own. They have only been seen forming bound

states, the so called hadrons. If one tries to separate quarks from each other, one

can put infinitely much energy into pulling them apart, but still not succeed. In

this process more quarks are pair created which pair up with the original quarks to

form new bound states. No matter how much energy one puts into separating a

quark bound state one can never observe a single quark alone. This property is

2



called confinement. There are two classes of hadrons that have been discovered so

far, baryons and mesons. Baryons, e.g. protons and neutrons, consist of three

quarks which all have to have a different colour to make the baryon colour neutral

and therefore stable under strong interactions. Mesons are bound states of a quark

and an anti-quark, they are e.g. pions and kaons. They are colour-neutral as well

and therefore the quark and the anti-quark need to have a colour and an anti-colour

which cancel each other to make the meson not have a colour charge overall.

Quarks come in six different flavours: up, down, charm, strange, top and bottom.

Nearly all hadronic matter in everyday life is made up of up and down quarks, as

the other flavours are much heavier and decay into up and down quarks quickly.

The QCD Lagrangian is

L = ψ
(
i∂µγ

µ + gAaµγ
µta −m

)
ψ − 1

4
F aµνF

µνa (1.1)

= ψ
(
i /D −m

)
ψ − 1

4
F aµνF

µνa, (1.2)

with

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (1.3)

from [5], where /D = ∂µγ
µ − igAaµγ

µta is the covariant derivative. Here ψ is the

Dirac fermion field representing the quarks which is in the fundamental

representation of the gauge group SU(3). Aµ is the gauge field representing the

gluons which are in the adjoint representation of SU(3). The ta are the eight

generators of the gauge group. fabc are the structure constants of the gauge group,

g is the gauge coupling constant and m are the masses of the quarks. The Roman

indices are gauge group indices and the Greek indices are spacetime indices, they

are both summed over. The first part of (1.1) consists of the kinetic term for the

quark, the interaction term describing a vertex with two quarks and a gluon and

the mass term for the quark. The second part contains the gluon kinetic term and a

term representing gluons interacting with each other. When calculating physical

observables one can read off so called Feynman rules from the Lagrangian. Then

one needs to draw all Feynman diagrams related to the process one is interested in

and sum all contributions from each diagram up. The sum can be expressed as a
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power series in the coupling constant. For a small coupling constant g < 1, one can

ignore higher order terms of the coupling constant and approximate the solution

with the leading terms. This is called perturbation theory. When calculating loop

diagrams one will need to use renormalisation. This procedure is well described in

[5]. This is a very successful way of doing calculations in QED. We will see shortly

that this tool is not applicable to such a large range of calculations in QCD.

1.2.1 The Beta Function of QCD

Perturbation theory can be used when calculating the beta function β(g) of QCD.

The beta function is a measure of the running of the renormalised, dimensionless

coupling constant g with the energy scale, µ, of a physical process. It is defined as

β(g) =
∂

∂ lnµ
g = µ

∂

∂µ
g. (1.4)

The beta function tells us a great deal about the properties of a gauge theory.

There are three different behaviours the beta function can have. Either β > 0,

β = 0, or β < 0. In the first case the coupling constant is small at low energies,

which we call the infrared regime, growing larger at high energies, the ultraviolet

regime. That means that particles are more attracted to each other the smaller the

distance is between them. This is the case for QED. In the second case of β = 0,

there is no running of the coupling. This is the case for conformal theories and for

other scale invariant theories. In the last case of β < 0 the behaviour of the running

is exactly opposite to that of β > 0. The coupling constant is very small in the

ultraviolet and blows up in the infrared. This is the case for QCD. The beta

function of QCD is, at one loop level,

β =
g3

(4π)2

(
−11

3
N +

2

3
Nf

)
, (1.5)

where Nf is the number of flavours and N is the number of colours. In QCD the

number of colours is 3 and the number of flavours is 3-6 depending on the energy
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scale. In this case (1.4) can be solved with (1.5) to give

g2(µ) =
g2(M)

1 + 7g2(M)
(4π)2

log µ2

M2

. (1.6)

Here M is a reference energy scale and µ the energy scale we are probing. The

running of the coupling gives rise to confinement mentioned above, the quarks are

coupled more strongly to each other the further they are apart. It also gives rise to

a property of QCD called asymptotic freedom [3, 4]. A theory is called

asymptotically free when two particles do not exert a force on each other when they

are extremely close together. The large coupling constant at low energies means

perturbation theory breaks down in physics at energies below those typical of

nuclear physics, which is why we cannot use perturbation theory for calculations in

this so called strong-coupling regime. This happens at g ≈ 1 which occurs at an

energy scale of approximately ΛQCD ≈ 200MeV [6], the QCD scale. The large

spectrum of confined QCD states (hadrons) has masses of order ΛQCD. The best

efforts of calculating QCD in the strong coupling regime have so far been made by

introducing lattice gauge theory [7]. In this work we focus on holographic methods

to calculate properties of strongly coupled field theories.

1.2.2 Chiral Symmetry Breaking

Another low energy property of QCD is chiral symmetry breaking. The discussion

below is loosely based on [8]. The six quark flavours have very different masses and

they can be divided into the light flavours, the up, down and strange, and the heavy

flavours, the charm, top and bottom. Suppose we have QCD with only the two

lightest flavours, up and down. Then we can neglect their mass in (1.1), as the

masses are well below the QCD scale. Let us set m = 0 and look at the global

symmetries of the new Lagrangian

L = iψ /Dψ − 1

4
F aµνF

µνa (1.7)

L = iψL /DψR + iψR /DψL − 1

4
F aµνF

µνa, (1.8)
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where in the second line ψR and ψL are the chiral projections of ψ. This new

Lagrangian is invariant under U(2)L× U(2)R symmetry transformations. This

means that we can rotate the ψR independently from the ψL under a U(2) and vice

versa. This can also be expressed as SU(2)L× SU(2)R× U(1)L× U(1)R. The

SU(2)L× SU(2)R transformation can be expressed as

ψL(x) → e−iτ ·θL ψL(x) and ψR(x) → e−iτ ·θR ψR(x), (1.9)

with τ = σ
2 and σ being the Pauli matrices. This symmetry of the massless quark

formulation is called chiral symmetry. The symmetry group can also be

reformulated in terms of vector and axial-vector transformations, so the Lagrangian

is invariant under SU(2)V× SU(2)A× U(1)V× U(1)A. We can express the SU(2)V×

SU(2)A transformation as

ψ(x) → e−iτ ·θV ψ(x) and ψ(x) → e−iγ5τ ·θA ψ(x). (1.10)

It turns out that U(1)A is a global symmetry of the Lagrangian, but is broken by

quantum corrections due to quark loop graphs. For a detailed description of this

chiral anomaly see [5]. The U(1)V is a global symmetry which is responsible for

conservation of baryon number. The chiral symmetry can be explicitly broken by

introducing a mass term for the quarks of the form

Lm = −m
(
ψLψR + ψRψL) (1.11)

This breaks the SU(2)×SU(2) down to the vector SU(2)V . In this case of two

massless flavours this is isospin, which in the standard model is broken by the

different electromagnetic charges of the up and the down quarks. The SU(2)A

symmetry can also be broken spontaneously by the formation of a quark condensate

〈
ψψ
〉
=
〈
ψLψR

〉
+
〈
ψRψL

〉
6= 0. (1.12)

This breaks the chiral symmetry to the same SU(2)V . Indeed one can think of this

condensation as a dynamical mass generation method for the quarks. The
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formation of this vacuum expectation value (vev) is generated by strong dynamics.

As for every spontaneously broken symmetry, we expect three massless Goldstone

bosons, one for each broken generator. These are the three pions. The creation of

the pion πa with momentum p from the vacuum by the isospin axial vector current

jµ5a(x) = ψγµγ5 σ
a

2 ψ can be expressed with the following matrix element [5]

〈0
∣∣jµ5a(x)

∣∣πb(p)〉 = −ipµfπδabe−ip·x, (1.13)

where a and b are isospin indices and fπ is the dimensionful pion decay constant.

Its value fπ = 93MeV is of order ΛQCD, which sets the scale for chiral symmetry

breaking. As the masses of the up and down quarks are not exactly zero, the chiral

symmetry is just an approximate symmetry. The pions therefore gain mass due to

the small mass of the quarks but are considerably lighter than the other mesons.

We can also include the strange quark in the above argument and find eight

Goldstone bosons, which consists of the pions, the kaons and the eta.

The pion decay constant fπ can also be used to write down a low energy effective

Lagrangian describing QCD. At sufficient low energy only massless degrees of

freedom can be produced in the theory, while massive particles can be integrated

out. In this way we can write down a Lagrangian only including Goldstone modes

in a non-linear representation [9] with the unitary matrix

U = exp

(
2i
πaτa

fπ

)
. (1.14)

Here πa(a = 1 . . . 3) are the Goldstone bosons (pions) and τa the generators of

SU(2). U transforms linearly under SU(2)L (L) and SU(2)R (R) as

U → U ′ = LUR†. (1.15)

When taking U ′ = exp(2iπ
′aτa

fπ
), we can see from (1.15) that the Goldstone fields do

not transform linearly. The effective Lagrangian should include all chirally invariant

terms [9]. At low energies we can perform an expansion in powers of momentum to
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get the low energy effective chiral Lagrangian in normal parametrisation

L ≈ V0 +
1

4
f2πTr

(
DµUD

µU †
)
. (1.16)

We will use this Lagrangian in chapter 2.

1.2.3 The QCD Phase Diagram

Now we will introduce the phase diagram of QCD, which tells us about the possible

phases QCD displays depending on the thermodynamic variables temperature T

and chemical potential µ. [10] gives a good overview of the QCD phase diagram. It

is important to investigate QCD’s thermodynamics, as we need this information to

describe the interior of neutron stars or physics of heavy ion collisions at CERN and

Brookhaven. The chemical potential shifts the energy of quarks by ∆L = ψµγ0ψ

and induces quarks to fill the vacuum. We are interested in the chiral symmetry

breaking transition and neglect any superconducting phases in the following.

For two massless quarks the phase diagram is shown in figure 1.1. At low chemical

potential and low temperature chiral symmetry is broken and there exists a pion

gas, as QCD is confining at low energies. At large energies we expect quarks and

gluons to be the fundamental degrees of freedom, as QCD is asymptotically free.

Indeed, a quark-gluon plasma forms, in which quarks and gluons are not confined

and can move within the plasma freely. The vacuum expectation value
〈
ψψ
〉
which

breaks chiral symmetry also vanishes at high energies. This diagram arises from

theoretical models and lattice calculations. Lattice calculations work quite well at

high temperature. The transition between the two phases at zero µ is widely

believed to be of second order. Lattice calculations are difficult at non-zero chemical

potential, but possible for very small chemical potential. The high temperature and

low chemical potential regime is where heavy ion collisions take place. Even though

the lattice calculations are hard at large chemical potential, other models suggest

that the order of the phase transition is first order at zero temperature. Between

these two regimes lies a tri-critical point. It is not exactly known where this is.
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nuclear
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massless quarks

Lattice

Models

Figure 1.1: The phase diagram of QCD with two massless and
one massive quarks. This figure is taken from [10]. The red dashed
line is the second order transition, the solid blue line is the first
order transition. They meet at a tri-critical point. At low temper-
ature and low chemical potential chiral symmetry is broken. Su-
perconducting phases are neglected.

When giving the two quarks a small mass, the phase diagram changes just a little.

The second order transition at high temperature becomes a smooth crossover

transition, as chiral symmetry is explicitly broken. The tri-critical point becomes

the endpoint of the sharp first order transition line, the critical point. To the left of

the critical point the two phases (hadrons and quark-gluon plasma) become

indistinguishable. It is very important to note that the orders of the transitions in

the phase diagram are still being questioned [11]. After all, the diagram is based on

lattice calculations and models only and has not been backed up experimentally.

The nature of the transitions seem to depend on the exact set of parameters, such

as quark mass, that are hard to achieve in lattice calculations.

1.2.4 Electro-Weak Symmetry Breaking and Current Quark Mass

Generation

While we have mentioned dynamical mass generation when we talked about chiral

symmetry breaking in (1.2.2), we still need to explain where the current quark

masses in the QCD Lagrangian come from. In fact, the answer lies in the

investigation of electro-weak (EW) symmetry breaking. The weak force is generated

by a gauged SU(2) symmetry of the chiral left handed fermion fields. QED is

incorporated by an additional U(1)Y hypercharge gauge symmetry. Mass terms
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(quadratic terms) for gauge bosons and Dirac fermions are thus forbidden in the

SM Lagrangian, as they are not gauge-invariant. EW symmetry breaking accounts

for the masses of the W± and the Z boson. It also explains the origin of mass for

the fermions in the SM Lagrangian.

The Higgs Model

The easiest and most popular way of breaking EW symmetry is by introducing a

complex scalar field φ, the Higgs field [12, 13]. It is a doublet of SU(2) with a

hypercharge of Yφ = 1
2 and takes part in EW interactions. The part of the SM

Lagrangian containing this complex scalar field is

Lφ = (Dµφ)† (Dµφ)− V (φ) (1.17)

= (Dµφ)† (Dµφ)− µ2φ†φ− λ
(
φ†φ
)2
, (1.18)

where Dµ is the covariant derivative Dµ =
(
∂µ − i

2g2A
a
µσ

a − g1YφBµ
)
. Aaµ and Bµ

are the SU(2)L and U(1) gauge bosons respectively, while the g2 and g1 are coupling

constants and the λ and µ are constants. For positive λ and negative µ2, the Higgs

field acquires a non-zero vev, which we can express as v =
√
−µ2

λ . v sets the EW

scale, which is around 250 GeV. This vev breaks the symmetry in the SM from

SU(2)L×U(1)Y to U(1)em. The three Goldstone bosons associated with the broken

generators are ‘eaten’ by the W± and Z bosons. These get a longitudinal component

and thus become massive, which can explicitly be seen when introducing the vev

into the Lagrangian in (1.17) and multiplying out the interaction terms of the

scalar field and the gauge bosons. This is called the Higgs mechanism. The masses

of the W± and Z are MW = v
2g2 and MZ = v

2

√
g22 + g21. From EW physics we can

relate the coupling constants g and g′ to the Weinberg angle θW in the following

way g1
g2

= tan(θW ). The photon stays massless as expected for the gauge boson

associated with the U(1)em. The remaining degree of freedom from the complex

scalar doublet is the real scalar Higgs boson, which has a mass of Mh =
√
2λv2.

Fermion masses can now be introduced via gauge invariant interaction terms
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between the fermions and the scalar φ with Yukawa coupling λY like

Lψφ = −λY
(
ψ̄LφψR + ψ̄RφψL

)
. (1.19)

These terms are not only interaction terms but also give mass to the fermions when

a non-vanishing vev for the scalar field is introduced. The Yukawa couplings in this

fermion sector are free parameters, thus they do not give a satisfactory reason for

why there is such a great mass difference between the different quark flavours. The

SM Higgs does not give any explanation of flavour physics at all. Furthermore, this

model exhibits the hierarchy problem, which is concerned with the large difference

in mass scales in the SM. Namely, the GUT scale of order 1016 GeV and the EW

scale of about 250 GeV need to be put into the model by hand. The Higgs mass has

loop corrections of quadratic order and needs to be fine-tuned in order not to be

driven to high energies [14], i.e. it is not natural. This points towards the idea that

this theory might be an effective theory at low energies, which has to be replaced by

some other theory in the UV.

Large particle colliders like the Large Hadron Collider in CERN are searching for

the Higgs boson, but as of now the existence of this particle remains of a theoretical

nature only. For all these reasons, the search for alternative models to the scalar

Higgs boson goes on. One of these models, Technicolour, is important to some of

the research in this thesis. We will discuss it in the following.

Technicolour

Technicolour (TC) [15, 16] is a higgsless model of EW symmetry breaking. The

EW symmetry is broken dynamically by the vev of a composite fermion condensate.

This seems much more natural, as a scalar particle has not yet been observed in

nature. In fact, two of the most successful theories of spontaneous symmetry

breaking exhibit a composite condensate, namely superconductors and chiral

symmetry breaking in QCD. The model of technicolour introduces a new gauge

interaction, the technicolour force. The simplest form is modelled on QCD and has

a gauge group of SU(NTC). Only new particles, the technifermions, are charged
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under this new force. We look at a model with fundamental technifermions UTC

(up) and DTC (down). In the following we will call the technifermions ψTC , when

we mean either up or down. The theory possesses a chiral symmetry

SU(2)L×SU(2)R for the right-handed and left-handed technifermions. Like in QCD,

the TC coupling is asymptotically free and breaks chiral symmetry dynamically by

forming a condensate at some scale ΛTC , when the coupling constant becomes

larger than 1. This condensate is of the form

〈
ULUR

〉
+
〈
DRDL

〉
6= 0. (1.20)

The condensate breaks SU(2)L×SU(2)R down to SU(2)V generating three

Goldstone bosons, the technipions π±TC and π0TC , just like in QCD. Now we can

assign weak charge to the technifermions. The SU(2)L is now gauged and the

gauged U(1)Y is included in the SU(2)R×U(1)V . The left-handed technifermions

build a weak doublet under the SU(2)L, while the right-handed up and down are

singlets. The condensate is now also charged under SU(2)L×U(1)Y . The formation

of the condensate breaks SU(2)L×U(1)Y to U(1)em and the three Goldstone bosons

are ‘eaten’ by W± and Z. They become massive. As in the case of the Higgs boson,

the W mass is MW = 1
2g2v. The vacuum expectation value v is equal to the

technipion decay constant fπTC [6], such that the mass of the W can be written in

terms of fπTC as MW = 1
2g2fπTC . To give the W its SM mass of MW ≈ 80 GeV,

the technipion decay constant has to have a value of fπTC ≈ 250 GeV. This sets the

scale at which the chiral symmetry is broken, ΛTC , to order 1 TeV. We expect a

large number of TC bound states to exist above this scale.

Technicolour gives a good explanation for the mass of the W and Z, but since there

is no scalar field available in this theory, we cannot write down Yukawa mass terms

for the SM fermions in the Lagrangian. In order to obtain masses for the SM

fermions, we can introduce a class of models called extended technicolour (ETC)

[17]. In ETC models there is a new symmetry group GETC at high energies. SM

fermions and technifermions are both in the same irreducible representation of

GETC . Therefore, there exists a gauge boson ε, which is in GETC but not in
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SU(N)c or SU(NTC). It mixes SM fermions and technifermions. The ETC gauge

group is broken at a scale ΛETC to SU(N)c and SU(NTC), which are exact

symmetries. ε becomes massive and at lower energy scales, one can write down an

effective Lagrangian for the interaction between SM fermions and technifermions

containing a 4-fermion coupling of the form

Leff ∝ g2ETC
M2
ε

ψψψTCψTC . (1.21)

As chiral symmetry is broken by the techniquark condensate, (1.21) becomes an

effective Yukawa coupling term for the SM fermions. The mass of the SM fermions

will be

mf =
1

Λ2
ETC

〈
ψTCψTC

〉
, (1.22)

This mechanism can happen for different SM fermion flavours at different scales

ΛETC , such that different flavour masses are dynamically generated. This model

provides some hints about dynamical flavour symmetry breaking. However, many

ETC models have the problem of generating many particles, which is

phenomenologically not favourable. Another problem is that it is hard in TC not to

violate EW precision restrictions. Furthermore, there needs to be a mechanism for

setting different mass scales for the flavour physics, i.e. for breaking the ETC gauge

group. It is also hard to produce a high enough top mass in ETC models, as the

energy scale of ETC breaking would need to be too low (of order ΛTC). This all

makes building a working ETC model rather complicated. In addition to these

problems ETC models can usually not avoid flavour changing neutral currents.

These are strongly suppressed in the SM and are experimentally shown to be very

small.

Walking Technicolour can solve some of these problems. In walking technicolour

theories [18, 19], the behaviour of the β-function is not assumed to be that of QCD.

The beta function can be modelled in such a way that the techniquark condensate

in (1.22) gets enhanced and a larger mass for the SM fermions is possible. The

techniquark condensate in (1.22) is evaluated at ΛETC . The relation between the

value of the condensate at ΛTC , where the chiral symmetry is broken, and at ΛETC ,
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where ETC is broken, can be determined through the renormalisation group

equations to be

〈
ψTCψTC

〉
ETC

=
〈
ψTCψTC

〉
TC

exp

(∫ ΛETC

ΛTC

dµ

µ
γ (g (µ))

)
, (1.23)

where γ is the anomalous dimension of the quark mass operator. In a theory similar

to QCD the running of the coupling and the anomalous dimension γ fall off like

1
ln(µ) [20]. Inserting this behaviour into (1.23), we get a behaviour like

〈
ψTCψTC

〉
ETC

∝
〈
ψTCψTC

〉
TC

(
ln ΛETC
ln ΛTC

)γ
. (1.24)

The condensate is more or less of the same order at the ETC scale as at the TC

scale due to the logarithmic suppression. In a walking technicolour theory the

coupling g is approximately constant at some value g∗ between the ETC and the TC

scales. This theory can still be asymptotically free and confining. In this walking

regime both the coupling constant and the anomalous dimension are approximately

constant. We can use this behaviour to evaluate (1.23) once again and get

〈
ψTCψTC

〉
ETC

∝
〈
ψTCψTC

〉
TC

(
ΛETC
ΛTC

)γ(g∗)
. (1.25)

The condensate is enhanced in walking technicolour models and so is e.g. the top

quark mass.

1.2.5 Large N Field Theories

Another method of tackling the calculations in QCD was introduced by ’t Hooft in

the 1970s [21]. As the perturbative expansion in the gauge coupling g turns out not

to be useful in all energy regimes, ’t Hooft introduced an expansion around a

different dimensionless parameter of an SU(N) gauge theory, 1/N . The idea is that

gauge theories may simplify in the limit of N → ∞ and that they have a

perturbative expansion in 1/N , which in QCD equals 1/3. Indeed, gauge theories

do simplify in the large N limit, as we will discuss here. The following discussion is

along the lines of [22] .
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The beta-function for pure SU(N) gauge theory, i.e. without fundamental matter,

is given by

β(g) = −11

3

g3

(4π)2
N + O(g5). (1.26)

β(g) has no sensible large N limit. However if we replace g → g√
N
, then β(g) does

not blow up. In the following we will be considering the limit of N → ∞ with a new

coupling constant λ ≡ g2N which we keep fixed. This limit is called ’t Hooft limit

and the constant λ the ’t Hooft coupling constant.

We will now consider Feynman diagrams of large U(N) gauge theory in double-line

notation. U(N) turns out to be equivalent to SU(N) at large N , as the correction is

proportional to 1/N . In the double-line notation a propagator of an adjoint field Φ

is represented by a propagator of fundamental representation and one of

anti-fundamental representation. In this notation a progagator of a gluon consists

of two parallel lines. Let us assume that, like in QCD, the 3-point vertex of these

fields is proportional to g and the 4-point vertex is proportional to g2. Then the

Lagrangian can schematically be written as

L ∼ Tr (dΦidΦj) + g cijkTr (ΦiΦjΦk) + g2 dijklTr (ΦiΦjΦkΦl), (1.27)

where the Φi are adjoint fields with flavour index i, the d is a spacetime derivative

and cijk and dijkl are constants. Rescaling the fields by Φ̃i ≡ gΦi gives

L ∼ 1

g2

[
Tr
(
dΦ̃idΦ̃j

)
+ cijkTr

(
Φ̃iiΦ̃jΦ̃k

)
+ dijklTr

(
Φ̃iΦ̃jΦ̃kΦ̃l

)]
. (1.28)

As mentioned above in the ’t Hooft limit 1/g2 = N/λ. We can now read the

Feynman rules directly from the Lagrangian. There is a factor of N/λ associated

with every vertex, while every propagator contributes with a factor of λ/N . For

every loop we have to sum over the different colours, so a factor of N arises. We

find that every diagram with E propagators, V vertices and F loops has a coefficient

proportional to

NV−E+FλE−V = NχλE−V , (1.29)

where χ ≡ V − E + F is the Euler character of the diagram. It is a topological
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invariant and depends only on the number of handles (genus) g in the diagram

χ = 2− 2g. Planar diagrams with g = 0 dominate all diagrammatic expansions in

the ’t Hooft limit. Furthermore, when this large number of planar diagrams are

added up, they become very dense. It looks like there is a sheet of gluons forming

between two fundamental degrees of freedom. This sheet can be thought of as a

worldsheet for perturbative string theory with strings being the fundamental

degrees of freedom. This suggests that string theories and gauge theories are

related, with large N playing a big role. Indeed, we will find that large N

supersymmetric Yang-Mills (SYM) theory is connected to string theory. It is very

important for gauge/gravity dualities, as we will also see below. But for now let us

introduce string theory first.

1.3 String Theory

String theory was born in the 1970s. In the early days of string theory it was seen

as a candidate to model strong interactions. Meson states were observed to lie on a

straight line in the angular momentum vs. mass squared plane, so called Regge

trajectories. A good model for this behaviour is a rotating open string. The mass of

the open string which is proportional to the tension of the string has the same

dependence on the angular momentum of the rotation as meson masses in Regge

trajectories. But with the establishment of the standard model and QCD as the

theory describing strong interactions, theorists lost interest in string theory. It

became more interesting for the physics community when a graviton was discovered

in the spectrum of string theory and as problems of early string theories where

solved. This section contains a brief introduction to string theory and D-branes.

For a more detailed introduction to string theory we recommend [23, 24].

1.3.1 String Action

In string theory elementary objects are taken to be one dimensional strings with

string length ls =
√
α′ rather than zero dimensional particles. The action of a
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relativistic string is given by the area of the worldsheet the string sweeps out as it

moves in time. This is the analogue to the worldline of the relativistic particle. We

are considering only bosonic strings in this part, as we add fermions at a later

point. The string action, also known as the Nambu-Goto action, is [23]

S = −T
∫
d2σ

√
−detGµν

dXµ

dσa
dXν

dσb
, (1.30)

where T = 1
2πα′ is the string tension, Gµν the background metric, σa = (τ, σ) the

coordinates on the worldsheet, the Xµ bosonic fields living on the worldsheet and

the determinant is for the indices a and b. The square root structure of this action

makes it hard to work with. We can instead introduce a new auxiliary field, the

worldsheet metric hab, and construct an equivalent action [23]

S = −T
∫
d2σ

√
−hhabGµν

dXµ

dσa
dXν

dσb
, (1.31)

which is called the Polyakov action. When we introduce this new field we also need

to introduce a constraint obtained from hab’s equation of motion to be able to

recover the Nambu-Goto action

∂aX
µ∂bXµ −

1

2
habh

cd∂cX
µ∂dXµ = 0. (1.32)

When quantising this bosonic string theory, one finds that there are tachyons

contained in the theory. In order to remove these tachyon states and to include

fermionic fields ψ, supersymmetry is introduced into string theory. It turns out that

the fermions, ψ, and the bosons, Xµ have to live in 10 dimensions to make the

theory free of tachyons and anomalies.

1.3.2 5 Theories and States of Type II

There exist five different consistent superstring theories, depending on which

boundary conditions for the strings are chosen. When solving the equations of

motion for the strings one needs for example to specify a boundary condition at the

ends of the string. We can use periodic boundary conditions which effectively
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corresponds to tying the ends of an open string together and make a closed string.

We could instead choose Neumann boundary conditions where the ends of the

string are free to move. Or we could fix the ends of the string, such that the ends

do not move. This condition is called Dirichlet boundary condition and we will see

later that there are objects in the space of string theory where the strings are

attached. These objects are called D-branes. We will come to open string theories

later but will for now focus on string theories containing closed strings only.

