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Doctor of Philosophy
QUANTIFYING THE EFFECTS OF AIRFLOW DISTORTION ON

ANEMOMETER WIND SPEED MEASUREMENTS FROM MERCHANT
SHIPS

by Bengamin Ivan Moat

Anemometers on Voluntary Observing Ships (VOS) are usually located above the
bridge in a region where the effects of air flow distortion,  created by the presence
of the ship,  may be large.   Until now it was not known whether measurements
from such anemometers would be biased high or low,  and the possible magnitude
of any such bias was not known.

  Investigations into the airflow above merchant ships have been carried out
experimentally using a low-speed wind tunnel and numerically using a
commercial Computational Fluid Dynamics (CFD) code VECTIS.   The
investigations examined the airflow over simple block models of VOS shapes.
The results of the investigations were compared to wind speed measurements
made from the RRS Charles Darwin.

  Experimental and CFD techniques have been used to devise scaling rules that
predict the effects of the flow distortion.   Both techniques have shown that the
pattern of the flow distortion above the bridge scales with the ‘step height’,  H, of
the model.   In the case of a tanker,  H is the ‘bridge to deck’ height,  i.e.  the
height of the accommodation block above the deck,  for bow-on flows.   Close to
the top of the bridge the flow is severely decelerated and may even reverse in
direction.   Using the upwind edge of the bridge as the origin of the scaled co-
ordinate system,  there is a definite line above the decelerated region along which
the speed of the flow is equal to the undistorted wind speed.   Above this ‘line of
equality’ the wind speed increases to a maximum and then decreases with
increased height to a free stream wind speed.   Simple equations have been
devised to predict the positions of the ‘line of equality’,  the maximum wind speed
and the minimum wind speed within the decelerated region.

  Comparisons of the results with wind speed data obtained from field
measurements made using a number of anemometers located on the RRS Charles
Darwin agreed well and have predicted a maximum wind speed increase of
approximately 15 ±5 %.   Comparisons with the field data have confirmed that
CFD models can be used to predict the effects of airflow distortion above
merchant ships.

  The investigation has demonstrated the ability of the wind tunnel and CFD
approaches employed to provide a better understanding of the airflow over
merchant ships.  Both methods have contributed to improve the understanding of
how the wind speed at anemometer sites on merchant ships is affected by the
ships hull and superstructure.
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1.   INTRODUCTION

1.1   Background

Research ships are traditionally used to gather oceanographic data

throughout the world.   At the same time,  merchant ships continuously travel

across the world’s oceans transporting cargo between continents.   They cover

more of the oceans than a single research ship can in its lifetime.   As a

consequence,  a large proportion of the merchant fleet is recruited by the World

Meteorological Organisation (WMO) Voluntary Observing Ship (VOS)

programme to routinely report meteorological parameters at the ocean surface.

Over many years these meteorological observations have been collected together

to form a large database known as the Comprehensive Ocean Atmosphere Data

Set (COADS;  [1, 2]).   COADS is used for weather forecasting,

ocean/atmosphere model forcing,  coupled ocean atmosphere model validation,

satellite validation and to create climatologies to observe and predict possible

changes in climate.

VOS meteorological observations include many parameters,  e.g.  cloud

type and cover,  precipitation,  air temperature,  sea surface temperature (SST),

wind speed and direction and sea state.   The observations are performed either

visually (e.g. sea state,  precipitation,  wind speed and direction etc.),  or by ship

mounted instrumentation (e.g. air temperature from thermometers,  wind speed

and direction from anemometers and pressure from barometers).   It is known that

some of these parameters can be affected by the presence of the ship and a lot of

effort has gone into correcting biases in VOS observations [3, 4, 5, 6].   For

example,  air temperatures measured by badly exposed instruments can be

affected by heat from the ship so the data are biased high;  SST data depend upon

the measuring method used;  air pressure has to be corrected to the sea surface

height.

Similarly,  it has long been suspected that wind speed measurements from

anemometers may also be affected by the presence of the ship distorting the flow
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of air [7],  resulting in measured wind speeds which are accelerated or decelerated

compared to the free stream,  or undisturbed,  flow.   As an example,  the

numerical simulation of the air flow around a merchant ship shape are shown in

Figure 1.1.   The contours indicate the ratio of the wind speed to the free stream or

undisturbed speed,  i.e.  a value of 1.0 indicates no change in the wind speed.

Figure 1.1 shows possible accelerations of up to 10 % in the wind speed and

decelerations well in excess of 10 %,  depending upon the location of the

anemometer.   Anemometer wind speed measurements are made using either hand

held anemometers on the bridge wing,  or fixed anemometers which are located on

a mast in the bows of the ship or more generally on a mast on top of the bridge.

Until now,  the sign and magnitude of possible biases in these measurements have

not been quantified.

The impact that any bias in the wind speed estimate could have is illustrated

here.   The wind stress,  τ ,  is the transfer of horizontal momentum between the

atmosphere and the ocean surface.   This is calculated from VOS observations of

the mean wind speed submitted to COADS by the following ‘bulk formula’

method.   Firstly,  the wind stress is defined as:

τ ρ= C UD N N10 10
2 (1.1)

where ρ  is the air density,  CD N10 is the drag coefficient and U N10  is the wind

speed.   It is usual to correct wind speed measurements to a height of 10m and

equivalent neutral atmospheric stability (standardised conditions).   The subscripts

10 and N  refer to a height above the sea surface of 10 m,  and equivalent neutral

stability values. CDN  is related to U N10 ,  and hence the wind stress,  by an

empirical bulk formula,  e.g.  [8]:

1000 0 61 0 06310 10C UD N N= +. . (1.2)

Any error in the wind speed measurements will lead to an inaccurate

estimate of the drag and a large bias in the wind stress.   For instance,  a 10 %

increase in wind speed applied to a U N10  of 10 ms-1 leads to a 27 % overestimate

of the wind stress when calculated via equations 1.1 and 1.2.
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The exchanges of heat between the atmosphere and the ocean are also

dependent on the wind speed,  but are not as affected by airflow distortion as the

wind stress.   The sensible heat flux,  QH ,  corresponds to a loss or gain of energy

by the ocean depending on the sign of the temperature difference between the

ocean surface and the air.   The latent heat-flux,  QE ,  is the heat exchanged

between the sea and the atmosphere by evaporation.   Both parameters can be

calculated from the VOS measurements using bulk formulae.   In both cases the

heat flux is directly proportional to the wind speed (assuming CE  and CH

constant) and any change due to airflow distortion will be transferred to the bulk

calculation of the flux,  i.e. a 10 % wind speed error will produce a 10 % error in

the heat-flux.   Errors of up to 10 % in wind speed have been estimated for well

exposed anemometers on masts in the bows of research ships [9] and it is likely

that errors of this magnitude,  or greater,  may be present in anemometer

measurements on merchant ships since these often lack a well exposed mast in the

bow.   In addition,  the relatively large size of a merchant ship means that

anemometers will probably be positioned relatively closer to the superstructure

than is usual on research ships.

1.2   Literature review

1.2.1   Wind speed measurements from ships

Previous work to determine the error due to the airflow distortion caused by

air flow around ship’s structures has mainly been concerned with oceanographic

research ships.   One qualitative approach compared wind speed measurements

from anemometers located on a number of ships masts,  and booms projected from

the ships bow [10,  11,  12].   When ships are beam on to the wind,  Ching [10]

found that the mast wind speed measurements were biased high when compared to

wind speed measurements made from anemometers on the bow booms.   The least

difference between measurements occurred when the wind was directly over the

bow.   Kidwell and Seguin [11] showed similar results and stated that the

differences in wind speed between mast and boom sensors depended upon:  the
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relative wind direction,  the wind speed,  the sensor height above sea level and the

exposure of the sensor to the wind.

A number of wind tunnel studies have been performed on ships to determine

the wind speed error at anemometer sites.   Mollo-Christensen [12] used a wind

tunnel study of the R/V Flip to demonstrate that bow mounted anemometers have

to be located at a distance greater than the windward cross section of the vessel to

achieve a wind speed measurement accurate to within ±5 %.   Romanov [13] for

the Russian R/V Akademik Mstislav Keldysh,  Surry [14] and Thiebaux [15] for

Canadian research ships and Blanc [16,  17] for two naval ships carried out wind

tunnel tests.   Underestimates of the wind speed of 5 % at the end of a bow boom

and 3 % for the foremast anemometer site were observed for the R/V Akademik

Mstislav Keldysh for airflow over the bows,  whilst the Canadian research ships

exhibited overestimates of the wind speed of 5 % to 10 % for the main mast

anemometer sites for most relative wind directions.   Wind tunnel studies have

also been used to examine the forces [18],  wind resistance [19] of the above water

hulls and below water hulls [20],  but are of little use in this study as no wind

speed measurements were made.

Previous numerical studies of the flow over ships have mainly concentrated

on research ships (Kahma and Leppäranta [21];  Dupuis [22]; Moat and Yelland

[23 to 28];  Yelland et al.  [9,  29]; The numerical models varied in complexity.

Kahma and Leppäranta [21] solved the flow field around a 2-dimensional ship

profile of the RV Aranda using simple potential flow theory.   Potential flow

models simulate the flow of an ideal fluid and are of limited use as they do not

reproduce many features of a real flow,  e.g. flow separation.   Nevertheless,  their

study gave the first insight into the magnitude of the flow distortion at

anemometer sites on ships.   Dupius [22] used a 2-dimensional CFD model to

predict a wind speed increase of about 20 % at the main mast anemometer site on

R/V Le Suroit.   Moat and Yelland [23 to 28],  and Yelland et al. [9,  29] used 3-

dimensional Computational Fluid Dynamics (CFD) models to predict the airflow

distortion at anemometer sites on a number of research ships.   In all cases the ship



5

geometries were very detailed,  and the anemometers were very well exposed and

had low flow distortion (within 10 %).

Tai and Carico [30] compared a wind tunnel study and a CFD simulation to

reproduce the flow conditions around the deck of a frigate for landing helicopters.

Tai [31] presents similar applications for the flight deck of an aircraft carrier.

Wind tunnel measurements of the surface pressures on the deck of a simple frigate

shape were performed by Cheney and Zan [32].   The aim was to understand

better the modelling of the effect of airflow distortion in helicopter-ship

operations and produce a set of measurements by which to validate numerical

results.   Moctar and Bertram [33] used CFD to simulate the flow of air over a

surface effect ship at a number of relative wind directions and studied the smoke

plume from a passenger liner’s funnel.   A combination of CFD simulations and

wind tunnel testing of the wind loads on a ferry was undertaken by Aage [34] to

determine the ship manoeuvrability in a harbour.

Jin et al. [35] used a CFD model of the flow over a merchant ship to observe

the influences of the funnel and accommodation arrangement on the smoke

behaviour.   Using a number of different funnel and deckhouse configurations

they concluded that for safe smoke exhaust emission the ratio of the funnel height

to the deck house height is 1.3 or larger.

1.2.2   The distortion of the airflow by masts and marine platforms

Many authors [36 to 45] have studied the effects of tower and mast

structures on wind speed measurements.   Their work either compares in situ

anemometer wind speed measurements to a reference free stream wind speed,  or

makes use of wind tunnel studies.   In summary,  the air flow was found to be

decelerated by up to 40 % in the wake region downwind of the structure,

accelerated by up to 20 % either side and decelerated by up to 6 % in front.   To

achieve wind speed measurements accurate to within ±5 % Gill [37] recommends

that anemometers should not be placed within the down wind wake regions and be

located not less than 2 mast diameters from an open lattice mast and not less than
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3 mast diameters for a solid cylindrical mast.   In a comparison with measured

data Wucknitz [44],  and Kondo and Natio [45] show that the flow around

cylindrical masts can be represented well by a simple numerical models of the

flow of an ideal fluid around a cylinder.   This early work shows the importance of

placing anemometers in well exposed locations.

Thornthwaite et al. [46] measured the wind speed at different locations

above and below a box-like platform standing on 4 legs,  20 m above the sea

surface.   The wind speed measurements above the platform were normalised by a

wind speed measured from a reference anemometer.   Using an indirect approach

the study estimated the boundary layer profile during the period of study and

corrected the changes in the wind field caused by the platform.   For an airflow

normal to the side of the platform two jets of accelerated air,  one above and one

below the platform,  extended from the upwind leading edge of the box.   The

maximum accelerated wind speed within both jets was 18 %.   In front of the

platform and close to the roof and underside of the platform the wind speed was

decelerated by up to 30 %.

For flows over box-like offshore platforms,  Davies and Miller [47]

performed flow visualisation studies that showed that the flow separated at the

upwind leading edge of the platform,  and that within the region of separation

there existed an unsteady recirculating motion.   The study showed that the extent

and shape of the flow separation regions are related to the dimensions of the block

(i.e. the block thickness) and the flow direction.

A wind tunnel study by Chen et al. [48] measured the wind speed above the

helideck (28.6 m above the sea surface) of a box-like offshore platform.   The

wind speed measurements were standardised by a reference wind speed measured

at height of 12 m above the helideck.   Airflows normal and for relative wind

directons of 14° and 30° to the helideck were measured.   In all three cases the

flow separated at the upwind leading edge of the helideck and wind speed

accelerations of up to 40 % in wind speed where observed.
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In summary,  previous work to quantify the air flow distortion around ships

have shown wind speed increases in the order of 10 % to 20 % are possible.

Anemometers located close to masts and spars (< 2 mast diameters) may

experience possible increases of 20 %,  or large decelerations of approximately 40

% may be experienced if the instrument is located in the downstream wake of the

mast.   Marine offshore platforms are complex structures and wind speed

increases of approximately 40 % may occur.

1.3   Objectives of the study

The principal objectives of the work have been to:

1)   Gain an improved understanding of the airflow distortion above the

bridge of merchant ships;

2)   Use experimental and theoretical techniques to quantify the airflow

distortion for anemometers in terms of position relative to the bridge;

3)   Propose methods to determine the suitable correction to wind speed

measurements based on merchant ship type and anemometer position.

The work has been carried out using both experimental and CFD studies of

the flow over two typical merchant ship types.   The CFD approach was carried

out using a commercial code (VECTIS) and the experimental work was conducted

using a wind tunnel.

It is impossible to perform a wind tunnel,  or numerical,  study of the

airflow over every individual VOS ship since their numbers are too great.

Chapter 2 details a generic approach to create typical merchant ships from their

overall length.   These generic ship models are very simple block-like,  or bluff

body,  shapes that were derived from ship dimensions listed in the publication

Significant Ships [49].
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A summary of the stages of the work programme is as follows.

i)   Wind tunnel testing of two generic bluff body merchant ship shapes.

ii)   Validation of the CFD code by comparison with published data (two

simple bluff body cubes).

iii)   CFD investigations of the airflow above the bridge of a full sized

tanker of length 170 m and at the size used in the wind tunnel study

(length 3.7m).

iv)   Comparisons of the CFD studies with the wind tunnel data.   The

hypothesis that the flow field above the bridge scales with the bridge to

deck height,  or the ‘step height’,  is tested.

v)   Comparisons of wind tunnel and CFD studies with in situ wind speed

measurements made above a ship.

vi)   Discussion of results and proposals for practical applications of the

outcomes of the work.

The flows above the bridge of two simple generic ships were studied in a

wind tunnel for a flow directly over the bow of each ship (Chapter 3).   A Particle

Image Velocimetry (PIV) system was used to map the flow field above the bridge

and the results were examined for a scaling law.   The aim was to predict the flow

above the bridge given only the ship type,  step height (derived from the length

overall) and anemometer position.

Wind tunnel experimentation is time consuming and although producing

high quality data,  the PIV system is limited in the amount of measurements that it

can produce.   For this reason,  the use of Computational Fluid Dynamics (CFD)

as an alternative method to simulate the air flow over ships was applied in Chapter

4.   This chapter examines the performance of the CFD code VECTIS by

comparing the results of various CFD models to the PIV measurements.
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For this study the research ship RRS Charles Darwin1 was instrumented

with a number of anemometers above the bridge and wind speed measurements

were made for a period of eight weeks in open ocean conditions.   Only relative

wind directions over either beam were considered as these reproduced the flow

over a bluff body shape.   Chapter 5 validates the scaling laws derived in Chapter

3 by comparison with the in situ wind speed measurements.

An overall discussion,  bringing together the results of the experiments and

CFD investigations is given in Chapter 6.

A summary of the outcomes and applications of the investigation and final

conclusions are drawn in Chapter 7,  together with recommendations for further

work.