We are especially interested in type IIA and type IIB string theory. Both of these

theories possess closed strings only and have N = 2 supersymmetry. Both type II

theories are oriented theories which means that we can distinguish between

left-moving and right-moving modes on the strings. In the supersymmetric theory

we need to specify if we have Neveu-Schwartz (NS) or Ramond (R) boundary

conditions for each end which we tie together. Which gives us four different possible

closed string sets of states: NS-NS, R-R, NS-R and R-NS. The first two sets are

bosonic string states and the latter two are fermions. The low energy spectrum of

these theories includes in the NS-NS sector the metric tensor Gµν , the scalar

dilaton Φ and a two index anti-symmetric tensor Bµν . The metric Gµν plays the

usual role of measuring distances and lowering indices to form a scalar product. It

also naturally incorporates gravitons. This is why string theory is such a good

candidate for the theory of everything. The dilaton plays the role of the theory’s

coupling. It sets the string coupling to gs = eΦ. The anti-symmetric tensor Bµν is

the string theory generalisation of the one-form potential Aµ of electrodynamics.

The part of the action of a particle coupling to electromagnetism is
∫
dxµAµ. The

string moving in the influence of such a anti-symmetric tensor Bµν , also called the

Kalb-Ramond field, has the action
∫
dxµdxνBµν . Remember, we have integrated

here over the worldsheet and not the worldline.

Type II string theory also possesses a set of R-R states. In IIA the chirality of the

right movers and the left movers are opposite while in IIB they have the same

chirality. This results in different sets of R-R states for those theories. We will focus

on IIB in this work, which is important to the AdS/CFT correspondence applied to

3+1 dimensional field theories. Type IIB possesses a number of C(p) R-R potentials.
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These are p-forms with p =0, 2, 4, 6 and 8. C(0) and C(2) are electromagnetic duals

to C(8) and C(6) respectively. C(4) is self-dual. The low-energy limit of type IIB is

especially important to the AdS/CFT correspondence. The massless states treated

as point-like particles with only tree-level diagrams give classical supergravity.

Just for completeness we shall mention the other three string theories which are

also consistent.

Type I Superstrings have N = 1 supersymmetry. This theory includes open

and closed strings and also contains a spacetime metric, a dilaton and a

two-index antisymmetric tensor. It has unoriented strings which are charged

under a SO(32) gauge group.

Heterotic Superstrings are closed strings with N = 1 supersymmetry.

Left-movers in this theory are bosonic while right-movers are fermionic. The

strings are charged either under a SO(32) (H0 ) gauge symmetry or a E8 × E8

gauge symmetry (HE ). This theory also possesses a spacetime metric, a

dilaton and a two-index antisymmetric tensor.

When all these different consistent superstring theories were discovered, it was a

setback for scientists who wanted to find the theory of everything. How could it be

possible that there are five seemingly different consistent copies of the theory of

everything? The answer is that there are dualities which link all these theories.

After all there is just one theory called M-theory. One of these dualities is T-duality,

which we would like to introduce in the following. It not only links different string

theories but also supplies a natural way of introducing D-branes into string theory.

1.3.3 T-Duality

T-duality is a unique property of string theory and it cannot be found in field

theories where the fundamental matter consists of point-like particles. The

important difference is that strings are extended objects and thus have different

properties on different topologies. Let us suppose that we have a closed bosonic

string theory on a background with D dimensions with one of them compactified,
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e.g. on a circle with radius R. The momentum of the closed string in the

compactified direction is quantised as the momentum of a particle would be. This

leads to an additional mass term

M2
KK =

n2

R2
, (1.33)

with n being an integer number. At a large compact dimension R→ ∞ the

quantised tower of states becomes a continuous spectrum. But if we take the limit

of a very small compact dimension R→ 0 then we see that these Kaluza-Klein

modes get very heavy, such that the strings effectively do not propagate in this

direction. The degrees of freedom associated with it are no longer accessible.

This is not the whole story as we need to consider that the closed string can be

wrapped around the extra dimension. The string gains an additional term to its

momentum and mass such that the total mass squared is

M2 ∝ n2

R2
+ (ω2πR)2 T 2 =

n2

R2
+
ω2R2

α′2 , (1.34)

where the integer ω denotes the winding number. There is a symmetry in the mass

formula as we can easily see when exchanging

ω ↔ n and R↔ α′

R
. (1.35)

This symmetry is called T-symmetry. We can also match state operators to get a

T-dual theory. This implies that our theory is physically identical to a theory with

inverse radius R′ = α′

R , if we change the two quantum numbers ω and n. Looking at

the limit of R→ 0 again, we see that the Kaluza-Klein tower of states become very

massive. But the winding modes are becoming a continuous spectrum of states and

replace the momentum modes. The smallness of the compact direction does not

matter any longer, a new direction opens up. The theory still lives in the original

number of D dimensions. It is equivalent to a theory with one direction having a

very large radius R′ = α′

R → ∞.

Now we consider open strings rather than closed strings. Putting them in a
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spacetime with one compact direction yields the normal Kaluza-Klein tower of

states. On the contrary to closed strings, there is no winding number associated

with open strings, as they can unwind after being wrapped around the compact

direction. Taking the radius R→ 0 gives a theory with only D-1 dimensions for the

open strings and D dimensions for the closed strings in the spectrum. Actually,

only the endpoints of the open strings live on D-1 dimensional surfaces, but the

string itself can oscillate in all D dimensions. Such D-1 dimensional surfaces are

called D-branes, where the ‘D’ stands for Dirichlet boundary conditions. Due to

T-duality all open strings have to end on a D-brane.

When supersymmetry is added type IIA theory transforms to type IIB and vice

versa when T-duality is applied. This is due to the switching of chirality during the

T-dualisation.

1.3.4 D-Branes

D-branes are sometimes called Dp-branes, where ‘p’ stands for the D-brane’s

number of spatial dimensions. In type IIB there are only Dp-branes with odd p

allowed, while in type IIA there are branes with even p. As mentioned above,

D-branes are higher dimensional surfaces where open strings end. We can attach

additional degrees of freedom to the ends of the open strings, the so called

Chan-Paton factors. Stacking a number of N Dp-branes on top of each other, we

can label the branes in this way. Each string has two labels, one from each brane it

is attached to. These labels run from 1 to N and we find that this labelling process

gives rise to a U(N) gauge theory with gauge (open string) coupling gYM =
√
gs.

The massless low energy excitations of the strings are then the N2 adjoint degrees

of freedom of the gauge group. It is even possible to break the gauge symmetry by

moving one of the branes away from the stack. If e.g. we have N =2 branes then

the U(2) gauge group is broken to U(1)×U(1). The two strings which have both

ends on one brane remain massless, but the two strings stretching between the two

branes acquire tension and therefore mass. This is a nice string theory model of the

Higgs mechanism.
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It has been shown by Polchinski [25] that the Dp-branes are not only specific points

where open strings end, but that they also carry R-R charge and therefore source

the C-form potentials. The action of a D-brane is called the Dirac-Born-Infeld

(DBI) action. It is an analogue to the Nambu-Goto string action, as it minimises

the worldvolume of the brane. It includes the pullback of the metric Gµν and the

background Kalb-Ramond field Bµν as well as the dilaton Φ and the field strength

Fab of the U(1) gauge field living on the Dp-brane. The pullback e.g. of Gµν is

defined as

P [G]ab = Gµν
dXµ

dξa
dXν

dξb
. (1.36)

The bosonic Dirac-Born-Infeld action in string frame can be written as [8]

SDp = −µp
∫
d(p+1)ξe−Φ

√
−det (P [G+ 2πα′B]ab + 2πα′Fab)

+
(2πα′)2

2
µp

∫
P [C(p+1)] ∧ F ∧ F , (1.37)

where µp = (2π)−p α
′ −(p+1)

2 is the string tension. We included a Chern-Simons term

for Fab, which is a topological term. It will not be of relevance for the rest of this

work, so we will neglect it from now on. There can also be Chern-Simons terms for

the Kalb-Ramond field, but we will not need to consider these terms in this work.

1.4 The Gauge/Gravity Duality

In this section we will introduce the AdS/CFT correspondence, first suggested by

Maldacena in 1997 [26]. It arises when looking at the physics of D3 branes, as we

will see. On one side of the correspondence stands a conformal field theory while on

the other side is a gravity theory. We will also look at some ways of modifying the

gravity side such that the field theory side mimics some properties of QCD, rather

than being a pure gauge conformal field theory.

Firstly, let us motivate the correspondence. The correspondence has so far not been

proven, but there are some heuristic arguments why we expect it to hold. It has also

been tested and the tests have not proven it wrong. To motivate the correspondence
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we will consider a system of D3 branes from two different points of view, the string

theory view and the supergravity view following the discussion in [22].

1.4.1 The String Theory View of N D3 Branes

We start by introducing a stack of a large number N of D3 branes into a ten

dimensional space. The string excitations and interactions we expect are of three

different types. There will be interaction between open strings on the brane

described at low energy by a gauge theory as mentioned in section 1.3.4. There will

be supergravity type IIB interactions between closed strings in the background, the

so called bulk. And finally we expect interactions between open and closed strings,

e.g. when two open strings join to form a closed string that dissipate into the bulk.

Let us look at the low energy limit of this theory. The effective Lagrangian will be

of the form

L = Lopen + Lclosed + Lint. (1.38)

By low energy we mean, that the energies of the states are smaller than the string

scale E ≪ 1
ls
= 1√

α′ . However, it is more convenient to send the string (energy)

scale to infinity, or equivalently the string length to zero, α′ → 0, while keeping the

energies and all dimensionless parameters fixed. In the low energy limit only

massless string states can be excited, such that a gauge theory with massless

degrees of freedom forms. The supergravity theory describing the closed strings will

become free in the low energy limit, as the coupling between the closed strings is

proportional to the ten dimensional Newton constant G(10), which in turn is

proportional to g2s(α
′)4. Finally, the interaction term in (1.38) is proportional to

gsα
′2, which goes to zero in the low energy limit. The interaction term vanishes.

Thus we are left with two decoupled theories: the open string sector and free

supergravity. Before we discuss the supergravity view of this system, let us

introduce the fields of the open string sector in detail.

The open string theory is a U(N) gauge theory, as seen in section 1.3.4. The U(N)

factorises into SU(N)×U(1), where the U(1) is related to a centre of mass motion of

the stack of N D3 branes. Thus, the gauge group can be treated as a SU(N). The
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field content of the gauge theory on the D3 brane can be obtained by a dimensional

reduction of an N = 1 gauge multiplet in ten dimensions to four dimensions. The

arising gauge theory is N = 4 super Yang-Mills (SYM) theory in 3+1 dimensions.

The low energy field content on the brane is a massless gauge field Aµ (µ = 0 . . . 3),

six real massless scalars and four massless Weyl fermions, the gauginos. The six

scalars arise from six degrees of freedom from the ten dimensional gauge field. The

scalars and gauginos transform via a global SU(4) R-symmetry. The scalars are in a

6 of SU(4) and the gauginos in a 4 of SU(4), while the gauge field is a singlet. All

fields are in the adjoint representation of the gauge group. The one-loop beta

function of N = 4 SYM is

β(g) =
g3

16π2

(
11

3
× 1×N − 2

3
× 4×N − 1

6
× 6×N

)
= 0, (1.39)

where the first term comes from the gauge field, the second from the gauginos and

the last from the scalar fields. This calculation yields zero, as all the fields are in

the adjoint representation. In fact, it can be shown that the beta-function vanishes

to all orders of perturbation theory. This feature leads to more global symmetry in

the theory. N = 4 SU(N) SYM is not only invariant under the usual Poincaré

transformation, but is also scale invariant and invariant under special conformal

transformations. Therefore, the theory is a conformal field theory (CFT) with the

global conformal symmetry group SO(4,2).

1.4.2 The Supergravity View of N D3 Branes

Embedding the stack of D3 branes into a ten dimensional background has the

consequence of warping the spacetime. Branes have tension and thus act as a Tµν

term in a gravitational theory. They are also the source of some of the supergravity

fields. D3 branes are solutions [27] of supergravity with the metric

ds2 =
(
1 + R4

r4

)− 1
2
ηijdx

idxj +
(
1 + R4

r4

) 1
2 (
dr2 + r2dΩ2

5

)
(1.40)

with
∫
S5
dC(4) = N and R4 = 4πgsNα

′2, (1.41)
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where ηij is the Minkowski metric and dΩ2
5 is the line element of a 5-sphere. We

take now the point of view of an observer at infinity. As g00 is not constant, the

energy Er of an object observed at some point r is red-shifted for an observer at

infinity. The relation between the energies is E∞ =
(
1 + R4

r4

)− 1
4
Er. This means

that an object with the same energy would have lower and lower E∞ as we bring it

closer and closer to r = 0. Now we take the same low energy limit as before

(α′ → 0). The low energy spectrum of the theory will have two sets of different

excitations. Firstly there are the low energy (long wavelength) excitations in the

bulk. Then there are excitations of any kind of energy near r = 0, as the energies

are all very small for the observer at infinity. At the low energy limit these two

kinds of excitations become decoupled. It becomes harder for the excitations near

r = 0 to climb the potential well genarated by the D3 branes. And the bulk

excitations decouple, because their wavelengths become larger than the

gravitational extent of the D3 brane. Thus, the low energy supergravity picture of

the D3 branes contains two decoupled systems. The first system is free low energy

type IIB supergravity in the bulk and the second one is type IIB supersymmetric

string theory near r = 0 or in other words near the horizon. The near horizon limit

r ≪ R of the metric in (1.40) is

ds2 =
r2

R2
ηijdx

idxj +
R2

r2
dr2 +R2dΩ2

5. (1.42)

This is the metric of AdS5×S5. The AdS5 stands for a five dimensional Anti-de

Sitter space with radius R. AdS5 space has a boundary at r → ∞. This boundary

has the metric of four dimensional Minkowski space. The S5 is a five-sphere with

radius R.

We found two different descriptions of the same system, the string and the

supergravity description. In both descriptions we find two decoupled theories, one

of which is low energy type IIB supergravity. The AdS/CFT correspondence is

built on the conjecture that when one part of the two descriptions is the same, the

other part should also match. It conjectures that the CFT N = 4 SU(N) SYM in

3+1 dimensions is dual to type IIB superstring theory on an AdS5×S5 spacetime.
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This duality means that the two different theories describe the same physics. The

AdS/CFT correspondence is a open-closed string duality, as one of the dual theories

consists of an open and the other one of a closed string theory.

1.4.3 Symmetry Matching

Another way of arguing that the N = 4 SU(N) SYM in 3+1 dimensions and type

IIB superstring theory on an AdS5×S5 could describe the same physics is to look at

the global symmetries in both theories. We have already discussed the symmetries

of N = 4 SU(N) SYM in section 1.4.1. There is a SU(4) R-symmetry present and

the conformal symmetry of SO(4,2). Now looking at the geometry of AdS5×S5, we

find that the AdS5 has a spacetime symmetry of SO(4,2), as it can be constructed

as a surface embedded into a 2+4 dimensional spacetime. The five-sphere has an

isometry of SO(6) ≃ SU(4). Thus we can match the global symmetries on either

side of the correspondence to each other. We can consider the theories as dual.

1.4.4 The Holographic Duality

Let us have a closer look at the nature of the correspondence now. We have a CFT

in 3+1 dimensions, which is dual to a closed string theory (a theory of gravity) in

9+1 dimensions. Five of these 9+1 dimensions on the gravity side are compact, so

they do not add much to the theory other than a Kaluza-Klein tower of states. So

effectively, the correspondence is between a 3+1 dimensional gauge theory and a

4+1 dimensional string theory. These kind of dualities are called holographic

dualities. Information in a d-dimensional theory is encoded in a lower dimensional

theory, like in a hologram. The CFT can be thought of as living on the boundary of

AdS5.

The additional dimension is the radial direction r of the AdS space. But what does

this extra direction correspond to in the gauge theory? To answer this question, we

need to look at the SO(4,2) global symmetry on both sides of the correspondence.

In detail, let us look at dilatations (xi → eαxi) in the gauge theory. The action of

the CFT is invariant under these rescaling transformations, as it is a symmetry of
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the field theory. If we e.g. introduce a massless scalar field φ into the field theory

and look at its kinetic term

S =

∫
d4x(∂φ)2, (1.43)

we see that under dilatations the φ needs to be scaled as φ→ e−αφ to keep the

action invariant. This means φ has energy dimension. On the gravity side of the

correspondence, the SO(4,2) is a global symmetry of the metric. Thus rescaling

(xi → eαxi) should keep the metric in (1.42) invariant. For the metric to be

invariant the radial direction r needs to have scaling properties of r → e−αr.

Therefore, r has energy dimension and not dimension of a distance like the xi. One

can think of r as the renormalisation scale of the CFT. This is a quite intuitive

result in a sense, as we have seen before that the energy of an object seen by an

observer at the boundary will be red-shifted. If we place the observer on a point

with smaller r the energy will be less red-shifted.

1.4.5 The Parameters of the AdS/CFT Correspondence

Let us now investigate which parameter space will be of use. The strongest form of

the correspondence is that N = 4 SU(N) SYM in 3+1 dimensions and type IIB

superstring theory on AdS5×S5 are dual to each other throughout parameter space.

Now this is not testable, as we cannot do perturbation theory in the gauge theory

for arbitrary coupling. There is also no method of quantising string theory on a

curved background with RR-flux. We need to make some approximations to be able

to do calculations. In order to reach the perturbative regime on the gauge theory

side, the ’t Hooft coupling needs to be small

λ = g2YMN = gsN =
R4

4πl4s
≪ 1, (1.44)

where we have used (1.41). We also take a large N limit to be able to only have

planar diagrams in the gauge theory. It is only possible to do calculations on the

gravity side when we can approximate string theory with supergravity. This

classical theory of gravity becomes reliable when the the radius of AdS is much
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larger than the string length

R4

l4s
= 4πgsN = 4πg2YMN = 4πλ≫ 1. (1.45)

In this approximation N needs to be large as well, because gs needs to be small in

order to preserve the classical supergravity limit. In this regime the ’t Hooft

coupling constant is very large, so we can see that these two regimes are not

compatible. If the gauge theory side is weakly coupled, the gravity side is strongly

coupled and vice versa. This leads to the conclusion that the duality is a

weak-strong duality. This property makes it hard to prove the duality in any kind of

regime, because it is always hard to calculate on at least one of the sides. However,

this also means that we found a tool which we can use to extract information about

a strongly coupled field theory by using simple classical supergravity. This is

exactly the tool we will be using during the remainder of this work. We will assume

that gs ≪ 1 and that we have a large number of colours N in our gauge theory.

1.4.6 Field-Operator Matching

Having established the nature of the duality we would like to be able to do some

calculations with it. A field-operator map has been developed in [28] and [29] to

allow one to extract some physical values from the duality. The authors of [28]

suggest a mathematical formulation for the duality. It states that the generating

functional of the correlation functions of operators O with sources φ0(~x) in the CFT

is the same as the supergravity partition function, where the values for the fields

φ(r, ~x) are φ0(~x) at the boundary of AdS5×S5

〈
e
∫
ddxφ0(~x)O(~x)

〉

CFT
= ZSugra|φ(∞,~x)=φ0(~x). (1.46)

In other words (1.46) suggests that the boundary values φ0 of supergravity fields

φ(r, ~x) which live in the bulk are the sources of operators O in the CFT.

We will now look at an explicit example of this procedure, a supergravity scalar

field φ with mass m in AdS5. The ten dimensional supergravity is Kaluza-Klein
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reduced to five dimensions to obtain the five dimensional field. The action is

S =

∫
d4xdr

√−g
(
gab∂aφ∂bφ−m2φ2

)
(1.47)

where gab is the metric of the AdS5. Solving the equations of motions for the radial

dependence of the scalar φ(r) gives a solution of the form

φ(r) = A
1

r2+
√
4+m2R2

+B
1

r2−
√
4+m2R2

, (1.48)

with factors A and B. This can be reformulated as

φ(r) = A
1

r∆
+B

1

r4−∆
(1.49)

with ∆ = 2 +
√
4 +R2m2. The supergravity field does not carry a mass dimension,

whereas r has mass dimension 1. This implies that A and B carry mass dimensions

of ∆ and 4−∆ respectively. Now let us look at the near horizon value of φ(ǫ)

where ǫ→ ∞. The second part of (1.48) will dominate the expression. Formally we

should replace the boundary condition on the right-hand side (RHS) of (1.46) with

the limit ǫ→ ∞ of

φ(ǫ, ~x) = ǫ∆−4φ0(~x), (1.50)

where we have identified B with the source φ0(~x) of an operator O. Naturally the

operator O has dimension ∆. It turns out that we can identify A in (1.49) with the

vev of the operator A = 〈O〉. We have found a relation between the mass m of the

scalar field and the mass dimensions ∆ of the corresponding operator. Note, that

when the gravity scalar field has a small mass-squared (−4λR2m2λ− 3), it can be

associated with field theory operators of two possible dimensions [30]. Here, this

means that either A or B can be interpreted as 〈O〉. There is a further constraint

on mapping the scalar field to an operator and vice versa, as both need to be in the

same irreducible representation of SO(6) ≃ SU(4)R.
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1.4.7 Adding Flavour

Now we have got an exciting method which allows us to explore properties of N = 4

SU(N) SYM with N → ∞ in the strong coupling regime. Physicists hope to be able

to describe strongly coupled QCD with this method one day. This is a hard task, as

these two field theories differ in many aspects. QCD only has 3 flavours rather than

infinitely many, it has no supersymmetry, it has a running coupling rather than

being conformal and it possesses quarks. We hope that we can modify the gravity

side of the correspondence to be able to make the gauge theory side more QCD like.

Even though we have not succeeded in doing this completely, there is hope that we

can describe e.g. phenomena which do not depend on the differences of the theories

or phenomena which display common features of strongly coupled theories. It is

indeed possible to introduce quarks and a running coupling into the correspondence.

Let us first introduce quarks and briefly mention the running of the coupling later.

As mentioned above N = 4 SU(N) SYM only has adjoint degrees of freedom.

Quarks are in the fundamental representation of the gauge group, so they can be

represented by adding strings with only one end on a colour D3 brane as done in

[31] and [32]. This can be achieved by introducing a different kinds of D-brane. The

fundamental degrees of freedom have their other end attached to new flavour

branes. These new kind of D-branes break some of the supersymmetry. If we

introduce D7 branes the quarks are found in N = 2 hypermultiplets.

The strings stretching between flavour branes holographically describe mesonic

operators and their sources. In the future we will mainly consider the case of

introducing a number Nf of D7 branes [33, 34, 31], where Nf stands for the number

of flavours. The number Nf of D7 branes needs to be small compared to the

number of D3 branes to avoid backreaction on the geometry resulting from the D3

branes. As usual we work in the ’t Hooft limit and at low energies (i.e. α′ → 0) to

avoid interactions between the D7-D7 strings and the other strings. In this set-up

the D3 branes can be replaced by AdS5×S5 space on the gravity side and the D7

branes are referred to as probe branes. This approximation is called the quenched

approximation on the field theory side. It is used in the context of lattice field
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theory when considering a theory with the dynamics of gluonic degrees of freedom,

their effect on the quarks, but not the effect of quarks on the gluons. The D7

branes can minimise their worldvolume in the geometry, such that a stable

configuration is reached. The low energy fluctuations of the D7 branes are dual to

meson-fluctuation, while the gauge fields on the D7 brane are dual to global flavour

currents on the field theory side.

Let us insert the D7 brane into the 01234567 directions of the ten dimensional

space, while the D3 branes lie in the 0123 directions as seen in table 1.1. Here the 0

direction is time. It is apparent that the original spacetime symmetry of SO(6) is

0 1 2 3 4 5 6 7 8 9

D3 X X X X

D7 X X X X X X X X

Table 1.1: The extension of the D3 and D7 branes in flat space-
time coordinates.

broken to SO(4)×SO(2). The SO(4) rotates the 4567 directions and the SO(2)

rotates the 89 directions. These spacetime symmetries are also present on the field

theory side of the duality.

Now we can find the equation of motion for the D7 brane, which is called the

embedding equation, as it determines where there are stable configurations of the

D7 lying in the spacetime. We will follow [8] for this analysis. We will work in the

string frame and assume that the dilaton is constant, i.e. the string coupling is

constant. The metric in (1.42) can be rewritten as

ds2 =
r2

R2
ηijdx

idxj +
R2

r2
(
dρ2 + ρ2dΩ2

3 + dw2
5 + dw2

6

)
, (1.51)

with r2 = ρ2 + w2
5 + w2

6 and ρ2 = w2
1 + w2

2 + w2
3 + w2

4. The D7 is now embedded

along the gauge theory xi, the 3-sphere Ω3 and the new radial direction of the

3-sphere ρ. The EOM is obtained from the DBI action

SD7 = −µ7
∫
d8ξ
√
−det (P [G]ab + 2πα′Fab) +

(2πα′)2

2
µ7

∫
P [C(4)] ∧ F ∧ F ,

(1.52)

with µ7 =
(
(2π)2 gsα

′4
)−1

. If we consider a static D7 brane with no gauge field Fab
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on its worldvolume the action is proportional to

SD7 ∝ −µ7
∫
d8ξ
√
1 + (∂ρw5)2 + (∂ρw6)2, (1.53)

We find that there are solutions with w constant which minimise this action, where

w denotes either w5 or w6. The D7 branes are indeed localised in what we called

the 89 directions above as proposed in table 1.1. The geometrical set-up can be

seen in figure 1.2.

Figure 1.2: A schematic of the D3/D7 showing our conventions.
The D3-D3 strings generate the N = 4 theory, the D3-D7 string
represent the quarks and D7-D7 strings describe mesonic operators.

When the D7 branes are separated by a distance L in the w5 or w6 direction, the

SO(2)∼U(1)R is broken. This is an axial symmetry on the field theory side.

Simultaneously we find that the D3-D7 strings get a finite mass due to their tension.

In the field theory this corresponds to a quark mass of mq = L/2πα′. We can

interpret this finite quark mass as breaking the chiral U(1)R symmetry, such that

we interpret this axial U(1) as our chiral symmetry in this system. In general the

solutions minimising the action (1.53) have asymptotically with ρ→ ∞ the form

w = L+
c

ρ2
+ . . . , (1.54)

where up to some factors of of 2πα′, c can be interpreted as the chiral condensate

on the field theory side, as it must be a vev of an operator with the same

symmetries as the mass and mass dimension 3. This fermionic bilinear operator

also breaks chiral symmetry. Note that the generation of a condensate is forbidden

by supersymmetry.

It is interesting to look at the induced metric on the D7 brane when it is separated

32



by a length L from the stack of D3 branes. The induced metric is

ds2 =
ρ2 + L2

R2
ηijdx

idxj +
R2

ρ2 + L2
dρ2 +

R2ρ2

ρ2 + L2
dΩ2

3. (1.55)

This is the metric of AdS5×S3 in the limit of ρ→ ∞, which is the UV regime on

the field theory side. For ρ→ 0 (i.e. r2 = L2) the radius of the 3-sphere shrinks to

zero size. This is the IR limit in the field theory. From the field theory point of

view we would expect that heavy quarks are absent in the IR of the theory and

present in the UV. This is precisely what is happening here, as the D7 branes seem

to vanish due to this shrinking of the 3-sphere radius in the IR.

Chiral symmetry in this model can be broken by generating a chiral condensate.

One method of doing so is by introducing a non-trivial dilaton profile depending on

the radial coordinate of AdS in the background [35, 36, 37]. This introduces a

running of the coupling on the field theory side. We will not go into detail here, but

postpone the discussion to chapter 2. A condensate can also be generated by

introducing a magnetic field on the flavour brane’s surface [38]. Due to the

magnetic field the action of the flavour brane blows up when approaching r = 0,

such that the brane bends around the origin creating a slope at infinity and

therefore a condensate. We discus this topic further in chapter 3. These two

methods will be very useful to us for the remainder of this work.

1.4.8 Mesons Fluctuations

Now we will briefly describe how to calculate mesonic fluctuations and their mass

spectrum. The aim of this section is to sketch the calculation rather than going into

much detail. We will focus on scalar fluctuations (fluctuations with spin equal to

zero) on the system introduced above. We will follow the calculations in [32] and [8]

closely.

Scalar fluctuations correspond to fluctuations of the D7 in the transverse directions,

i.e. w5 or w6. The embedding including the fluctuations is

w6 = 0 + δw6 , w5 = L+ δw5 . (1.56)
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It is sufficient to work in quadratic order of the fluctuations here, as the

fluctuations are taken to be very small. The relevant part of the Lagrangian density

for the scalars is then

L = −µ7
√

−detgab

(
1 +

1

2

R2

r2
gcd (∂cδw5∂dδw5 + ∂cδw6∂dδw6)

)
(1.57)

Note that we used the induced metric gab from (1.55) here. We work in the same

coordinates as above such that r2 = ρ2 + L2. The equation of motion for δw5 is

independent of δw6 and vice versa. These equations of motion are

∂a

(
ρ3
√
ǫ3

ρ2 + L2
gab∂bΦ

)
= 0 (1.58)

where ǫ3 is the metric of the unit 3-sphere and Φ stands for either fluctuation. The

equation of motion can be expanded as

R4

(ρ2 + L2)2
∂µ∂µΦ+

1

ρ3
∂ρ
(
ρ3∂ρΦ

)
+

1

ρ2
∇i∇iΦ = 0 (1.59)

where ∇i is the covariant derivative on the 3-sphere. We can now use separation of

variables to solve this differential equation. We can write the fluctuations as

Φ = φ(ρ)eik·x Yl(S3) (1.60)

where the Yl(S3) are the scalar spherical harmonics on the 3-sphere. They satisfy

∇i∇iY
ℓ = −ℓ(ℓ+ 2)Yℓ (1.61)

In the xi directions these fluctuations are plane wave excitations. The meson mass

is defined as M2 = −k2, where k is the wavevector from (1.60). This is the usual

ansatz for finding this type of meson fluctuation. After redefinition of variables

̺ =
ρ

L
, M̄2 =

−k2R4

L2
, (1.62)
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the equation for φ(ρ) becomes

∂2̺φ+
3

̺
∂̺φ+

(
M̄2

(1 + ̺2)2
− ℓ(ℓ+ 2)

̺2

)
φ = 0. (1.63)

This equation can be solved using hypergeometric functions. We impose

normalisability such that the solution is

φ(ρ) =
ρℓ

(ρ2 + L2)n+ℓ+1
F
(
−(n+ ℓ+ 1),−n; ℓ+ 2;−ρ2/L2

)
(1.64)

with

M̄2 = 4(n+ ℓ+ 1)(n+ ℓ+ 2). (1.65)

The four dimensional mass spectrum of the scalar fluctuations can now be

calculated using (1.62)

Ms(n, ℓ) =
2L

R2

√
(n+ ℓ+ 1)(n+ ℓ+ 2) (1.66)

The normalisable modes have a mass spectrum which is discrete. It is interesting to

note that the mass is proportional to the separation L of the D3 and D7. It sets the

mass scale for the mesonic fluctuations.

1.4.9 Holographic Confinement and Finite Temperature

We now have a way of describing holographic quarks and holographic mesons, but

are the quarks confined like they are in QCD? One way of investigating if the

quarks are confined is to put two heavy quarks into the geometry and look at their

interaction energy as done in [39, 40]. In the analysis of [39] a single probe-D3

brane is introduced at large radial distance from the stack of N D3 branes. Adding

two strings stretching between the probe-D3 and the stack gives a heavy quark and

anti-quark. There is no interaction between the quarks in this configuration. The

authors of [39] found that it is energetically more favourable for the two strings to

join up creating a single string with both ends on the probe-brane. They used the

Nambu-Goto action to find the favourable configuration. The energy of this
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configuration depends on the separation L of the endpoints (i.e. the separation of

the quarks). The energy is then

E = −4π2 (2gYMN)
1
2

Γ
(
1
4

)4
L

. (1.67)

The energy goes as 1/L, which means there are strongly coupled Coulomb

interactions between the quarks. They form bound states similar in nature with

atomic bound states. This 1/L factor comes from the conformal invariance of the

gauge theory. It was also found that the larger the distance L the further the string

dips into the geometry towards the origin where the stack of N D3 branes is located.

Now we can ask ourselves what happens to the confinement when a temperature is

added to the system. A temperature is added by replacing the AdS5 part of the

geometry with the AdS5 Schwarzschild black hole geometry

ds2 =
r2

R2

(
−
(
1− r4H

r4

)
dt2 + dx23

)
+
R2

r2

(
1− r4H

r4

)−1

dr2 , (1.68)

where rH is the position of the black hole horizon. The Hawking temperature of the

black hole is proportional to its horizon

T =
rH
πR2

. (1.69)

Witten identified this as the thermal description of the gauge theory in [28]. If we

think about the radial direction as energy scale, we will see that the black hole cuts

off all energies below rH , so it is natural to identify it with the temperature. The

black hole is the natural candidate since it has intrinsic thermodynamic properties

such as entropy and temperature.

Now looking at gluonic physics we will find that at zero temperature the theory is

conformal. At finite temperature there is a scale to break this conformality, such

that the gluonic degrees of freedom are deconfined even for infinitesimal T . The

equations describing this theory now display N degrees of freedom, while this factor

was not found in the case of zero temperature. We can also investigate mesons in a

finite temperature background. In this theory mesons are not confined in the
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traditional meaning of the word. As the mesonic string dips further into the

geometry when separating the ends, it reaches the horizon eventually. As soon as

the string touches the black hole the two strings separate and cannot interact any

longer. This means that a finite amount of energy can separate the quarks. In this

sense the meson bound states are closer in spirit to atomic bound states than

QCD-like mesons. Nevertheless, we can ask if the theory exhibits stable bound

states in the finite temperature regime. To answer this question we need to

investigate the embedding of the flavour branes. The embeddings of the D7 branes

calculated in section 1.4.7 change. In the UV they are still flat with separation L

from the ρ axis. Remember that this separation is dual to the quark mass. Near the

origin the embeddings either fall into the black hole for small L (i.e. mq) or they

avoid it for large L (i.e. mq). The embeddings not touching the black hole are

called Minkowski embeddings while the others are called black hole embeddings.

Meson fluctuations can be calculated for both cases. The energy of the mesonic

fluctuations on the black hole embeddings dissipate into the black hole, the mesons

melt. There is a critical value of the quark mass for the transition between stable

mesons (Minkowski embedding) and melted mesons (black hole embedding) [41].

We would like to add that holographic dualities have been used to study transport

properties at finite temperature [42, 43]. Holographic mesons have also been widely

studied and for a detailed review we recommend [8]

We will use these methods we have introduced in the following chapters to

investigate properties of QCD. We will manipulate the gravity side of the duality to

introduce QCD-like physics on the gauge theory side. Although it is somewhat hard

to dial a particular gauge theory, we instead work in tractable models that lie close

to N = 4 super Yang-Mills theory and hope that these gauge theories show similar

behaviours to realistic cases. In the cases we will be looking at the UV behaviour of

our gravity side is AdS5×S5, such that in the UV the gravity side is dual to N = 4

super Yang-Mills theory.
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Chapter 2

Holographic Integral Equations

and Walking Technicolour

The D3/D7 system in AdS-like spaces has allowed the study, through gauge/gravity

duality or holography, of many aspects of strongly interacting gauge theories with

quarks [8]. The system has been used to study chiral symmetry breaking in the

presence of a running coupling [35, 36, 37] or a magnetic field [38]. In this chapter

we wish to present a very simple model of chiral symmetry breaking and the

associated Goldstone boson (essentially pion) in this system. The simple model

consists of embedding the D7s in pure AdS5 × S5 but with an arbitrary dilaton

profile to represent the running coupling of the dual gauge theory. This basic

model, although the metric is not affected by the dilaton’s presence, provides a

simple encapsulation of the chiral symmetry breaking mechanism in the D3/D7

system. In particular it will allow us to elucidate in the holographic equations of

motion why there is a Goldstone boson present for the symmetry breaking. Further,

it will allow us to write integral equations for the parameters of the low energy

chiral Lagrangian involving just the form of the running coupling and the quark

self-energy function (the D7 brane embedding function). These equations are very

similar in spirit to the Pagels-Stokar formula [44] for the pion decay constant, fπ,

and constituent quark model [45] estimates of the chiral condensate and so forth.

The formulae we will present for these low energy parameters allow one to develop
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intuition about how the low energy theory depends on the underlying gauge

dynamics. We explore this and as a particular example look at walking technicolour

theories to see if the holographic model matches the folklore from constituent quark

models. Our results support the expectation that a walking regime will enhance the

quark condensate relative to the pion decay constant.

In the final section of this chapter we will perform a similar study for the

non-supersymmetric D3/D5 system with a four dimensional overlap. We interpret

this system as a walking gauge theory where the quark condensate has a dimension

of 2 +
√
3 in the far UV. This theory is not of any obvious phenomenological use

but the walking paradigm does seem to explain the physics of the system.

2.1 A Simple D3/D7 Chiral Symmetry Breaking Model

We will consider a gauge theory with a holographic dual described by the Einstein

frame geometry AdS5 × S5

ds2 =
1

guv

[
r2

R2
dx24 +

R2

r2
(
dρ2 + ρ2dΩ2

3 + dw2
5 + dw2

6

)]
, (2.1)

where we have split the coordinates into the x3+1 of the gauge theory, the ρ and Ω3

which will be on the D7 brane worldvolume and two directions transverse to the

D7, w5, w6. The radial coordinate, r2 = ρ2 + w2
5 + w2

6, corresponds to the energy

scale of the gauge theory. The radius of curvature is given by R4 = 4πg2uvNα
′2 with

N the number of colours. g2uv is the r → ∞ value of the dilaton. In addition we will

allow an arbitrary running as r → 0 to represent the gauge theory coupling

eφ = g2YM (r2) = g2uv β(ρ
2 + w2

5 + w2
6) (2.2)

where the function β → 1 as r → ∞. The r → ∞ limit of this theory is dual to the

N = 4 super Yang-Mills theory and g2uv is the constant large r asymptotic value of

the gauge coupling.

We will introduce a single D7 brane probe [31] into the geometry to include quarks
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— by treating the D7 as a probe we are working in a quenched approximation

although we can reintroduce some aspects of quark loops through the running

coupling’s form if we wish (and know how). Although this system only has a U(1)

axial symmetry on the quarks corresponding to rotations in the w5 − w6 plane we

believe it is a good setting for studying the dynamics of the quark condensation.

That process is driven by the strong dynamics rather than the global symmetries,

i.e. the dynamics of the formation of the quark condensate is flavour independent,

so the absence of a non-Abelian axial symmetry should not be important1.

We must find the D7 embedding function e.g. w5(ρ), w6 = 0. The Dirac-Born-Infeld

action in the Einstein frame is given by

SD7 = −T7
∫
d8ξeφ

√
−detP [G]ab

= −T7
∫
d4x dρ ρ3β

√
1 + (∂ρw5)2

(2.3)

where T7 = 1/(2π)7α
′4 and T7 = 2π2T7/g

2
uv when we have integrated over the

3-sphere on the D7. The equation of motion for the embedding function is therefore

∂ρ

[
βρ3∂ρw5√
1 + (∂ρw5)2

]
− 2w5ρ

3
√
1 + (∂ρw5)2

∂β

∂r2
= 0. (2.4)

The UV asymptotic limit of this equation, provided the dilaton returns to a

constant so the UV dual is the N = 4 super Yang-Mills theory, has solutions of the

form

w5 = m+
c

ρ2
+ ... (2.5)

where we can interpret m as the quark mass (mq = m/2πα′) and c is proportional

to the quark condensate as we will see below.

The embedding equation (2.4) clearly has regular solutions w5 = m when g2YM is

independent of r — the flat embeddings of the N = 2 Karch-Katz theory [31].

Equally clearly if ∂β/∂r2 is non-trivial in w5 then the second term in (2.4) will not

vanish for a flat embedding. We conclude that for any non-trivial gauge coupling

1The Sakai Sugimoto model [46] is an example of a gravity dual with a non-Abelian chiral sym-
metry but it is fundamentally five dimensional and a clear prescription for including a quark mass
is lacking - the result is that we would not know how to do this analysis in that model since we can
not identify the quark self-energy nor the quark condensate.
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Figure 2.1: The D7 brane embeddings/quark self-energy plots for
the coupling ansatz in (2.6) - in each case the parameter a = 3
and from left to right: λ = 3.19,Γ = 1; λ = 4.55,Γ = 0.3; λ =
10.4,Γ = 0.1.

the asymptotic solutions must contain the parameter c, a quark condensate.

Whether c→ 0 or not as m→ 0 depends on the precise form of the running

coupling chosen (note that w5 = 0 is always a solution of (2.4)). However, if the

coupling grows towards r = 0 as one would expect in a confining theory then there

is clearly a growing penalty in the action for the D7 to approach the origin and we

expect c to be non-zero. So there is chiral symmetry breaking present for m = 0.

As an example one can consider a gauge coupling running with a step function of

the form

β = a+ 1− a tanh [Γ(r − λ)] . (2.6)

This form introduces conformal symmetry breaking at the scale Λ = λ/2πα′ which

triggers chiral symmetry breaking. The parameter a determines the increase in the

coupling across the step but the solutions have only a small dependence on the

value chosen because the area of increasing coupling is avoided by the D7 brane.

An extreme choice of the profile is to let the coupling actually diverge at the barrier

to represent the one loop blow up in the running of the QCD coupling - the

solutions show the same behaviour as for a finite step provided the transition is not

infinitely sharp. The parameter Γ spreads the increase in the coupling over a region

in r of order Γ−1 in size - the effect of widening the step is to enhance the tail of the

self-energy function for the quark. We show the symmetry breaking embeddings in

figure 2.1. We will interpret the D7 embedding function as the dynamical
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self-energy of the quark, similar to that emerging from a gap equation. The

separation of the D7 from the ρ axis is the mass at some particular energy scale

given by ρ — in the N = 2 theory where the embedding is flat the mass is not

renormalised, whilst with the running coupling an IR mass forms — we have picked

parameters in figure 2.1 that generate the same dynamical quark mass at ρ = 0. We

call the embedding function Σ0 below.

2.1.1 Goldstone Mode

The embedding above lies at w6 = 0 but there is clearly a set of equivalent solutions

given by rotating that solution in the w5 − w6 plane. That degeneracy of the

solutions is the vacuum manifold. We therefore expect a Goldstone mode associated

with a fluctuation of the vacuum in the angular direction. For small fluctuations

about the embedding above we may look at fluctuations in w6. The action

expanded to quadratic order for such a fluctuation is

S7 = −T7
∫

dρdx4ρ3β
√
1 + (∂ρΣ0)2

(
1 +

∂r2β

β
w2
6

+
1

2

(∂ρw6)
2

1 + (∂ρΣ0)2
+

1

2

R4

r4
(∂µw6)

2 + ...

)
(2.7)

note r, β and ∂r2β are evaluated on the solution Σ0 here and henceforth.

As usual we will seek solutions of the form w6(ρ, x) = fn(ρ)e
ik.x, k2 = −M2

n. Here

n takes integer values - the solutions are associated with the Goldstone boson and

its tower of radially excited states. The fn satisfy the equation

∂ρ(
βρ3∂ρfn√
1 + (∂ρΣ0)2

)− 2ρ3
√

1 + (∂ρΣ0)2(∂r2β)fn +
1

r4
ρ3β
√
1 + (∂ρΣ0)2R

4M2
nfn = 0

(2.8)

The presence of a Goldstone boson is now immediately apparent - there is a

solution with M2
n = 0 and f0 = Σ0. With these substitutions the equation is exactly

the embedding equation (2.4), a result of the symmetry between w5 and w6. This is

the pion like bound state of this theory — although there is only a broken U(1)

axial symmetry, the absence of anomaly effects at large N make it closer in nature
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to the pions than the η′ of QCD.

Naively the argument just given makes it appear there is a massless Goldstone for

any w5 solution including those where there is an explicit quark mass in the

asymptotic fall-off in (2.5). This is not the case though because to interpret the

solution as a Goldstone requires f0 to fall off at large ρ as 1/ρ2 (i.e. we only allow

fluctuations of the normalisable mode). The naive massless solution is related to

the fact that the theory has a spurious symmetry where ψ̄LψR → eiαψ̄LψR and

simultaneously m→ e−iαm. This spurious symmetry must be present in the string

construction. The naive massless solution would also not be normalisable.

2.1.2 The Low Energy Chiral Lagrangian

The Goldstone field’s low energy Lagrangian must take the form of a chiral

Lagrangian, non-linear realisation of the broken symmetry [47]. We can substitute

the form wa6 = f0(ρ)π
a(x) = Σ0π

a(x) into (2.7) and integrate over ρ to obtain this

Lagrangian, where the x-directions are the directions of the gauge theory

L = −T7
∫

dρρ3β
√
1 + (∂ρΣ0)2

(
1 +

1

2

R4

r4
Σ2
0 (∂µπ

a(x))2

+
1

4

R4

r4

(
2

β

dβ

dr2
Σ4
0 +

Σ2
0(∂ρΣ0)

2

1 + (∂ρΣ0)2

)
Tr
(
[∂µΠ,Π]

2
)
+ ...

)
.(2.9)

We have used the equation of motion (2.8) to eliminate the second and third terms

in (2.7) in the massless limit. We have also included the [∂µΠ,Π]
2 term from the

fourth order expansion from which we will determine fπ, where Π = πa(x)τa and τa

are the generators of U(Nf ).

This should be compared to the standard chiral Lagrangian form where

U = exp(2iΠ/fπ)

L = V0 +
f2π
4
Tr
(
∂µU

†∂µU
)
+ O(p4)

= V0 +
1

2
(∂µπ

a(x))2 +
1

48f2π
Tr
(
[∂µΠ,Π]

2
)
+ O(π(x)6) + O(p4) (2.10)

where V0 is the vacuum energy and fπ is the pion decay constant.
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We must rescale π(x) in (2.9) to the canonical normalisation in (2.10) and then we

can read off an integral expression for the pion decay constant. To ensure all factors

of α′ are absent from physical answers, as they must be, we must express our

answer as the ratio of two physical scales. Here we will use the scale Λ in the gauge

coupling running (2.6) that encodes the scale of the chiral symmetry breaking as

our reference - we have

f2π
Λ2

=
−N

48π2λ2

[∫
dρρ3β

√
1 + (∂ρΣ0)2

Σ2
0

(ρ2+Σ2
0)

2

]2

[∫
dρρ3β

√
1 + (∂ρΣ0)2

1
4(ρ2+Σ2

0)
2

(
2
β
dβ
dr2

Σ4
0 +

Σ2
0(∂ρΣ0)2

1+(∂ρΣ0)2

)]

∣∣∣∣∣∣∣
r2=ρ2+Σ2

0

(2.11)

Note that ∂r2β is typically negative for the embeddings we have explored above so

that f2π is positive. Employing the embedding equation (2.4) the denominator may

be simplified leaving

f2π
Λ2

=
−N

12π2λ2

[∫
dρρ3β

√
1 + (∂ρΣ0)2

Σ2
0

(ρ2+Σ2
0)

2

]2

[∫
dρ

Σ2
0

(ρ2+Σ2
0)

2∂ρ

(
βρ3Σ0(∂ρΣ0)√

1+(∂ρΣ0)2

)] . (2.12)

We can also extract an integral equation for the quark condensate (evaluated in the

UV where there is no running) from our analysis. We use the fact that the

expectation value of q̄LqR is given by 1
Z

∂Z
∂mq

|mq→0. For an infinitesimal value of m in

the boundary embedding (2.5) we expect the full embedding, to leading order, to

simply take the form w5 = 2πα′mq +Σ0. We insert this form into the vacuum

energy and expand to leading order in mq - the coefficient is just the quark

condensate

〈q̄LqR〉
Λ3

=
−N

4πλ3g2uvN

∫
dρ ρ3Σ0

√
1 + (∂ρΣ0)2∂r2β

∣∣∣∣
r2=ρ2+Σ2

0

(2.13)

One may use the embedding equation (2.4) to turn this into a surface term that is

then, given that β becomes unity asymptotically, proportional to ρ3∂ρΣ0|ρ→∞

which is just proportional to the constant c in (2.5) confirming the interpretation of

c as the condensate. The integral form of the equation provides intuition for the

value of the condensate from the shape of the embedding as we will see. Note that
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if the ’t Hooft coupling g2uvN is kept fixed both fπ and the condensate grow as N as

expected.

The integral equations (2.12) and (2.13) that link low energy parameters to the

underlying UV physics are the main results of this chapter. They are very

reminiscent of constituent quark model [45] results which input the quark

self-energy, Σ(q), (for example determined from a gap equation [19]) to determine

the same quantities. In particular those models give for the condensate

〈q̄q〉 = N

2

∫
q3dq

Σ

q2 +Σ2
(2.14)

and the Pagels Stokar formula [44] for the pion decay constant

f2π =
N

8π2

∫
q3dq

Σ2 − 1
2q

2ΣΣ′

(q2 +Σ2)2
(2.15)

where a prime indicates a derivative with respect to q2. Although our formulae are

more complex and include the underlying gauge coupling’s running there are

nevertheless a number of common features. We will compare them for the case of

walking technicolour below.

It must be stressed that we have derived our expressions (2.12) and (2.13) in a toy

holographic model of chiral symmetry breaking. Of course one can not just impose

any random running of the gauge coupling and assume one is in a real gauge theory.

We have also not included any response of the metric to the presence of a

non-trivial dilaton. The analysis is very similar in spirit to the chiral quark model

assumption of an arbitrary choice of Σ(q2). Despite these flaws, we hope the

simplicity of the expressions allows one to analytically understand the typical

response of the holographic descriptions to different types of running coupling.

2.2 Walking Technicolour

The constituent quark model expressions (2.14) and (2.15) have underpinned much

of the folklore for walking technicolour theories [18, 19]. As elaborated in section
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1.2.4, the gauge coupling in walking technicolour is assumed to transition from

perturbative to non-perturbative behaviour at one scale, Λ1 but then the running

slows, only crossing some critical value for inducing chiral symmetry breaking at a

scale, Λ2, several orders of magnitude below Λ1. In the region between Λ1 and Λ2

we imagine that the anomalous dimension ǫ of the quark condensate is larger than

zero (so q̄q has scaling dimension less than three) - the condensate evaluated in the

UV is then enhanced taking the rough value Λ3−ǫ
2 Λǫ1.

Gap equation analysis [19] provides an alternative but equivalent explanation for

the enhancement of the quark condensate. There walking, which has a larger

coupling value further into the UV, enhances the large q tail of the quark self-energy

Σ(q). Looking at the constituent quark model expressions for low energy parameters

one can see that fπ is largely determined by the small q region (there is a q4 in the

denominator) and so fπ is broadly unchanged by walking. In a technicolour model

fπ sets the W and Z masses and hence the weak scale. On the other hand the

condensate in (2.14) is given by a simple integral over Σ(q) and hence grows if the

tail of Σ(q) is raised. The condensate is enlarged in walking theories relative to the

weak scale. In extended technicolour models [17] the condensate determines the

standard model fermion masses — increasing it drives up the extended technicolour

scale, potentially suppressing flavour physics below current experimental bounds.

Do our holographic expressions agree with this story? The challenge is to simulate

walking in a holographic setting. The problem is that we are always at strong

coupling (large N) if we have a weakly coupled gravity dual. We cannot therefore

reproduce directly the physics at the scale Λ1 discussed above where the theory

moved from weak to strong coupling.

As a first attempt to address this point we can be led by the solutions in figure 2.1

as a result of the coupling ansatz in (2.6). If we decrease the parameter Γ we

effectively smear the scale at which the chiral symmetry breaking is induced over a

range of r ∼ Γ−1. Could we use this smeared range to represent the separation

between Λ1 and Λ2 above? The effect of the smearing is to enhance the tail of the

self-energy just as expected in walking theories.
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If we now turn to the holographic expressions (2.12) & (2.13) we see that they

naively share the same response to enhancing the tail of Σ0 as the constituent

quark model expressions (2.14) & (2.15) did to raising the tail of Σ(q). In particular

again fπ has a 1/ρ4 factor in the denominator of each integral involved, making it,

one would expect, insensitive to changes in the tail of Σ0. The expression for the

condensate though is sensitive to the tail and should grow as walking is introduced.

In fact though this analysis neglects the dependence of these functions on the

derivatives of the gauge coupling and the self-energy function Σ0 — this additional

understanding of dynamics coming from the gauge coupling running lies beyond the

constituent quark model pictures. Both (2.12) and (2.13) are dominated around the

points of maximum change in the coupling and Σ0. Note though that the derivative

of the coupling, ∂r2β, is evaluated on the brane, which in the cases above has

precisely embedded itself so as to avoid large derivatives in β. By smoothing these

functions through decreasing Γ we include extra functional behaviour. In fact these

changes in the derivatives are more numerically important than the rise in the tail

of Σ0 for the plots in figure 2.1. This means that the more ‘walking’ looking

self-energies in fact give a slightly lower condensate for a fixed value of fπ. The

simple coupling ansatz in (2.6) does not therefore accommodate a behaviour we can

interpret in the usual walking picture. The model does suggest that there could be

considerable variation in the ratio of the condensate to fπ in gauge theories with

rather different speeds of IR running though. A recent lattice analysis suggest this

ratio could vary as the number of quark flavours is changed in QCD [48].

To take advantage of the similarities between (2.12) & (2.13) and (2.14) & (2.15)

one would need to keep the derivatives of the coupling and Σ0 roughly fixed as the

scale at which that change occurred was moved out to larger ρ. Our equations

would in such a scenario provide the enhancement of the condensate that one looks

for in a walking theory. Essentially one would want a self-energy that rose sharply

at large ρ but then flattened to meet the w5 axis at the same value as the curves in

figure 2.1. This in fact matches the crucial signal of walking that one would expect

Σ0(ρ = 0) ≪ Λ with Λ the scale at which the high scale running occurs. Within

holographic models this should be the crucial signal of walking.
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This scenario suggests we are mimicking a slightly different walking dynamics in the

gauge theory than that discussed above — imagine a theory in which the coupling

ran to strong coupling (call this scale Λ1 again) and then entered a conformal

regime with coupling value slightly above the critical value needed to form a

condensate. If the coupling was tuned from above sufficiently close to the critical

value in its conformal window then a self-energy, Σ(ρ = 0) would form but with a

size considerably below Λ1.

Realising this sort of walking behaviour can be done in a straightforward, if ad hoc,

fashion. We need to break the symmetry between ρ and w5, w6 in the coupling

ansatz β. A simple ansatz is just to shift our previous ansatz out to larger ρ:

β = a+ 1− a tanh
[
Γ(
√
(ρ− λ1)2 + w2

5 + w2
6 − λ)

]
ρ ≥ λ1

β = 1 ρ < λ1

(2.16)

This ansatz, which we sketch in figure 2.2, leaves the derivative of β unchanged but

shifted by λ1 in ρ — this will ensure the condensate, which is given by (2.13) and

dominated around λ1 where the derivative of β is non-zero, will grow as λ31. The

embedding will still plateau around the same value of w5 since above the step

(which is quite sharp) the space is AdS and the embeddings must be flat. Below λ1

the embedding becomes flat since the geometry is AdS (the first derivative of Σ0 at

ρ = λ1 is smooth). Obviously this choice of β below λ1 looks peculiar - one could

though imagine that in that region there is a sharp step function to large coupling

at small w5, w6 - the embeddings would remain the same.