                                                  
1 Operated by:  National Environment Research Council (NERC) Research Ship Unit,

Southampton Oceanography Centre,  Southampton,  UK.
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2.   DETERMINING GENERIC MERCHANT SHIP SHAPES

2.1   Introduction

The VOS fleet contains about 7000 merchant ships of various types,  sizes

and shapes.   Of these,  about 10 % leave the VOS fleet and are replaced by other

ships each year [50].   It is clearly not feasible to model the flow of air around

each individual VOS ship.   However,  it is considered that the fleet may be split

into different basic types of ship;  such as a tanker,   container ship,  bulk carrier,

general cargo ship and others (Figure 2.1),  and that each type could be

represented by a generic,  or typical,  ship shape.   This chapter describes the

generic shapes and the method by which they were determined.

The VOS metadata2 (WMO47, [51]) does not contain information on the

ship type,  shape or size.   Instead,  ship dimensions were taken from the Royal

Institution of Naval Architects yearly publication Significant Ships from 1990 to

1993 [49].   These were taken to be representative of ships currently in service.

The Significant Ships publication includes both passenger and merchant ships

above 100 m in length.    A typical publication lists around 45 ships which are

included because of their innovative cargo handling systems,  above average

safety features or automated navigation systems.   It is therefore believed that

these ships are not significantly different in dimension from the rest of the world

merchant fleet or from the VOS fleet.   Significant Ships does not list all the

dimensions required,  but provides A4 scale plans which were used to extract the

dimensions necessary to create a simple ship geometry.   From comparison of the

ship plans,  it was clear that bulk carriers were similar in shape to tankers and for

this reason these two ship types were grouped together.   A total of 71 ships were

used to represent three of the five major ship types;  1) tankers and bulk carriers

and 2) container ships.   General cargo ships can show wide variations in their

overall shape so this type of ship was not considered for a generic type.   The fifth

ship class ‘other’ contains passenger liners,  research vessels and car transporters

                                                  
2 A set of data that describes and gives information about other data.
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etc.,  but because of their varied shapes a generic model of this class of ship can

not be developed.

A potential subset of 200 VOS are currently being recruited and

meteorological data from these ships will be used in the Voluntary Observing Ship

Climate (VOSClim) project (Kent and Taylor, [52]).   Unlike the VOS,  the

VOSClim data will include the ships overall length (LOA),  ship type and

anemometer position.   The aim of this chapter is to generate a generic ship shape

using just the LOA and the ship type.

Figure 2.1 shows the distribution by ship type of the VOSClim fleet [52],

the world fleet (ISL, [53]) and the ships registered by Lloyds of London in 1999

[50].   The distributions differ since the VOSClim ships are all open ocean vessels,

whereas the world fleet and Lloyds includes many small coastal vessels.

Together the tanker/bulk carrier shapes (hereafter referred to as tanker shapes) and

the container ships represent 53 % of the VOSClim fleet,  39 % of the world fleet

and 40 % of the 1999 registered Lloyds fleet.

The generic ship shapes developed in Section 2.2 are very simple block

models (Figure 2.2) and clearly differ in many ways from a real ship structure.

For example:  the bow is a broad flat shape rather than a curved surface;  the

deckhouse spans the whole breadth of the ship;  and masts,  satellite

communication domes and other small-scale obstructions are not included in the

model.   For these reasons the simulations (performed in subsequent chapters) of

the flow distortion above the deckhouse will represent that caused by the large-

scale obstruction of the ships hull and superstructure only.   For instruments

located above the deckhouse it is the absence of any small-scale obstruction which

is thought to be the most significant difference between the generic and the real

ship shape.   In particular,  an instrument mounted on a mast above the deckhouse

would,  in reality,  be affected by the flow distortion caused by the mast.   The

extent of this distortion will depend on the mast shape,  and distance between the

mast and the instrument [37].   However,  such information is not presently

available,  even in the VOSClim metadata.   In summary,  it should be noted that,

at present,  neither the sign nor the magnitude of the effects of flow distortion are
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known for instruments mounted on VOS,  and the simple generic ship shape

approach allows at least a first-order estimate of these effects to be obtained.

These estimates may be refined in future,  as and when suitable detailed

information about instrument locations is available in the metadata.

2.2   Generic ship models

2.2.1   Tanker model

The principal dimensions of 36 tankers and 8 bulk carriers (Table 2.1) were

taken from Significant Ships and used to create the generic tanker geometry.   The

bridge to waterline height (BH),  bridge length (L),  breadth (B) and the freeboard

(F) were used to describe the generic ship geometry (Figure 2.2).   The bridge to

deck height, H,  was calculated from the difference between the bridge to

waterline height and the freeboard,  i.e. BH-F.   Since the ships LOA is a known

dimension in the VOSClim dataset,  linear regressions were fitted to each ship

dimension against LOA in Figures 2.3 to 2.7.   The coefficients for each

regression are listed in Table 2.2.   The equation for the bridge to deck height is

stated as it is used in later chapters:

H LOA= + ×9 11 0 026. . (2.1)

These relations are able to realistically predict each ship dimension from the LOA

and hence a simple representation of a tanker can be determined using only its

length.

The assumption that a bulk carrier is similar to a tanker is tested by

overlaying the respective dimension of both ship types against the ships length

overall (LOA) in Figures 2.3 to 2.7.   The limited number of bulk carriers makes

direct comparisons with tankers difficult,  but it can be seen that their dimensions

lie within the spread of the corresponding tanker dimensions.   From Figure 2.4 it

could be speculated that bulk carriers have a smaller freeboard than tankers,  but

this is regarded as insignificant since freeboard varies with the loading of the ship

and could change with every passage the ship makes.   The ships loading will be
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reported to the VOClim project [52] and the variation in free board will be

examined.   It is apparent that the bridge to deck height is not constant (Figure

2.7),  but varies between 11 m to 19 m with the ships length overall.

Figures 2.3 to 2.7 show that the merchant ships can be grouped by LOA into

three distinct classes;  ships below 200 m,  ships between 200 m to 300 m and

those over 300 m.   Ships over 300 m correspond to Very Large Crude Carriers

(VLCC) and large bulk carriers,  whilst ships between 200 m to 300 m are

generally crude oil tankers that have a restricted breadth to allow them passage

through the Suez and Panama canals.   Ships below 200 m are specialised

chemical tankers,  which transport specific goods.   Three tankers of lengths 170

m,  250 m and 330 m which represent the three LOA classes have been created

from the linear regressions fitted through the data in Figures 2.3 to 2.7.   The

dimensions of each ship are detailed in Table 2.3 and overlaid in Figures 2.3 to

2.7.   If more data were used it may be more representative to fit three separate

regressions for each of the LOA groupings.

2.2.3   Container ship model

The principal dimensions of 27 container ships (Table 2.4) were used to

create the generic model derived in this study.   Two types of container ship are

present in Significant ships:  firstly,   ships with containers only loaded in front of

the deck house,  and secondly larger ships with containers loaded in front of and

behind the deckhouse.   There was an approximate 50/50 split between 1)

forward-loading and 2)  fore-and-aft loading designs in the ships studied.   As

there is no dominant ship type it was decided to create generic models of both

ships.   The block representations of the two generic ships,  and the dimensions

used are illustrated in Figure 2.8a and 2.8b.   For simplicity,  the freeboard is

assumed to be equal to the height of the bow above the sea.   This is not strictly

true,  as the bow is higher than deck level.

Each ship dimension is plotted against LOA in Figures 2.9 to 2.15.

Overlaid are the generic container ship dimensions for forward loading container
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ships of lengths 125 m and 180 m,  and fore and aft loading container ships of

lengths 180 m and 270 m.   generic ship dimensions for these four types are

dervied below and detailed in Table 2.6.   Instead of fitting one linear regression

through the data,  it was apparent that the dimensions of the two types of ship

differ slightly and two regressions were needed to represent the fore loading and

the fore-and-aft loading ship types.   The only exception is the bridge to container

top height,  H,  (Figure 2.15)  which could be represented by a single regression.

This is shown by the two almost identical regressions fitted for each ship type.

Table 2.5 contains the coefficients of the linear regressions derived from Figures

2.9 to 2.15 for both fore-loading,  and fore-and-aft loading generic models.   The

equations for the bridge to container top height,  H, are:

H LOAfore = − + ×0 03 0 03. . (2.2)

H LOAfore aft+ = + ×1 2 0 023. . (2.3)

The bridge to deck height,  H,  varies with LOA and is approximately 3 m for

ships of 100 m in length,  increasing to 8 m for ships over 250 m  in length.

Figures 2.9 to 2.15 show that ships with LOA less than 160 m have only

forward loaded containers whilst the largest container ships of LOA over 215 m

have containers loaded in front and behind the bridge superstructure.   An overlap

of the two designs exists between a LOA of 160 m to 215 m.

2.3   Summary

The data from Significant Ships [49] has been used to developed a generic

tanker/bulk carrier and a generic container ship by relating each dimension to the

ships overall length.   These generic models of the ships are used in subsequent

chapters where the flow distortion above the bridge is examined and related to the

bridge to deck height,  H.   Providing the anemometer location is known,  this will

create a method to correct for the effects of airflow distortion based only on

knowledge of H (calculated from the ships LOA) and ship type.   In future years,

this correction will be applied to the VOClim data.
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3.   WIND TUNNEL STUDIES OF THE FLOW OVER THE GENERIC

SHAPES

3.1   Introduction

The low speed section of the University of Southampton 2.13 m by 1.52 m

(7’ by 5’) wind tunnel [54] was used to examine the flow over scaled models of

the generic merchant ships.   The scaled generic merchant ships placed in the wind

tunnel were created using the relations developed in Chapter 2.   In total,  three

wind tunnel studies were performed.   The first used a thermal probe anemometer

to determine the wind speed at different locations in the wind tunnel and above the

bridge of the generic merchant ships.   Two subsequent experiments used a state-

of-the-art Particle Image Velocimetry (PIV) system to measure the velocity field

above the bridge of the generic merchant ship models.

The experimental techniques used to measure the wind speed in the tunnel

and the three experiments used to evaluate the flow over the generic ship models

are described in Section 3.2.   The accuracy of the wind speed data is examined by

comparing wind speed profiles from all three wind tunnel experiments (Section

3.2).   The PIV measured wind speeds are used to quantify the flow distortion

above the bridge of a number of generic ship models (Section 3.3).   Simple

equations are derived to define the pattern of the flow and the magnitude of the

wind speed above the bridge of the ship geometries.   Wind tunnel time and

resources allowed only measurements on the centreline of the bridge and flows

directly over the bow.   The wind tunnel was not wide enough to allow the flow

above the scaled ship geometries to be measured at other relative wind directions.

Therefore,  wind speed measurements were made at relative wind directions of

15° and 30° above the bridge of the deck house block (Section 3.4) only.

However,  air flows directly over the bow are believed to be a realistic

representation as 41 % of merchant ships’ observations/data are obtained for

relative wind directions within ±25° of the bow (Figure 3.1).   This is due to the

apparent wind angle moving towards the bow when the ship moves at speeds

which are a significant fraction of,  or greater than,  the true wind speed.
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3.2   The wind tunnel experiments

3.2.1   Introduction

The low speed section of the Southampton University wind tunnel is 5 m

long with a 4.6 m by 3.7 m working cross section.   The generic tanker geometry

(Figure 3.2) was scaled by 1:46 in order to create the largest model possible (for

high spatial resolution of the measurements) without causing undue blockage of

the flow.   Dimensions are shown for a full-scale ship and for the geometry used

in the wind tunnel study (shown in brackets).   For a flow directly over the bows

of the model the blockage ratio (frontal area of ship : area of the wind tunnel

section) was 1.5 %.   This ratio is less than the typical values stated by Barlow et

al. [55] and corresponds to that used by Castro and Robbins [56].   Therefore,  no

blockage correction was applied as a blockage ratio of 1.5 % should only cause a

1.5 % increase of the flow velocity on average.    A generic containership

geometry was made by adding an extra block (block 4,  Figure 3.3) to the tanker

geometry in order to represent the containers loaded forwards of the deck house.

The container model therefore had a slightly smaller beam than it should have

been (Chapter 2.2.3).   Wind tunnel tests were also performed over just the deck

house block (block 1,  Figure 3.2) in order to increase the range of bridge to deck

or, in this case bridge to sea, heights modelled.

Wind tunnel tests attempt to simulate the full-scale flow.   If the Reynolds

number (eq. 3.1) of the wind tunnel experiment is in the same Reynolds number

regime as the full-scale flow,  then the model and the full-scale flow will be

dynamically similar [55],  i.e.  the ratio of the velocities at two points in the wind

tunnel will be the same for a full-scale flow.   In practice it is difficult to match the

Reynolds number typical in full-scale flows.   The Reynolds number is the ratio of

the inertial forces to viscous forces in a given flow:

R
lU

e = ν
(3.1)

where;  l  represents the ship length,  U  is the wind speed,  and ν=1.44×10-5 m2/s
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is the kinematic viscosity of air at 15 °C.   The full-scale and wind tunnel scale

Reynolds numbers are detailed in Table 3.1.   The wind tunnel Re value was

higher than the critical value of 5 ×105 suggested by Romanov et. al. [57],  which

suggests that self similarity holds.   Molland and Barbeau [58] measured the

dependence of the aerodynamic drag of scaled bluff body catamarans on Re  in the

Southampton University wind tunnels.   For wind tunnel Re  between 1.07×106 to

2.68×106 there was negligible change in the drag coefficient of the body,

confirming that the results were independent of Re  and that self similarity holds.

Again, this suggests that self similarity holds between the wind tunnel

experiments and the full-scale flow using these wind tunnels and Reynolds

numbers.

The wind tunnel was run at a nominal constant dynamic pressure:

1
2

2ρUt =constant (3.2)

where ρ  is the density of air and Ut  is the nominal wind speed.   This is common

wind tunnel practice to provide a constant non-dimensionalising factor.   The fan

speed was adjusted until the Betz manometer reading corresponded to a wind

speed of 7 ms-1.   To maintain a constant dynamic pressure the fan speed had to be

routinely varied to keep the wind tunnel pressure constant,  i.e  as wind tunnel

temperature increased the density reduced and therefore the nominal wind speed

had to be increased.   To minimise these resultant changes in wind tunnel speed,

the third wind tunnel experiment did not use a constant dynamic pressure,  but

instead used a set fan speed of 437 rpm.   This corresponded to a nominal wind

speed of 7 ms-1.   In all experiments, the model was oriented so that the flow was

directly over the bow and all measurements were made along the centreline of the

ship.

Wind tunnels that run at a constant dynamic pressure will have variations in

the nominal wind tunnel speed with temperature.   It is standard practice to

normalise wind speed profiles by a reference wind speed simultaneously measured

at one fixed location.   Since the aim of this study is to quantify the absolute wind
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speed errors it was thought necessary to obtain accurate free stream velocities at

all locations of interest.   Therefore,  during the three wind tunnel experiments the

geometries were periodically removed and the vertical profiles of the free stream

velocity were obtained.   These free stream profiles were used to normalise the

wind speed measurements made with the model present in the same location in the

wind tunnel and the absolute wind speed changes were determined.

3.2.2   The thermal probe anemometer study

The first wind tunnel experiment (Figure 3.4) took place between the 2nd and

4th May 2000 during which a thermal probe3 anemometer (measurement accuracy

of within ±2 %) was used to measure the wind speed above the bow and the

bridge of both the tanker and container ship geometries.    A number of vertical

profiles of the free stream wind speed at various locations in the wind tunnel were

measured and are shown in Figures 3.5 a) and 3.5 b).

Problems were highlighted by the analysis of the free stream wind speed

profiles shown in Figure 3.5 a) and b).   Firstly,  the variation in time of the free

stream profiles suggested that the mean wind speed at different positions in the

tunnel were increased by up to 1 ms-1 from its nominal set value of 7 ms-1 and,

due to temperature changes could drift by up to 0.5 ms-1 over a period of a few

hours or less.   These variations in wind speed caused problems when trying to

normalise the vertical profiles obtained around the ship geometry.   Secondly,  the

general shape of the wind speed profile showed that a wall jet was present close to

the tunnel floor.   The wind speed increased to a maximum at a height of

approximately 0.1 m and then decreased with height.   Thirdly,  the thermal probe

anemometer had a specified accuracy of 2 %,  but only measured the horizontal

component of the wind speed.   This meant that the instrument could have

significantly underestimated the wind speed in the regions of interest,  i.e. above

the bridge where the flow can be at a large angle from the horizontal.   For these

reasons,  the results from this first experiment should be are treated with caution.

                                                  
3 Developed and calibrated by: Airflow developments Ltd.,  High Wycombe,  U.K.
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However,  from the point of view of normalising the measured speeds,  the

experiment proved useful in that it highlighted the necessity of obtaining free

stream wind speed data in the region of interest as soon as possible after the with-

ship geometry measurements.

3.2.3   The PIV system

The first PIV measurements (PIV 2000) took place between the 22nd August

and 23rd August 2000.   In the time available,  it was only possible to measure the

velocity field above the tanker in any great detail.   Therefore,  a second PIV

experiment was performed between the 17th September to 19th September 2001

(PIV 2001).   The same PIV system was used for both experiments and the

geometries were located the same distance from the wind tunnel inlet as in the

thermal probe study.