With the embeddings from this walking β ansatz we can analytically see how the

expressions for fπ and 〈q̄q〉 change with λ1. In (2.12) the numerator will become

independent of λ1 as it grows whilst the denominator, which is proportional to the

derivatives of Σ0 and β will fall as 1/λ1. fπ will therefore scale as λ
1/2
1 . The

condensate expression (2.13) is dominated around λ1 where the derivative of β is

non-zero — it will grow as λ31. Therefore if we raise λ1 at fixed fπ the condensate

will grow as λ
3/2
1 . The rise is consistent with the usual claims that a walking theory
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Figure 2.2: A sketch of the area in which the coupling is large in
our ansatz in (2.16) and the resulting form of the embeddings Σ0

— on the left for λ1 = 0 and on the right for a non-zero λ1

10 20 30 40 50
Ρ

-1

0

1

2

3

4

Ω5

Figure 2.3: Numerically determined embeddings for the coupling
ansatz in (2.16). These curves all have a = 3 and λ = 3.19 in addi-
tion the curves from from left to right correspond to the parameter
choices λ1 = 0,Γ = 1, λ1 = 5,Γ = 3.51,λ1 = 8,Γ = 3.63.

will enhance the condensate.

It is also possible to numerically confirm this behaviour at least for small λ1. In

figure 2.3 we show numerical embeddings, displaying the behaviour shown in figure

2.2, as λ1 is increased from 0 to 8. To keep the plateau value exactly equal we have

tuned Γ in the coupling ansatz (it changes from 1 to 3.6 across these plots). The

condensate grows by an order of magnitude across these plots and in the large λ1

limit will presumably match the analytic behaviour discussed although more and

more tuning of Γ would be needed. Note that breaking the symmetry between ρ

and w5, w6 in the β ansatz is still consistent with the symmetries of the D3/D7

system. In fact interestingly a distinction between the ρ and w5, w6 directions is

precisely what one would expect in a geometry backreacted to the D7 branes

50



[33, 49]. It is therefore plausible that one could fine tune the number of quark

flavours in some D3/D7 system to obtain these forms of ansatz for the dilaton.

2.3 The D3/D5 System

We now turn to an alternative attempt to describe aspects of walking dynamics

with holography. On first meeting the specific D3/(probe)D7 configuration

discussed above it seems as if that system should fundamentally be a walking gauge

theory — the N = 4 gauge dynamics is conformal and strongly coupled in the UV.

When we introduce running in the IR that triggers chiral symmetry breaking,

should the physics not be closer in spirit to that of a walking theory rather than

QCD? Why did we have to work so hard in section 2.2 to make that system walk?

The reason it is not a walking theory is that the UV of the D3/D7 system possesses

N = 2 supersymmetry which both forbids a quark condensate and protects the

dimension of the q̄q condensate at three. That the self-energy profiles Σ0 fall off as

1/ρ2 in the analysis above is driven by that UV supersymmetry and mimics the

behaviour of asymptotically free QCD.

It is natural then to look for a way to introduce quarks into N = 4 super Yang-Mills

which breaks supersymmetry even in the far UV. Using a D5 probe to introduce

quarks seems the simplest example to explore. Here we consider the system with a

four dimensional overlap of the D3 and the D5 not a three dimensional overlap as

studied in [50]. This D3/D5 system is a specific example with broken

supersymmetry, while i.e. the D3/D5 configuration studied in [50] is

supersymmetric. Note that the strings between the D3 and D5 remain

bi-fundamental fields of the gauge symmetry and global symmetry. The lowest

energy modes of those strings are still at heart the gauge field that would be

present if the strings were free to move in the whole space, which become scalar

fields, and the gaugino partners that become the fermionic quarks. In a

non-supersymmetric theory the scalars will most likely become massive leaving

fermionic quark multiplets in the N = 4 theory.
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The metric of AdS5 × S5 can be written in coordinates appropriate to the D5

embedding as:

ds2 =
1

guv

[
r2

R2
ηijdx

idxj +
R2

r2
(
dρ2 + ρ2dΩ2

1 + dω2
3 + dω2

4 + dω2
5 + dω2

6

)]
, (2.17)

with r2 = ρ2 + ω2
3 + ω2

4 + ω2
5 + ω2

6 and ρ2 = ω2
1 + ω2

2. R is the radius of AdS

R4 = 4πg2uvNα
′2 The D3 brane is extended in the xi dimensions. The D5-brane will

also be extended in the ρ and Ω1 directions. The ω3, ω4, ω5 and ω6 are

perpendicular to the D5-brane. g2uv is the value of the dilaton for r → ∞.

Let us first analyse the system with a constant dilaton

eφ = g2uv. (2.18)

The action for a probe D5 brane assuming the embedding ω5(ρ), ω3 = ω4 = ω6 = 0

is:

SD5 = −T5
∫
d8ξ eφ

√
−detP [G]ab

= −T5
∫
d4xdρ r2ρ

√
1 + (∂ρw5)

2, (2.19)

where T5 = 1/(2π)5α′3 and T5 = T52π/R
2guv. The embedding equation is

∂ρ


r2ρ (∂ρω5)√

1 + (∂ρω5)
2


− 2ω5ρ

√
1 + (∂ρω5)

2 = 0. (2.20)

The large ρ behaviour of these solutions is

ω5 ∼ mρ
√
3−1 + c/ρ1+

√
3. (2.21)

The full embeddings are shown on the left hand of figure 2.4. Note that as m→ 0

in the UV asymptotics the full solutions lie along the ρ axis indicating that the

condensate c = 0 and there is no spontaneous chiral symmetry breaking — this is a

simple result of the absence of a scale in the conformal field theory.

We continue to interpret the parameter m in the D5 brane embedding as the quark
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Figure 2.4: The regular embeddings of a D5 brane in pure AdS
with β = 1 on the left. On the right the chiral symmetry breaking
embeddings for the ansatz for β in (2.6) with Γ = 1, λ = 3, a = 5.

mass. Then from (2.21) we can see that there is an effective anomalous dimension

present for that mass — its dimension is 2−
√
3. The parameter c is then the quark

condensate and has dimension 2 +
√
3. The change in the dimension of these

operators in the UV conformal regime is exactly the physics that underlies the

walking idea. Amusingly though here the anomalous dimension of the quark

condensate is smaller than zero rather than larger as usually envisaged in walking

theories. The D3/D5 system will not apparently be much use for constructing a

phenomenological technicolour model. On the other hand here we are simply

interested in testing the intuition for walking theories so we will continue to

investigate for more formal reasons.

2.3.1 D3/D5 Embedding with a Non-Trivial Dilaton

Let us now include a non-trivial dilaton (gauge coupling) profile as we did above in

the D3/D7 system

eφ = g2YM (r2) = g2uvβ(r
2). (2.22)

For r → ∞ β → 1. The action is now

SD5 = −T5
∫
d4xdρ r2βρ

√
1 + (∂ρw5)

2. (2.23)
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The embedding equation is

∂ρ


r2βρ (∂ρω5)√

1 + (∂ρω5)
2


− 2ω5ρ

√
1 + (∂ρω5)

2 [β + r2(∂r2β)
]
= 0 (2.24)

The embeddings can be seen on the right in figure 2.4 for the ansatz for β in (2.6).

There is again chiral symmetry breaking with a non-zero w5(ρ = 0) as m→ 0 in the

UV. The self-energy curves fall off faster at large ρ which matches expectations

from gap equations in a theory where the quark condensates dimension grows in the

walking regime.

The embedding breaks the SO(4) symmetry in the ω3 − ω6 directions so we expect

there to be Goldstone modes present. For example, there should be an equivalent

solution when rotating the embedding in e.g. the ω5 − ω6 plane. Let’s look at small

fluctuations around the embedding Σ0 in the ω6 direction to find a Goldstone

boson. The action for such fluctuations in quadratic order is

S5 = −T5
∫
d4xdρ r2βρ

√
1 + (∂ρΣ0)

2 [1 + (∂r2β)w
2
6

+
1

2

(∂ρω6)
2

1 + (∂ρΣ0)2
+

1

2

R4

r4
(∂µω6)

2 + . . .

]
, (2.25)

where again r2, β and ∂r2β are all evaluated on the the D7 brane worldvolume Σ0.

We seek fluctuations of the form ω6(x, ρ) = fn(ρ)e
ik·x with k2 = −M2

n. The

equation of motion for the fluctuations give the following equations for fn

∂ρ


r2βρ (∂ρfn)√

1 + (∂ρΣ0)
2


+

R4

r2
βρ

√
1 + (∂ρΣ0)

2M2
nfn

−2ρ

√
1 + (∂ρΣ0)

2 [β + r2∂r2β
]
fn = 0. (2.26)

The equation with M2 = 0 and f0 = Σ0 is the embedding equation (2.4) revealing

the presence of the Goldstone mode.

The Lagrangian for the Goldstone field is found by writing

ωa6 = f0(ρ)π
a(x) = Σ0π

a(x) in (2.25) and integrating the Lagrangian density over ρ.

We can expand r2β with r2 = ρ2 +Σ2
0 +Σ2

0 (π
a(x))2 as
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r2β(r2) = r2β(r2)|r2=ρ2+Σ2
0
+Σ2

0 (π
a(x))2 ∂r2(r

2β)|r2=ρ2+Σ2
0
and then use the

equation of motion (2.26) to eliminate the second and third terms in (2.25) for

Mn = 0. This procedure gives the Lagrangian to quadratic order

L =− T5

∫
dρ r2βρ

√
1 + (∂ρΣ0)

2

[
1 +

1

2

R4

r4
Σ2
0 (∂µπ

a(x))2

+
1

4

R4

r4

(
(∂ρΣ0)

2Σ2
0

1 + (∂ρΣ0)2
+ 2Σ4

0

∂r2
(
βr2
)

βr2

)
Tr
(
[∂µΠ,Π]

2
)
+ . . .

]
,

(2.27)

where again Π = πa(x)τa. We can now rescale π(x) in (2.27) and get an expression

for fπ. We find

f2π
Λ2

=
−N1/2

24π3/2λ2

[∫
dρβρ

√
1 + (∂ρΣ0)

2 Σ2
0

ρ2+Σ2
0

]2

[∫
dρ

Σ2
0

(ρ2+Σ2
0)

2∂ρ

(
(ρ2+Σ2

0)βρΣ0(∂ρΣ0)√
1+(∂ρΣ0)

2

)] (2.28)

We also want to find out the value of the quark condensate. We expand r2β in

(2.27) with r2 = ρ2 + (Σ0 +mρ
√
3−1)2 as

r2β = r2β|r2=ρ2+Σ2
0
+ ∂r2(r

2β)|r2=ρ2+Σ2
0
(2mρ

√
3−1Σ0 + O(m2)). Then we can

compare the vacuum energy, V0, in (2.27) with the vacuum energy of the chiral

Lagrangian to find the quark condensate

〈qq〉
Λ2+

√
3
=

−N1/2

2g2uvNπ
1/2λ2+

√
3

∫
dρ ρ

√
3
√
1 + (∂ρΣ0)

2Σ0∂r2(r
2β)

∣∣∣∣
r2=ρ2+Σ2

0

. (2.29)

These expressions for fπ and 〈q̄q〉 are in some ways similar to those in the D3/D7

system. fπ is again dominated at low ρ whilst the condensate is more sensitive to

the tail of Σ0. In the D5 setting Σ0 falls off more quickly in the UV and will

suppress the condensate. This matches the chiral quark model results. On the other

hand the factor of N1/2 before each expression suggests some radical redistribution

of the degrees of freedom in the UV conformal regime which we can offer no

explanation for.

It is important also to note that one can not directly compare the condensates in
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the D5 and D7 cases since they have different intrinsic dimension even in the far

UV. In fact to convert the D3/D5 theory to the usual walking set-up would require

the inclusion of extra UV physics (equivalent to that at the scale Λ1 in the walking

discussion above) where the condensate’s dimension changes to three. The

condensate above that scale would be suppressed by a further factor of roughly

Λ
√
3−1

1 .

Whilst the D3/D5 system may not form the basis of any helpful phenomenological

model we do believe that the walking paradigm is the correct way to interpret the

system and the anomalous dimensions present in the UV.

2.4 Conclusions

We have presented a general description of chiral symmetry breaking in the D3/D7

system that describes a strongly coupled gauge theory with quarks. The model

allows one to compute the dependence of the parameters of the low energy chiral

Lagrangian on the running coupling or dilaton form. Our integral formulae for fπ

and the quark condensate allow analytic understanding of how these quantities

depend on the coupling and the dynamical mass of the quark in a similar way to

the results of chiral quark models and the Pagels-Stokar formula. Our model is not

complete since we do not backreact the geometry to the dilaton. However, we view

this as a necessary evil to construct intuition in this type of set-up to the response

to different dilaton profiles. This toy environment should provide good guidance for

those wishing to construct fully backreacted solutions that show specific

phenomena.

We have used our results to understand how walking-like gauge dynamics could be

included in a holographic framework. The crucial signal of walking should be that

the quark self-energy at zero momentum should be much less than the scale at

which conformal symmetry breaking is introduced. We displayed in figure 2.2 the

form a dilaton profile must take to achieve walking. Our integral equations support

the usual hypothesis that walking in a gauge theory would tend to boost the value
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of the quark condensate relative to the value of fπ.

Finally we studied the non-supersymmetric D3/D5 system with a four dimensional

overlap and proposed that the conformal UV of the theory should be considered as

a walking phase of a gauge theory. The anomalous dimensions of the quark mass

and condensate were computed - in this theory the dimension of the quark

condensate is 2 +
√
3 which is greater than the canonical dimension 3. Normally

walking is constructed to lower this dimension but this theory hopefully

nevertheless adds to our knowledge of walking behaviour.
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Chapter 3

Holographic Description of the

Phase Diagram of a Chiral

Symmetry Breaking Gauge

Theory

The phase diagram in the temperature and chemical potential (or density) plane is a

matter of great interest in both QCD and more widely in gauge theory [51, 10, 11].

As discussed in section 1.2.3 there is in QCD believed to be a transition from a

confining phase with chiral symmetry breaking at low temperature and density to a

phase with deconfinement and no chiral symmetry breaking at high temperature. In

the standard theoretical picture for QCD with massless quarks, the transition is

first order for low temperature but growing density, whilst second order at low

density and growing temperature. The second order transition becomes a cross over

at finite quark mass. There is a (tri-)critical point where the first order transition

mutates into the (second order) cross over transition. In fact as mentioned in

section 1.2.3 though there could still be room in QCD for a more exotic phase

diagram [11] as we will discuss in the context of our results in our final section.

In this chapter we will present a precise holographic determination of the phase
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diagram in the temperature chemical potential plane for a gauge theory that

displays many of the features of the QCD diagram, although the precise details

differ. A pictorial comparison of our theory to QCD can be made by comparing

figure 3.5 to figure 3.10.

The theory we will consider is the large N N=4 gauge theory with quenched N=2

quark matter. An immediate difference between the N=4 glue theory and QCD is

that the thermal phase transition to a deconfined phase occurs for infinitesimal

temperature since the massless theory is conformal [28]. Essentially the entire

temperature chemical potential phase diagram of our theory is therefore

characterised by strongly coupled deconfined glue.

The quark physics is more subtle though — the phase diagram in the temperature

chemical potential (density) plane for the N = 2 quark matter has been studied in

[52, 53, 54, 55, 56, 57]. When the quark mass is zero the theory is conformal.

Immediately away from zero quark mass, in either temperature or chemical

potential, a first order transition moves the theory to a non-conformal theory with

melted mesons [58, 59, 60, 61].

When a quark mass is present in the N=2 theory the meson melting transition

occurs away from the origin. This transition has been reported as first order with a

second order transition point where the first order transition line touches the T = 0

chemical potential axis [53, 54] (in the grand canonical ensemble). Interestingly

there is a phase transition line in the temperature versus density plane (in the

canonical ensemble) in which the quark condensate jumps [55, 52]. This area of the

phase diagram is intrinsically unstable though and not realisable by imposing any

chemical potential [53].

The crucial ingredient we will add to the theory is chiral symmetry breaking which

will also bring the theory closer in spirit to QCD. As shown in

[38, 62, 63, 64, 65, 66, 67] the N = 2 theory in the presence of a magnetic field

displays chiral symmetry breaking through the generation of a quark anti-quark

condensate. At zero density the finite temperature behaviour has been studied

[38, 62, 63, 64] and there is a first order transition from a chiral symmetry broken
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phase at low temperature to a chiral symmetry restored phase at high temperature.

In this chapter we will include chemical potential as well to map out the full phase

diagram in the temperature chemical potential plane. We will find a chiral

symmetry restoration phase transition, which is first order for low density and

second order for low temperature — there is a critical point where these transitions

meet. This physics is in addition to a meson melting transition which is first order

at large temperature but apparently second order at low temperature. This latter

region of transition is interesting because it is associated with a discontinuous jump

from an embedding off the black hole to one that ends on it and it looks naively

first order. However, we see a second order transition in the free energy.

We will also track the movement of these transition lines and critical points as the

quark mass rises relative to the magnetic field. The infinite mass limit corresponds

to the pure N=2 theory without magnetic field [53, 56]. The second order chiral

symmetry restoration transition becomes a cross over the moment a mass is

introduced. The first order transition structure remain however, even in the infinite

mass limit, with two critical points: one is the end point of the first order transition

and the other is the the end point of the second order meson melting transition.

This structure was not reported in the results in [53, 56]2 but this is not surprising

since the structure, in that limit, is on a very fine scale. We have only found it by

following the evolution of the larger structure present at low quark mass with a

magnetic field. In addition we present evidence to suggest the parameter space with

a second order meson melting transition extends away from just the T = 0 axis,

again, even in the infinite mass limit. We have confirmed these results in the strict

B = 0 limit also.

The theory we study may appear to be a rather vague relative of QCD with

magnetic field induced chiral symmetry breaking. On the other hand it is a theory

of strongly coupled glue with the magnetic field inducing conformal symmetry

breaking in the same fashion as ΛQCD in QCD. In fact the magnetic field case in

2The existence of two critical points is related with the existence of the black hole to black
hole transition. It is actually just visible in Fig 2c of [56] but the authors had not probed it in
detail previously. After discussion of our results with the authors of [56], they have refined their
computations and confirmed our results.
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the basic N=4 dual is the cleanest known example of chiral symmetry breaking in a

holographic environment. The magnetic field case provides a smooth IR wall where

we have more control but the results are likely to be the same in those more

complex cases. We can hope to learn some lessons for a wider class of gauge

theories. Such studies are potentially of interest for QCD, more exotic gauge

theories and even for condensed matter systems.

3.1 The Holographic Description

The N=4 gauge theory at finite temperature has a holographic description in terms

of an AdS5 black hole geometry (with N D3 branes at its core). The geometry is

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2f
dr2 +R2dΩ2

5 , (3.1)

where R4 = 4πgsNα
′2 and

f := 1− r4H
r4

, rH := πR2T . (3.2)

The black hole with its horizon at r = rH introduces a temperature T into the

theory as seen in section 1.4.9.

We will find it useful to make the coordinate transformation

dr2

r2f
≡ dw2

w2
=⇒ w :=

√
r2 +

√
r4 − r4H , (3.3)

with wH = rH . This change makes the presence of a flat 6-plane perpendicular to

the horizon manifest. We will then write the coordinates in that plane as ρ and L

according to

w =
√
ρ2 + L2 , ρ := w sin θ . L := w cos θ , (3.4)
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The metric is then

ds2 =
w2

R2
(−gtdt2 + gxd~x

2) +
R2

w2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dΩ2
1) ,

where

gt :=
(w4 − w4

H)
2

2w4(w4 + w4
H)

, gx :=
w4 + w4

H

2w4
. (3.5)

3.1.1 Quarks/D7 Brane Probes

Quenched (Nf ≪ N) N=2 quark superfields are included in the N=4 gauge theory

through probe D7 branes in the geometry. The D7 probe can be described by its

DBI action

SDBI = −TD7

∫
d8ξ
√

−det(P [G]ab + 2πα′Fab) , (3.6)

where P [G]ab is the pullback of the metric and Fab is the gauge field living on the

D7 worldvolume. We will use Fab to introduce a constant magnetic field (e.g.

F12 = −F21 = B) [38, 62, 63] and a chemical potential associated with baryon

number At(ρ) 6= 0 [52, 68, 69].

We embed the D7 brane in the ρ and Ω3 directions of the metric but to allow all

possible embeddings we must include a profile L(ρ) at constant Ω1. The full DBI

action we will consider is then

S =

∫
dξ8L(ρ) =

(∫

S3

ǫ3

∫
dtd~x

)∫
dρ L(ρ) , (3.7)

where ǫ3 is a volume element on the 3-sphere and

L := −NfTD7
ρ3

4

(
1− w4

H

w4

)
×
√(

1 + (∂ρL)2 −
2w4(w4 + w4

H)

(w4 − w4
H)

2
(2πα′∂ρAt)2

)

×

√√√√
((

1 +
w4
H

w4

)2

+
4R4

w4
B2

)
. (3.8)

Since the action depends on ∂ρAt and not on At, there is a conserved quantity d
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(
:= δS

δFρt

)
and we can use the Legendre transformed action

S̃ = S −
∫
dξ8Fρt

δS

δFρt
=

(∫

S3

ǫ3

∫
dtd~x

)∫
dρ L̃(ρ) , (3.9)

where

L̃ := −NfTD7
(w4 − w4

H)

4w4

√
K(1 + (∂ρL)2) , (3.10)

K :=

(
w4 + w4

H

w4

)2

ρ6 +
4R4B2

w4
ρ6 +

8w4

(w4 + w4
H)

d2

(NfTD72πα′)2
. (3.11)

To simplify the analysis we note that we can use the magnetic field value as the

intrinsic scale of conformal symmetry breaking in the theory — that is we can

rescale all quantities in (3.10) by B to give

L̃ = −NfTD7(R
√
B)4

w̃4 − w̃4
H

w̃4

√
K̃(1 + L̃′2) , (3.12)

K̃ =

(
w̃4 + w̃4

H

w̃4

)2

ρ̃6 +
1

w̃4
ρ̃6 +

w̃4

(w̃4 + w̃4
H)
d̃2 , (3.13)

where the dimensionless variables are defined as

(w̃, L̃, ρ̃, d̃) :=

(
w

R
√
2B

,
L

R
√
2B

,
ρ

R
√
2B

,
d

(R
√
B)3NfTD72πα′

)
. (3.14)

In all cases the embeddings become flat at large ρ taking the form

L̃(ρ̃) ∼ m̃+
c̃

ρ̃2
, m̃ =

2πα′mq

R
√
2B

, c̃ = 〈q̄q〉 (2πα′)3

(R
√
2B)3

. (3.15)

In the absence of temperature, magnetic field and density the regular embeddings

are simply L(ρ̃) = m̃, which is the minimum length of a D3-D7 string, allowing us

to identify it with the quark mass as shown in section 1.4.7. c̃ should then be

identified with the quark condensate with the relation shown.

We will classify the D7 brane embeddings by their small ρ̃ behaviour. If the D7

brane touches the black hole horizon, we call it a black hole embedding, otherwise,

we call it a Minkowski embedding. We have used Mathematica to solve the

equations of motion for the D7 embeddings resulting from (3.12). Typically in what
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follows, we numerically shoot out from the black hole horizon (for black hole

embeddings) or the ρ̃ = 0 axis (for Minkowski embeddings) with Neumann

boundary condition for a given d̃. Then by fitting the embedding function with

(3.15) at large ρ̃ we can read off m̃ and c̃.

3.1.2 Thermodynamic Potentials

The Hamilton equations from (3.9) are ∂ρd = δS̃
δAt

and ∂ρAt = − δS̃
δd . The first simply

means that d is the conserved quantity. The second reads as

∂ρ̃Ãt = d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2

K̃
, (3.16)

where Ãt :=
√
22πα′At

R
√
2B

.

There is a trivial solution of (3.16) with d̃ = 0 and constant Ãt [53]. The

embeddings are then the same as those at zero chemical potential. For a finite d̃, Ã′
t

is singular at ρ̃ = 0 and requires a source. In other words the electric displacement

must end on a charge source. The source is the end point of strings stretching

between the D7 brane and the black hole horizon. The string tension pulls the D7

branes to the horizon resulting in black hole embeddings [52]. For such an

embedding the chemical potential µ̃ is defined as [52, 68, 69]

µ̃ := lim
ρ̃→∞

Ãt(ρ̃)

=

∫ ∞

ρ̃H

dρ̃ d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2

K̃
, (3.17)

where we fixed Ãt(ρ̃H) = 0 for a well defined At at the black hole horizon.

The Euclideanised on-shell bulk action can be interpreted as the thermodynamic

potential of the boundary field theory. The grand potential (Ω̃) is associated with

the action (3.8) while the Helmholtz free energy (F̃ ) is associated with the Legendre

65



transformed action (3.9):

F̃ (w̃H , d̃) :=
−S̃

NfTD7(R
√
B)4Vol

=

∫ ∞

ρ̃H

dρ̃
w̃4 − w̃4

H

w̃4

√
K̃(1 + (L̃′)2) (3.18)

Ω̃(w̃H , µ̃) :=
−S

NfTD7(R
√
B)4Vol

=

∫ ∞

ρ̃H

dρ̃
w̃4 − w̃4

H

w̃4

√
(1 + (L̃′)2)

K̃
×
((

w̃4 + w̃4
H

w̃4

)2

ρ̃6 +
1

w̃4
ρ̃6

)

(3.19)

where Vol denote the trivial seven dimensional volume integral except ρ̃ space, so

the thermodynamic potentials defined above are densities, strictly speaking. Since

K̃ ∼ ρ̃6, both integrals diverge as ρ̃3 at infinity and need to be renormalised.

Thermodynamic potentials, (3.17),(3.18) and (3.19) are reduced to B = 0 case if we

simply omit all ρ̃6

w̃4 and then tildes. See for example (3.20).

3.2 Chiral Symmetry Breaking and the Thermal Phase

Transition

We begin by reviewing the results of [38, 62, 63, 64] on magnetic field induced chiral

symmetry breaking and the thermal phase transition to a phase in which the

condensate vanishes. While those works show the embeddings for fixed T and

different values of B, we will show the embeddings for fixed B and different values

of T . By fixing B we are using it as the intrinsic scale of symmetry breaking in the

same fashion as ΛQCD plays that role in QCD.

Let us digress here to explain how to understand the figures we will present in this

chapter. For example, in figure 3.1 we have three columns. The left is the D7 brane

embedding configuration. The middle shows a plot of the allowed values of the

condensate c̃ as a function of the quark mass m̃ — these are thermodynamical

conjugate variables. The right is the corresponding thermodynamic potential. Each
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(a) Low temperature - w̃H = 0.15. Here we see chiral symmetry breaking with the blue embedding
thermodynamically preferred over the red at m̃ = 0.
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(b) Transition temperature - w̃H = 0.2516. This shows the point where the first order chiral
symmetry phase transition occurs from the blue to the red embedding. The transition can be
identified by considering Maxwell’s construction (middle) or the lowest free energy (right).
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(c) Above the transition - w̃H = 0.3. This is the chiral restored phase with the m̃ = 0 curve lying
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(d) High temperature - w̃H = 300. Here the magnetic field is negligible and the embeddings show
the usual finite temperature meson melting transition.

Figure 3.1: The D7 brane embeddings (left), their correspond-
ing m̃ − c̃ diagrams (middle), and the free energies (right) in the
presence of a magnetic field at finite temperature. (Parameters are
scaled or B = 1/2R2 in terms of parameters without tilde.)

row is for a fixed parameter we are varying — here it is temperature. The left and

middle plots are plotted by solving the equation of motion (3.12) with the black

hole boundary condition that the embedding is orthogonal to the horizon.

The right hand plot is calculated using (3.18) or (3.19). Both are the same at zero

density. We subtract limρ̃→∞
1
4 ρ̃

4 to remove the common infinite component.

Every point in the middle and right plots corresponds to one embedding curve in

67



the left plot. These points are colour coded with the colours common across each of

the three plots. The order of colours follows the rainbow from the bottom

embedding as a mnemonic.

In the middle plot we can find any transition point by a Maxwell construction (an

equal area law), which is also confirmed by the minimum of the grand potential on

the right. The vertical dashed line in the middle and right hand plots corresponds

to the transition point.

In the left plots the grey region contains embeddings that are excluded since they

are unstable, as shown in the middle and on the right.

The results for the case of a constant magnetic field and varying temperature are

displayed in figures 3.1(a)-(d). The figure 3.1(a) (left) shows the D7 embeddings

when T ≪ B and the black hole is small. The embeddings are driven away from the

origin of the L̃− ρ̃ plane - this behaviour is a result of the inverse powers of w̃,

when w̃H ≪ 1, in the Lagrangian (3.12) which lead the action to grow if the D7

approaches the origin (note that the factor of ρ̃3 multiplying the action means the

action will never actually diverge). There are also embeddings that end on the

black hole (shown in red) but they are thermodynamically disfavoured as shown in

figure 3.1(a) (right).

At large ρ̃ the stable embedding with m̃ = 0 has a non-zero derivative so c̃ is

non-zero and there is a chiral condensate, i.e. chiral symmetry breaking. The U(1)

symmetry in the Ω1 direction is clearly broken by any of these embedding too. We

can numerically read off the values of m̃ and c̃ from the embeddings and their

values are shown in figure 3.1(a) (middle), where the dotted blue curves are for

Minkowski embeddings, whilst the red curves are for black hole embeddings.

If the temperature is allowed to rise sufficiently then the black hole horizon grows

to mask the area of the plane in which the inverse w̃ terms in the Lagrangian are

large. At a critical value of T the benefit to the m̃ = 0 embedding of curving off the

axis becomes disfavoured and it instead lies along the ρ̃ axis — chiral symmetry

breaking switches off. This first order transition occurs at w̃H = 0.2516 as shown in

figure 3.1(b) by Maxwell’s construction (middle) and by lower grand potential
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(right). Our value for the critical temperature agrees with the value B̃ = 16 in [64]

since our w̃ is the same as
√

1

B̃
in [64].

We show an example of the embeddings above the critical temperature, their grand

potential and the evolution of the curves in the m̃− c̃ plane in figure 3.1(c).

Figure 3.1(d) shows a case when T ≫ B, here the area of the plane in which B is

important is totally masked by the black hole and the results match those of the

usual finite T version of the N=2 theory. For m̃ >> w̃H the embeddings are

Minkowski like whilst for small m̃ they fall into the black hole. There is a first order

phase transition between these two phases which is the meson melting phase

transition discussed in detail in [35, 41, 70, 71, 72]. Minkowski embeddings have a

stable and discrete linearised spectrum of fluctuations that correspond to the

mesons of the theory [32] In the case of black hole embeddings the linearised

fluctuations are now replaced by in-falling quasi-normal modes of the black hole

which describe unstable mesonic fluctuations of a quark plasma, as they induce an

imaginary component to the meson masses [58, 59]. We can see that the previously

reported meson melting transition at large quark mass becomes also the chiral

symmetry restoring transition at zero quark mass.

3.3 Finite Density or Chemical Potential at Zero

Temperature

We can now turn to the inclusion of finite density or chemical potential in the

theory with magnetic field. In this section we consider the zero temperature

(w̃H = 0) theory only, and will continue with finite temperature in the next section.

A finite density (chemical potential) at zero temperature has been studied in the

N=2 theory without a magnetic field in [54], where analytic solutions for both a

black hole like embedding and a Minkowski embedding have been found. When a

magnetic field is turned on, analytic solutions are not available any more, but we

have found numerical solutions that continuously deform from the known analytic

solutions at zero magnetic field.
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(a) Low density - d̃ = 0.01. Here we see chiral symmetry breaking (the blue embedding is
preferred over the red embedding) and a spiral structure in the m̃ vs. c̃ plane.
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(b) Increasing density below the transition - d̃ = 0.1. There is still chiral symmetry breaking
here with the orange embedding preferred to the red. Note the spiral structure in the m̃− c̃ plane
has disappeared.
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(c) Transition point - d̃ = 0.3197. This shows the point where the second order chiral symmetry
phase transition occurs.
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(d) High density d̃ = 1. This is the chiral restored phase with the m̃ = 0 curve lying along the ρ̃

axis. For larger m̃ the usual spike like embedding can be seen.

Figure 3.2: The D7 brane embeddings (left), their corresponding
m̃− c̃ diagrams (middle), and the free energies (right) in the pres-
ence of a magnetic field at finite density. (Parameters are scaled
or B = 1/2R2 in terms of parameters without tilde.)

Minkowski embedding solutions correspond to zero density and finite chemical

potential. The black hole like embedding is the embedding deformed by the density

— a spike forms from the D7 down to the origin of the L̃− ρ̃ plane (figure 3.2(d)

(left)) which has been interpreted as an even distribution of strings (i.e. quarks)

forming in the vacuum of the gauge theory.
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First of all it will be interesting to see how the repulsion from the origin induced by

a magnetic field and the attraction to the origin by the density compete. Thus we

start with the canonical ensemble (that is solutions with non-zero d̃) and consider

black hole like embeddings exclusively. The plot in figure 3.2a (left) shows the

embeddings for a small value of density. The solutions show the chiral symmetry

breaking behaviour induced by the magnetic field but then spike to the origin

because of the density at small ρ̃. For m̃ = 0 one should compare the blue and red

embeddings — the blue one is thermodynamically preferred as shown in figure

3.2(a) (right). The theory shows similar behaviour to that seen at zero density:

there is a spiral structure in the m̃ vs. c̃ plane (figure 3.2(a) (middle)) [38, 62, 63].

That will disappear as the density increases.

As the density increases the value of the condensate for the m̃ = 0 embeddings falls.

We show a sequence of plots for growing d̃ in figures 3.2(b)-(d) (middle). There is a

critical value of d̃ = 0.3197 where c̃ becomes zero for the massless embeddings.

Above this value of d̃ the D7 embedding is flat and lies along the ρ̃ axis (figures

3.2(c)-(d) (left)) . One can see from the plots that there is a second order phase

transition to a phase with no chiral condensate. In figures 3.2(c) (left) and 3.2(d)

(left) we show embeddings at the critical value of d̃ and above it respectively. At

very large density the solutions become the usual spike embeddings of the N = 2

theory at zero magnetic field.

We are not yet done though, since there are also Minkowski embedding with zero

density but constant chemical potential. These can have lower energy and be the

preferred vacuum at a given value of chemical potential — that is, they are

important in the grand canonical ensemble. The relevant analysis is in figure 3.3(a)

(figures 3.3(b)-(e) will be explained in the next section). On the left it shows the

three possible types of embedding of the D7 for a given chemical potential at zero

temperature. The black curve is the Minkowski embedding (with d̃ = 0), the blue

the chiral symmetry breaking spike embedding (with d̃ 6= 0) and the red the chiral

symmetry preserving black hole embedding (with d̃ 6= 0). Strictly speaking there is

a fourth embedding which lies along the ρ̃ axis and has constant At = µ. Its energy

is equal for all µ̃ to that of the red embedding at µ̃ = 0 and is never preferred over
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(a) Zero temperature - w̃H = 0. The second order meson melting transition and then the second
order chiral restoration transition are apparent.
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(b) Low temperature - w̃H = 0.15. The zero temperature structure remains.
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(c) Above the first tri-critical point - w̃H = 0.23. The meson melting transitions remains second
order but the chiral symmetry restoration transition is first order.
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(d) Above the second tri-critical point - w̃H = 0.24. There is now only a single first order
transition for meson melting and chiral symmetry restoration.
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(e) High temperature - w̃H = 0.2516. The ground state preserves chiral symmetry for all values
of µ̃.

Figure 3.3: The D7 brane embeddings (left), their correspond-

ing d̃ − µ̃ diagrams (middle), and the grand potentials (right) for
massless quarks in the presence of a magnetic field at a variety of
temperatures that represent slices through the phase diagram figure
3.5. (Parameters are scaled or B = 1/2R2 in terms of parameters
without tilde.)
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the red embedding with density, so we will ignore it henceforth. The trajectory of

the three key embeddings in the d̃− µ̃ space is shown in the middle plot (note that

again these two variables are thermodynamical conjugate variables). Finally on the

right the grand potential is computed. Clearly at low chemical potential the

Minkowski embedding is preferred and d̃ = 0. There is a critical value of µ̃ = 0.470

at which a transition occurs to the spike embedding. This transition looks naively

first order since it is a transition between a Minkowski embedding and a black hole

embedding. However, we can see that the grand potential appears smooth and the

quark density is continuous, which is shown again in figure 3.4(a). The solid lines in

figure 3.4(a) are calculated from (3.17), which is based on the holographic

dictionary. The dotted lines are obtained by numerically differentiating the grand

potential (d̃ = −∂Ω̃
∂µ̃ ), which comes from a thermodynamic relation. This is a

non-trivial consistency check of the holographic thermodynamics as well as our

calculation [68, 69, 73].

Further in figure 3.4(b) we plot the behaviour of the quark condensate through this

transition. The density and quark condensate are both smooth and the transition

looks clearly second order. Here we have tested the smoothness numerically at

better than the 1% level. Whether there is some other order parameter that

displays a discontinuity is unclear. Nevertheless, it would be surprising to have a

first order transition with any of the order parameters undergoing a smooth

behaviour. We conclude the transition is second order (or so weakly first order that

it can be treated as second order). This second order nature of the transition from

a Minkowski to a spiky embedding has been shown also in the B = 0, m̃ 6= 0 case at

zero temperature analytically [54] and numerically [53].

Finally, above the chemical potential corresponding to the meson melting transition

(µ̃ = 0.470), non-zero density is present and the physics already described in the

canonical ensemble occurs, which turns out to be equivalent to the results from the

current grand canonical ensemble. Both ensembles predict the second order

transition to the flat embedding at the same point, µ̃ = 0.708 or d̃ = 0.3197, which

is the chiral symmetry restoration point. Notice that for the canonical ensemble we

used (m̃,c̃) conjugate variables on constant d̃ slices, while for the grand canonical
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(a) Density: the solid lines are calculated
from (3.17) and the dotted lines are ob-
tained by numerically differentiating the

grand potential (d̃ = −
∂Ω̃
∂µ̃

).

(b) The quark condensate.

Figure 3.4: Plots of the order parameters vs. chemical potential
at zero temperature and finite B. Both are continuous across the
Minkowski to spiky embedding transition (µ̃ ∼ 0.47). The green
arrows indicate the changes of phase.

ensemble we used (µ̃,d̃) conjugate variables on constant m̃ = 0 slices. This

agreement with different approaches is another consistency check of our calculation.

On the gauge theory side of the dual, the description is as follows. At zero density

there is a theory with chiral symmetry breaking and bound mesons. As the

chemical potential is increased d̃ remains zero and the quark condensate remains

unchanged. Then there is a second order transition to finite density (to a spike like

embedding) which is presumably associated with meson melting induced by the

medium. At a higher density there is then a further second order transition to a

phase with zero quark condensate.

Finally we note a paper [74] that proposed an alternative ground state for a chiral

symmetry breaking theory at finite density. They proposed that the string spike

might end on a wrapped D5 brane baryon vertex in the centre of the geometry. We

have not considered that possibility here but it might be interesting to investigate

this in the future. The magnetic field induced chiral symmetry breaking provides a

system in which this could be cleanly computed without the worries of the hard

wall present in that geometry.
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3.4 The Phase Diagram in the Grand Canonical

Ensemble

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Μ
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ΧSB, meson
ΧS, meson melted

ΧSB, meson melted

1st order

2nd order

2nd order

H0.129,0.236L

H0.267,0.201LTri-Critical Point

zero density

Figure 3.5: The phase diagram of the N = 2 gauge theory with a
magnetic field. The temperature is controlled by the parameter w̃H

and chemical potential by µ̃. (Parameters are scaled or B = 1/2R2

in terms of parameters without tilde.)

We have identified a first order phase transition from a chiral symmetry breaking

phase with meson bound states to a chirally symmetric phase with melted mesons

in our massless theory in the presence of a magnetic field with increasing pure

temperature. On the finite density axis the meson melting transition is second

order and separate from another second order chiral symmetry restoring phase

transition. Clearly there must be at least one critical point in the temperature

chemical potential phase diagram. We display the phase diagram of the massless

theory, which we will discuss the computation of, in figure 3.5.

To construct the phase diagram we have plotted slices at fixed temperature and

varying chemical potential. We display the results in figures 3.3(a)-(e) where we

show the embeddings (left) relevant at different temperatures, their trajectories in

the d̃− µ̃ plane (middle) and the grand potential (right).

The phase diagram agrees with our previous results: At zero chemical potential we

have the transition point w̃H = 0.2516. At zero temperature we have the transition

point at µ̃ = 0.708, which corresponds to d̃ = 0.3197. We also identify µ̃ = 0.470 as

the position of the second order transition to a meson melted phase with non-zero d̃

75



(a) w̃H = 0.15 (b) w̃H = 0.23

Figure 3.6: Quark condensate vs. chemical potential at finite B.
Both are continuous across the Minkowski (black) to black hole (or-
ange) embedding transition. At w̃H = 0.23 the black hole (orange)
to black hole (red) transition is discontinuous.

and chiral condensate c̃.

The dotted green line is the line along which d̃ = 0 and corresponds to the second

order meson melting transition from a Minkowski embedding to a black hole

embedding. The transition generates density continuously from zero. The quark

condensate also smoothly decreases from its constant value on the Minkowski

embedding. We display the continuous behaviour of the quark condensate across

the transition in figure 3.6. Note this means that the slope of the embedding at the

UV boundary is continuous through the transition even though the embedding in

the IR is discontinuous and topology changing. Again we have checked the

smoothness of these parameters numerically to better than the 1% level.

The blue line corresponds to a first order transition and the red dotted line is a

second order transition in density, chiral condensate etc. The red dotted line is

rather special in that this is a phase boundary only at m̃ = 0. This is because this

phase boundary is related to the spontaneous breaking of chiral symmetry which

only exists at m̃ = 0. At finite m̃ it must be a cross over region as we will discuss

further in section 3.6

The diagram then displays two tri-critical points. It is straightforward to identify

where the points lie numerically. The chiral symmetry tri-critical point where the

first and second order chiral symmetry restoration transitions join lies at the point

(µ̃, w̃H) = (0.267, 0.201). The second tri-critial point where the meson melting

transitions join is at (µ̃, w̃H) = (0.129, 0.236).
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3.5 The Phase Diagram in the Canonical Ensemble

0.00 0.05 0.10 0.15 0.20 0.25 0.30 d
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Tri-Critical Point H0.176,0.201L

H0,0.236L

Figure 3.7: The phase diagram of the N = 2 gauge theory with
a magnetic field. The temperature is controlled by the parameter
w̃H and the density by d̃. (Parameters are scaled or B = 1/2R2 in
terms of parameters without tilde.)

We can study the phase diagram also in the canonical ensemble. It is shown in

figure 3.7 and has the same information as figure 3.5. The pale green region in

figure 3.5 lies in the green dotted line along the w̃H axis of figure 3.7. The chiral

symmetry breaking region enclosed by the red, green and blue lines in each figure

map onto each other. Similarly the high temperature and density region to the

upper right of all the lines in both plots map onto each other. The two double blue

lines and the area between them in figure 3.7 correspond to the single blue line in

figure 3.5, which is natural since the blue line in figure 3.5 is a first order transition

line and the density change is discontinuous. Thus the grey region in figure 3.7 is an

unstable density region which hides in the phase boundary in figure 3.5. That

region may only be reached by super-cooling or super-heating since it is unstable.

The true ground state at those densities and temperatures should be a mixture of

the black hole and Minkowski embedding in analogy with the liquid-gas mixture

between the phase transitions of water [53]. It’s not clear how to realise that

mixture in a holographic set-up.
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(a) The curves correspond to m̃ = 0(black), 1(red), 1.5(orange), 2(green),
3(blue) from bottom to top. The grey line is the path of the critical points.
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(b) A zoom into figure (a) to show the critical point structure at small chem-
ical potential. Here we show the detail of m̃ = 1 case, but a similar structure
exists for every case.

Figure 3.8: The phase diagram at finite current quark mass with
finite B (solid lines) and zero B (dotted lines).

3.6 Finite Mass

We next describe the evolution of the phase diagram with quark mass. If we move

away from zero quark mass then the second order chiral symmetry restoration

phase transition at T = 0 but growing chemical potential becomes a cross over

transition. This can be seen in figure 3.2 where for m̃ 6= 0 the non-zero value of the

condensate can be seen to change smoothly with changing µ̃ and there is no jump

in any order parameter. The (chiral) tri-critical point becomes a critical point.

However, the other transition lines survive the introduction of a quark mass.

In figure 3.8. we plot the phase diagram for various quark mass, m̃, at constant B.

The colours represent different quark masses — m̃ = 0, 1, 1.5, 2, 3 from bottom to

top are black, red, orange, green, and blue. The solid lines are for finite, fixed B.
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To show the influence of the magnetic field we also display the B = 0 solution as

the dotted lines. The grey line shows the motion of the critical points.

In general the magnetic field shifts the transition line up and right, meaning that

the magnetic field makes the meson more stable against the temperature/density

meson dissociation effect. This is important at small m̃ but negligible at large m̃ as

expected.

Both critical points survive the introduction of a finite m̃, even though it looks like

there is no critical point in figure 3.8(a). Zooming in on the appropriate region at

small chemical potential reveals the two critical point structure as shown in figure

3.8(b). Their positions, as m̃ changes, are marked by the grey line in figure 3.8a.

The one line represents the two critical points which are indistinguishable on the

scale of figure 3.8(a). The chiral symmetry critical point moves very close to the

other critical point even for a very small mass (m̃ ∼ 0.01). The interpretation of the

critical points and the phase boundaries are the same as in the m̃ = 0 case in the

previous section.

Notice that the black hole to black hole transition exists even in the B = 0 case as

shown in figure 3.8(b) (right), so it is not purely due to the magnetic field.

Nevertheless this transition seems not to have been reported in the previous works

[53, 56]. We believe that this is because the transition line between the two critical

points is too small to be resolved on the scale of figure 3.8(a), which agrees

qualitatively with the figures in [53]. In order to find those transitions we had to

slice the temperature down to order 10−3 as shown on the vertical axis in figure

3.8(b) (right). Any coarser graining would miss it.

The final surprise relative to the previous work is that the meson melting transition

below the critical point appears second order in our work even in the infinite mass

limit. To emphasise this we show a number of plots in the B = 0 theory in figure

3.9.

Since the scaled variables (3.15) cannot be used at B = 0, (3.19) and (3.17) read in

79



0.445 0.446 0.447 0.448 0.449 0.450 0.451
Μ0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

-c
wH = 0.4

0.445 0.446 0.447 0.448 0.449 0.450 0.451
Μ0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
d

0.445 0.446 0.447 0.448 0.449 0.450 0.451
Μ-0.00006

-0.000059

-0.000058

-0.000057

-0.000056

-0.000055

-0.000054
W

(a) wH = 0.4. At µ̄ ∼ 0.4467 there is a Minkowski to black hole embedding transition, which is
second order in both chiral condensation and density.
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(b) wH = 0.7575. There are two transitions. The first (µ̄ ∼ 0.0341) is a Minkowski to black hole
transition and second order in condensation and density. The second (µ̄ ∼ 0.03455) is a black
hole to black hole transition and first order.
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(c) wH = 0.7587. At µ̄ ∼ 0.0321 there is a Minkowski to black hole embedding transition, which
is first order in both chiral condensation and density.
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(d) wH = 0.762. At µ̄ ∼ 0.0235 there is a Minkowski to black hole embedding transition, which
is first order in both chiral condensation and density.
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(e) Above wH = 0.7658 only a black hole embedding (red) is stable configuration.

Figure 3.9: Chiral condensation (left), density (middle), and the
grand potentials (right) for massive quarks (m = 1) at B = 0 at
a variety of temperatures that represent slices through the phase
diagram figure 3.8(a).
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terms of the original coordinates:

Ω̄(wH , µ̄) :=
−S

NfTD7Vol

=

∫ ∞

ρH

dρ
w4 − w4

H

w4

√
(1 + (L′)2)

K

(
w4 + w4

H

w4

)2

ρ6 , (3.20)

where

µ̄ =

∫ ∞

ρH

dρ d̄
w4 − w4

H

w4 + w4
H

√
1 + (L′)2

K
, (3.21)

K =

(
w4 + w4

H

w4

)2

ρ6 +
w4

(w4 + w4
H)
d̄2 , (3.22)

µ̄ :=
√
2
3
πα′At(∞) , d̄ :=

√
2
3

NfTD72πα′d (3.23)

By the same procedures as in the previous sections we get figure 3.9. Compared to

figure 3.3, the left column of figure 3.9 is the chiral condensate instead of the

embedding configurations. In figure 3.3 there is always a red black hole embedding,

which corresponds to the flat embedding at zero quark mass. It is not present at

finite quark mass.

At very low temperature the transition is a Minkowski to black hole transition

which is second order in the condensate and density (figure 3.9(a)). As the

temperature goes up a new black hole to black hole transition pops up by

developing a ‘swallow tail’ in the grand potential — this transition is first order in

the condensate and density (figure 3.9(b)). As temperature rises the ‘swallow tail’

grows continually and eventually ‘swallows’ the second order Minkowski to black

hole transition (figures 3.9(c),(d)). That means that at higher temperature the

second order Minkowski to black hole transition enters an unstable regime and

plays no role any more. Instead only the first order Minkowski to black hole

transition is manifest. Finally the Minkowski embedding becomes unstable

compared to the black hole embedding (figure 3.9(e)). At an even higher

temperature the Minkowski embedding is not allowed and only a black hole

embedding is available, which is not shown in figure 3.9.

These results all match with our work at finite B and increasing mass, confirming
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those results and our phase diagrams already presented.

3.7 Comparison to QCD

ΧSB

ΧS

Μ

T

(a) Standard scenario

ΧSB

ΧS

Μ
T

(b) Exotic Scenario

Figure 3.10: Two possible phase diagrams for QCD with the ob-
served quark masses. (a) is the standard scenario found in most of
the literature but a diagram as different as (b) remains potentially
possible according to the work in [11]. We have not included any
colour superconducting phase here at large chemical potential.

We have computed the phase diagram for a particular gauge theory using

holographic techniques. There are many differences between our theory and QCD:

the theory has super partners of the quarks and glue present; it is at large N and

small Nf , so quenched (and we have only computed for degenerate quarks to avoid

complications involving the non-Abelian DBI action); the theory has deconfined

glue for all non-zero temperature; the theory has a distinct meson melting

transition. In spite of these differences the phase diagram for the chiral condensate

shows many of the aspects of the QCD phase diagram so we will briefly make a

comparison here.

The QCD phase diagram is in fact not perfectly mapped out since there have only

recently been lattice computations attempting to address finite density [11]. The

phase structure also depends on the relative masses of the up, down and strange

quarks. The standard theoretical picture [51, 10, 11] for physical QCD is shown in

figure 3.10(a). At zero chemical potential the transition with temperature is second

order (or a cross over with massive quarks). At zero temperature there is a first

order transition with increasing chemical potential (ignoring any superconducting

phase). These transitions are joined by a critical point. Comparing to our theory in
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figure 3.5 we see that the transitions’ orders are reversed and the pictures look

rather different.

In fact though as argued in [11] the picture could be very different in QCD. At zero

quark mass the finite temperature transition is first order and whether it has

changed to second order depends crucially on the precise physical quark masses.

Similarly whether the finite density transition is truly first order or second order

depends on the exact physical point in the mu,d, ms, µ, T volume. Arguments can

even be made for a phase diagram matching that in figure 3.10(b) which then

matches the structure of the chiral symmetry restoring phase diagram of the theory

we have studied. For the true answer in QCD we must wait on lattice

developments. Clearly our model will not match QCD’s phase diagram point by

point in the mu,d, ms, µ, T volume but it provides an environment in which clear

computation is possible for structures that match some points in that phase space.

We found a phase with a quark density but chiral symmetry breaking. Such a phase

could potentially exist in QCD. It would be nice also to describe this as a

deconfinement transition but firstly the N = 4 background does not induce linear

confinement and secondly the presence of any temperature leads to screening of the

quarks at the length scale of the inverse temperature. The meson bound states are

closer in spirit to atomic bound states than QCD-like mesons. Nevertheless they are

being disrupted by the background plasma so the existence of a phase with melted

mesons but chiral symmetry breaking at least leads one to speculate on a possible

separation of deconfinement and chiral restoration behaviour in the QCD phase

plane.

Finally, we note a more general point that seems to emerge from the analysis. The

introduction of a chemical potential weakens the first order nature of the transitions

in our analysis. This matches with results found in QCD on the lattice. The

weakening of the first order phase transition is demonstrated for the chiral

transition in the light quark mass regime [75, 76], and is shown for the

deconfinement transition in the heavy quark mass regime [77, 78].
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Chapter 4

Phase Diagram of the D3/D5

System in a Magnetic Field and

a BKT Transition

As seen in the last chapter, the magnetic field induces chiral symmetry breaking in

the D3/D7 holographic system. The symmetry breaking and quark confinement are

lost at high temperature and density. The rich structure of phase transitions of

both first and second order can be seen in figure 3.5. Recently interest has also

turned to the D3/D5 system [50, 79, 80, 81, 82, 83, 84] that describes fundamental

representation matter fields on a 2+1 dimensional defect within a 3+1 dimensional

gauge theory. This system may have some lessons for condensed matter systems.

In [85] an analysis of the D3/D5 system at finite density d and at zero temperature

T revealed that the chiral symmetry breaking transition with increasing magnetic

field B is not second order but similar to a Berezinskii-Kosterlitz-Thouless (BKT)

transition [86, 87] (see also the holographic example in [88, 89]). That is order

parameters across the transition grow as exp(−a/√νc − ν) where a is a constant

and ν = d/B. (νc the critical value for the transition). For small T the authors

of [85] showed the BKT transition returns to a second order nature. This difference

from the D3/D7 case is surprising so it seems worth fleshing out the entire phase

diagram for the theory to see if other surprises are present. In this chapter we
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Figure 4.1: The phase diagrams for D3/D5 system. w̃H measure
the temperature of the theory whilst µ̃ is the chemical potential.
The dashed line is a second order transition associated with the
formation of quark density and meson melting. The dotted line
is a second order transition for chiral symmetry restoration. That
transition ends at a BKT transition point and its effects on the
second order line can be seen. The continuous line is the merged
first order transition. The positions of critical points are marked.

present that analysis — much of the computation matches that in the D3/D7

system which we worked through in chapter 3 so here we very briefly present the

formalism and the conclusions. We display the resulting phase diagram for massless

matter fields in figure 4.1. Clearly much of the structure is similar to the D3/D7

case but the second order boundary of the chiral symmetry breaking phase is

distorted by the presence of the BKT transition.