Details of the PIV system are available from Dantec [59],  and are

summarised here.   In contrast to other methods which employ probes to measure

the velocity,  the PIV is an optical technique and therefore nonintrusive.   It is time

consuming to set-up the PIV system in the wind tunnel,  but once achieved the

PIV allows the measurement of 2-dimensional velocity vector maps.   The PIV

method is based on projecting two consecutive light sheets (separated in time by

between 30 µs  to 100 µs ) from a high power laser into a dark wind tunnel,

which was seeded with smoke.   A digital camera normal to the light sheet records

the position of the seeded particles and statistical methods are used to determine

their displacement.   The velocity is calculated by dividing the displacement of the

particles by the time delay between the light sheets.

The experimental set up is shown in Figure 3.6 and illustrated schematically

in Figure 3.7.   A high power Neodymium-YAG (Nd:YAG) laser was mounted at

a height of 1.97 m on a beam running the length of the tunnel.   The beam was

attached to the tunnel roof by a square frame at the upstream end and by an A-

frame bolted to the tunnel floor downstream.   Due to difficulties in positioning

the beam,  the generic ship geometry was moved 0.24 m off the centreline of the
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tunnel.   The vertical laser sheet was orientated parallel to the mean flow,  and a

DANTEC 80C60 Hi-Sense digital camera was mounted in a metal frame 1.28 m

from the measurement area.   The height of the camera could be adjusted to

measure different areas of the flow.   A smoke generator using regular Disk

Jockey smoke fluid was used to seed the airflow in the tunnel.

The flow field above the bridge of the tanker was recorded using various

amounts of seeding in the tunnel and various time delays between laser sheets.

The above findings were used to define the following parameters used during both

PIV experiments.   The camera was able to sample a measurement area of 152 mm

by 191 mm.   The measurement area was divided into an array of 64×64 smaller

areas,  referred to as interrogation areas.   A cross correlation technique [59, 60]

based on this interrogation area size was used to determine the particle

displacement based on a time delay of 50 µs  between laser sheets and produced

31 (z,  vertical) by 39 (x,  streamwise) velocity measurements,  i.e. a resolution of

about 4.9 mm in the measurement area.

One hundred velocity maps were taken at each of four measurement areas

(Figure 3.7) above the bridge of each ship and used to create a time average of the

flow.   A time delay of 0.5 seconds between velocity maps provided a sampling

period of approximately 50 seconds.   The four areas were combined and a flow

field of size 0.36 m (x,  stream wise) by 0.29 m (z,  vertical) was created,  which

corresponded to 73 (x,  streamwise) by 59 (z,  vertical) velocity measurements.

As a check on the consistency of the PIV system,  the camera was positioned so

the four measurement areas overlapped by 0.03 m and 0.014 m in the streamwise

and vertical directions respectively (Section 3.2.4).   To overcome the problem

caused by the wind tunnel speed varying from its nominal value of 7 ms-1,  each

measurement area was also sampled without the ship geometry present,  with this

data subsequently used to normalise the results.

Spuriously large velocities (above ±15 ms-1) were removed from the vector

maps.   Careful examination of the data during the experiment showed that this

accounted for less than 3 % of the velocity measurements.   A time average of the
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flow was calculated after each measurement.   During post-processing of the time

averaged wind speed data,  only mean velocities with sample sizes of 80 or more

and standard deviations of less than 2 ms-1 were selected.   The limit of the

standard deviation was set high in order to capture the unsteady flow within the

recirculation region.   In general,  the flow outside the recirculation region was

steady and the standard deviation was less than 0.2 ms-1.   In order to smooth out

any scatter in the time averaged vertical profiles of the wind speed,  a 3-point

running mean was applied spatially to the vertical profiles of the normalised wind

speed data.   In general,  the difference between the smoothed and unsmoothed

wind speed profiles was less than 1 %.   All normalised wind speed profiles

presented in this chapter have been smoothed in this fashion.

3.2.4   Accuracy of the PIV results

The normalised wind speed profiles calculated using the wind tunnel

measurements could be affected by variations in the nominal wind tunnel speed.

The thermal probe study of the air flow in the wind tunnel has shown that the

wind speed in the tunnel can drift by 0.5 ms-1 within an hour or less (Section

3.2.2),  i.e.  the free stream wind speed used to normalise the wind speed profiles

could change during the time taken to measure the flow over each ship geometry.

Therefore,  the free stream wind speed was measured as soon as possible after the

with ship geometry measurements.   At each measurement area the times between

the PIV measurements made with and without the ship geometry present were

minimised and are:   40 minutes for the tanker,    30 minutes for the container ship

and 10 minutes for the deck house block.   Stopping the wind tunnel and changing

the ship geometries caused the delay between each measurement.   To determine

any bias caused by variations in the free stream wind tunnel speed this section

compares:   i)  the normalised wind speeds in the overlapping regions of the PIV

measurement areas,  ii)  the normalised wind speed profile measured during the

thermal probe experiment to the two separate PIV experiments,  and iii)  the free

stream wind speed when the wind tunnel was run using a constant dynamic

pressure (thermal probe and PIV 2000 experiment) and when using a constant fan

speed (PIV 2001).
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Firstly,  during the experiments the PIV measurement areas were overlapped

to determine any bias in the measurements.   The vertical overlaps were made

within 100 minutes of each other,  whilst the horizontal overlaps were made

within a day of each other.   Even with the long time delay between measurements

a comparison of the overlapping regions suggested that changes in the wind speed

measurements were generally 4 % or less.   Due to noise in the PIV 2000

measurements it was only possible to compare normalised wind speeds between

the lower two overlapping regions of the tanker measurements.   This comparison

also suggested that biases in the wind speed measurements made during the PIV

2000 experiment were about 4 % or less.

Secondly,  the accuracy of the PIV system in the wind tunnel was examined

by comparing the wind speed measurements made during the three separate wind

tunnel experiments.   Wind speed profiles at a distance of x=0.074 m from the

upwind leading edge of the bridge have been selected from;  the thermal probe,

the PIV 2000 and the PIV 2001 experiments and the normalised wind speed

profiles are shown in Figure 3.9.   During the PIV 2001 experiment the wind

speed above the front edge of the tanker was deliberately measured twice to

determine if any change in the wind speed measurements occurred during the

experiment.   Both are shown separately here.   All PIV measured profiles were

normalised by the wind speed profiles obtained in the same location with no

model present,  measured during each respective experiment.   During the thermal

probe study no free stream wind speed profile was measured at the bridge

measurement location in the centre of the tunnel,  therefore the thermal probe

wind speed was normalised by a wind speed profile measured 0.83 m abeam of

the bridge with no model present (position 2,  Figure 3.5a).   The normalised wind

speed profile from the thermal probe is thought to be reliable,  as the probe is a

robust method used to measure wind speed.

The thermal probe anemometer measured only the longitudinal component

of the wind speed.   In order to calculate the total wind speed,  a cosine correction

was applied to the anemometer wind speed measurements;
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total wind speed
v

=
( )
x

cos θ
 (3.3)

where vx  is the horizontal wind speed component and θ  is the angle of the flow to

the vertical at the measurement location.   The angle of the flow,  θ ,  was obtained

from the PIV 2000 data.

Figure 3.9 shows the normalised wind speed profiles from all three

experiments.   The vertical scale is the height above the bridge in meters and the

vertical dashed line indicates normalised wind speeds of 1.0 where the measured

wind speed equals the free stream speed.   The error bars indicate the standard

error.   The profiles agree well in their general shape.   The normalised wind speed

increased with height to a maximum at a height of about 0.08 m above the bridge,

and then decreased.   Although the results agree well on the height of the

maximum wind speed they differ in the magnitude of the maximum wind speed.

The normalised thermal probe measurements of the wind speed maximum are

approximately 1.20,  the PIV 2000 measurements by 1.30 and the PIV 2001

measurements are 1.34.   The magnitudes of the measured PIV 2001 wind speed

maxima agree to within 2 % of each other.   All the normalised wind speed

measurements are independent of the wind tunnel temperature,  as the measured

winds speeds were all made within 1 °C of the respective free stream

measurements,  and should agree.   This suggests that there may be some

variability in the wind tunnel measurements.   Therefore,  a time series of the

change in free stream wind speed from both PIV experiments was examined to

determine if running the wind tunnel at a constant fan speed reduced the variation

in the wind speed in the tunnel and provided a more consistent result.

The change in the free stream wind tunnel speed was examined with

variable tunnel fan speed with constant dynamic pressure (PIV 2000),  and

constant tunnel fan speed with variable dynamic pressure (PIV 2001).   The

thermal probe anemometer was located in the wind tunnel (Figure 3.6) throughout

the 2 days of the PIV 2000 experiment.   The thermal probe anemometer

measured the wind speed at a fixed location which corresponded to a distance of

0.80 m downstream of the upwind leading edge of the bridge,  and at a height of
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0.93 m above the wind tunnel floor.    The temperature inside the wind tunnel was

measured using a fixed probe and was recorded at the beginning of each PIV

measurement.   With the wind tunnel running using a constant dynamic pressure a

time series of the mean wind speed data (Figure 3.10) shows,  in the absence of

the ship geometries,  increases of up to 0.2 ms-1 within a period of 30 minutes.   In

Figure 3.10 the error bars indicate the standard error.   More importantly a

consistent reduction of 0.4 ms-1 in the free stream wind speed occurred between

the two days.   This cannot be explained by the changes in the daily atmospheric

pressure (< 1 mbar),  or wind tunnel temperature between the two days (20 to 30

°C).   Oil deposits from the smoke that was used to seed the tunnel could have

contaminated the thermal probe sensor and caused the discrepancy in the wind

speed between the two days.   The PIV 2000 measured free stream wind speed at

the four measurement locations is shown in Figure 3.11.   Each separate

measurement area is indicated.   The upwind leading edge of each model was

located at x=z=0,  0.422 m above the tunnel floor.   The direction of the flow is

from left to right.   Analysis of the data showed a low signal to noise ratio

representing scatter in the normalised wind speed measurements.

During the PIV 2001 experiment the dynamic pressure in the wind tunnel

was varied.   The free stream wind speed was measured over a period of 3 hours

during the morning of the second day of the experiment (19th September 2001).

The wind speed was measured 13 times by the PIV system at a location that

corresponded to ‘area 3’ (Figure 3.8) with no ship geometry present,  i.e. not the

same location as the thermal probe in the PIV 2000 experiment.   The mean wind

speed across the measurement area was calculated at a height of 0.5 m above the

wind tunnel floor.   A time series of the mean wind speed data (Figure 3.12)

showed increases of up to 0.2 ms-1 within a period of 40 minutes.   In Figure 3.12

the error bars indicate the standard error.   The mean wind speed from the same

location was measured during the afternoon of the first day (18th September 2001)

and was included in Figure 3.12.   It verifies that there were small changes of up

to 0.2 ms-1 in the free stream wind speed as measured during either day of the PIV

2001 experiment.
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In summary,  the maximum possible variations in the normalised wind

speed measurements during the PIV 2001 experiments are:  4 % by comparing

overlapping regions,  2 % between profiles measured during the PIV 2001

experiment and 3 % by using a variable dynamic pressure.   Taking the maximum

error of this analysis,  it can be concluded that the PIV 2001 measurements are

accurate to within 4 %.

3.3   A model to quantify the effect of flow distortion at anemometer sites

3.3.1   Basic visualisation of the general flow pattern

A series of smoke tests above the bridge of the tanker (Figure 3.13) and

container ship (Figure 3.14) were performed to determine the structure of the flow

above the bridge of the ships.   The smoke tests were performed at 5 ms-1 using a

smoke wand to examine the flow along the centreline of the ship.

The smoke wand was moved to different heights in front of the bridge of the

ships.   The study showed that the general flow pattern over the bridge of the

tanker behaved in a similar manner to flow over a cube [61,  62].   Flow

separation at the upwind leading edge was present,  with a deep recirculation

region close to the bridge top (Figure 3.13a).   A stagnation point about half way

up the front face of the bridge was observed,  with a standing vortex beneath it

(Figure 3.13b).   No reattachment of the flow to the top of the bridge was

apparent.

In contrast,  the flow above the container ship was not as well defined

(Figure 3.14).   It was not clear if a recirculation region close to the top of the

bridge was present,  or if any reattachment of the flow occurred.   The smoke

tracer was more turbulent and the wind speed was decelerated upwind of the

bridge.   This may be caused by the airflow over the front of the model separating

at the leading edge of the bow and the containers (block 4,  Figure 3.3),  which

produces a decelerated region of air close to the container top and an accelerated

region above it (sketched in Figure 3.15).   If the air was accelerated sufficiently it
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is possible that the disturbed air flow stretched downstream of the bow and

affected the flow pattern at the bridge.   This is discussed further in Section 3.3.5.

3.3.2   The effect of step height on the flow over a bluff body

Figure 3.16 shows the time average of the flow over the container ship,

tanker and deck house block.   Velocities are illustrated by length and direction of

arrows at 73×59 PIV grid points in left hand column.   The measurement region is

shown as a dashed box above the ship section in right hand column.   The upwind

leading edge is located at z=x=0.   It can be seen that the size of the region where

the flow is decelerated scales at least qualitatively with the step height,  H,  of the

geometries.   The container ship model step height (H=0.10 m) is defined as the

height of the bridge above the containers.   Likewise,  the step height (H=0.29 m)

of the tanker is the height of the bridge above the deck and the step height

(H=0.42 m) of the deck house block is the height of the bridge above the wind

tunnel floor.   Vertical profiles of the wind speed were extracted from the PIV data

and presented firstly at absolute distances,  x,  aft of the upwind edge of the bridge

and then at scaled heights of z/(step height) and distances of x/(step height) back

from the upwind leading edge.

The wind speed profiles were normalised using the vertical profiles of the

free stream wind speed obtained in the absence of the models.   The free stream

wind speed field above the bridge is shown in Figure 3.17 a).   The upwind

leading edge of each model was located at x=z=0,  0.422 m above the tunnel floor

and the direction of the flow is from left to right.   The lower areas 3 and 4 were

measured the day before the two higher areas.   There is some inconsistency in the

PIV data as the wind speeds in measurement area 3 were all spuriously high,  and

as consequence have been reduced by 3 % in Figure 3.17 b) to agree with the

adjacent contours.   At heights between the bridge top and 0.29 m above the

bridge the wind speed decreases by approximately 0.3 ms-1 with height.   This

decrease is not uniform across the measurement area.   The wind speed also

increased by 0.3 ms-1,  between the upwind and down wind limits of the

measurement area.
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Figure 3.18 shows the vertical profiles of the normalised wind speed

extracted at absolute distances aft of the upwind edge of the bridge.   The vertical

scale is the height above the bridge in meters.   Profiles are shown at absolute

distances,  x,  aft of the upwind edge of the bridge of a)  0 m,  b)  0.09 m, and c)

0.215 m.   The dashed line indicates normalised speeds of 1.0 where the measured

speed equals the free stream speed.   For the purposes of clarity the standard error

is only displayed for every third measurement.   Above the upwind leading edge

of the bridge (Figure 3.18a) the wind speeds are accelerated by 10 to 20 % and do

not vary a great deal with height compared with those further downwind.   Further

aft (Figure 3.18b) the wind speed is decelerated close to the top of the bridge,  and

then increases with height to a point where it is equal to the free stream flow,  i.e.

a normalised wind speed of 1.0.   Above the decelerated region the wind speed

increases rapidly to a maximum and then decreases to between 10 % to 15 %

above the free stream wind speed at a height of 0.3 m.    It is presumed that the

wind speed will decrease further towards a free stream or undisturbed flow (a

normalised wind speed of 1.0) with increasing height,  although this was not

measured.   At the aft most position (Figure 3.18c) there is region of air flowing

counter to the wind direction within the decelerated region.

Figure 3.19 shows the normalised wind speed at scaled distances of x/(step

height) back from the leading edge.   The scaled vertical positions of the wind

speed maxima for the three geometries agree to within the measurement error and

increase in scaled height with distance aft of the upwind leading edge.   The

magnitude of the tanker and deck house block normalised wind speed above the

upwind edge (Figure 3.19a) decrease with height from roughly 1.15 to 1.05,  whist

the containership normalised wind speed increases with height to 1.20 at z/H=1.5.

The magnitude of the maximum wind speed for the tanker and deck house blocks

vary with distance from the upwind leading edge and have a maximum of

approximately 1.38 at x/H=0.5 (Figure 3.19c).   The maximum wind speed for the

containership at these distances was generally 10 % less than the other two

geometries.   The thickness of the decelerated region (normalised wind speeds less

than 1.0) is the same for all three geometries (Figures 3.19b, c, d),  and increases

in depth with distance from the upwind leading edge.   There is recirculation
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present in the decelerated region close to the bridge top for both the tanker and

deck house geometries,  but not for the container ship.