4.1 The Holographic Description

The N=4 super Yang-Mills gauge theory at finite temperature has a holographic

description in terms of an AdS5 black hole geometry (with N D3 branes at its

core)[26, 28, 29]. The geometry can be written as

ds2 =
w2

R2
(−gtdt2 + gxd~x

2 + gxdy
2) +

R2

w2
(dρ2 + ρ2dΩ2

2 + dL2 + L2dΩ̄2
2) , (4.1)

where ~x is two dimensional, y will be the D3 coordinate not shared by our D5, we

have split the transverse six plane into two three planes each with a radial
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coordinate ρ, L and a two sphere, R4 = 4πgsNα
′2 and

gt :=
(w4 − w4

H)
2

2w4(w4 + w4
H)

, gx :=
w4 + w4

H

2w4
. (4.2)

The temperature of the theory is given by the position of the horizon, wH = πR2T .

We include our 2+1d defect with fundamental matter fields by placing a probe D5

brane in the D3 geometry. The probe limit corresponds to the quenched limit of the

gauge theory. The D5 probe can be described by its DBI action

SDBI = −TD5

∫
d6ξ
√

−det(P [G]ab + 2πα′Fab) , (4.3)

where P [G]ab is the pullback of the metric and Fab is the gauge field living on the

D5 worldvolume. We will use Fab to introduce a constant magnetic field (e.g.

F12 = −F21 = B) [38] and a chemical potential associated with baryon number

At(ρ) 6= 0 [52, 68, 69, 90] We embed the D5 brane in the t, ~x, ρ and Ω2 directions of

the metric but to allow all possible embeddings must include a profile L(ρ) at

constant y, Ω̄2. The full DBI action we will consider is then

S =

∫
dξ6L(ρ) =

(∫

S2

ǫ2

∫
dtd~x

)∫
dρ L(ρ) , (4.4)

where ǫ2 is a volume element on the 2-sphere and

L := −NfTD5
ρ2

2
√
2

(
1− w4

H

w4

)
×
√(

1 + (∂ρL)2 −
2w4(w4 + w4

H)

(w4 − w4
H)

2
(2πα′∂ρAt)2

)

×
√((

1 +
w4
H

w4

)
+

4R4

w4 + w4
H

B2

)
. (4.5)

Since the action depends on ∂ρAt and not on At, there is a conserved quantity d
(
:= δS

δFρt

)
and we can use the Legendre transformed action

S̃ = S −
∫
dξ6Fρt

δS

δFρt
=

(∫

S2

ǫ2

∫
dtd~x

)∫
dρ L̃(ρ) , (4.6)
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where

L̃ := −NfTD5
(w4 − w4

H)

2
√
2w4

√
K(1 + (∂ρL)2) (4.7)

K :=

(
w4 + w4

H

w4

)
ρ4 +

4R4B2

w4 + w4
H

ρ4 +
4w4

(w4 + w4
H)

d2

(NfTD52πα′)2
. (4.8)

To simplify the analysis we note that we can use the magnetic field value as the

intrinsic scale of conformal symmetry breaking in the theory as in chapter 3 — that

is we can rescale all quantities in (4.7) by B to give

L̃ = −NfTD3(R
√
B)3

w̃4 − w̃4
H

w̃4

√
K̃(1 + L̃′2) , (4.9)

K̃ =

(
w̃4 + w̃4

H

w̃4

)
ρ̃4 +

1

w̃4 + w̃4
H

ρ̃4 +
w̃4

(w̃4 + w̃4
H)
d̃2 , (4.10)

where the dimensionless variables are defined as

(w̃, L̃, ρ̃, d̃) :=

(
w

R
√
2B

,
L

R
√
2B

,
ρ

R
√
2B

,
d

(R
√
B)2NfTD52πα′

)
. (4.11)

In all cases the embeddings become flat at large ρ taking the form

L̃(ρ̃) ∼ m̃+
c̃

ρ̃
, (4.12)

In the absence of temperature, magnetic field and density the regular embeddings

are simply L(ρ̃) = m̃, which is the minimum length of a D3-D5 string, allowing us

to identify it with the quark mass as shown in section 1.4.7. c̃ should then be

identified with the quark condensate.

We will classify the D5 brane embeddings by their small ρ̃ behaviour. If the D5

brane touches the black hole horizon, we call it a black hole embedding, otherwise,

we call it a Minkowski embedding as in chapter 3. We have used Mathematica to

solve the equations of motion for the D5 embeddings resulting from (4.9).

Typically, we numerically shoot out from the black hole horizon (for black hole

embeddings) or the ρ̃ = 0 axis (for Minkowski embeddings) with Neumann

boundary condition for a given d̃. Then by fitting the embedding function with
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(4.12) at large ρ̃ we can read off m̃ and c̃.

Hamilton’s equations from (4.6) are ∂ρd = δS̃
δAt

and ∂ρAt = − δS̃
δd . The first simply

means that d is the conserved quantity. The second reads as

∂ρ̃Ãt = d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2

K̃
, (4.13)

where Ãt :=
√
22πα′At

R
√
2B

.

There is a trivial solution of (4.13) with d̃ = 0 and constant Ãt [53]. The

embeddings are then the same as those at zero chemical potential. For a finite d̃

there exist black hole embeddings as in chapter 3. For such an embedding the

chemical potential(µ̃) is defined as

µ̃ := lim
ρ̃→∞

Ãt(ρ̃)

=

∫ ∞

ρ̃H

dρ̃ d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2
√
K̃

, (4.14)

where we fixed Ãt(ρ̃H) = 0 for a well defined At at the black hole horizon.

The generic analysis below with massless quarks and B, T and µ all switched on

involves four types of solution of the Euler-Lagrange equations. All of these

approach the ρ̃ axis at large ρ̃ to give a zero quark mass. Firstly, there are

Minkowski embeddings that avoid the black hole so have a non-zero condensate c̃ —

these solutions have d̃ = 0 so Ãt = µ. Secondly, there can be generic black hole

solutions with both of c̃ and d̃ non-zero. Finally there are solutions that lie entirely

along the ρ̃ axis so that c̃ = 0 but with d̃ either zero or non zero. In fact the flat

embeddings with d̃ = 0 are always the energetically least preferred but the other

three all play a part in the phase diagram of the theory.

To compare these solutions we compute the relevant thermodynamic potentials.

The Euclideanised on-shell bulk action can be interpreted as the thermodynamic

potential of the boundary field theory. The grand potential (Ω̃) is associated with

the action (4.5) while the Helmholtz free energy (F̃ ) is associated with the Legendre
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transformed action (4.6):

F̃ (w̃H , d̃) :=
−S̃

NfTD5(R
√
B)3Vol

=

∫ ∞

ρ̃H

dρ̃
w̃4 − w̃4

H

w̃4

√
(1 + (L̃′)2)

√
K̃ (4.15)

Ω̃(w̃H , µ̃) :=
−S

NfTD5(R
√
B)3Vol

=

∫ ∞

ρ̃H

dρ̃
w̃4 − w̃4

H

w̃4

√
(1 + (L̃′)2)

K̃(d̃ = 0)√
K̃

(4.16)

where Vol denote the trivial five dimensional volume integral except ρ̃ space, so the

thermodynamic potentials defined above are densities, strictly speaking. Since

K̃ ∼ ρ̃4, both integrals diverge as ρ̃2 at infinity and need to be renormalised with

the procedure used in chapter 3.

4.2 Chiral Symmetry Restoration by Temperature

The chiral symmetry restoration transition by temperature is first order [67] (a

transition related to the thermal transition for non-zero mass at

B = 0 [35, 70, 71, 72, 41]). The transition on the gravity side is between a

Minkowski embedding that avoids the black hole to an embedding that lies along

the ρ̃ axis ending on the black hole. Figure 4.2 shows the (−c̃, m̃) diagram for some

temperatures (w̃H = 0.25, 0.3435, 0.45 from the bottom). The solid lines are the

black hole embeddings and the dotted lines are Minkowski embeddings. Since we

are interested in the case m̃ = 0, the condensate is the intersection of the curves

with the vertical axis. As temperature goes up the condensate moves from the

lower dot to the middle curve continuously, then jumps at w̃H = 0.3435 to the

origin (zero condensate), which corresponds to the chiral symmetric phase. It is

also the transition from a Minkowski (dotted line) to a black hole embedding (solid

line). This jump can be seen by a Maxwell construction: m̃ and c̃ are conjugate

variables and the two areas between the middle curve and the axis are equal at the

transition point. See [67] for more details.

This transition as well as restoring chiral symmetry also corresponds to the melting
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Figure 4.2: A plot of the condensate vs. the quark mass to show
the first order phase transition at zero chemical potential induced by
temperature. The solid line corresponds to the black hole embedding
and the dotted line to a Minkowski embedding. From bottom to top
the curves correspond to temperatures w̃H = 0.25, 0.3435, 0.45.

of bound states of the defect quarks since the Minkowski embedding has stable

linearised mesonic fluctuation whilst the black hole embedding has a quasi-normal

mode spectrum [59, 58, 60, 61].

4.3 Chiral Symmetry Restoration by Density

At zero temperature we find two phase transitions with increasing chemical

potential. At low chemical potentials the preferred embedding is a Minkowski

embedding with Ãt = µ so there is no quark density. There is then a transition to a

black hole embedding with non-zero quark density, d̃. This transition, whilst

appearing first-order in terms of the brane embeddings, displays second-order

behaviour in all field-theory quantities such as the condensate or density (which

grows smoothly from zero). The transition also corresponds to the onset of bound

state melting since the black hole embedding has quasi-normal modes rather than

stable fluctuations.

The chiral symmetry transition induced by density at zero temperature is distinct

and also a continuous transition. It has been shown to be of the BKT type for this

D3/D5 case [85] as opposed to a mean-field type second order transition as seen in

the D3/D7 case [91] and chapter 3.

The chiral symmetric phase corresponds to the trivial embedding, L = 0. Chiral
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symmetry breaking is signalled by the instability of small fluctuations around the

L = 0 embedding. The free energy (4.15) with (4.10) at zero T reads

F̃ ∼
√
1 + L̃′2

√
ρ̃4 +

ρ̃4

w̃4
+ d̃2 , (4.17)

which can be expanded up to the quadratic order in L̃ as

F̃ ∼ −1

2

√
1 + ρ̃4 + d̃2L̃′2 +

L̃2

ρ̃2
√
1 + ρ̃4 + d̃2

(4.18)

At ρ̃≫ 1, L̃ρ̃ behaves as a scalar with m2 = −2 in AdS4, while at small ρ̃≪ 1 and

ρ̃≪ d̃ it behaves as a scalar with m2 = − 2

1+d̃2
in AdS2. The

Breitenlohner-Freedman (BF) bound of AdS2 is −1
4 , so below d̃c =

√
7 the BF

bound is violated and the embedding L̃ = 0 is unstable [85]. This critical density

corresponds to the critical chemical potential µ̃ ∼ 2.9 as can be computed from

(4.14). In [85] it was shown that the condensate scales near this transition as

−c̃ ∼ −e
−π

√
1+d̃2

d̃2c−d̃2 , (4.19)

which corresponds to BKT scaling [86, 87]. This transition is an example of the

analysis in [88] where it was shown that if a scalar mass in a holographic model

could be tuned through the BF bound a BKT transition would be seen at the

critical point.

4.4 Phase Diagram in µ-T Plane

To compute the full phase diagram we work on a series of constant-T slices. We

have found the four relevant embeddings discussed above and found those that

minimise the relevant thermodynamic potential. For more details of the method

and relevant analysis we refer to the calculations and analysis in chapter 3. Figure

4.3 shows some example plots of the dependence of the condensate on the chemical

potential on fixed T slices. It shows that the Minkowski embedding with d̃ = 0 is

preferred at low µ̃, a black hole embedding with growing d̃ at intermediate µ̃, before
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(c) w̃H = 10−5 near the critical
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Figure 4.3: Plots of the condensate vs. chemical potential on
fixed temperature slices, showing the phase structure of the theory.
The black lines correspond to the Minkowski embedding, the orange
lines to chiral symmetry breaking black hole embeddings and the red
lines to the flat embedding along the ρ̃ axis. Figure (b) and (c) show
that at low temperature the BKT transition becomes second order.

finally a transition to a flat embedding occurs at high chemical potential.

Qualitatively the phase diagram, shown in figure 4.1, is almost the same as the

D3/D7 case - the two second order transitions at zero temperature converge at two

critical points to form the first order transition identified at zero density. The only

difference is induced by the chiral phase transition at zero T . Comparing to the

D3/D7 case we see there is a long tail near zero T , the end point of which

corresponds to the BKT transition. However even infinitesimal temperature turns it

into a mean-field type second order transition[85, 89]. In figure 4.3(b),(c) we plot

the condensate against µ at a very low temperature (w̃H = 10−5) to show the

second-order nature.
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Chapter 5

E, B, µ, T Phase Structure of

the D3/D7 Holographic Dual

In chapter 3 we computed the phase diagram for large N N=4 SYM with quenched

N=2 massless quarks in a magnetic field, in the temperature-chemical potential

plane (T -µ plane) which we show in figure 5.1(a). It has considerable structure.

Whilst the magnetic field favours chiral symmetry breaking, the temperature and

chemical potential favour the chirally symmetric phase.

In this chapter we wish to study how robust the phase structure is to changes of

parameters. In particular we will introduce the additional parameter of an electric

field (E) parallel to the magnetic field. Note this case is simpler than when the E

and B fields are perpendicular because no Hall current forms. We do allow for the

induced current in the direction of the electric field. The effect on the theory of an

electric field has been studied previously for probe branes in

[92, 93, 64, 94, 95, 96, 97]. Although the electric field continuously acts on the

quarks an equilibrium configuration is nevertheless reached where energy is being

dissipated to the bulk N = 4 plasma. The quarks and anti-quarks have opposite

charge when interacting with the electric field so the field tends to loosen the

binding in mesonic bound states and, if it is strong enough, to dissociate the

mesons. With an electric field present in the theory a singular shell develops in the

gravity description. If the D7 brane passes through this shell its action becomes

95



imaginary and in order to keep the action real one must turn on the appropriate

electric current J . The singular shell plays the role of an effective horizon for

worldvolume meson fluctuations [98]. If the probe brane touches the singular shell,

one expects that fluctuations of the brane at that point must be in-falling and the

spectrum will resemble a quasi-normal mode spectrum describing mesons that have

a complex mass. In other words, the electric field has acted to dissociate the meson

in a similar fashion to how temperature melts the mesons [58, 59].

The field theory phase structure is determined holographically by comparison of the

classical bulk field configurations. In this chapter, we introduce three bulk fields

L(ρ) (embedding scalar), At(ρ) (gauge field), and Az(ρ) (gauge field) in the D7

brane worldvolume with given background parameters (E,B, T ). By fixing the

asymptotic values of fields in the UV (large ρ) with L→ m (quark mass), At → µ

(chemical potential), Az → t E
2πα′ , we look for the sub-leading behaviours of fields at

large ρ: c (condensate), d (density), and J (current), which are determined by the

bulk DBI dynamics. Therefore, our problem is classifying the phases by three

quantities (c, d, J) in the five-dimensional space (T,B,E,m, µ). It turns out that,

because of a scaling symmetry, we can scale all variables by B, which reduces our

phase space to four dimensions. Since we are interested in spontaneous chiral

symmetry breaking, we will choose m = 0. Our phase space becomes

three-dimensional (T, µ,E) and we will classify this space by 8 possible states

consisting of the three order parameters (c, d, J) being ‘on or off’. Among them,

only in the c 6= 0, d = J = 0 phase are stable mesons allowed3. T, µ,E tend to turn

off c (c = 0) and turn on d, J (d, J 6= 0), and so oppose B. Due to these

competitions between E, T, µ and B a rich phase structure is constructed.

One of our main results here is that three phases (corresponding to three embedding

types) are also present in the T,E plane as we summarise in figure 5.1(b). With a

large (small) electric field, the theory becomes a conductor (insulator) and is in a

3We should caution that when studying phase diagrams one is always limited by the states
allowed in the analysis. We do not study the effects of the parameters on the squark potential, for
example, which is likely unstable in the presence of a chemical potential [70]. The electric field could
also potentially generate phenomena beyond chiral symmetry restoration, density creation, current
induction, and meson melting but our results should stand as a starting point for exploring such
extra phases, should they exist.
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Figure 5.1: The phase diagrams of the massless N = 2 gauge
theory with a magnetic field. First order transitions are shown in
blue, second order transitions in red. The temperature is controlled
by the parameter T , chemical potential by µ and electric field by
E.

chirally symmetric χS phase (a χSB phase in which chiral symmetry is broken). At

an intermediate electric field strength, the system is a chiral symmetry broken

conductor. Note that the orders of the phase transitions and the positions and

presence of the critical points vary relative to the T, µ case (figure 5.1(a)).

Interestingly, the µ-E phase diagram (figure 5.1(c)) shows a very different structure

from the T -µ or the T -E phase diagram. At zero temperature and finite E and B

field, the contribution to the action from the density is cancelled by the

contribution from the induced current, which is a function of density. Consequently

the free energy of the system is independent of density, which was pointed out in

[64] in the zero B field case. Thus the system is essentially a zero density system
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and the phase diagram is independent of the chemical potential. At first this may

seem at odds with figure 5.1(a) since the µ axis has structure present. In fact there

is a first order transition at T = 0 between the µ axis and the rest of the E, µ plane.

There are two limits approaching the µ axis: (1) E = 0 and then T → 0 (2) T = 0

and then E → 0. These two limits are different and only the former is a continuous

limit to the µ axis.

Indeed by computing the phase structure through the entire T, µ,E volume (e.g.

computing the µ-E diagram at various fixed T ) we show the smooth evolution

through that volume connecting the three surface planes. There are interesting

movements of the critical points and phase boundaries. These results are

summarised in figure 5.1(d) which we discuss in much more detail in section 5.4.

We also see the development of the first order transition between the E-µ plane and

the µ axis as T → 0. Two of the missing states from figures 5.1(a)-5.1(c),

(c 6= 0, d 6= 0, J 6= 0) and (c = 0, d 6= 0, J 6= 0) from among the 8 possible states, are

found in the 3D bulk of figure 5.1(d).

These models with their varied behaviours in the B, T, µ,E volume can hopefully

serve as exemplars, or templates from which to find exemplars, for different phase

structures in physical theories.

5.1 The Holographic Description

The N=4 gauge theory at finite temperature has a holographic description in terms

of an AdS5 black hole geometry (with N D3 branes at its core) [26, 28, 29]. The

geometry is

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2f
dr2 +R2dΩ2

5 , (5.1)

where R4 = 4πgsNα
′2 and

f := 1− r4H
r4

, rH := πR2TFT . (5.2)
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Here rH is the position of the black hole horizon which is linearly related to the

dual field theory temperature TFT. We will find it useful to make the coordinate

transformation

dr2

r2f
≡ dw2

w2
=⇒

√
2w =

√
r2 +

√
r4 − r4H , (5.3)

with
√
2wH = rH . Note that this is a slightly different coordinate transformation to

that done in chapter 3. Comparing equations from this chapter to ones in chapter 3

will give differing factors of 2 in some of the equations. This change makes the

presence of a flat 6-plane perpendicular to the horizon manifest. We will then write

the coordinates in that plane as ρ and L according to

w =
√
ρ2 + L2 , ρ := w sin θ , L := w cos θ , (5.4)

The metric is then

ds2 =
w2

R2
(−gtdt2 + gxd~x

2) +
R2

w2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dΩ2
1) , (5.5)

where

gt =
(w4 − w4

H)
2

w4(w4 + w4
H)

, gx =
w4 + w4

H

w4
. (5.6)

Quenched (Nf ≪ N) N=2 quark superfields can be included in the N=4 gauge

theory through probe D7 branes in the geometry. The D7 probe can be described

by its DBI action

SDBI = −TD7

∫
d8ξ
√

−det(P [G]ab + 2πα′Fab) , (5.7)

where P [G]ab is the pullback of the metric and Fab is the gauge field living on the

D7 worldvolume. We will use Fab to introduce a constant magnetic field (e.g.

F12 = −F21 = B/(2πα′)), a chemical potential associated with baryon number

At(ρ) 6= 0 and our crucial extra ingredient here is an electric field parallel to the

magnetic field (F03 = −F30 = E/(2πα′))[92, 93, 64, 94]. We will also allow for the
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possibility that the electric field induces a current in the z direction by including Az.

We embed the D7 brane in the t, ~x, ρ and Ω3 directions of the metric but to allow

all possible embeddings must include a profile L(ρ) at constant Ω1. The full DBI

action we will consider is then

S =

∫
dξ8L(ρ) =

(∫

S3

ǫ3

∫
dtd~x

)∫
dρ L(ρ) , (5.8)

where ǫ3 is a volume form on the 3-sphere. Here

L = −Nρ3
(
1− w4

H

w4

)√√√√
((

1 +
w4
H

w4

)2

+
R4

w4
B2

)

×
√(

1− E2R4w4

(w4 − w4
H)

2

)
(1 + L′2)− w4(w4 + w4

H)

(w4 − w4
H)

2
(2πα′A′

t)
2 +

w4(2πα′A′
z)

2

w4 + w4
H

,

(5.9)

and N = NfTD7. Here A
′
t denotes the derivative of At with respect to ρ. At large ρ,

for fixed E and B, the fields behave as

L ∼ m+
c

ρ2
+ ..., At ∼ µ+

d

ρ2
+ ..., Az ∼ t

E

2πα′ +
J

ρ2
, (5.10)

where m is proportional to the quark mass, c the quark condensate, µ the chemical

potential, d the quark density and J the current. For more physical identifications

we refer to [55, 52, 56, 53, 92]. Since the action is independent of At and Az, there

are conserved quantities d
(
:= δS

δFρt

)
and J

(
:= δS

δFρz

)
. These relations can be

inverted to express A′
t and A

′
z in terms of d and J as

2πα′A′
t =

d

2πα′N

w4 − w4
H

w4 + w4
H

Q , 2πα′A′
z =

J

2πα′N

w4 + w4
H

w4 − w4
H

Q ,

Q =

√√√√√√

(
1− E2R4 w4

(w4−w4
H)2

)
(1 + L′2)

(
d

2πα′N

)2
w4

(w4+w4
H)

−
(

J
2πα′N

)2 w4(w4+w4
H)

(w4−w4
H)2

+

(
B2R4

w4 +
(
1 +

w4
H

w4

)2)
ρ6

.

(5.11)
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This is used to express the Legendre transformed action in terms of d and J :

SLT = S −
∫
dξ8Fρt

δS

δFρt
−
∫
dξ8Fρz

δS

δFρz

=

(∫

S3

ǫ3

∫
dtd~x

)∫
dρ LLT (ρ) , (5.12)

where

LLT = −N
(w4 − w4

H)

w4

√
K(1 + L′2) , (5.13)

K =

(
1− E2R4w4

(w4 − w4
H)

2

)[(
w4 + w4

H

w4

)2

ρ6 +
R4B2

w4
ρ6

+
w4

(w4 + w4
H)

d2

(NfTD72πα′)2
− w4(w4 + w4

H)

(w4 − w4
H)

2

J2

(NfTD72πα′)2

]
. (5.14)

Note that the first factor of K changes sign at ws,

ws =

√√√√ER2

2
+

√
E2R4 + 4w4

H

2
, (5.15)

which defines a singular shell with a radius ws. At zero temperature (wH = 0) the

singular shell forms at
√
ER, and at zero E it disappears. Note that the singular

shell does not depend on density. In order to make the action regular, the second

term of K should change sign at the singular shell. This condition determines the

current J and conductivity σ by Ohm’s law:

J = σE ,

σ = N(2πα′)R2

√
w4
s

(w4
s + w4

H)
2

d2

N2(2πα′)2
+

[
R4B2

w4
s(w

4
s + w4

H)
+

(w4
s + w4

H)

w8
s

]
ρ6s ,

(5.16)

where ρs is the ρ coordinate where an embedding touches the singular shell. This is

still a function of quark mass m after all other parameters are fixed. In spite of the

way we write (5.16) the current is non-linear in E since ws and ρs are functions of

E. σ has two contributions. The first term is from net charge carrier density, d, and

the second term is from pair-produced virtual charges. Interestingly, the

conductivity from pair-produced charges is enhanced by B. The more general

101



conductivity for arbitrarily angled constant E and B was obtained in [93, 97] in a

different coordinate system4. By plugging (5.16) into (5.13) and rescaling we have a

dimensionless Lagrangian L̃LT :

L̃LT = − LLT

R4B2N
=

(w4 − T 4)

w4

√
K̃(1 + L′2) , (5.17)

K̃ =

(
1− E2w4

(w4 − T 4)2

)[(
w4 + T 4

w4

)2

ρ6 +
1

w4
ρ6 + d2

w4

(w4 + T 4)

−E2w
4(w4 + T 4)(w4

s + (w4
s + T 4)2)

(w4 − T 4)2(w4
s + T 4)w8

s

ρ6s − d2E2 w4(w4 + T 4)w4
s

(w4 − T 4)2(T 4 + w4
s)

2

]
,

(5.18)

where we rescaled

(ω,L, ρ) → R
√
B (ω,L, ρ) , (d, J) → (R

√
B)3N2πα′ (d, J) , E → BE , (5.19)

and define T ≡ wH for notational clarity. The Lagrangian L̃LT will be our starting

point for the numerical analysis in the following sections.

The chemical potential is obtained by integrating A′
t (5.11) from the horizon to the

boundary

µ =

∫ ∞

ρH

dρ d
w4 − T 4

w4 + T 4

√√√√√√

(
1− E2 w4

(w4−T 4)2

)
(1 + L′2)

d2 w4

(w4+T 4)
− J2w

4(w4+T 4)
(w4−T 4)2

+

(
1
w4 +

(
1 + T 4

w4

)2)
ρ6

, (5.20)

where At(ρH) = 0.

In the following sections we will present our results on various aspects of the phase

structure of this theory. Until the final section of this chapter we will concentrate

on the case of massless quarks where the U(1) symmetry in the dΩ1 direction is a

good UV symmetry of the theory. Also here and below we will express all our

dimensionful parameters in units of the magnetic field B to the appropriate power

(see (5.19)) — in other words we will use the magnetic field as the intrinsic scale in

the theory.

4The conductivity of other models have been obtained by the same method. See for example
[99, 100] and references therein.
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5.2 B, T , E Phase Diagram

The rich structure of the B,µ, T phase diagram (figure 5.1(a)) leads one to ask how

generic it is. The main goal of this chapter is to introduce an additional parameter

that favours chiral symmetry preservation to see how sensitive the phase diagram is

to a change of parameter. We will use electric field (E) as that new parameter.

5.2.1 B, E at Zero Temperature

As a first example let us consider the system with E and B but no T or µ. The

Legendre transformed Lagrangian is

L̃LT =
√
(1 + L′2)

√(
1− E2

w4

)[
ρ6 +

ρ6

w4
− J2

]
. (5.21)

As has been discussed in (5.15) and (5.16), there is a singular shell at ws =
√
E and

the current is given by

J = E

√
1 + w4

sρ
3
s

w4
s

=
√

(1 + E2)E cos6 θs . (5.22)

One can therefore find the embeddings that end on the singular shell by shooting

out (in) from the singular shell with J determined by the point on the shell one is

shooting from. We then seek amongst such solutions for those that satisfy L→ 0

(m→ 0) as ρ→ ∞ to find the massless (mass m) embeddings. Generically we again

find three types of solutions: (1) embeddings that curve off axis and reach ρ = 0

missing the singular shell (when E ≪ B); (2) embeddings that curve off axis and

pass through the singular shell (when E ∼ B); (3) the flat embedding L = 0. The

schematic plots of these three cases are shown in the inset of figure 5.1(b), where

the black disk should be ignored at zero T . In figure 5.2(a) we show some sample

numerical embeddings ending on (2) and off (1) the singular shell.