Apart from at the front edge of the bridge,  it is clear that scaling all

distances by the step height of the geometry successfully collapses the data from

all three bodies together,  and confirms the step height as the correct scaling

parameter.   Comparison of the profiles from all three bodies show that the line of

equality (normalised speed equal to 1.0) agree to within the measurement error

over all three bodies,  and the height of the maximum wind speeds agree to within

the measurement error over all three bodies.

The normalised wind speeds fields above the containership,  tanker and the

deck house block are shown in Figures 3.20,  3.21 and 3.22 respectively.   In each

figure the height and distance back from the upwind leading edge has been

normalised by the step height,  H,  and the free stream direction of the flow is

from left to right.   The upwind leading edge was located at z/H=0=x/H.   Dashed

lines mark each of the four PIV measurement areas.   The hatched areas in Figures

3.21 and 3.22 show a region of air that has travelled up the rear face of the cube

and entered the recirculation region.   Note that,  because H varies,  the

measurement areas represent different regions of the flow for the different

geometries and the figures are to different scales.   The wind speeds above all

three geometries in ‘area 1’ were unrealistically high in the bottom right hand

corner.   No uniform wind speed correction could be applied,  as in area 3 Figure

3.11,  to reconcile this wind speed increase as the normalised wind speed contours

could not be aligned to the surrounding contours.   This suggests that there could

be a problem with the measurement of the free stream wind speed.   The time

average free stream wind speed (Figure 3.17) towards the bottom right of ‘area 1’

was slightly lower (0.2 ms-1) than the surrounding air,  which can account for 3 %

of the increase in normalised wind speed.   Variations of 0.2 ms-1 in the free

stream wind speed are possible (Section 3.2.4) and could account for this increase

in the normalised wind speed.
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3.3.3   A model describing the pattern of the flow

It has been shown that the main characteristics of the flow field above the

bridge are governed by the step height,  H.   This suggests that if the position of an

anemometer on a ship is known in relation to the upwind edge of the

superstructure,  and the step height of the ship is known,  then the effect of the

flow distortion on the measured wind speed at that site can be predicted.   If the

step height of the ship is not known,  it can be estimated from the ship’s overall

length using the generic merchant ship relations described in Chapter 2.   This

section quantifies the flow pattern above the bridge in terms of the step height.

The normalised wind speed data above each geometry were examined to

determine the position of the line of equality (normalised wind speed of 1.0),  and

the positions of the normalised wind speed maximum and minimum.   An

algorithm was devised to search each smoothed vertical profile for the position of

the line of equality.   Points above and below 1.0 were selected and the height at

which the normalised wind speed was equal to 1.0 was interpolated between these

two heights.   Similarly,  the heights of the maximum and minimum were selected

by choosing the highest and lowest wind speed from each vertical wind speed

profile.   The positions of the line of equality,  and the maximum and minimum

wind speeds above each geometry are shown against distance from the upwind

leading edge in Figure 3.23.    The area is divided into regions of accelerated and

decelerated flow with the upwind leading edge at x/H=0=z/H.   Curves were fitted

to the normalised wind speed data using curve fitting software (KaleidaGraph

[63]).   The type of curve fit was decided from the observation of the resulting

correlation coefficients,  r2.   These relationships can be used to determine whether

an anemometer is located within the decelerated region,  the accelerated region,

or is high enough to be unaffected by flow distortion.

The positions of the line of equality,  and of the maximum and minimum

wind speeds above each geometry agree to within z/H=0.05.   The position of the

line of equality above the bridge were determined from the container ship,  tanker

and deck house block PIV results.   A curve (eq. 3.4) was fitted through the
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heights at which the scaled wind speed profiles from all three flow fields cross the

line of equality.   The resulting equation for the line of equality is:

z
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H
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H
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where z  is the height above the bridge,  x  is the distance back from the leading

edge of the bridge and H  is the step height,  with r2=0.98.

The position of the wind speed maximum was obtained from the flow over

the container ship,  generic tanker and deck house block models.   This resulting

equation for the wind speed maximum is:
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with r2=0.95.

The normalised wind speed minima were obtained from the tanker and

deckhouse data.   The containership data was not used for the minimum value

because of the low resolution of the data within the decelerated region.   The

resulting equation for the wind speed minimum is:
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with an r2=0.90.

The wind speed measurements above all three geometries were not high

enough to determine the position at which the wind speed was unaffected by the

geometry,  i.e.  the height above the line of equality at which the wind speed

returns to the free stream value.   Instead,  a separate area was measured above the

front edge of the tanker at approximately 0.66 m above the tanker bridge.   The

algorithm that determined the position of the line of equality was used,  namely a

normalised wind speed 1.0.    A straight line (eq. 3.7):
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indicates the height at which the acceleration of the flow reduces to the free

stream (Figure 3.24).   In contrast,  the normalised wind speed above the container

ship at a height of z/H=2.5 varies between 1.15 to 1.20 (Figure 3.20).   It is not

clear why the wind speed should be accelerated to this value,  but it is speculated

that the front of the container ship geometry may be affecting the flow above the

bridge.  This is discussed further in section 3.3.5.

3.3.4   Investigating the maximum wind speed

In the previous sections,  simple equations have been used to predict the

positions of the line of equality,  and minimum and maximum wind speeds in

terms of the step height,  H.   However,  the scaled wind speed profiles (Figure

3.18) have shown that the magnitude of the container ship wind speed maximum

does not agree with the other two geometries.

The magnitude of the normalised wind speed maxima for the container ship,

tanker and deck house block are shown against distance from the upwind leading

edge,  x/H,  in Figure 3.25.   The upwind leading edge is located at x/H=0=z/H.

The wind speed maxima for the tanker and the deck house block are similar.

They increase rapidly with distance back from the upwind leading edge and reach

an upper limit of 1.35 at a distance of x/H=0.3.   It then reduced slowly to 1.30 at

a distance of x/H=1.1.   The wind speed maximum for the container ship increased

less rapidly with distance back and reached an upper limit at approximately 1.30.

It then reduced to 1.15 at a distance of x/H=3.0 down stream.   The container ship

wind speed maximum was up to 10 % less than the tanker and deck house block.

These differences will be discussed in the next section.
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3.3.5   The flow of air over the container ship

The previous sections have highlighted a number of differences in the air

flow over the bridge of the container ship compared to the other geometries

(Section 3.3.1).   These problems are as follows:

i)   The basic flow visualisation showed that the flow pattern in front of and

above the bridge of the container ship was not very well defined

(Figure 3.14).

ii)   The height above the tanker bridge where the wind speed returns to the

free stream is approximately z/H=2.5 (eq. 3.7).   The PIV study

showed that at this height the wind speed above the container ship is

accelerated by between 15 % to 20 % (Figure 3.20).

iii)   Although the line of equality above the container ship bridge agreed

well with the tanker and the deck house block,  the magnitude of the

maximum wind speed was underestimated by 10 % (Figure 3.19 and 3.24).

It is hypothesised that these differences in the flow pattern above the

container ship bridge are caused by the flow of air from the upwind bow reaching

the bridge (Figure 3.15).   The flow over the bow step is complex.   The flow over

the bow is either:  a) effected by the height of the container top to water line,  or b)

the bow to waterline.   Assuming eq. 3.4 holds for x/H greater than its range of

limits of 0 3 0< <( )x H/ .  the depth of the decelerated region can be calculated for

the airflow reaching the bridge.   For example,  for two forward loading container

ships of length 100 m and 150 m the two bow step heights and the distance of the

bridge to the container front are calculated using the linear relationships generated

in Chapter 2.   The heights and distances are shown in Table 3.2 along with the

bridge to deck heights and the decelerated region depth.   It is clear that in each

case the depth of the decelerated region is roughly four to six times the bridge to

deck height and hence the bridge is well down in the region of decelerated flow.

An approximate extrapolation of Figure 3.23 suggests a 10 % deficit in the wind

speed may explain the discrepancy in the maximum normalised wind speed
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between the tanker and container ship.   This will be examined further using CFD

in Section 4.

3.4   The change in the airflow distortion at different relative wind directions

The effect of the airflow distortion at three different relative wind directions

is investigated by examining the PIV measured flow pattern and normalised wind

speed magnitude above the deck house block.   Figure 3.26a) shows the positions

of the line of equality and the wind speed maximum for a flow normal to the deck

house block (eq. 3.4),  and at wind directions of 15° and 30°.   Similarly the

maximum wind speed magnitude is shown in Figure 3.26b).   In general,  there is

good agreement in the pattern of the flow and the wind speed magnitude (< 2 %)

for flows within ±15°.   At a wind direction of 30° there is a variation of within

5 % in the magnitude of the wind speed maximum for x/H>0.25.   It must be

noted that as the relative wind direction from the bow,  φ ,  increases the distance

of the anemometer position from the upwind leading edge,  x ,  will increase to

x / cos φ( )  (schematic Figure 3.26).   Assuming H is constant for the case of the

simple block the depth of the decelerated region will increase with increases in

x/H (Figure 3.26a).   In general the wind speed magnitude varies by up to 5 %

with increasing x/H (Figure 3.26b).   It is unknown if the step height,  H, of a real

ship will vary with increasing relative wind direction,  e.g.  whether at φ=30° H

will be the bridge to deck height or the bridge to waterline height.   No wind

tunnel studies of the tanker or container ship were performed at different wind

directions.

3.5  Summary

The aim of this chapter was to derive a way to predict the flow of air above

the bridge using information about the ship type and size.   Wind tunnel studies of

simple representations of bluff body generic VOS ship shapes were used to derive

scaling rules that predict the extent of the accelerated and decelerated regions of

air flow above the bridge of the ships.   The scaling rules are only applicable for

flows directly over the bow of VOS ships and for anemometers located on the
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ships centreline.   However this is likely to be the case for high proportion of

observations.   It was found that:

3a)   The flow field scales with the step height,  H,  of the model.   In the

case of a tanker and container ship,  H is the bridge to deck and the

bridge to container top heights respectively.

3b)    Equations describing the positions of the line of equality (eq. 3.4),

wind speed maximum (eq. 3.5) and minimum (eq. 3.6) have been

described.   Based on the scatter of the data these equations are

accurate to within z/H=±0.025 (±0.35 m for a tanker of length 170 m).

3c)    Close to the bridge top,  the airflow was severely decelerated and may

even reverse in direction.   The decelerated region is bounded by the

line of equality,  where the normalised wind speed

(measured/undistorted) has a value of 1.0.   Depending on position,

the airflow above the line of equality is accelerated by up to 38 %.

3d)   Close to the line of equality the normalised wind speed varies between

0.2 to 1.1 (Figures 3.19,  3.20,  3.21).   Such a large gradient suggests

positions along the line of equality are not the ideal position to locate

an anemometer.

3e)   The effects of airflow distortion reduce with increased height,  and the

acceleration of the flow decreases to the free stream at z/H=2.5 for the

tanker geometry.

3f)   The magnitude of the maximum wind speed for the container ship is

10 % less than the tanker geometry,  and the height that the wind speed

returns to the free stream does not agree with the tanker.   Therefore a

separate model may be necessary to predict velocity changes over the

container ships.
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In summary,  the results and developed methodology makes it possible to

estimate the sign and magnitude of the bias in wind speed measurements,

obtained at the predominant relative wind direction,  from an anemometer located

on or near the centreline of a Voluntary Observing Ship.   This will rely on a

knowledge of the anemometer position and a basic ship dimension (e.g.  the

bridge to deck height,  or the length overall allowing the bridge height to be

determined).   The following chapters apply CFD techniques to support and

broaden the application of the experimental measurements.



36

4.   CFD SIMULATIONS OF THE FLOW OVER THE GENERIC SHAPES

4.1   Introduction

The use of wind tunnels can be costly and time consuming,  and the studies

may be limited by the wind tunnel speed and the physical size of the model.   It is

also impractical to model a large number of ships in a wind tunnel.   With the

continual increases in computing power,  Computational Fluid Dynamics (CFD)

has become a viable alternative for modelling the air flow over ships.   The aim of

this chapter is to test the performance of a commercial CFD code,  VECTIS,  in

modelling the flow over bluff body merchant ships.   The CFD code VECTIS used

in this study will be detailed in Section 4.2.

As already stated in the literature review,  previous numerical studies of the

flow over ships have mainly concentrated on research ships (Moat and Yelland

[23 to 28];  Yelland et al.  [9,  29]).   In all cases the ship geometries were

detailed,  and the anemometers were well exposed and had low flow distortion.

In contrast,  the generic merchant ship geometries used in the present study are

simple bluff body structures.   The anemometers may not be well exposed and

could have high flow distortion.

Many experimental studies of the flow over bluff bodies have been

performed for the purpose of validating of CFD codes.   However,  these were

either not unbounded flows (e.g. Martinuzzi and Tropea, [64]),  or did not

measure the velocity in sufficient detail in the areas of interest to enable a

comparison to be made (e.g. Minson et al. [65];  Cheney and Zan, [32]).   These

are therefore not suitable for direct comparison with the wind tunnel results

(Section 3).   However Martinuzzi and Tropea, [64] and Minson et al. [65] are

used in Section 4.3 for partial validation of the performance of the CFD code

VECTIS in modelling the flows over bluff bodies.

The accuracy of CFD codes are significantly dependent upon the choice of

turbulence closure scheme,  the numerical schemes and the mesh design (Cowan,

et al. [66] ).   Therefore Section 4.4 examines various VECTIS simulations of the
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flow over the full-scale generic tanker (of length 170 m) in terms of their

dependence on mesh density,  turbulence closure schemes,  inlet profile definition,

and the scale of the geometry.   The results of Section 4.4 are compared in Section

4.5 to the PIV measurements of the flow over the tanker.

It was shown in Chapter 3 that the magnitude of the wind speed maximum

above the container ship was less than that of the tanker and deck house block.   It

was postulated that this was due to the air flow over the upwind bow step

effecting the airflow reaching the bridge.   CFD simulations of the flow over the

wind tunnel scale models of the tanker,  container ship and deck house block are

performed in Section 4.5 to test this hypothesis.   These simulations were

performed at the same Reynolds number (1.8×106) as the PIV wind tunnel

studies.

4.2   The CFD code VECTIS

4.2.1   Introduction

CFD is a method to calculate the flow of a fluid by means of computer

based simulation.   All CFD codes contain three main elements:  i)  a pre-

processor stage where the geometry (Section 4.4.2),  mesh,  and boundary

conditions are defined (Section 4.2.3);  ii)  a solver stage where the equations

governing the fluid flow are solved (Section 4.2.4);  and  iii)  a post processing

stage where the flow field can be analysed for convergence and data can be

extracted (Section 4.2.5).  The commercially available finite volume CFD code

VECTIS (Ricardo, [67]) was used to calculate the velocity field over the bluff

body geometries presented in this chapter.

This code was originally chosen and used since 1993 to calculate the wind

speed over a variety of very detailed research ship geometries (Moat and Yelland

[23 to 28] and results have been compared to previous wind tunnel studies [9] and

in situ wind speed data [29].   Its main advantage is a sophisticated automated
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mesh generation feature that allows fast mesh generation (within hours) around a

complicated geometry.

VECTIS calculates the 3-dimensional,  compressible,  steady state solutions

of the Navier-Stokes continuity and energy equations (Versteeg and Malalasekera,

[68]).   The governing equations of fluid flow (APPENDIX A.1) cannot yet be

solved efficiently for high Reynolds number flows.   Therefore,  the governing

Navier-stokes equations are time,  or Reynolds,  averaged which introduces

unknown turbulence correlation terms which render the equations insoluble.

These Reynolds (or turbulent) stress terms have to be parameterised by a

turbulence closure scheme.   The VECTIS solver is second order accurate and

uses finite-difference-type approximations for the terms representing flow

processes such as convection and diffusion.  The differencing schemes used are

stated in Section 4.2.4b.   Even though the CFD solutions are modelled at

sufficiently low wind speeds (order 10 ms-1) that density changes are minimal,  a

compressible solution is always specified since this produces a more stable

solution [69].   All the flow simulations performed using VECTIS were

isothermal,  i.e the air,  ship sides and decks,  and the sea surface were set at a

constant temperature of 20 °C.

4.2.2   Geometry creation

The simple 3-dimesional bluff body shapes of the generic merchant ships

were created using the pre-processor FEMGEN [70].   The ship geometry was

then enclosed in a computational domain or wind tunnel (Figure 4.1).   The width

of the volume was chosen to minimise the blockage of the flow in the domain by

the ship [18].   No blockage correction was applied as the blockage ratio (frontal

area of the ship : area of the of domain cross section) was approximately 0.5 % for

all full-scale simulations.
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4.2.3   Boundary conditions and mesh generation

The flows over the full-scale generic ship geometries (of length 170 m)

were modelled using a thick planetary boundary layer wind speed profile at the

inlet boundary.   The inlet profile of the tanker model did not match that measured

in the wind tunnel,  since the latter varied both in shape and in magnitude (Chapter

3.1),  but was representative of profiles found over the open ocean.   The wind

speed profile varied logarithmically with height,  z ,  and was defined using:
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where u*  is the friction velocity,  kv ,  is the von Kármán constant (0.4) and z0  is

the roughness length.   Assuming an open ocean wind speed of UzN =10 ms-1 at a

height of 10 m,  the wind speed profile can be defined by eq. 4.1 by calculating

values u*  and z0 .   The friction velocity, u* ,  was calculated using:
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where CD N10  is the drag coefficient which varies with wind speed and is defined in

eq. 1.1.   The subscripts 10 and N refer to a height above the sea surface of 10 m,

and equivalent neutral stability conditions.   The roughness length,  z0 ,  can be

calculated by combining eq. 4.1 and 4.2:
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using the using the value of CD n10  calculated from eq. 1.2,  z= 10 m and U N10 =10

ms-1.

At a solid boundary there is a thin boundary layer in which the velocity

increases rapidly from zero at the surface and approaches the velocity of the main

stream.   Immediately adjacent to a solid wall,  an extremely thin viscous sub-

layer exists and has a turbulent region above.   The number of mesh points
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required to resolve all the details in a turbulent boundary layer would be

prohibitively large and CFD employs a wall function [68] to represent the effect

of the wall boundaries.   In all the CFD models,  the wind tunnel floor and ship

sides were specified as a solid wall with a roughness length,  z0 ,  similar to that of

the open ocean (10-4 m) [71].   The sides and roof were defined as zero gradient

walls,  i.e. the walls were defined with a slip condition and therefore produced no

boundary layers.   The outlet wind speed profile was determined from the flow

upstream of the boundary,  whilst maintaining a mass flow rate identical to that at

the inlet boundary.

VECTIS uses a non-uniform Cartesian mesh and can increase the number of

cells in specific areas of interest whilst minimising the number of cells at large

distances from the ship where the flow does not vary a great deal.   The cell size

was defined by specifying the number of gridlines in each of the co-ordinate

directions.   The cell size was reduced in specific locations of interest by

subdivision of each existing cell into 4 sub-cells in each co-ordinate direction (64

cells for each cell volume).   Finally,  all cells which bisect a boundary were

automatically truncated to conform exactly to the shape of the boundary.   This

enabled the exact shape of the geometry to be preserved.

The number and size of cells within the computational domain varied

between CFD models (Table 4.1).   The models were limited to 270,000 cells or

less until a dual processor Silicon Graphics Origin 200 UNIX workstation was

purchased in January 2000.

4.2.4   The VECTIS discretisation

4.2.4a   Turbulence closure schemes

The most widely used turbulence closure schemes available in commercial

CFD codes are Eddy Viscosity Models (EVM).   The unknown turbulence

correlation terms generated by the Reynolds averaging are calculated from the

eddy viscosity using the Boussinesq relationship (APPENDIX A.2 and [68]).
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VECTIS uses either the k ~ ε  parameterisation [68] with standard coefficients

(Launder and Spalding, [72]),  or a Re-Normalisation Group (RNG) based k ~ ε

parameterisation (Yakhot et al. [73]).   No other turbulence closure schemes are

available in the code and therefore will not be discussed.   In the k ~ ε

parameterisation two transport equations are solved,  one for the turbulent kinetic

energy,  k ,  and a further one for the rate of dissipation of turbulent kinetic

energy,  ε .   Both are related to the eddy visocity via:

µ ρ
εµt C
k

=
2

(4.4)

where µt  is the eddy viscosity, ρ  is the air density and Cµ  is a dimensionless

constant the value of which changes between the two parameterisations [74].   The

k ~ ε  parameterisation is known to overestimate k  in regions of high rates of

strain [75 to 78] and thus increase the value of the eddy viscosity calculated via

eq. 4.4.   The RNG k ~ ε  parameterisation is a variant of the k ~ ε

parameterisation and is known to reduce the over estimation of k  in regions of

high rates of strain,  such as the upwind leading edge,  by increasing the rate of

dissipation [31].

Although EVMs have many flaws in predicting the turbulent statistics,

Murakmi and Mochida [79] state that the k ~ ε  parameterisation reproduced the

mean velocity and pressure fields well when a fine mesh resolution is used.

Easom [80] compared the CFD solutions of the flow over a 6 m cube using the

RNG k ~ ε  parameterisation and the standard k ~ ε  parameterisation.   Easom

reported that the RNG k ~ ε  parameterisation was more accurate in predicting the

pressure field on the cube roof than the k ~ ε  parameterisation and was generally

as accurate as higher order closure models,  while having with less computational

cost and greater stability.   Both turbulence schemes will be used to determine the

velocity field above bluff body merchant ships in Section 4.4.

4.2.4b   Differencing schemes

The VECTIS code used a second order accurate differencing scheme (Zhu

and Rodi [81]) to approximate the advection and diffusion of the fluid motion.
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Zhu and Rodi [81] claim that the scheme is equivalent in accuracy and stability to

the QUICK [82] scheme,  in addition to being highly effective at suppressing the

overshoots that can occur with QUICK.   A first-order accurate upwind

differencing scheme (Spalding [83]) was used for the pressure equation,  the

turbulent kinetic energy ( k ) and the rate of dissipation of turbulent kinetic energy

( ε ).   No other higher order differencing schemes were available in the code and

therefore will not be discussed.

The velocity field has to be linked (or coupled) to the pressure field to

calculate a velocity field that satisfies continuity of mass.   For steady state flows

Ricardo [67] recommends that the PISO algorithm [68] be used for this.   This is

an iterative method that on the first step of the iterative process predicts the

velocity field from the existing pressure field.   This first prediction of the velocity

field will not satisfy continuity,  and a pressure correction field is obtained and

used to correct the velocity and pressure fields.   As opposed to other algorithms

PISO then applies a second pressure correction field to improve the accuracy of

the velocity field further still.   The process is iterated until the pressure field

applied to the momentum equations produces a velocity field that satisfies

continuity.

4.2.5   Model convergence

The velocities at a number of locations within the computational domain

were monitored until the variations in velocity were less than 1×10-4 ms-1.   In the

full-scale CFD simulations the monitoring locations were close (50 m) to the

tunnel sides except for one within the region of interest,  such as above the bridge

of a ship.   Generally the models took 20,000 time steps (up to 3 to 4 weeks of

processing time) on an Origin 200 UNIX workstation to converge.   The speed of

the free stream flow was determined using a vertical profile of the wind speed at a

point well abeam (more than 100 m) of the site of interest.
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4.3   Comparison of VECTIS with previous wind tunnel studies of the flow

over cubes

4.3.1   Introduction

Two tests cases were used to validate the CFD code VECTIS for air flows

over bluff bodies.   Both are wind tunnel studies of the flow over surface mounted

cubes and both were obtained from the European Research Community on Flow,

Turbulence and Combustion (ERCOFTAC) data base4.   The first case is a fully

developed channel flow,  and the second is a boundary layer flow.   CFD was used

to simulate both flows and the results were then compared to the wind tunnel

measurements.

4.3.2   Channel flow over a cube

Martinuzzi and Tropea [64],  placed a surface mounted cube with a height

H,  of 0.025 m,  in a closed channel of 0.05 m (2H) in height and 0.6 m in width.

A blower-type wind tunnel was used to simulate a fully developed channel flow

over the cube,  with a inlet velocity of 25 ms-1.   The Reynolds number,  based on

the channel height,  was Re =105.   Measurements of the velocity above the cube

were made using a three-beam,  two component Laser Doppler Anemometer

(LDA).   This experiment was re-created numerically using the CFD code

VECTIS (Figure 4.2).   The upstream profile measured by [64] was approximately

parabolic with a maximum velocity at height H.   This profile was used as the inlet

boundary condition for the computational domain,  and matched the closed

channel wind tunnel exactly.   The turbulent kinetic energy,  k ,  and the rate of

dissipation of turbulent kinetic energy,  ε ,  at the inlet were defined as 2.4 m2s-2

and 0.017 m2s-3 respectively.   Two CFD simulations were performed,  one using

the k ~ ε  turbulence parameterisation with standard coefficients and the other the

RNG k ~ ε  turbulence parameterisation.

                                                  
4 Based at the Department of Mechanical Engineering,  University of Surrey,  UK.
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Both simulations used the same mesh of 243,696 cells.   The RNG k ~ ε

parameterisation was also run using a finer mesh of 519,886 cells to determine the

sensitivity of the solution to the mesh density.   The minimum cell size used above

the cube in the coarse grid model was 0.024H and in the fine grid model was

0.016H.   Figure 4.3 shows the vertical profiles of the total velocity measured

above the centerline of the cube,  both from the wind tunnel and from the three

CFD simulations.   The minimum cell sizes are displayed in the legend.  All

velocities were normalised by the average inlet velocity of 25 ms-1 and all heights

were normalised by the cube height, H.   Five profiles are shown;  one at the

upwind leading edge of the cube,  one at the rear edge and the other three spaced

equally between these two.

The wind tunnel measurements show flow separation behind the leading

edge with strong re-circulation close to the cube top.   Within the re-circulation

region the minimum wind speed occurs at a height of about z/H=0.15,  half way

back from the leading edge (Figure 4.3c).   The height where the total velocity

equals the free stream velocity (at a normalised wind speed of 1.0) varies from

just above the leading edge and increases with distance downstream,  reaching a

height of z/H=0.3 at a distance of x/H=1.0 (Figure 4.3e).   Above this ‘line of

equality’ the flow is accelerated,  except close to the channel roof.   The maximum

normalised velocity of 1.4 occurs at a distance of x/H=0.5 downstream of the

leading edge at a height of z/H=0.35.   The height of the maximum also increases

with distance downstream.

Examining the results from the CFD model using the 0.024H mesh and the

standard k ~ ε  turbulence parameterisation,  it can be seen that this model

performs quite well in simulating the shape of the accelerated region and the

position of the maximum velocity.   However,  the model underestimates the

maximum normalised velocity by up to 0.1,  i.e. a maximum normalised velocity

of 1.3 rather than 1.4.   In the region below the line of equality this model does not

perform well and as opposed to the wind tunnel measurements a separation bubble

is formed and the flow re-attaches to the cube top at x/H=0.75.



45

The results from the CFD model using the 0.024H mesh and RNG k ~ ε

turbulence parameterisation show better agreement with the experimental data

than the standard k ~ ε  parameterisation.   Except for the leading edge (where

both CFD models overestimate the velocity),  the RNG k ~ ε  coarse model

simulates the shape and position of the accelerated region better than the standard

k ~ ε  parameterisation,  and only underestimates the maximum normalised

velocity by 0.05 or less.   Below the line of equality the RNG k ~ ε  turbulence

parameterisation performs much better than the standard k ~ ε  parameterisation,

with a more realistic recirculation pattern which only disagrees significantly with

the wind tunnel results very close to the surface of the cube.

The CFD model using RNG k ~ ε  closure was run a second time using a

finer mesh of minimum cell size of 0.016H in order to examine the dependence of

the solution on mesh density.   This produced rather mixed results.   Except at the

leading edge,  the model underestimated the maximum normalised wind speed by

up to 0.15,  i.e. a simulation based on a minimum cell size of 0.016H  gave worse

results than those based on the coarse mesh models.   This was experienced by

[66] in simulating the airflow around a bluff-body building using CFD.   Cowen

[66] attributed the disagreement to inaccuracies created by the discretisation of the

advection and diffusion terms.   It was not possible to investigate this

disagreement in the results since no other differencing schemes (Section 4.2.4b)

are available in VECTIS.   Below the line of equality the performance of this

model in simulating the flow in the recirculation region was an improvement on

the standard k ~ ε  parameterisation but not as good as the coarser mesh RNG

k ~ ε  parameterisation.   At the leading edge,  the 0.016H mesh RNG k ~ ε

parameterisation performed the best of all three CFD runs,  in that it produced a

smaller overestimate of the maximum velocity.

To summarise,  these comparisons showed that the CFD models of the

channel flow over a cube performed reasonably well above the recirculation

region with a maximum underestimate of the absolute velocity of between 4 and

12 % aft of the upwind leading edge of the cube,  and a maximum overestimate of

about 6 % at the leading edge itself.   The size of these errors depended upon the
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mesh density and the turbulence closure used,  but in general the differences

between the three CFD models were small.   The worst performing CFD model

was the 0.016H mesh using the RNG k ~ ε  closure,  which suggested a maximum

acceleration of the flow of about 25 % rather than the 40 % suggested by

Martinuzzi and Tropea [64] data.   Overall the 0.024H mesh RNG k ~ ε  model

performed best,  closely simulating the shape of the accelerated flow region and

predicting a maximum acceleration of 35 %,  which was reasonably close to the

maximum observed in the wind tunnel.

4.3.3   Boundary layer flow over a cube

Minson et al. [65] examined a boundary layer flow over a surface mounted

cube of 0.2 m in height (H),  in the 4 m by 2 m environmental wind tunnel at the

University of Oxford.   The Reynolds number in the wind tunnel,  based on the

cube height,  was 7.7×104.   The boundary layer flow was normalised by a

reference velocity of 5.4 ms-1,  measured upstream of the cube at height,  H.   A 2-

component LDA measured the velocity components above the cube.

VECTIS CFD models were used to simulate the air flow through the wind

tunnel (Figure 4.4).   Velocities around the cube were calculated using both the

standard k ~ ε  and the RNG k ~ ε  turbulence parameterisations,  each based on a

mesh of 280,180 cells.   The minimum cell size in the region of interest above the

cube was very similar to the grid used in the CFD study of channel flow (Section

4.3.2) and corresponded to 0.023H.   For both models the vertical profiles of

velocity above the cube were compared to those obtained by [65] (Figure 4.5).   In

Figure 4.5 the minimum cell sizes are displayed in the legend.

The wind tunnel studies show flow separation behind the upwind leading

edge with a recirculation region reattaching to the cube top at a distance of

x/H=0.3.   Unfortunately the measurements of [65] were not very extensive,  with

only four measurements per profile between the cube top (z/H=0.0) and height

z/H=0.12.   A total of only three measurements (Figures 4.5a and b) were made

above the line of equality.   Nevertheless,  the model using the RNG k ~ ε
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turbulence closure reproduces the flow pattern in the recirculation region very

well.   In comparison to the boundary layer flow over the cube the channel flow

does not reattach to the cube top and has a far stronger recirculation region (Figure

4.5 f).

4.3.3a   The effect of normalising on the wind speed measurements

The CFD simulation of the boundary layer flow over the cube has shown

that increases of approximately 1.3 are possible when the wind speed profiles

above the cube are normalised by a fixed wind speed of 5.4 ms-1.   This

normalising method will not produce an absolute wind speed difference from the

free stream as the actual free stream wind speed is not constant,  but increases

with height.   Therefore,  normalising the wind speed profiles using a wind speed

measured at the height of the cube top will lead to an overestimate of the

normalised wind speed above the cube.   For example,  when the RNG k ~ ε  CFD

model wind speed profiles were normalised by the boundary layer profile at the

inlet and the wind speed maxima were reduced to between 1.10 to 1.15,  i.e.  a

consistent reduction of about 20 %.   All wind speed profiles detailed in this thesis

were normalised by the actual free stream profiles to avoid the possible

overestimates that can be caused by normalising by fixed wind speeds.

4.3.4   Summary

In the channel flow comparison,  the VECTIS standard k ~ ε  scheme failed

to simulate the flow separation and recirculation,  whilst the CFD model using the

RNG k ~ ε  turbulence closure agreed well with the measurements of [65] in the

recirculation region for a minimum mesh of size 0.024H.   The channel height was

only twice the height of the cube,  therefore large increases (of up to 40 %) in

wind speed are expected as the air is constricted between the cube top and the

tunnel roof and is not comparable to the later studies of the flow over merchant

ships.
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Unfortunately,  the boundary layer study of flow over a cube [65] did not

possess many measurements within the accelerated region above the line of

equality.   However,  the study did show that the maximum normalised wind

speed was reduced from about 1.30 to between 1.10 to 1.15 when the wind speed

profiles were normalised by the free stream boundary layer profile,  in the absence

of the model,  instead of a fixed wind speed.

4.4   VECTIS models of the generic tanker shape

4.4.1   Introduction

A number of CFD simulations (Table 4.1) of the flow over the generic VOS

tanker (of length 170 m) were made in order to examine the dependence of the

CFD results in terms of:

1)  the dependence of the models on mesh density (Section 4.4.2a).

2)  the effect of different turbulence closure models on the solution accuracy

(Section 4.4.2b).