All non-flat embeddings that pass through the singular shell have a conical

singularity at ρ = 0, whose precise interpretation is unclear and discussed

in [64, 94]. The conical singularity is most likely a reflection of the energy being
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(a) Embeddings ending on and off the singular shell (E = 0.1,m = 0).
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(b) The condensate, c vs. mass, m for given E values. Curves shift to left
as E decreases. The red (blue) part corresponds to the embedding touching
(missing) the singular shell. The inset on the right is a zoom-in around the
first order phase transition. The coloured points correspond to the coloured
embeddings in figure 5.2(a).

Figure 5.2: Embeddings and c-m diagram at finite E parallel to
finite B, but no density and temperature.

injected by the electric field being sunk into the gauge background through stringy

physics representing the quark interactions with the N = 4 Yang-Mills fields.

The figure 5.2(b) shows the condensate, c, vs. mass, m, plot for given Es. One

point (c,m) in the plot corresponds to one embedding since it gives a complete

initial condition for the embedding equation (a second order differential equation).

For example, the coloured points in the inset of figure 5.2(b) correspond to the

embedding in figure 5.2(a) of the same colour.

From figure 5.2(b) we can determine the phase structure as follows. For a larger E

(relative to B), the c-m curves tend to be pushed to the right. So if we focus on

m = 0 case, the only available point at large E is (m, c) = (0, 0), which corresponds

to the flat embedding. The flat embedding preserves the U(1) chiral symmetry, so

the system is chiral symmetric (χS). Since the flat embedding necessarily crosses

the singular shell, there is no stable meson but there is a current (5.22) with θs = 0:

J =
√
(1 + E2)E, which is the maximal current for a given E. i.e. the system is a
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conductor.

As E is lowered the c-m curve shifts to the left. At E ∼ 0.2054 a new solution for

m = 0 appears, whose c is finite and the ground state corresponds to this new

solution. This is a second order transition because the second solution for c at

m = 0 moves smoothly away from the c = 0 embedding. Because of the finite c, the

embedding is curved and breaks the U(1) symmetry, so the system is in a chiral

symmetry broken (χSB) phase. However the embedding still passes through the

singular shell, so it is a conductor with no stable meson.

Finally, around E ∼ 0.1 the small ‘S’ shape structure connecting the red part

(singular shell touching embedding) and blue part (a singular shell missing

Minkowski embedding), meets the m = 0 line, which is zoomed in, in the inset of

figure 5.2(b). It shows a typical first order phase transition structure and by a

Maxwell construction we can pin down the transition point. So as E decreases, the

green point should move to the grey point with a discontinuous condensate jump

(see the zoomed in inset). The blue part (or the grey points in the inset)

corresponds to the Minkowski embedding and the system is a χSB insulator with

stable mesons.

One would like to match this picture to a computation of the free energy. Naively it

seems one should just compute the original action (before Legendre transforming)

evaluated on these solutions. However, there is a subtle point related to the conical

singularity5 of the embedding at ρ = 0 and also a log divergence of Ax [92, 95, 97]

at the horizon. We cannot cure this behaviour in out theory. A possible way of

dealing with this behaviour is to add a boundary term to take care of the

singularity at ρ = 0 or at the horizon. This boundary term will also contribute to

the free energy so must be taken into account. Of course, one should be careful

when changing the infra-red region of the model or effective theory, because this is

affecting precisely the physics that one is trying to describe. This is in contrast to

changes in the UV where one can simply add counterterms in the effective theory to

match up with the full theory.

5If we consider the finite density system this conical singularity disappears. However another
singularity seems to appear for At as discussed in section 5.3.
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However, this surface term does not change the equation of motion. Furthermore,

as far as the embedding dynamics is concerned, the singular shell position has the

same singular structure as a black hole horizon and the embedding outside a

singular shell is independent of the ones inside the shell. So the c-m plots, based on

the classical embedding outside the shell, are valid regardless of the additional

boundary terms at the IR boundary.

These solutions correctly show us the maxima and minima of the free energy as a

function of E. The discussion above is the only consistent picture with the c-m

plots so we can be confident of its validity. For this reason in what follows we will

focus on the c-m plots (and also when chemical potential is present we will track

the quark density) to determine the phase structure. A similar philosophy was used

in [64, 94].

However, it would be interesting to identify the correct boundary term and

compute the consistent free energy graph for our c-m plot (we have not been able to

so far). To identify it, in principle, one should start with the time-dependent

backreacted system, since the singularities are related to time-dependent energy

loss of the system and its effect on the background adjoint matters. However one

may also be able to introduce an ‘effective’ boundary term. Our c-m diagram would

be a good guide to figure out the correct boundary term and free energy or could

even be used as a rule to determine it, since sometimes thermodynamic consistency

plays a complementary role in AdS/CFT applications.

5.2.2 B, E at Finite Temperature

We can now extend our analysis to include temperature straightforwardly. From

(5.17) with d = 0

L̃LT =
(w4 − T 4)

w4

√
K̃(1 + L′2), (5.23)

K̃ =

(
1− E2w4

(w4 − T 4)2

)[(
w4 + T 4

w4

)2

ρ6 +
1

w4
ρ6 − J2w

4(w4 + T 4)

(w4 − T 4)2

]
(5.24)
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(a) T = 0.24. E = 0.0001, 0.049, 0.1 from left.

0.05 0.10 0.15 0.20 0.25 0.30
m

- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

-c

(b) T = 0.30. E = 0.0001, 0.100, 0.180 from left.

Figure 5.3: c-m diagram at finite E parallel to finite B at finite
(high) temperature.

and

ws =

√
E

2
+

√
E2 + 4T 4

2
, J = E

√
w4
s + (w4

s + T 4)2

(w4
s + T 4)w8

s

ρ3s . (5.25)

It is apparent that even with non-zero T there remains a singular shell - it always

lies outside the horizon for any T (5.15). Requiring regularity of the on-shell action

allows us to fix the current J (5.16). If the embedding does not touch the singular

shell ρs = 0, then there is no current.

We shoot out to obtain the embeddings as a function of E and T at fixed B. The

process is laborious — we plot the evolution of the c-m plot on fixed T trajectories.

There are three types of c-m plot. At low temperature, it is similar to figure 5.2(b).

At high temperature two qualitatively different structures appear as shown in figure

5.3. As the temperature increases, the T effect dominates the E effect, which is

visualised in the c-m diagram as follows. The curve near (m, c) = (0, 0) is curved to

the left (figure 5.2(b)) at low T but curved to the right (figure 5.3(a)) at high T ,

showing competition between E and T . Both are an attractive effect from the

embedding dynamic’s point of view, but the T -driven first order attraction is so

strong that the E-driven second order smooth attractive effect cannot be realised.

At very high T the repulsive effect of B is completely suppressed and the only

allowed embedding is a flat one (figure 5.3(b)).

The resulting phase diagram is shown in figure 5.1(b). For T . 0.233, three regions,

as at zero T , exist: as E increases, the phases change from a χSB insulator (stable
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meson) phase to a χSB conductor at a first order transition. There is then a second

order transition to a χS conductor. Above T ∼ 0.233 the intermediate region χSB

and conductor phase disappears and the chiral symmetry restoration and

insulator-conductor transition happen at the same time. It is a first order transition

and exists in the temperature range 0.233 . T . 0.25. Finally for higher

temperatures T & 0.25, the system becomes a chiral symmetric conductor for any

finite E.

There are distinct features of the phase diagram though from the T, µ phase

diagram in figure 5.1(a). The insulator-conductor transition is first order along its

whole length. At finite mass and zero magnetic field, this insulator-conductor

transition was also shown to be first order in [94, 64]. The chiral symmetry

restoration phase transition is second order along all its length from the critical

point where it joins the insulator-conductor transition. The ability to reproduce

different phase structures is interesting and potentially useful if one wanted to use

these models as effective descriptions of more complex gauge theories or condensed

matter systems.

5.3 B, µ, E at Zero Temperature

We now turn to the E, µ plane at fixed B and zero T where the behaviour appears

somewhat different from those of the planes so far discussed.

From (5.17) with T = 0

L̃LT =
√
(1 + L′2)

√(
1− E2

w4

)[
ρ6 +

ρ6

w4
+ d2 − J2

]
, (5.26)

and

J =

√
d2w4

s + (1 + w4
s)ρ

6
s

w2
s

=
√
d2 + (1 + E2)E cos6 θs , (5.27)

where ws =
√
E. Note that this formula for J is only valid for finite E, because the

current J is introduced to make a sign change when
(
1− E2

w4

)
changes sign. If
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E = 0 we would not have any reason to introduce J .

If we now substitute J back into L̃LT then the d dependence explicitly vanishes, as

also observed in [64] for the zero B case:

L̃LT =
√
(1 + L′2)

√(
1− E2

w4

)[
ρ6 +

ρ6

w4
− (1 + E2)E cos6 θs

]
. (5.28)

It is the same action as (5.21), but the physics could still be different because at

finite density the boundary condition for the embedding is the Dirichlet condition

(L(0) = 0), which is different from the zero density Neumann condition (L′(0) = 0).

Furthermore the current (5.27) looks different from the d = 0 case (5.22) through

its d dependence (explicitly and implicitly through θs). However, at zero

temperature and finite E, it turns out that the density is always zero, which can be

shown as follows. From (5.11) or (5.20), at zero T ,

A′
t = d

√√√√
(w4 − E2)(1 + L′2)

d2w4 +
[
−d2 −

(
1 + 1

w4
s

)
ρ6s

]

E 6=0
w4 + (1 + w4)ρ6

, (5.29)

where w =
√
L2 + ρ2 and the square bracket is the current which must be zero at

E = 0. So, for non-zero E, the density cancels in the denominator. Let us first

consider a fixed non-zero E and the flat embedding and take the limit ρ→ 0:

A′
t ∼

d

E + 1/E

1

ρ2
. (5.30)

Thus µ ∼ d × a d-independent integral that diverges near ρ = 0. There is,

therefore, no way to get a finite µ from a finite d. The only available density is

exactly zero and if density is zero we should not use the relation (5.29). Any

constant At is an available solution so any constant µ is allowed.

To confirm this analysis, we numerically evaluate density at small temperatures for

four sample points, (E, µ) = (3, 10), (0.3, 10), (3, 1), (0.3, 1), in figure 5.4. The

density indeed vanishes as T goes to zero. Turning on larger chemical potential

does not change the tendency: a 10 times larger chemical potential vanishes 10

times faster (compare µ = 10 and µ = 1). Electric field does not affect this much:
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Figure 5.4: d vs. T for four points (E, µ) = (3, 10), (0.3, 10),
(3, 1), (0.3, 1). d→ 0 as T → 0.

E = 3 and E = 0.3 at µ = 1 are indistinguishable in figure 5.4. Thus we find that

vanishing density at T = 0 is consistent with the limit T → 0.

Given this argument it is worth checking how non-trivial results come from the

same expression on the µ axis in figure 5.1(a), where T = E = 0. Let us consider

E = 0 not E → 0.

A′
t = d

√
w4(1 + L′2)

d2w4 + (1 + w4)ρ6
. (5.31)

For a flat embedding and near ρ = 0

A′
t ∼ 1− ρ2

2d2
. (5.32)

We learn that µ ∼ d times a d-dependent regular integral. So here there is a

non-trivial µ, d relation. We should be careful with the d→ 0 limit. Then the

d-dependent integral diverges as d gets smaller. However it turns out that it is less

divergent than 1/d so we get µ = 0 as expected. If we consider the spiky embedding

then the singular integral will fall as ∼ 1/d due to the divergence in L′. Here we can

have a non-zero chemical potential when d→ 0. This occurs at the first transition

point (from the solution lying outside the singular shell to the spiky embedding)

shown on the µ axis (zero T ) in figure 5.1(a).

Notice that the T = E = 0 theory and the T = 0, E → 0 limit are distinct. The

T = 0, E, µ plane for any finite E has zero density. However, the strict E = 0 axis

does have density present for the spike and flat embeddings; we show this with the
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yellow and green lines respectively on the E = 0 axis in figure 5.1(c). Since there is

a jump in the density off the E = 0 axis at T = 0 there is formally a first order

transition with increasing E, which is expressed by the blue line near E = 0 in

figure 5.1(c). (note the transitions on the E = 0 axis are second order though - two

red dots in figure 5.1(c)). In the next section we will approach the T = 0 plane from

positive T to confirm this picture.

The surprising aspect of this result is that, at zero T , and with even an infinitesimal

E present, density is not generated no matter how large the chemical potential µ is.

Therefore the flat, chirally symmetric configuration is not favoured for very large µ

when a small E is present.

These conclusions are certainly correct within the DBI analysis presented here. If

the reader wishes to seek additional physics that might generate density at

T = 0, E 6= 0 and more simply connect the phases at zero and infinitesimal E, then

one might be able to do that through additional boundary terms at the origin (this

is where singular behaviour also enters in the µ, d relation). Again, we note that

one has to be very careful when making changes to the infra-red region, as

discussed above. Presumably at this point the physics associated with the sink of

the energy being injected by the E field should be better understood. Equally, the

DBI action may not be valid for this system due to a divergent gauge field near the

origin [98]. Resolving this issue is beyond our DBI analysis here.

5.4 The Full B, T , E, µ Phase Structure

Our final task is to complete the phase structure analysis by extending it to the full

E, µ, T volume at fixed B. The number of embeddings that must be analysed on

any fixed plane through this space is already large so we restrict ourselves to looking

at some representative slices that will be sufficient to reveal the structures present.

In particular we will study fixed-T slices and draw the phase structure in the E, µ

plane. The embedding equations are now given by the full form of (5.17). To

determine the presence and nature of a transition it is sufficient to track any
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Figure 5.5: Representative µ-d plots. The black line on the µ
axis corresponds to an embedding that misses the singular shell;
the orange curve to a spike embedding that ends on the singular
shell; and the red curve to a flat embedding. The transition points
are shown by the vertical dotted lines. Subcaptions are the order of
transition as µ increases.

operator of the theory. We have found it easiest on these planes to plot the density

d against the chemical potential µ. i.e. we use d as our order parameter.

In figure 5.5 we show sample plots from which each of a first and second order

transition can be identified. There are in total six types of d-µ plots. In each of the

figures the black line on the µ axis corresponds to a chiral symmetry breaking

embedding that misses the singular shell; the orange curve to a spike embedding

that ends on the singular shell; and the red curve to a flat embedding. It can be

seen from the plots whether each transition between embeddings is smooth and

hence second order, or whether there is an ‘S’ shaped structure so that one expects

a first order transition. The transition points are shown by the vertical dotted lines.

We have used these techniques on constant E lines on each constant T plane to

determine the transition places and orders. Figure 5.6 is constructed from

sequences of d-µ plots (figure 5.5). For example, figure 5.6 shows the following

evolution of the d-µ plot as E increases (table 5.1).

In figure 5.6 we show six slices through the volume at varying T . Starting at high

temperature the theory lives in the chirally symmetric phase with unstable mesons
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figure 5.6 d-µ plot evolution (figure 5.5)

(a) (a)→(e)→(b)→(f)

(b) (a)→(d)→(b)→(f)

(c) (a)→(c)→(d)→(b)→(f)

(d) (a)→(c)→(b)→(f)

(e),(f) (c)→(b)→(f)

Table 5.1: The evolution of the d-µ plot for increasing electric
field E for each plot in figure 5.6.
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Figure 5.6: Phase diagrams in the µ−E plane at various values
of temperature showing the phase structure. The solid blue lines
are first order transitions, the red lines are second order.

and the material is a conductor. As the temperature falls to T ≃ 0.25 the first order

transition to the chiral symmetry breaking, stable meson, insulator regime begins to

appear in the µ-E plane around µ = E = 0. That transition then expands away

from the origin and remains briefly first order.

Our plot for T = 0.232 shows the first interesting structure. Two areas in the plane

grow out from the first order line bordered by additional second order transitions.

In these areas the theory is in a chiral symmetry breaking but conducting phase.

The critical points where the first and second order transitions meet migrate

inwards along the first order boundary from each axis as the temperature falls and

eventually pass each other as shown for T = 0.224. At temperatures below that

point there are constant E trajectories across which there are three transitions. A

second order transition from conductor to insulator, a first order transition between
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two spike embeddings and finally a second order chiral symmetry restoration

transition. An example of the relevant density chemical potential plot for this case

is in figure 5.5(d).

Our plot for T = 0.222 shows the next key transition. The first order line between

the two spike embeddings breaks, making the spike embedding phase continuously

connected, although there is a remnant of the first order transition line ending at a

critical point.

The first order transition near the E = 0 phase boundary then diminishes as

temperature is further reduced, retreating towards the axes — see the plot for

T = 0.21. It has totally disappeared by T = 0.2. However the first order transition

element on the conductor insulator transition grows from the E axis as temperature

decreases.

The final interesting feature begins to appear in the plot at T = 0.21 where the

phase boundaries have begun to deform. They expand out to large µ very rapidly.

Note that the scale of the µ axis at T = 0.03 is 100 times larger than the others. If

we drew it on the same scale as the others it would look like figure 5.1(c): the

µ-independence of the T = 0 limit is starting to be seen. At zero T (figure 5.1(c))

there is a first order transition between the µ axis and the rest of the µ,E plane -

here we see that that forms as the second order boundaries are pressed onto the µ

axis.

These results have been incorporated into the 3D plot in figure 5.1(d) which

summarises the full and rich phase structure.

5.5 Quark Mass

The analysis above has been purely for zero quark mass. We have not performed an

analysis of the introduction of a quark mass. However, we note here that an

immediate consequence of introducing a small quark mass is that the second-order

chiral-symmetry restoration transitions (the outer red lines in our figures) become

cross overs. We would expect some remnant of the first order segment of this
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transition to remain associated with a transition at which there is a discontinuity in

the quark condensate even in the infinite mass limit where the theory becomes the

massive N = 2 theory (we observed this in the E = 0 limit in section 3.6). The

insulator conductor transition remains with quark mass and will again become that

of the N = 2 theory at large mass. At finite mass and temperature but without

magnetic field, the insulator-conductor transition was shown to be first order

in [94, 64].

5.6 Summary

We have explored the phase structure of the N = 2 gauge theory whose dual is the

D3/D7 system. A magnetic field, B, tries to induce chiral symmetry breaking. An

electric field, E, tries to dissociate the mesons of the theory and makes it a

conductor. Finite density, d, (or chemical potential µ) and temperature, T, each

favour melting of the mesons. The competition between these effects leads to a rich

phase structure.

In figure 5.1(a) we display the (T, µ)- phase plane for the massless theory at fixed

magnetic field. There are three phases: at low (T, µ) a chiral symmetry breaking

phase with stable mesons, at intermediate values a chiral symmetry breaking phase

with unstable mesons, and at large T, µ a chirally symmetric phase with unstable

mesons. The transitions between these are a mix of first and second order

transitions linked at two critical points.

In figure 5.1(b) we show the (T,E) phase plane for the massless theory at fixed

magnetic field. There are again three phases: at low T,E a chiral symmetry

breaking phase with stable mesons which acts as an insulator in the presence of a

small electric field; at intermediate values a chiral symmetry breaking phase with

unstable mesons which is a conductor and sustains a current in the presence of an

electric field; and at high T,E a conducting chirally symmetric phase with unstable

mesons. The transitions between these are again a mix of first and second order

transitions linked at one critical point.
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The E, µ phase plane has rather different structure (figure 5.1(c)). In particular for

any finite E the plane is µ independent and density is zero. At low E we have a

chiral symmetry breaking, insulator phase; at intermediate E a chiral symmetry

breaking but conducting phase; at large E a conducting and chirally symmetric

phase. That the presence of infinitesimal electric field does not allow density even

with a very large chemical potential and stops the restoration of chiral symmetry is

rather surprising. The conclusion is certainly correct within the analysis that we

have performed. It is possible though that additional stringy physics should be

present near the IR boundary in this limit to explain the sink for the energy the E

field is injecting. Such physics could potentially change the phase structure at low

T .

Finally we have explored the full (E, µ, T )-volume at fixed B to show how these

phases are linked. The phase diagram is summarised in figure 5.1(d) with the

transition boundaries marked.

The variety of phase structure and transition type in such a simple theory is

remarkable. Whether these results can serve as an exemplar for other gauge

theories either qualitatively or quantitatively remains to be seen but they certainly

suggest a rich structure of phases will be present in many gauge theories.

We would like to add that since we conducted this research there has been

development in the field. The authors of [101, 102] pointed out that there may be

an instability in figure 5.1(b) due to the WZ term contribution. The authors of

[101] followed up the analysis presented in this chapter to consider the case of

mutually perpendicular electric and magnetic fields — they found the chiral

transition to be first order in nature throughout the full (T -E) plane.
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Chapter 6

Towards a Holographic Model of

the QCD Phase Diagram

The QCD phase diagram is notoriously difficult to compute. Firstly the physics

associated with deconfinement or chiral symmetry restoration is strongly coupled.

In the strongly coupling regime we traditionally do not know how to compute

physical quantities, as perturbation theory breaks down. Secondly at finite density

lattice gauge theory, the first principles simulation of the theory on supercomputers,

suffers from a ‘sign problem’ that means Monte Carlo methods break down. In fact

with light quarks there is no clear order parameter for deconfinement so we will

concentrate on the chiral transition. Progress has been made by identifying effective

theories of the transitions and through lattice computations at low density. Section

1.2.3 provides a review of the standard picture. It is believed for QCD, with the

physical quark masses, that the phase transition with temperature is a smooth cross

over (becoming a second order transition as the up and down quark masses go to

zero). At zero temperature the transition with density is believed to be first order.

There must therefore be a tri-critical point where the first order line ends in the

temperature density plane.

In the previous chapter we have used holographic techniques to study phase

diagrams of strongly coupled physics. In this chapter we want to ask whether these

holographic models can in principle describe a phase diagram like that of real QCD.
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We can not of course describe true QCD holographically because the dual, if it

exists, is not known and is probably very complicated (and strongly coupled, at

least, in the UV). Our analysis is therefore in the spirit of AdS/QCD [103, 104], a

phenomenological modelling of the QCD phase diagram. If one could model the

phase diagram correctly one might hope to then predict other features of the theory

such as time dependent dynamics during transitions and so forth.

Our models will be in the context of the simplest brane construction of a

3+1-dimensional gauge theory with quarks which is the D3/D7 system used in

chapters 2, 3 and 5. The basic gauge theory is large N , N = 4 super Yang-Mills

with Nf quark fields. We will work in the quenched approximation where we neglect

quark loops. On the gauge theory side we do not backreact the D7 branes, that

provide the quarks, on the geometry but instead work in the probe approximation.

So called top-down models of this type exist with chiral symmetry breaking.

Supergravity solutions exist that correspond to the AdS space being deformed in

reaction to a running coupling introduced by a non-trivial dilaton profile as used in

chapter 2. In cases where the coupling grows in the infrared (IR), breaking the

conformal symmetry, chiral symmetry breaking is induced. These models have very

specific forms for the running coupling and are typically singular somewhere in the

interior. At the string theory level a full interpretation is lacking.

In chapters 3 and 4 we have explored the phase structure of the theory with a

magnetic field breaking chiral symmetry. It can be seen in figure 5.1(a).

Temperature can be introduced through an AdS Schwarzschild black hole in the

geometry. Density and chemical potential can be added through the temporal

component of the U(1) baryon number gauge field. How generic to the holographic

description is this phase structure? Keeping within the top-down analysis one can

change parameters and see what effect they have on the phase diagram. For

example in chapter 5 we traded density for an electric field parallel to the magnetic

field. The electric field tries to dissociates mesons by accelerating the quark and

anti-quark in opposite directions and so opposes the formation of a chiral

condensate.
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Figure 6.1: The phase diagram of the massless axion/dilaton
gauge theory in [105]. Here Q is the density, ξT the temperature
and µ̂ the chemical potential.

A recent paper [105] performed a similar analysis with a running dilaton geometry.

The geometry is that of [106] in which there is a non-zero profile for both the

dilaton and axion fields in AdS. The field theory is the N = 4 gauge theory with a

vev for both TrF 2 and TrFF̃ which preserves supersymmetry at zero temperature

but displays confinement. A D7 was introduced in a supersymmetry breaking

fashion and chiral symmetry breaking is observed. The temperature density chiral

transformation was first order throughout the plane and is shown in figure 6.1. It

shows the same three phases as the magnetic field case. An extra component of the

analysis in [105] was to note that in the confining geometry with a running dilaton

a baryonic phase was also present. A baryon vertex is described by a D5 brane

wrapped on the S5 of the AdS5 × S5 space. In the pure N = 4 theory such vertices

shrink to zero. However in the running dilaton geometry the large IR value of the

dilaton stabilises the D5 embedding. Solutions exist that link the D5 to the D7

brane embedding with a balancing force condition. These configurations describe

the gauge theory with finite baryon density rather than finite quark density. This

phase sets in at finite chemical potential and then persists to infinite chemical

potential (as shown in figure 6.1) which is certainly unlike QCD. We will not focus

on this phase in this chapter but it would be interesting to study it in future work

to find models that have a baryonic phase in some intermediate range of chemical

potential like QCD.
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These phase structures are very interesting and surprisingly complex but do not

match the expectations in QCD. In QCD we need a second order transition with

temperature and a first order transition with density to the chirally symmetric

phase.

Here we want to work in a much more generic framework to ask what phase

structures it is possible to get in the holographic description and to try to force

ourselves onto a representation of the QCD phase diagram. We will therefore take a

bottom-up approach within the model and allow ourselves to dial the running of the

gauge coupling by hand. We will have a dilaton profile that smoothly transitions

from a UV conformal regime to an IR conformal regime through a step of variable

height and width. Such an ansatz allows one to consider runnings that range from

precocious growth in the IR to walking dynamics [18]. We used a similar ansatz in

chapter 2 to study the impact of walking on meson physics. Here we find that with

the simple step ansatz we can move from a totally first order transition in the phase

plane to a configuration similar to the one we obtained with a B field (a first order

transition with temperature but second order with density). With this ansatz we

cannot achieve a second order transition with temperature.

The model directly suggests other phenomenological generalisations though. In

particular, if we think of the running dilaton profile as a short cut for including the

backreaction due to the quark fields/D7 brane, then it is natural to break the

SO(6) symmetry of AdS5 in the dilaton in the same fashion as the D3/D7 system’s

geometry. This allows us an extra phenomenological freedom to distort the dilaton

or black hole horizon. These simple changes do allow us to reproduce a wide range

of phase diagrams including QCD-like ones as we will show below. We will discuss

the simple geometric reasons for the emergence of first or second order transitions

in these different scenarios.

Our conclusion therefore is that the holographic model has no intrinsic problem

with mimicking the QCD phase diagram and these systems may therefore be

phenomenologically useful in the future.
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6.1 The Model

First let us briefly review the gravity dual description of the symmetry breaking

behaviour of our strongly coupled gauge theory.