3)  the shape of the inlet wind speed profile (Section 4.4.2c).

4)  the size of the geometry and the effect of the dimensionless distance y+

(Section 4.4.2d).

In all cases the vertical profiles of the velocity were normalised by the free

stream,  or undisturbed,  vertical profile of velocity 200 m abeam of bridge of the

ship.   All figures show the normalised wind speed profiles at various distances aft

of the upwind edge of the bridge.   All distances have been normalised by the step

height,  H,  (bridge to deck height of 13.54 m) of the tanker model.
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4.4.2   CFD models of the full-scale tanker

4.4.2a   The mesh dependence of the full scale solutions

Three CFD simulations of the 3-dimensional flow over the tanker were

made to test the dependence of the solution on the mesh size.   Mesh sizes of:   1)

147,293 (RUN A),  2)  270,305 (RUN B) and 3) 427,230 (RUN C) were

compared.   The RNG k ~ ε  turbulence closure scheme and the boundary

conditions defined in Section 4.2.3 were used in all three simulations.   The

minimum cell size (mesh resolution) of each mesh are indicated in Table 4.1 and

ranged from 0.04H to 0.018H.   The minimum cell size for RUN A (0.04H) and B

(0.038H) were similar because the mesh density in RUN B was mainly increased

in other regions of the ship.   These regions included the areas in front of and

behind the bridge,  and in the region around the upwind bow step.   This was

applied to give a better simulation of the flow over the whole ship.   The change in

the mesh density around the bridge of these two models is shown in Figures 4.6

and 4.7.   RUN C included the refinements in RUN B and had increased cell

resolution above the bridge.

Figure 4.8 shows the vertical profiles of the normalised velocities obtained

above the bridge of the three CFD tanker simulations using the three different

mesh densities.   The minimum cell sizes are displayed in the legend.    The

normalised profiles calculated using RUNS B and C agreed to within 1 %,  at

distances of less than x/H=0.75 back from the front edge of the bridge.   The

solution based on the 0.04H mesh (RUN A) agrees with the other simulations on

the height of the line of equality,  but does not agree with the other models in the

position and magnitude of the wind speed maximum.   The differences are largest

around the upwind leading edge of the bridge.   For example,  at a distance of

x/H=0.25 downstream of the upwind leading edge the normalised wind speed

profile simulated on the 0.04H mesh increases to a maximum normalised wind

speed of 1.07 at a height of z/H=0.2,  whereas the simulations based on higher

mesh resolutions predict a maximum normalised wind speed of 1.04 at a height of

z/H=0.5.   The normalised wind speed profile based on the 0.04H mesh was
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unrealistic.   At all distances back from the leading edge the wind speed increases

to a maximum,  decreases rapidly and increases to another wind speed maximum

and then decreases in a similar manner to the other normalised wind speed

profiles.

From comparing the normalised profiles it was clear that the flow field

above the bridge is better represented by not only reducing the cell size above the

bridge,  but also increasing the cell density around the bridge and at the upwind

bow step.   The CFD solutions are effectively mesh independent for a minimum

cell size of 0.038H above the bridge.

4.4.2b   The dependence of the full-scale solutions with turbulence closure

Two CFD simulations of the flow over the tanker using the RNG k ~ ε

(RUN C) and k ~ ε  (RUN D) turbulence closure schemes were compared.   Both

simulations used an identical mesh of 427,230 cells and used the same boundary

conditions (Table 4.1).   The minimum cell size used above the bridge of the

tanker was 0.018H.   Figure 4.9 shows the vertical profiles of the normalised

velocities obtained above the bridge of the two simulations.   The minimum cell

sizes are displayed in the legend.

Figure 4.9 shows that both CFD simulations give very similar results for the

general flow pattern.  Above the decelerated region the wind speed is accelerated

to a maximum at about z/H=0.5,  and then decreases again with increasing height

to a point where it equals the free stream value.   A line of equality,  where the

measured speed equals the free stream,  separates the decelerated and accelerated

regions.   Apart from around the leading edge,  where the k ~ ε  turbulence closure

is known to overestimate k  [75 to 78] and hence the eddy viscosity (eq. 4.1),

there is little change (within 2 %) in the solutions calculated on the same mesh

with the two different turbulence parameterisations.   However,  the  RNG k ~ ε

parameterisation gave a better prediction of the wind speed in other bluff body

comparisons (Section 4.3) and it is recommended that this closure scheme be used

for future CFD models.
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4.4.2c   Inlet profile specification

The effect of the shape of the inlet profile on the flow field above the bridge

was examined.   A further CFD model (RUN E) simulated the flow over the

tanker with the inlet profile specified as a uniform profile at 10 ms-1,  instead of a

boundary layer profile which varied with height (Section 4.3.3).   With the

exception of the inlet velocity profile the CFD simulation was identical to RUN C,

i.e. the model used a mesh of 427,230 cells and the RNG k ~ ε  turbulence closure

(Table 4.2).

Figure 4.10 shows the vertical profiles of the normalised velocities obtained

above the bridge of the two CFD tanker simulations using a uniform and a

boundary layer profile.   The minimum cell sizes are displayed in the legend.

There is an increase of approximately 3 to 4 % when a uniform profile at the inlet

is used.

4.4.2d   The scaling of the bluff body tanker

The flow simulations in Section 4.4.2 have not defined a small enough

absolute mesh size to accurately define the thin boundary layer profile very close

to the bridge surface.   The velocity at the surface will be zero and increases with

height to the value of the main stream flow.

Examination of the value of the dimensionless distance y+  showed the near

wall cells were too large (Table 4.1) for the cell centres to be in the log-law region

of the turbulent boundary layer,  i.e. the velocity profile close to the wall is not

logarithmic (the law of the wall does not hold).   y+  is defined as:

y
yp w+ =

∆

ν
τ
ρ

(4.1)

where ∆yp  is the distance of the centre of the near wall cell to the surface,  ν  is

the kinematic molecular viscosity, τw  is the wall shear stress (assumed to be

entirely viscous in origin) and ρ  is the density.   Ideally,  the value of y+  should
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be greater than 11.63 [68] and less than 103 [84] for the near wall cells to be in the

log-law region of the turbulent boundary layer.   The near wall flow is taken to be

laminar if y+  ≤ 11.63.   The number of cells needed by VECTIS to achieve this

could not be reached for a full-scale model using the computing power available.

Instead,  a CFD simulation of the flow over a scaled tanker geometry was

performed.   The Reynolds number (eq. 3.1) based on the bridge to deck height of

this flow for this simulation was 6.3×105,  and was equivalent to the wind tunnel

simulations (Table 3.1).

The mesh and geometry of the RUN C flow simulation was scaled down in

size by a ratio of 1:96.   An additional simulation (RUN F) was performed at this

scale to determine what effects this scaling had on the flow pattern above the

bridge.   The lower 2.0 m of the boundary layer profile (Section 4.2.3) was used to

define the wind speed at the inlet.   The step height was reduced to H=0.14 m.

The reduction in the mesh size produced an absolute mesh size of 0.003 m above

the bridge and the value of y+  was reduced to between 20< y+ <100 on the surface

of the bridge top.   Figure 4.11 shows the vertical profiles of the normalised

velocities obtained above the bridge of the RUN C and scaled RUN F simulations.

The minimum cell sizes are displayed in the legend.

Comparison of the normalised wind speed profiles in Figure 4.11 show that

the general shape of the profiles agree and that scaling the tanker model increases

the maximum wind speed by approximately 2 %.   Therefore,  CFD simulated

wind speed profiles based on the same mesh and turbulence closure scheme are

generally independent of the geometry scale.   This suggests that the value of y+

has little effect on the shape of the profile above the bridge.

4.4.3   Summary

Various parameters have been examined to determine their impact on the

VECTIS solution accuracy.   Apart from at the leading edge,  changing the various

parameters does not alter the predicted position of the line of equality,  but the

magnitude of the normalised wind speed maximum is altered slightly.   The
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change in the normalised wind speed maximum by parameters are:  using cell

sizes of less than 0.038H (<1 %);  the turbulence closure scheme (< 2 %);  and the

scaling of the geometry (< 3 %).   The most important factor is the specification of

the inlet wind speed profile,  which increases the magnitude of the wind speed

maximum by up to 4 %.

Figure 4.12 overlays the CFD results from Figures 4.8 to 4.11 and the

maximum and minimum limits of the normalised predicted wind speeds are

shown as hatched regions.   At the upwind leading edge there are variations of up

to 20 % in the CFD predicted wind speeds.   This variation decreases to 4 %

(Figure 4.12d) with distance back from the upwind leading edge.   The maximum

predicted normalised wind speed is 9 % at a distance of x/H=0.25 back from the

upstream leading edge.

4.5   The effect of ship type on the airflow: CFD at wind tunnel scale

4.5.1   Introduction

The effect of ship type,  or shape,  on the normalised wind speed above the

bridge was investigated by comparing ship geometries of the size used during the

PIV experiment (Chapter 3).   The flow over scaled geometries was used instead

of full-scale geometries because an increased mesh resolution could be used to

model the flow whilst run times were reduced by three-quarters.   This is a valid

method to reproduce the full-scale flow,  as simulating the flow over a scale

model of the geometry has been shown to reproduce the full-scale flow to within 2

% in Section 4.4.2d using a step height greater than H= 0.14 m.   The aim of this

section was to:  1)  compare the flow pattern above each ship type,  and 2)

determine the effect of the airflow over the bow on the flow above the bridge of

the container ship.
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4.5.2   Description of the CFD models

Unbounded flows over the wind tunnel scale container ship,  tanker and

deck house block were modelled.   The step heights of the container ship (Figure

3.1),  tanker (Figure 3.2) and deck house block (block 1,  Figure 3.1) were

H=0.106 m,  H=0.294 and H=0.422 respectively.   The flow over the ship

geometries were simulated using the same wind speed and turbulent intensity as

the wind tunnel.   The inlet profile was a uniform profile of 7 ms-1 and the

turbulent intensity was 0.2 % of the wind tunnel speed [85].   The simulations

used the RNG k ~ ε  turbulence parameterisation and the total number of cells was

between 485,669 and 692,638 (Table 4.2).   The minimum cell size above the

bridge was far smaller (0.031H to 0.008H) than the full-scale CFD models and

therefore mesh independent solutions for each CFD model was assumed.   The

size of the computational domain (Figure 4.13) is approximately the same length

as the Southampton University wind tunnel,  but had the roof and side walls

extended by 10 m to give a blockage ratio (frontal area of the geometry : area of

the domain cross section) of less than 1 %.   The distance of the inlet to the bow of

the tanker and container ship geometry was increased to 8.7BH to allow the flow

to be fully developed before reaching the ship.   The distance of the inlet to the

deck house block was 10BH.   The distance of the outlet from the aft end of the

ship geometries was 6BH in all three models.   A roughness length of z0 =1×10-5

m was used for the surfaces of the wind tunnel floor and the ship.   In all cases the

vertical profiles of the velocity were normalised by the free stream,  or

undisturbed,  vertical profile of velocity 8.5 m abeam of bridge of the ship.

4.5.3   Comparison of the flow above different ship types

The vertical profiles of the normalised wind speed above the bridge of the

tanker,  container ship and deck house block are shown in Figure 4.14.   The

minimum cell sizes are displayed in the legend.   The depth of the recirculation

region increases with distance from the upwind leading edge and is located at

equivalent heights for the tanker and deck house block geometries.   The

normalised wind speeds above the tanker and deck house block reach a maximum
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normalised wind speed of 1.11 and 1.14 at distances of x/H=0.5 and x/H=0.25

respectively.   The normalised wind speed for each ship then decreases slowly

with distance back from the front edge.

The depth of the recirculation region for the container ship is far deeper than

the other two ship geometries.  It is located at an approximate height of z/H=1.0

for all distances back from the upwind leading edge.   This result is not consistent

with the PIV results,  but shows that the air flow over a container ship does

behave in a different manner to the tanker.   The normalised wind speeds above

the bridge of the container ship increased rapidly in height from the line of

equality to a wind speed maximum at heights of z/H=1.5.   The magnitude of the

wind speed increases from 1.03 at the leading edge to 1.07 at a distance of

x/H=0.75 down stream.

4.5.4   Investigation into the optimum outlet distance

For accurate CFD solutions the outlet must be placed far enough from the

obstacle that the flow has achieved a fully developed state [68].   A sensitivity

study to determine any possible change in the normalised wind speed above the

deck house block with change in distance from the deck house block to the outlet

was performed.   The deck house block was positioned 6BH downstream of the

bluff body and 10BH from the inlet.   The outlet distance was increased to

18×BH and a CFD model was performed,  but no change in the flow field above

the deck house block was evident.   The result remains steady for solutions with

an outlet distance greater than 6BH.

4.5.5   The effect of the upwind bow step on the flow pattern above the bridge

It was hypothesised in Chapter 3 that the airflow above the bridge was

affected by the flow of air over the upwind bow.   Section 3.3.5 details a

hypothesis that the underestimate of the wind speed maximum above the container

ship bridge was caused by the bridge being in a region of decelerated air.   In

addition the PIV studies showed that the height above the tanker bridge that the



56

wind speed returns to the free stream value is z/H=2.5,  but at this height the wind

speed above the container ship is accelerated by 15 % to 20 %.   This section

compares the general flow pattern over all three geometries using the wind tunnel

scale CFD container,  tanker and deck house block models to examine the effect

of the flow over the bow step on the wind speed above the bridge.

Figure 4.15 shows the wind speed over the wind-tunnel-scale container ship,

tanker and deck house block.   The pattern of the flow over the container ship bow

step was similar to the flow over the bridge,  i.e. the flow of air separates at the

upwind leading edge and a region of accelerated air was created (Figure 4.15a).

However in this case the air was accelerated again (up to 20 %) as it passes over

the second step which was the leading edge of the containers.   This accelerated

air then travels down stream along the container top and the region of air moving

at speeds greater than 7 ms-1 extend to 3/4 of the length of the container ship top

before reducing to wind speeds of less than 7 ms-1.   Below the accelerated region

the wind speed is decelerated.   This decelerated region increases in depth with

distance from the upwind leading edge of the containers.   When this decelerated

air reaches the bridge it is greater in height than the height of the bridge to the

container top.   This decelerated air reduces the magnitude of the accelerated air

created by the upwind leading edge.

At a height of z/H=2.5 the CFD models show that the wind speed is

increased to 1.04 and there is little difference (within 2 %) between the container

ship and the tanker.   It may be possible that the PIV may be overestimating the

container ship wind speed at this height.   In summary the CFD models show that

the container ship is affected by the ships bow and the normalised wind speed

magnitude above the bridge of the container ship is less than the tanker.

4.5.6   CFD  compared with the PIV measurements

The positions of the line of equality and the wind speed maximum from the

tanker and deck house block CFD model are compared to the scaling laws (eq. 3.2

and 3.3) derived from the PIV measurements in Figure 4.16.   The container ship
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model results are not included as it is not clear if the CFD has been able to

accurately reproduce the flow pattern over the ship.   The upwind leading edge of

each model was located at x=z=0 and the maximum and minimum position of the

CFD models are indicated as an error bar and a symbol indicates the average

height.   The average of the CFD tanker and deck house block model results of the

position of the line of equality agree very well with the PIV derived scaling law.

The position of the maximum wind speed does not agree very well with the CFD

at the upwind front edge of the bridge,  but agrees well at distances greater than

x/H=0.5.

The maximum normalised wind speed from each CFD model is compared to

the PIV measurements in Figure 4.17.   The maximum and minimum position of

the CFD models are indicated as an error bar and a symbol indicates the average

maximum normalised wind speed.   The CFD simulations of the flow over the

scaled wind tunnel geometries are approximately 20 % lower than the PIV

measurements.   The reason for the discrepancy will be examined in Chapter 5.

4.5.7  Summary

The tanker and deckhouse block geometries agree in the position of the line

of equality and in the height of the wind speed maximum and predict a maximum

normalised wind speed of 1.11 to 1.14.   The flow over the container ship is more

complex and there is evidence to suggest that the flow above the bridge was

effected by the upwind bow step.   The CFD modelling suggests the position of

the wind speed maximum above the bridge of the container ship is located at a

height of z/H=1.5 and has a maximum normalised wind speed of 1.03 to 1.07.

4.6   Summary

The aim of this chapter was to test the performance of VECTIS in modelling

the flow over bluff body merchant ships.   A number of VECTIS simulations of

the flow over the full-scale tanker showed that:
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4a)   The effect of different parameters on the CFD model solutions were

examined and the following was found.   The flow above the bridge

was independent of the mesh density for minimum cell sizes of less

than 0.038H,  the k ~ ε  turbulence closure overestimates the velocity

field at the upwind leading edge,  and the inlet wind speed profile has

the largest influence (4 %) on the wind speed above the bridge.

4b)   Apart from at the upwind leading edge the CFD models all accurately

reproduced the pattern of the flow distortion seen in the PIV wind

tunnel study.  The CFD predicted a normalised wind speed maximum

of 1.08.

Flow simulations over scaled models of the container ship,  tanker and deck house

block showed that:

4c)   All the CFD models reproduce the pattern of the flow reasonably well.

4d)   None of the CFD models agreed with the wind tunnel study when

predicting the magnitude of the maximum acceleration.   The wind

tunnel experiment suggested a maximum acceleration of the flow of

about 38 % (at 0.40H aft of the leading edge and at a height of 0.46H),

whereas the wind tunnel scale CFD models predicted the maximum

value would be between 11 % to 14 %.

4e)   The heights of the line of equality and the wind speed maximum for

the container ship was higher than the other two ships.   This was

caused by the flow of air over the bow decelerating the air in front of

and above the bridge.

An experiment to determine whether the PIV wind tunnel measurements are

overestimating the normalised wind speed in comparison with the CFD models

will be detailed in Chapter 5.   However,  even if it is shown that VECTIS does

not predict the wind speed maxima well,  the CFD code can still be used to predict

if an anemometer is in a region of accelerated or decelerated flow.
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5.   A COMPARISON OF THE PIV AND CFD MODEL RESULTS WITH

IN SITU SHIP DATA MEASURED ABOVE THE BRIDGE OF A

RESEARCH SHIP

5.1   Introduction

The aim of this section is to determine how realistic the predictions

developed in Chapter 3 are when applied to the problem of correcting wind speed

data measured from a real ship.   Chapter 4 showed that the CFD and PIV models

agreed on the pattern of the flow above the bridge of a merchant ship,  but differed

in the magnitude of the predicted maximum wind speed.   This section examines

these differences.

In situ wind speed measurements were made during two cruises of the RRS

Charles Darwin.   Although the RRS Charles Darwin (Figure 5.1) is not a typical

Voluntary Observing Ship of the type examined in this thesis,  the ship’s structure

makes it ideal for studying bluff body flows when the wind is blowing on to either

beam.   In Chapter 4,  the PIV and CFD model wind speeds were normalised by

the free stream speed in order to quantify the magnitude of the

acceleration/deceleration.   Measurements of the free stream flow were not

available for the in situ data,  so an estimate has to be made.   Yelland et al. [9,

29] suggests that ‘detailed’ CFD models can be used to correct data from

anemometers located in regions of low flow distortion for flows within ±30° of

the bow.   However,  this study concentrates on air flows directly over either beam

of the ship (at ±90° of the bow) so it is necessary to check that the foremast

anemometer is located in a region of low flow distortion.   If the flow distortion at

the site is low for beam-on flows,  the wind speed data from that anemometer will

be corrected for flow distortion, using results obtained from detailed CFD models

of the ship,  and then used to calculate the free stream profile.

The instrumentation used to measure the in situ wind speed data is detailed

in Section 5.2.   The severity of the air flow distortion at the foremast anemometer

is examined in Section 5.3,  using CFD models of the ship.   Section 5.3 also
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describes the method used to determine the vertical profile of the free stream

velocity.   The normalised in situ data are then compared in Section 5.4 to the

CFD and PIV results.

The bias in the PIV measurements is examined in Section 5.5 by comparing

PIV results to CFD simulations of the air flow through the wind tunnel.   Section

5.6 examines the sensitivity of the flow above the bridge to changes in wind speed

and relative wind direction.

5.2   In situ wind speed measurements

The RRS Charles Darwin cruises CD140 and CD141 [86] took place in the

Indian Ocean (Figure 5.2) for 58 days between May and July 2002.   The ship was

equipped with 7 anemometers located on the foremast and above the bridge.   The

instruments used and their accuracy were:  one HS sonic5 anemometer (< ±1 % for

winds below 45 ms-1);  one R2 sonic5 anemometer (<1 % rms);  one Windmaster

sonic5 anemometer (1.5 % for winds below 20 ms-1) and four Vector cup6

anemometers (1 %,  ± 0.05 ms-1 ).   The HS,  R2 and Windmaster sonics output 3-

component wind speed measurements at 20 Hz,  21 Hz and 0.1 Hz respectively.

The Vector cup anemometers measure the horizontal wind speed component only

and were sampled at 0.1 Hz.   The wind directions measured by the sonic

anemometers are accurate to within ±2°.   This effectively leads to a true wind

speed accuracy of within 2 % to 4 % depending upon the relative wind speed.

Aligning the anemometers relative to the ship may lead to larger errors and is

discussed in [29].

The HS sonic anemometer was located on the foremast platform (Figure

5.3) and its position is illustrated in Figure 5.4.   A temporary 6 m mast equipped

with the R2 sonic anemometer,  four Vector anemometers and the Windmaster

sonic anemometer was located above the bridge top (Figure 5.5).   The

anemometers above the bridge were positioned so as to measure wind speeds in

                                                  
5 Developed and calibrated by:  Gill instruments Ltd.,  Lymington,  UK.
6 Developed and calibrated by:  Vector instruments,  Rhyl.  N. Wales, UK.
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the accelerated region,  the region close to the ‘line of equality’ and the

decelerated region close to the bridge top,  for flows over either beam.   The

position of the mast and the anemometer heights were selected using the scaling

laws developed in Chapter 4 and are shown in Figure 5.6.   Taking the height of

the bridge above the waterline as the step height,  H=13 m,  the mast was located

x/H=0.21 from the starboard side and x/H=0.51 in from the port side.   The

anemometers were located 5.2 m back from the bridge front in a region of good

exposure for flows over either beam.   The mast position and heights of the

anemometers above the bridge are shown in Figures 5.7 and 5.8 respectively.

During the first leg of the cruise from Australia to the Seychelles the

Windmaster sonic was positioned closest to the bridge top (‘anemometer E’ in

Figure 5.8) to acquire all three components of the flow in a region where the flow

is severely decelerated.   During the port call in the Seychelles on the 29th May

2002 the Windmaster sonic was swapped with the Vector anemometer located at a

height of z/H=0.27 (‘anemometer C’ in Figure 5.8) above the bridge top.  This

was done in order to accurately measure the wind speed maximum for air flows

over the starboard beam.

The 20 Hz output from the HS sonic and the 21 Hz output from the R2 sonic

were logged for 54 minutes and 52 minutes respectively (64 sampling periods of

1024 data) every hour.   Each sampling period was averaged to produce a mean

relative wind speed over a 51 second period.   Data from the other anemometers

were logged at 0.1 Hz and then averaged over the same 51 second period.   The

RRS Charles Darwin results contained approximately 32 days of wind speed data

for relative wind directions within ±90° of the bow.   The maximum relative wind

speed was 21 ms-1 and the mean was 10 ms-1.

Pre- and post-cruise calibrations of the HS sonic,  R2 sonic and Windmaster

sonic were performed to examine any change in the accuracy of the

instrumentation during the cruises.   The post-cruise HS and Windmaster

calibrations showed there was no change in their calibration during the cruise.

The post-cruise R2 sonic calibration suggested a 2 % overestimate of the wind
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speed for relative wind directions over either beam.   The correction was applied

to the wind speed data measured by this instrument.

The HS,  R2 and the Windmaster sonic anemometers are very accurate at

measuring low wind speeds,  but could not be used for all the sites on the

temporary mast due to the size and weight of the anemometers.   Therefore,

Vector anemometers were used at four locations above the bridge.   The Vector

cup anemometers were purchased especially for the cruise.   The manufacturer’s

calibrations were applied,  but no facilities were available to perform a post-cruise

calibration of these instruments.   The Vector anemometers required a cosine

correction to calculate the total wind speed;

total wind speed
v

=
( )
x

cos θ
(5.1)

were vx  is the measured horizontal wind speed component and θ  is the angle of

the flow to the vertical at the anemometer site.   The angle of the flow, θ ,  was

predicted by CFD models (Table 5.1) at a number of relative wind directions.

Interpolation between the CFD predicted θ  was used for relative wind directions

not modelled.   Cosine corrections of up to 4 % were applied to the wind speed

data at 10° intervals within relative wind directions of ±90°.   The cosine

corrections were applied to all vector anemometer wind speed data shown in this

section.    Further,  references to anemometers above the bridge will be described

in terms of height and named from top to bottom:  R2 sonic and anemometers A to

E.

5.3   Determination of a free stream value

An estimate of the undistorted,  or free stream flow,  is required in order to

quantify the biases in the measured wind speed.   This section will examine the

problem of estimating the free stream velocities for the in situ data.   Yelland et al.

[9,  29] showed that very detailed CFD models of the RRS Charles Darwin

reproduced the wind speed at very well exposed anemometer sites to within about

2 % for flows within 30° of the bow.   This section will determine the severity of

the airflow distortion at the anemometer sites used during voyages CD140 and
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CD141 for flows between ±90°,  again using very detailed models of the ship.   It

will be shown that (a)  the HS sonic anemometer is in a region of low flow

distortion and (b)  that the CFD results are a good estimate of the wind speed.

These results give confidence that the CFD estimates of the flow distortion can be

used to correct the HS sonic wind speed data.   These corrected data are then used

to calculate the vertical profile of the free stream wind speed.

Descriptions of the methods used to model the flow over the ships are given

in detail in Moat and Yelland [25,  87,  88].   The VECTIS discretisation is

detailed in Chapter 4,  and will only be summarised here.   To create a numerical

model of the ship the 1:100 scale general arrangement plans were digitised and

then converted into a 3-dimensional geometry using the pre-processor FEMGEN

[70] at which point the detailed ship geometry was enclosed in a computational

volume or ‘wind tunnel’.   The dimensions of the computational domain used for

each ship were similar,  with a ‘wind tunnel’ length and height of 600 m and 150

m respectively.   The width of the domain was chosen to ensure that the blockage

of the flow in the tunnel by the ship was minimal [56] and therefore depended on

the angle of the ship to the flow.   For the RRS Charles Darwin model the ‘wind

tunnel’ width was 300 m for the bow-on flow,  and 1600 m for a flow directly

over the beam (90°).   The ‘wind tunnel’ inlet wind speed profile varied

logarithmically with height,  z ,  and is defined by Equation 4.1.   An open ocean

wind speed of UzN =14 ms-1 at a height of z=10 m is applied.   The method to

define the wind speed profile is described in Section 4.2.3.

The domain floor was allocated a small roughness length of 10-4 m which is

equivalent to typical open ocean conditions.   Up to 600,000 computational cells

of varying size were used to solve the flow field.   The k ~ ε  turbulence

parameterisation was used for all the models.   Once the cell sizes were specified

and the mesh was generated,  the models were run until the solution had

converged,  i.e. the velocities at various monitoring locations were constant to

within 0.1 ms-1.   The time taken for a solution to converge varied from two weeks

using an SGI Origin 200 workstation to 5 weeks using an SGI Indigo workstation.

In order to check that the ship did not create a significant blockage to the flow in
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the tunnel,  the speed of the flow at points well abeam was compared to the speed

of the flow at the inlet and outlet.   Since no significant blockage was found,  the

speed of the free stream flow was determined using a vertical profile of the wind

speed at a point well abeam (more than 100 m) of the anemometer position.

The RRS Charles Darwin was modelled for a 14 ms-1 flow at 7 different

relative wind directions:  a)  90° off the starboard bow,  b)  30° off the starboard

bow,  c)  15° off the starboard bow,  d)  bow-on (head to wind),  e)  15° off the

port bow,  f)  30° off the port bow and g)  90° off the port bow.   In comparison to

previous bluff body merchant ship geometries Figure 5.9 shows that the ship was

reproduced in great detail in the CFD model.   However it must be noted that

smaller structures such as the hand-rails around the foremast platform and the

instruments themselves were too small to be resolved in the model.

The CFD predicted absolute wind speed errors at anemometer sites are

shown in Table 5.2.   The HS sonic anemometer is the best exposed instrument for

flows over either beam,  and the highest 2 or 3 anemometers above the bridge are

also reasonably well exposed (low to moderate flow distortion).   The accuracy of

the CFD predicted wind speeds at the reasonably well exposed anemometer sites

was examined by comparing ‘relative differences’ between data from pairs of

anemometers.   The relative difference is calculated by dividing the speed at a

particular anemometer site by that at the site of the reference anemometer.   The

reference anemometer used was the foremast HS sonic since this was best

exposed.   The in situ and CFD model estimates of the ‘relative difference’ at the

R2 sonic anemometer,  anemometer A and B sites are shown in Figure 5.10.   The

error bars indicate the standard deviation of the data and the vertical dashed lines

indicate the centre of the wake shed by the foremast extension.   Bow-on flow

corresponds to 0° and flows over the port and starboard beams correspond to –90°

and 90° respectively.   The relative wind direction was measured using the HS

sonic anemometer and has been corrected for the horizontal deflection of the flow.

The presence of the ship not only causes a vertical displacement of the

airflow,  but also causes the air to be deflected in the horizontal plane.   The

horizontal deflection of the airflow at the HS anemometer site was predicted using
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the CFD models.   The HS relative wind directions shown in Figure 5.10 have

been corrected by up to 7°.   Only measured wind speeds above 3 ms-1 were used

in the analysis since below this wind speed the data were limited in number and

showed a lot of scatter.

In general the in situ and CFD model results in Figure 5.10 agree closely for

the R2 sonic,  and anemometers A and B (all within 2%) for air flows within ±30°

of the bow.   The exception to this is within the wake region created by the

presence of the upstream foremast extension (located above the foremast

platform), the centre of which coincides with the position of the anemometers

when the air flow is approximately 10° (when corrected for horizontal deflection)

off the port bow.   Air flows over the port beam are subject to high rates of change

in the relative difference with relative wind direction,  but the agreement is still

very good.   The agreement between the in situ data and CFD model for flows

over the starboard beam is within 5%,  which is reasonably good given the size of

the error bars.

The HS anemometer was chosen to calculate the free stream wind speed

because;  it was the best exposed instrument and it was located on the foremast,

well away from the bridge top,  i.e. the area under investigation in the next

section.   CFD corrections of 7.3 % and 3.7 % were applied to the HS in situ wind

speed data for flows over the port and starboard beams respectively.   Logarithmic

wind speed profiles at three different wind speeds were calculated (using eq. 4.1)

to examine the change in free stream wind speed with height between the HS

sonic and the bridge anemometers.   Free stream wind speeds profiles calculated

using Uz =  5,  10 and 15 ms-1 showed an increase in speed of about 2 % (about

0.5% per m) from the HS sonic height at 15.2 m to the R2 sonic at 19.6 m.   The

free stream wind speed measured from the HS sonic was corrected for the change

in height and used to normalise the wind speed measurements made by

anemometers above the bridge.   These normalised wind speed profiles for air

flows over the port and starboard beams are compared with the bluff body CFD

and PIV results in the next section.
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5.4   Comparison of the in situ ship data with the model bluff body results

The PIV and CFD derived scaling laws developed in Chapter 4 agree in

defining the positions of the lines of equality and the maximum and the minimum

wind speeds,  but differ in quantifying the magnitude of the wind speed

maximum.   In this section in situ normalised wind speed profiles measured by

anemometers above the bridge on the RRS Charles Darwin,  for beam-on flows,

are compared to the PIV and CFD normalised wind speed profiles for a flow

directly over the deck house block.   The normalised wind speed is defined as the

measured wind speed divided by the free stream wind speed.   This comparison

will be used to confirm the results of Chapter 4 and determine which of the two

models may best describe the magnitude of the wind speed maximum.   Only

flows directly over either beam of the RRS Charles Darwin were considered,  as at

other relative wind directions the ship was not a good representation of a true bluff

body shape.   In addition,  the presence of upwind obstacles,  such as satellite

domes,  prevented other relative wind directions being studied.

The magnitude of the wind speed maximum is dependent upon the type of

ship (Figure 4.17).   The flow of air over the RRS Charles Darwin beam-on has a

greater resemblance to the deck house block than to other model geometries,  i.e

both RRS Charles Darwin beam-on and deck house block are effectively single

steps.   For this reason the normalised CFD and PIV results of the flow over the

deckhouse block were compared to the in situ data.   Flows over the starboard

beam are shown in Figure 5.11 and port beam in Figure 5.12.   The height above

the bridge,  z,  was scaled by the step height, H, of the respective model.

Likewise,  x,  the distance downstream of the leading edge was scaled by H.    The

upwind leading edge of the bridge is defined as x/H=0=z/H.   The error bars

indicate the standard error of the data.   The standard error of the in situ data was

too small to be displayed in Figure 5.12 and ranged from 0.001 to 0.003,  and

0.003 to 0.006 for flows over the starboard and port beams respectively.

The in situ wind speed data measured by anemometers on the temporary

mast were normalised by free stream measurements calculated from the HS sonic.