The set-up in this chapter is similar to that in chapter 2. We will consider a gauge

theory with a holographic dual described by the Einstein frame geometry AdS5 ×S5

ds2 =
1

gUV

[
r2

R2
dx24 +

R2

r2
(
d̺2 + ̺2dΩ2

3 + dw2
5 + dw2

6

)]
, (6.1)

where we have split the coordinates into the x3+1 of the gauge theory, the ̺ and Ω3

which will be on the D7 brane worldvolume and two directions transverse to the

D7, w5, w6. The radial coordinate, r2 = ̺2 + w2
5 + w2

6, corresponds to the energy

scale of the gauge theory. The radius of curvature is given by R4 = 4πg2UVNα
′2

with N the number of colours. g2UV is the r → ∞ value of the dilaton. In addition

we will allow ourselves to choose the profile of the dilaton as r → 0 to represent the

running of the gauge theory coupling

eφ = g2YM (r) = g2UV β(r) , (6.2)

where the function β → 1 as r → ∞. The r → ∞ limit of this theory is dual to the

N = 4 super Yang-Mills theory where g2UV is the constant large r asymptotic value

of the gauge coupling.

An interesting phenomenological case is to consider a gauge coupling running with

a step of the form

β(r) = A+ 1−A tanh [Γ(r − λ)] . (6.3)

Of course in this case the geometry is not backreacted to the dilaton and the model

is a phenomenological one in the spirit of AdS/QCD [103, 104]. This form

introduces conformal symmetry breaking at the scale Λ = λ/2πα′ which triggers

chiral symmetry breaking. The parameter A determines the increase in the

coupling across the step.

We will introduce a single D7 brane probe into the geometry to include quarks.
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Black(Dotted) B = 35.6 - -

Figure 6.2: Example coupling flows (6.3) (left) and the in-
duced D7 brane embeddings/quark self-energy L (right) as defined
in (6.9) and calculated using the Lagrangian (6.17) with the pa-
rameter choices shown in the table. We also includ an embedding
with chiral symmetry breaking induced by a magnetic field B (see
chapter 3).

This system has a U(1) axial symmetry on the quarks, corresponding to rotations in

the w5-w6 plane, which will be broken by the formation of a quark condensate. In

chapter 2 was discussed how a non-trivial β introduces chiral symmetry breaking.

If the coupling is larger near the origin then the D7 brane will be repelled from the

origin6. The parameter Γ spreads the increase in the coupling over a region in r of

order Γ−1 in size.

We display the embeddings for some particular cases in figure 6.2. Note that we

have chosen parameters here that make the vacuum energy of the theory the same

in each case. The vacuum energy is given by minus the DBI action evaluated on the

solution. In fact this energy is formally divergent corresponding to the usual

cosmological constant problem in field theory. As usual we will subtract the UV

component of the energy to renormalise.

6In fact there is a competition between the increased action from the D7 entering the region with
larger dilaton and the derivative cost of the D7 bending to avoid it. This leads to a critical value of
A to trigger chiral symmetry breaking. For example for λ = 1.7 and Γ = 1 Ac = 2.1. In this chapter
we will consider only super-critical values of A.
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The symmetry breaking of these solutions is visible directly [35]. The U(1)

symmetry corresponds to rotations of the solution in the w5-w6 plane. An

embedding along the ̺ axis corresponds to a massless quark with the symmetry

unbroken (this is the configuration that is preferred at high temperature and it has

zero condensate c). The symmetry breaking configurations though map onto the

flat case at large ̺ (the UV of the theory) but bend off axis breaking the symmetry

in the IR.

6.1.1 Temperature

Temperature can be included in the theory by using the AdS Schwarzschild black

hole metric. In the Einstein frame we have

ds2 =
1

gUV

[−K(r)

R2
dt2 +

R2

K(r)
dr2 +

r2

R2
d~x23 +R2dΩ2

5

]
, (6.4)

where

K(r) = r2 − r4H
r2

, rH = πR2T . (6.5)

The parameter rH is identified with the temperature T . We make the coordinate

transformation also used in chapter 5

rdr

(r4 − r4H)
1/2

≡ dw

w
, 2w2 = r2 +

√
r4 − r4H , (6.6)

with
√
2wH = rH , such that the metric becomes

ds2 =
1

gUV

[
w2

R2
(−gtdt2 + gxd~x

2) +
R2

w2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dΩ2
1)

]
, (6.7)

where

gt =
(w4 − w4

H)
2

w4(w4 + w4
H)

, gx =
w4 + w4

H

w4
, (6.8)

and

w =
√
ρ2 + L2 , ρ = w sin θ , L = w cos θ . (6.9)
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Now we have to transform β also:

eφ = g2YM (r2) = g2UV β

(
w4 + w4

H

w2

)
= g2UV β

(
(ρ2 + L2)2 + w4

H

ρ2 + L2

)
, (6.10)

and therefore

β = A+ 1−A tanh


Γ



√

(ρ2 + L2)2 + w4
H

ρ2 + L2
− λ




 . (6.11)

Note that for wH → 0: w → r, ρ→ ̺ and L→ w5, if we set w6 = 0.

6.1.2 Chemical Potential

We introduce a chemical potential through the U(1) baryon number gauge field

which enters the DBI action in Einstein frame as

SD7 = −T7
∫
d8ξeφ

√
−det (P [G]ab + (2πα′)Fab), (6.12)

where T7 = 1/(2π)7α′4 and T 7 = 2π2T7/g
2
UV when we have integrated over the

3-sphere on the D7. We allow a chemical potential through At(ρ) 6= 0. So the

action becomes

SD7 =

∫
d4x dρ L

= −T 7

∫
d4x dρ β(ρ)ρ3

√
gtg3x (1 + L′2)− (2πα′gUV)2A′2

t

g3x
β(ρ)

. (6.13)

In our convention for the metric this is

L = −T 7 β(ρ)ρ
3

(
1− w4

H

w4

)(
1 +

w4
H

w4

)

×

√√√√(1 + L′2)− w4
(
w4 + w4

H

)
(
w4 − w4

H

)2
1

β(ρ)
(2πα′gUV)2A′2

t . (6.14)
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Now we can Legendre transform the action as we have a conserved quantity, the

density, d
(
= g2UV

δSD7
δA′

t

)
.

S̃D7 = SD7 −
∫
d8ξA′

t

δSD7

δA′
t

=

(∫

S3
ǫ3

∫
d4x

)∫
dρ L̃ , (6.15)

where

L̃ = −T 7

(
w4 − w4

H

)

(w4)

√
1 + L′2

×

√√√√
(

w4d2β(ρ)(
(2πα′gUV)2N2

(
w4 + w4

H

)) +
ρ6
(
w4 + w4

H

)2

w8
β(ρ)2

)
. (6.16)

We can redefine d = (2πα′gUV)T 7d̃ to give the simpler expression

L̃ = −T 7

(
w4 − w4

H

)

(w4)

√
1 + L′2

√√√√
(

w4d̃2β(ρ)(
w4 + w4

H

)
)
+
ρ6
(
w4 + w4

H

)2

w8
β(ρ)2

)
. (6.17)

By varying the Lagrangian with respect to A′
t, we get an expression for d(A′

t) which

we can invert for an expression for A′
t(d)

(2πα′gUV)A
′
t = d̃

(
w4 − w4

H

)
(
w4 + w4

H

)
√
1 + L′2

√√√√
1

d̃2

β(ρ)
w4

(w4+w4
H)

+ ρ6
(
w4+w4

H

w4

)2 . (6.18)

This can be used to find the chemical potential µ = µ̃
(2πα′gUV)

µ̃ =

∫ ∞

ρH

dρ d̃

(
w4 − w4

H

)
(
w4 + w4

H

)
√√√√√

(1 + L′2)

d̃2

β(ρ)
w4

(w4+w4
H)

+ ρ6
(
w4+w4

H

w4

)2 , (6.19)

where µ̃(ρ→ ρH) = 0.

The free energy can be found by integrating the Legendre transformed Lagrangian

and the grand potential by integrating the original Lagrangian, where we replace
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A′
t(d):

F = − S̃D7

T 7

=

∫ ∞

ρH

dρ

(
w4 − w4

H

)

(w4)

√
1 + L′2

×

√√√√
(
w4d̃2β(ρ)(
w4 + w4

H

) +
ρ6
(
w4 + w4

H

)2

w8
β(ρ)2

)
. (6.20)

The grand potential is

Ω = −SD7

T 7

=

∫ ∞

ρH

dρ β(ρ)2
w4 − w4

H

w4
ρ6
(
w4 + w4

H

w4

)2

×
√√√√

(1 + L′2)

d̃2β(ρ)
(

w4

w4+w4
H

)
+ ρ6

(
w4+w4

H

w4

)2
β(ρ)2

, (6.21)

where we need to note that F (ρ→ ∞) = Ω(ρ→ ∞) = ρ3, so we need to subtract

1
4(ΛUV )

4 from both integrals to renormalise them. Note, that from now on we will

only be using the redefined variables d̃ and µ̃. For convenience, we will refer to

them as density d and chemical potential µ respectively in the remainder of this

chapter. To make clear the role of wH as the scaled temperature, we will refer to it

as the temperature T in the remainder of this chapter.

6.2 Analysis and Results

The methodology to study the phase diagram of our model is straightforward if

laborious. We will work throughout in the massless quark limit. We can think of

the scale λ in the dilaton ansatz as our intrinsic scale of the theory and so we will

leave that fixed. Then for each choice of parameters in the dilaton profile (A,Γ) we

analyse the theory on a grid in T and µ space.

For each point on the T -µ grid we seek three sorts of embedding. The flat

embedding L = 0 exists in all cases and describes the theory with m = 0 and c = 0.

The values of m and c can be read off from the large ρ asymptotic solutions of L (or

w5) described in (2.5). We use (6.19) to compute the d-µ relation for these

embeddings.
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Figure 6.3: Plots of density d versus chemical potential µ. Tran-
sition points are shown by the dotted vertical lines.

We can also seek curved embeddings that miss the black hole. These solutions must

have d = 0 but are consistent for any value of µ. Here we use the equation of

motion for L from (6.17) and numerically shoot from an initial condition at ρ = 0

with vanishing ρ derivative, L′(0) = 0. We seek solutions that approach L = 0 at

large ρ. These configurations have a non-zero condensate parameter c.

Finally we can look for solutions that end on the black hole horizon. To find these

we fix the density d and shoot out from all points along the horizon seeking a

solution that approaches L = 0 at large ρ. We then use (6.19) to compute µ from

the solution. In this way we can fill out the T -µ grid. The condensate can again be

extracted from the large ρ asymptotics of the embedding.

After finding as many such solutions as exist at each point the easiest method to

identify the transition points is to plot the density against µ on fixed-T lines. The

transitions and their order are then manifest. We display four sample plots in figure
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Figure 6.4: Plots for three possible phase diagrams for the choices
A = 3, 15, 30. Large (small) A gives second (first) order transition
at low T . Γ = 1, λ = 1.715.

6.3 taken from scenarios below showing the four cases of the chiral transition and

the meson melting transition being respectively first or second order in all

combinations.

6.2.1 Dependence on the Change in Coupling

Let us first consider how the phase diagram depends on the height of the step in

the gauge coupling function β. We fix λ (the intrinsic scale of the theory) and also

Γ = 1 and explore the phase structure as a function of A. We display the results for

three choices of A in figure 6.4.

In these and all our future phase diagrams the regions shown are similar to those in

figure 5.1(a) we will simply display the phase boundaries and their order henceforth.

As mentioned in the footnote in section 6.1 there is a critical value of A for chiral

symmetry breaking to occur. A conformal theory can not break a symmetry since it

offers no scale for that symmetry breaking to occur at. In fact some finite departure

from conformality is needed to break the chiral symmetry. For these choices of λ,Γ
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the critical A is Ac = 2.1. We work above this value throughout.

At low A there is a single transition for chiral symmetry restoration and meson

melting which is first order for all T and µ. On the gravity side this is a transition

between the curved embedding that misses the black hole and the flat embedding.

In this case an embedding ending on the black hole never plays a role.

For larger A, a new phase with chiral symmetry breaking but melted mesons

develops. There is a regime now in which the curved embedding ending on the

black hole is energetically favoured. The transition from the chiral symmetry

breaking phase to this new phase is second order. The chiral symmetry restoration

phase remains first order.

At very large A the chiral restoration transition becomes second order at high

density. This latter phase resembles that of the theory with chiral symmetry

breaking induced by a magnetic field. In fact the B field case can be thought of as

our case but with a choice of β given by

β =
1

gUV

√
1 +

B2w4

(w4 + T 4)2
. (6.22)

It is the black dotted curve (T = 0) in figure 6.2 — it is not surprising therefore

that we see similar phase structure here (and indeed that we do provides strength

to our analysis which is capturing the behaviour of top-down models).

For very large A the step becomes very sharp and there is little change relative to

our phase diagram in figure 6.4(c). In particular the thermal transition always

remains first order.

The behaviour we are seeing here can be readily explained from the D7 perspective.

First of all the zero density transition with temperature is first order for a simple

reason. The D7 embedding breaks chiral symmetry at zero temperature because it

prefers to avoid the action cost of entering the region in which the dilaton is large.

As temperature is introduced through a small horizon the interior of the space is

‘eaten’ but the D7 embedding remains oblivious to this change since it never

reaches down to small r. As temperature rises the point of transition is when the
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Figure 6.5: Plots for parameter choices A = 5,Γ = 100, λ = 1.7.
The blue lines show the value of the coupling β. The red line shows
the position of the horizon. The final plot corresponds to the point
of the first order transition.

horizon moves through the scale λ where the dilaton step is. Once the region with a

large dilaton is eaten by the black hole the preferred D7 embedding is the flat one.

In figure 6.5 we show an extreme case of this behaviour explicitly. Here we have

taken Γ very large so that the transition in the dilaton between the low and high

value is very sharp. We plot the β profile against our radial parameter w and mark

in red the position of the black hole horizon. Note that in the w coordinates the

region where β is large depends on the temperature (it does not in the original r

coordinate). The dilaton effective radius λ∗ is

λ∗ =

√
λ2 +

√
λ4 − 4T 4

2
, (6.23)

where the argument of tanh in (6.11) vanishes. So, as T increases λ∗ decreases.

When T becomes Tc =
λ√
2
, λ∗ = Tc the dilaton is perfectly screened by the black

hole horizon. (i.e. If T = 0, λ∗ = λ. If T = λ√
2
, λ∗ =

λ√
2
). The point of the first

order transition is where the horizon screens the dilaton.
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When density is introduced the story can become more complex. The Lagrangian is

(6.17) where it can be seen from the first of the two terms in the square root that

including d increases the action. This increase can be beneficial though if the

second term with β can be reduced. It is possible to reduce the β term if the D7

enters the region where β is large at small ρ. This means that the situation can

arise where curving off the axis and then spiking on to the axis can be the lowest

action state. This is typically more likely where β is largest in the interior space

and the most savings can be made entering that region at low ρ. As we have seen at

large values of A, embeddings that spike onto the horizon do play a role introducing

an extra phase.

It is only possible to have second order transitions if all three phases we have

described are present. In the D7 description the D7 must move from a curved

embedding that avoids the black hole to a configuration that spikes onto the black

hole to a flat embedding smoothly.

6.2.2 Dependence on the Speed of Running

The parameter Γ controls the period in ρ or RG scale over which the change in the

coupling A occurs. It allows us to naively go from a precociously running theory to

a walking theory (although the change in the parameter A over that period may

enter into what is meant by walking versus running too).

In figure 6.6 we show the phase diagram as a function of Γ at fixed λ and A. We

start at Γ = 1 with a configuration already discussed that has all three phases

present and second order transitions at high density. As Γ is reduced so that the

step function in the dilaton becomes broader the first order nature of the

transitions reasserts itself. By Γ = 0.2 the mixed phase with chiral symmetry

breaking but melted mesons is no longer preferred at any temperature or chemical

potential value — there is a single first order transition.

In conclusion, moving towards a walking theory by either increasing the width of

the running or decreasing the magnitude of the increase in the coupling both move

us towards a first order chiral transition. Stronger or quicker running favours a

131



10 20 30 40 50 60
Μ

2

4

6

8

T

(a) Γ = 0.1

5 10 15 20
Μ

0.5

1.0

1.5

2.0

2.5

T

(b) Γ = 0.5

5 10 15
Μ

0.5

1.0

1.5

2.0
T

(c) Γ = 1

Figure 6.6: Example plots of three possible phase structures for
A = 30, λ = 1.715 and varying Γ. Large (small) Γ gives a second
(first) order transition at low T .

second order transition at low temperature, high density.

6.3 Breaking the ρ-L Symmetry

Our goal is to attempt to reproduce a phase diagram comparable to that of QCD in

our holographic model. So far we have failed to generate a second order transition

with temperature at zero density which is a key part of the QCD picture.

6.3.1 Elliptic Dilaton Profile

We have a further natural freedom within our holographic model to exploit. Our

running dilaton is in some way supposed to represent the backreaction of the quark

fields on the strongly interacting gauge dynamics to allow us to model theories with

more interesting dynamics than the conformal N = 4 gauge fields. We introduce

quarks through D7 branes that break the SO(6) symmetry of the five sphere of the

original AdS/CFT Correspondence down to SO(4) × SO(2). Our ansatz for the
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Figure 6.7: Phase diagrams for A = 5, λ = 1.7,Γ = 1 with
varying α. Large (small) α gives second (first) order transition at
small µ.

running coupling (6.3) though respected the full SO(6) symmetry. It seems

reasonable to make use of the broken symmetry to introduce a further free

parameter into our dilaton ansatz. We propose

β = A+ 1−A tanh

[
Γ

(√
(ρ2 + αL2)2 + T 4

ρ2 + αL2
− λ

)]
. (6.24)

where α measures the symmetry breaking between the L and ρ directions of the

space. We will again not seek to backreact this dilaton on the background — to do

so would be very hard.

We show some example phase diagrams we have found by changing α in figure 6.7.

In particular we have chosen a case where with α = 1 much of the phase diagram

has second order transitions. Increasing α then encourages the transition with

temperature at zero density to become second order until the full transition space is

second order.

The reason for the onset of second order transitions with just temperature is simply

understood. We have deformed the dilaton into an ellipse whose major axis is along
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Figure 6.8: Sample phase diagrams for theories with non-zero α̃.

the ρ axis. The black hole horizon remains circular in the ρ-L plane. Thus there are

temperature periods in which the area of the ρ-L plane with a large dilaton is

covered except for a small piece that emerges from the horizon near the ρ axis. If

the value of the dilaton is sufficiently large in that uncovered area to encourage the

D7 to avoid it, but the horizon on the L axis has met the zero temperature D7

embedding, then a second order transition to a black hole embedding is likely. Since

in the absence of the rise in the dilaton the flat embedding would now be preferred

the D7 settles on the horizon so it just misses the raised dilaton area. As the black

hole grows further the embedding is likely to track down onto the axis smoothly as

the raised dilaton area is finally eaten. This intuition is indeed matched by the

solutions as shown in figure 6.7.

Thus we have realised a second order thermal chiral restoration transition in a

plausible fashion within a bottom-up model.

6.3.2 Elliptic Black Hole Horizon

Our final task is to try to manage a second order transition at zero density with

temperature yet a first order transition at zero temperature with density. We have

not achieved this within the elliptic dilaton profile. However, we can seek to break

the ρ− L symmetry elsewhere in the construction and in particular in the

background geometry. Again were we to backreact the D7 branes such a breaking

in the geometry would occur but as with the dilaton we shall allow ourselves

phenomenological freedom in introducing that breaking.

134



In particular we introduce our explicit L− ρ symmetry breaking parameter α̃ now

through the blackening factors of the metric and not in the dilaton

gt =
(w4 − T 4)2

w4(w4 + T 4)
, gx =

w4 + T 4

w4
, (6.25)

with

w4 → ρ2 +
1

α̃
L2 , α̃ > 1. (6.26)

The logic for the thermal transition at zero density is the same as in section 6.3.1.

The elliptical black hole horizon will cover the spherical area with a raised dilaton

profile on the L axis but not the ρ axis encouraging a second order transition. At

low temperature and high density this configuration allows us to begin with one of

the configurations in section 6.2.1 above that has a first order transition in the full

phase plane.

We can indeed find a number of new phase diagrams by exploring in the parameter

space. Some new examples are shown in figure 6.8. The second phase diagram

achieves our goal of reproducing a chiral transition that is second order with

temperature but first order with density.

6.4 Summary

In this chapter we have converted the D3/probe-D7 system, that holographically

describes N = 4 super Yang-Mills theory with quenched N = 2 quark multiplets, to

a phenomenological description of strongly coupled quark matter. We introduced a

simple non-backreacted profile for the dilaton that describes a step of variable

height and width in the running coupling of the gauge theory (6.3). This breaks the

conformal symmetry of the model and introduces chiral symmetry breaking. We

have then studied the temperature and chemical potential phase structure of the

model.

The phase diagrams consist of three phases: a chirally symmetric phase at large

temperature and density, a chirally broken phase with non-zero quark density at
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intermediate values of T and µ, and a chiral symmetry broken phase with zero

quark density at low T and µ. Figure 5.1(a) shows these phases and their

holographic analogue in the previously studied case where chiral symmetry was

broken by an applied magnetic field. Here we showed that a small wide step in the

gauge coupling running gives rise to a single first order transition between the

chirally symmetric and the broken phase (see figure 6.4). If the step is made larger

in height or thinner then the chirally broken phase with non-zero density also plays

a role. Here the transitions at low temperature with chemical potential can be

second order. These results match known results in top-down models in the

presence of magnetic fields to induce the symmetry breaking.

We were interested in reproducing phase diagrams with the structure believed to

exist in QCD. To do this we made use of the broken SO(6) symmetry of the gravity

dual in the presence of D7 branes. Were the branes backreacted the dilaton and

geometry would reflect this symmetry breaking. We introduced two further

phenomenological parameters α, α̃ in the dilaton profile and black hole blackening

factors respectively. These models allow us to control which volumes of the

holographic space have a large dilaton value within, which the D7 branes prefer to

avoid. Using these few parameters we were able to generate phase diagrams in

which all the transitions were second order (see figure 6.7) and a QCD-like case

with a chiral restoration transition that was second order with temperature but first

order with density (see figure 6.8).

The ease with which such a variety of phase structures could be obtained is very

encouraging for the idea of phenomenologically modelling the QCD phase diagram

holographically. Further the phenomenological parameters we introduced are very

natural in this context and it seems likely that top-down models with such phase

structures should be possible as a result.
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Chapter 7

Discussion

In this work we studied generalisations of the AdS/CFT correspondence. We

explored aspects of strongly coupled gauge theories with quarks. We focused our

interest on chiral symmetry breaking.

In chapters 3 and 5 we explored the phase structure of the N = 2 gauge theory

whose dual is the D3/D7 system. In chapter 3 we added a magnetic field B to the

system, which favours chiral symmetry breaking. We then studied the

temperature-chemical potential (T ,µ) (or density d) phase diagram, where finite

temperature and chemical potential (or density) both favour a chiral symmetry

restoration.

Phase diagrams like those in chapter 3 are of great interest in QCD and more

general strongly coupled field theories. Our theory is different from QCD, as it has

superpartners of the quarks and the gluons present with a large number of colours

N and a small number of flavours Nf (quenched approximation). It has also only

degenerate quarks and the gluonic degrees of freedom are deconfined at non-zero

temperature. In the holographic theory there is a distinct meson melting transition.

The deconfinement transition in QCD differs from the meson melting transition and

it is believed that the chiral symmetry breaking transition and the deconfinement

transition occur simultaneously in QCD. We find considerable structure in our

phase diagram, which captures many aspects of QCD. An additional phase is

present in which the mesons in our theory are melted but the vacuum is still
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chirally symmetric. The orders of our chiral symmetry breaking transition are

reversed to the standard picture of QCD.

We would like to note here that the QCD diagram is not perfectly mapped out, as

it is hard to compute on a lattice at finite chemical potential. The phase structure

and the order of transition depends on the masses of the quarks and it is

theoretically possible that QCD exhibits a phase diagram with the order of

transitions similar to our phase diagram. We can not match the diagrams point by

point but we are providing an environment in which clear computations of the

phase diagram in a strongly coupled field theory are possible. In addition to this,

the finding of distinct meson melting and chiral symmetry breaking transitions

leads us to speculate, whether there is also the possibility of separate deconfinement

and chiral symmetry breaking transitions in QCD.

In chapter 5 we studied how robust the diagram found in chapter 3 is to changes of

parameters. We introduced an electric field E parallel to the magnetic field, which

favours chiral symmetry restoration and a conducting phase as it loosens the

binding in mesons. We found a variety of phase structures and transition types

(including an insulator-conductor transition) in the B, T , µ and E volume, due to

the competition of the different effects of the parameters. We hope that the results

can serve as guide for other gauge theories, at least qualitatively. They certainly

suggest that a rich structure of phases will be present in many gauge theories. In

the future it would be interesting to find the phase diagrams with backreacted

flavour branes. It would also be of interest to include stringy physics which has

been neglected in chapter 5. The hope then is to study in more detail how energy is

dissipated into the surrounding plasma. We could also use quasinormal modes in

order to confirm the order of phase transition, which in chapter 5 we could not do

by studying the free energy of the theory.

In chapter 4 we used the same kind of analysis to study the phase diagram of the

D3/D5 system with fundamental matter fields on a 2+1 dimensional defect with a

3+1 dimensional gauge theory with finite magnetic field, temperature and chemical

potential. We found a phase diagram looking similar to that found in the D3/D7
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system in chapter 3. The most prominent difference is that we found BKT scaling

of the chiral symmetry breaking transition at T=0. This is potentially of interest

for condensed matter systems.

In chapters 2 and 6 we studied chiral symmetry breaking in the N = 2 gauge theory

whose dual is the D3/D7 system. We used a simple non-backreacted dilaton profile

(running coupling) to break conformal symmetry and introduce chiral symmetry

breaking. In chapter 2 we computed parameters of the low energy chiral Lagrangian

and their dependence of the running coupling. The integral equations we have

found are in spirit very similar to the Pagels-Stokar formula for the pion decay

constant and the constituent quark model estimates of the chiral condensate. We

believe that from our integral equations we can gain intuition about how these

parameters depend on the underlying gauge dynamics. We believe that this toy

model can guide those who wish to study fully backreacted systems. It would be

very interesting to investigate in the future these integral equations in a

backreacted system. We also used our set-up to include walking technicolour in

holographic frameworks.

After computing phase diagrams in chapters 3 and 5, we asked in chapter 6 whether

holographic models can in principle describe a phase diagram like that of real QCD.

The holographic dual of QCD is not known, hence we used a phenomenological

bottom-up approach to model the QCD phase diagram. We used a series of

non-trivial dilaton profiles in our model, which give a very interesting and complex

phase structure. One success is that we modelled the structure of the phase

diagram of chapter 3. We also successfully modelled the structure of the chiral

phase transition in QCD. This result is very encouraging, as we see no intrinsic

problem in mimicking the QCD phase diagram with holographic models. Our

system might be phenomenologically useful in the future, as we hope that it can be

used to predict other features of QCD like time-dependent dynamics during

transitions. For the future it would be interesting to see, whether these phase

diagrams are as robust to the implementation of new parameters as the diagram in

chapter 3. We therefore suggest introducing an electric field into the set-up. A fully

backreacted dilaton would also give more insight into the physics of the theory. It
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would be interesting to include a baryonic phase into the phase diagrams by adding

a baryon vertex into the set-up. Parts of the Southampton High Energy Group

around Nick Evans are currently working on this problem.

We would like to conclude that holography is a good tool to explore strongly

coupled physics in a regime where established methods fail. Although the gauge

theories studied are not real QCD, we can investigate many properties of QCD-like

physics. We believe that we can learn valuable lessons in how to construct a

holographic dual of QCD, or at least we can learn about qualitative features of

strongly coupled theories such as QCD or condensed matter systems.
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