The RRS Charles Darwin step height (H=13 m) was defined as the height of the
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bridge top above the waterline for beam on flows.   Using this step height the

scaled distance of the anemometers from the starboard and port upwind leading

edges were x/H=0.21 and x/H=0.51 respectively.

The PIV data were extracted at scaled distances of x/H=0.21 and x/H=0.51

back from the front edge of the deck house block.   As described in Chapter 3,  the

resulting PIV wind speed profiles were normalised by free stream profiles

measured in the wind tunnel with no model present,  and the vertical height,  z,

was scaled by the PIV model deck house block height of H=0.422 m.

The CFD wind speed profiles were extracted at x/H=0.21 and x/H=0.51

back from the front edge of a simulation of the flow over the scaled deck house

block of height H=0.422 m.   The CFD simulation (Figure 5.13) is detailed in

Section 4.5 and used a large computational volume (24H high by 44H wide) so

that the boundary walls had no blockage effect on the wind speed above the deck

house block.    These data were normalised by a free stream profile obtained from

a second CFD simulation with no deck house block present.

Qualitatively,  Figures 5.11 and 5.12 show a very good agreement with

regard to the shape of the profiles from both model and in situ results.   Both in

situ profiles predict a decelerated region above the bridge top,  which varies in

depth with distance back from the upwind leading edge.   The wind speed

increases to a maximum (at z/H=0.28,  Figure 5.11) and then decreases with

increase in height.   The scaling laws (Figure 5.6) do well in predicting that

anemometers C,  D and E (flow over port beam) and anemometer E (flow over

starboard beam) are within the recirculation region.

For the first time this confirms that the models do qualitatively predict the

general flow pattern above the bridge of a merchant ship.   The magnitude of the

wind speed maximum for the in situ data is 17 %.   The CFD model predictions of

the increase in the wind speed magnitude agree very well (within 4 %) with the in

situ data for flows over both beams.   The PIV model results overestimate the

wind speed maximum by up to 15 % and 22 % for flows over the starboard and

port beams respectively in comparison with the in situ measurements.
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In summary,  the CFD model is in far better agreement with the measured

full-scale in situ data than the PIV measurements made in the wind tunnel.   The

next section discusses the possible bias present in the PIV wind speed data.

5.5   Investigation of the PIV bias

As discussed in Chapter 3,  the PIV measurements are accurate to within

about 5 %.   The comparisons of CFD simulations over cubes in Chapter 4 showed

that there are possible biases in the CFD simulations of up to 5 %,  depending on

the turbulence closure scheme used.   The use of CFD simulations to correct the

HS sonic wind speed data and the possible anemometer calibration errors lead to

an estimate of about 5 % for the possible bias in the in situ data.   These biases

cannot account for the observed difference of up to 22 % between the in situ data

and the PIV results.   Consideration was therefore given to the possibilities that

the problem may be due to wind tunnel and wall contraction effects.

The CFD simulations of the flow of air over the deck house block,  used in

Figures 5.11 and 5.12,  have only been modelled as a unbounded flow (Figure

5.13),  i.e. the walls and roof have no effect on the solution and therefore there is a

blockage ratio of virtually zero.   Two further CFD simulations of the wind tunnel

were performed to examine the flow in the wind tunnel.   The boundary conditions

of the two models are based on the unbounded flow over the deck house block

(Section 4.3.3),  i.e the flow at the inlet was a uniform profile of 7 ms-1.   The only

exception was the turbulence parameters at the inlet which were modified to

correspond with typical values experienced in the wind tunnel,  i.e.  a turbulent

intensity of 0.2 % of the mean flow [89].   This resulted in a turbulent kinetic

energy,  k ,  and a rate of dissipation of the turbulent kinetic energy,  ε ,  at the

inlet of 0.014 m2s-2 and 0.0012 m2s-3 respectively.   The inlet conditions of all three

models were compared and it became apparent that a slight miscalculation of the

cross sectional area of the inlet of the unbounded flow model had led to an

underestimate of the Mass Flow Rate (MFR).   This reduced the inlet velocity of

the simulation by 0.5 ms-1.   This is evident in a comparison of the velocity fields

between the unbounded flow (Figure 5.13) and the flow through the low speed
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section (Figure 5.14).   This miscalculation of the MFR has no effect on the

unbounded flow normalised profiles as the same MFR was used for the free

stream flow simulation with no deck house block present.   For both CFD models

the size and number of cells in the computational grid above the deckhouse block

was the same as that used in the unbounded simulation,  i.e. the mesh densities

were the same for all three models.   In the two wind tunnel simulations the

roughness length, zo,  of the deck house block surfaces and the wind tunnel floor,

walls and roof were increased to z0=0.001 m to better represent the flow through

the wind tunnel.   Both CFD models were repeated without the deck house block

present in order to determine the free stream.

The first model was a simulation of the flow through the low speed section

of the wind tunnel and included the walls and roof (Figure 5.14).   Like the

unbounded flow,  the length of the wind tunnel has been extended by 2.82 m to

remove possible errors caused by the down stream wake of the block recirculating

through the outlet.

In the Southampton wind tunnel the cross section contracts downstream of

the low speed section and the PIV measurement area is located close to the start of

this constriction (Figure 5.15).   The effect of the blockage caused by the deck

house block and the narrowing of the wind tunnel,  was investigated by using the

second CFD model to simulate the air flow in an exact reproduction of the wind

tunnel (Figure 5.15).

Figures 5.16 and 5.17 show the normalised wind speed profiles from the

unbounded flow and the full wind tunnel with the contraction.   Profiles from the

CFD simulation through just the low speed section are not shown as they are

almost identical to the unbounded flow (Figure 5.18).  It is clear from the CFD

simulations that the blockage effect caused by the narrowing of the wind tunnel

and the deck house block is increasing the wind speed maximum at the

measurement location by 7 % (at x/H=0.21) and 9 % (at x/H=0.51).   The CFD

simulations also suggest that the re-circulation region close to the top of the deck

house block is being reduced in depth with distance from the front edge in the

wind tunnel.
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Figure 5.18 show the normalised wind speed profiles from the unbounded

flow,  low speed section of the wind tunnel and the full wind tunnel with the

contraction.   A comparison of the CFD models of the unbounded flow and the

low speed section of the wind tunnel show no change in the magnitude of the

normalised wind speed maximum.   Modelling the whole wind tunnel showed an

increase in the normalised wind speed of approximately 8 %.   It is thought that

the combined blockage of the deck house block and the contraction is

concentrating the acceleration of the flow towards the centre of the lower part of

the tunnel.   In other words,  the deck house block gives a blockage ratio of 1 %

(Section 3.1),  which in the absence of the contraction has no big effect since the

flow is only accelerated by 1 % across the whole cross section of the tunnel.

When the contraction is introduced the 1 % blockage ratio seems to result in a

flow that is accelerated by 8 % in the lower part of the tunnel (above the deck

house block),  and shows 0 % acceleration towards the roof and walls.

The results in Figures 5.16 and 5.17 would indicate that the influence of the

wind tunnel contraction downstream of the model would seem to partly explain

the relatively high values of the PIV measurements.

5.6   Sensitivity study of the flow above the bridge

The above section has partially explained the reasons for differences

between the PIV and CFD results,  for flows above a bluff body.   This section

uses the in situ data to examine the sensitivity of the results to changes in wind

direction and wind speed.

Normalised in situ wind speeds were extracted for relative wind directions

of 80° to 90° and 90° to 100°,  and are compared to the beam on data (at 85° to

95°) in Figures 5.19 and 5.20.   There is very little change (within ±1 % at most)

in the profile with a 5° change in relative mean wind direction for flows over the

starboard beam (Figure 5.19).   This increases to 5 % for flows over the port beam

(Figure 5.20).   This is a large increase for such a small change in relative wind

direction and suggests that wind speed may vary significantly with changes in
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relative wind direction.   In addition,  Table 5.2 shows that there are significant

changes (in excess of 10 %) in the wind speed errors at anemometer locations with

relative wind direction.   This implies that the wind speed profiles at other wind

directions may vary significantly with changes in relative wind direction. the

presence of upwind obstacles distorting the air flow in the in situ data from the

RRS Charles Darwin prevented other relative wind direction being studied.   The

5 % increase in the wind speed maximum for relative wind directions of within

±5° for air flows over the port beam may be caused by either a) small scale

obstructions above the bridge or b) a change in the distortion of the flow to the

foremast anemometer which was used to calculate the free stream speed,  but as it

cannot be discounted this change should be borne in mind when applying the

results of this thesis to merchant ship data.

It has been assumed that the pattern of the flow is not dependent on wind

speed,  i.e. the shape of the in situ normalised profile above the bridge will not

change with variations in wind speed.   This is tested by splitting the wind speed

data into two groups,  comprising data above and below the mean wind speed of

10 ms-1 and then comparing wind speed profiles from these two groups to the

wind speed profile obtained if using the full range of wind speeds (Figures 5.21

and 5.22).

The variation in wind speed for flows over the starboard beam,  Figure 5.21,

has very little effect (within 1%) on the normalised wind speed profile above the

recirculation region.   Similarly,  the variation in wind speed has little effect

(within 2 %) on the normalised wind speed profiles over the port beam,  Figure

5.22.   Within the recirculation region there are greater variations of up to 3 % and

6 % for flows over the starboard and port beams respectively.   Even though the

changes between the normalised wind speed profiles are slightly larger for the

anemometers within the recirculation region,  it is not unexpected as it is known

that the wind speed in this region is severely decelerated and the Vector

anemometers are not very accurate at low wind speeds.

These results give confidence that the flow above the recirculation region

does not vary significantly with variations in wind speed.   It has been observed
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that the flow above the bridge may be sensitive to small changes in relative wind

direction.

5.7   Summary and discussion

The aim of this Chapter was to test the PIV and CFD scaling laws derived in

Chapter 3 and 4,  which were used to predict the flow over bluff body merchant

ships.   This chapter examined if the model results apply to real flows over

merchant ships and which of the models predicts the more realistic wind speed

maximum.   Wind speed data from anemometers located above the bridge of the

RRS Charles Darwin were used to measure beam-on flows,  i.e. a flow over a

single step bluff body.   These normalised in situ wind speed profiles were

compared to the results of the PIV and CFD models for the flow over a deck

house block (single step bluff body).

The bias in the PIV measurements was investigated by performing CFD

models of the actual wind tunnel geometry,  i.e.  the same physical dimensions

were used.   CFD models of just the low speed section of the wind tunnel showed

no change in the magnitude of the normalised wind speed maximum.   Modelling

the whole wind tunnel showed an increase in the normalised wind speed of

approximately 8 %.   It is thought that the combined blockage of the deck house

block and the contraction is concentrating the acceleration of the flow towards

the centre of the lower part of the tunnel.   In other words,  the deck house block

gives a blockage ratio of 1 %,  which in the absence of the constriction has no big

effect since the flow is only accelerated by 1 % across the whole cross section of

the tunnel.   When the constriction is introduced the 1 % blockage ratio seems to

result in a flow that is accelerated by 8 % in the lower part of the tunnel (above the

deck house block),  and shows 0 % acceleration towards the roof and walls.

In summary:

5a)   Model results are generally confirmed by in situ data,  in that all agree

on the pattern of the flow.   The use of in situ data has shown that the



73

CFD model results for flows over bluff bodies can be applied both

qualitatively and quantitatively to the real flow above the bridge of real

ships.

5b)   CFD modelling is accurate in predicting the magnitude of the

maximum.

5c)   Compared with the in situ data the PIV measurements overestimate the

magnitude of the normalised wind speed maximum by approximately

20 %,  i.e. an increase in the normalised wind speed of 0.2.

5d)   The down stream contraction in the tunnel may exaggerate the effect of

any blockage by concentrating the resulting acceleration of the flow to

the centre of the lower part of the wind tunnel.

5e)   In situ data shows that the pattern of the flow may be sensitive to

relative wind directions,  but not to wind speed.
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6.   OVERALL DISCUSSION

6.1   General

The airflow distortion at anemometer sites on merchant ships was

previously unknown.   This thesis compares the mean airflow above the bridge of

a ship obtained via three standard techniques:  wind tunnel measurements,  CFD

modelling and  full-scale wind speed measurements from anemometers located on

a ship.   The wind tunnel testing and CFD modelling was carried out using wind

tunnel scale geometries of simple bluff body representations of merchant ships.

The wind tunnel studies and CFD modelling were used to derive scaling rules that

predict the extent of the accelerated and decelerated regions of air flow above the

bridge of the ships.

During the wind tunnel tests the mean airflow over the generic tanker,

container ship and the deck house block were measured using a PIV system.

Wind speed measurements in an area of 0.36 m by 0.29 m were made above the

bridge of each ship geometry,  which corresponded to 31 (z,  vertical) and 39 (x,

streamwise) velocity measurements.   The wind speed measurements were

normalised using a free stream wind speed measured with no ship geomerty

present.   The accuracy of the wind speed measurements is considered to be within

4 %,  with the variation in the nominal wind speed being the main contribution to

this accuracy.   Wind tunnel speed variations caused by density variations,  caused

in turn by temperature variations were observed.   To minimise possible wind

speed variations in the wind tunnel,  the wind tunnel was run without keeping the

dynamic pressure constant,  i.e. the speed of the fan was kept constant through out

the experiment.   Even so,  variations in wind speed of 0.2 ms-1 (3 %) within a

period  of 40 minutes were present.   The maximum time difference between the

PIV measurements made with and without the geometry present is also 40

minutes.   Therefore it is possible that errors of up to 3 % could exist in the

normalised wind speed data.   The wind speed variations could have be minimised

by using the high speed section of the wind tunnel.   This would mean a

significant reduction in the size of the ship geometry and could introduce scaling
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problems which may mean that the simulation would not produce the full-scale

flow.

A large number of CFD simulations were performed to determine the

suitability of the technique for estimating the airflow distortion over merchant

ships and the wind speed changes that could be observed.   The technique has

been proved to be robust and is thought to be reliable and should be used to

estimate the flow distortion above merchant ships.   CFD agrees well with the PIV

measurements in the general flow pattern,  but disagrees with the PIV by within

10 % for the magnitude of the wind speed maximum.   For a first ever study of

this problem this difference is thought to be acceptable and will be applied to wind

speed data from merchant ships.   So far only the PIV and CFD predictions of the

flow over the deck house block have been compared to in situ wind speed

measurements from a ship.   Section 7.5 contains details of future work to

instrument a container ship and compare the results to the CFD normalised wind

speed predictions in Figure 4.14.

In summary,  the airflow above the bridge of a merchant ship scales with the

height of the bridge to the deck.   Simple equations can be used to describe the

general pattern of the flow and using the anemometer position the sign of the bias

in the wind speed measurements can be calculated.   The magnitude of the wind

speed maximum is slightly more complex,  as the flow above the container ship

bridge is affected by the air flow over the upwind bow and should be treated

separately.   In general,  using CFD the wind speed above the bridge of a

tanker/bulk carrier can be increased by up to 11 % above the equivalent free

stream wind speed.   Large decelerations of up to 90 % can exist for anemometers

placed close to the bridge top.

6.2   The pattern of the airflow above the bridge

The mean airflow over the bluff body merchant ships is defined by flow

separation at the upwind leading edge,  with a decelerated region close to the

bridge top which increases in depth with distance from the leading edge.   Above
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the decelerated region there is a line of equality where the wind speed is equal to

the free stream value.   Above the line of equality the wind speed increases to a

maximum and then reduces to the free stream wind speed with height.   In all

cases there was no evidence of the flow reattaching to the bridge top.

It was found that the general pattern of the wind speed above the bridge

scales with the height of the bridge above the deck,  H.   The PIV wind tunnel

measurements agreed well with the CFD models in predicting the position of the

line of equality and the maximum wind speed,  and both techniques agreed well

with the pattern of the flow measured above the bridge of the research ship.   For

airflows over generic merchant ships simple equations have been developed to

describe the positions of the line of equality and the maximum and minimum wind

speeds,  from the anemometer position relative to the upwind edge of the bridge

and the step height,  H.   Therefore,  as long as the anemometer position and the

step height are known,  the sign of the bias in the anemometer wind speeds can be

predicted.   Airflows over the deck house at different relative wind directions were

measured in the wind tunnel but airflows over the scaled generic merchant ships at

different relative wind directions were not measured and no CFD models were

performed.

6.3   The magnitude of the wind speed maximum above the bridge

Figures 6.1 and 6.2 show all the results for distances of x/H=0.21 and

x/H=0.51 from the upwind leading edge.   These include the in situ wind speed

measurements made from the research ship RRS Charles Darwin,  the PIV

measurements corrected for the effects of the wind tunnel contraction and the

CFD predicted wind speed.   Unfortunately,  there were no measurements made at

x/H=0.51 during the PIV 2000 experiment.   There is a reasonable agreement (to

within 10 %) between the sets of results.   Some of the disagreement could be due

to small variations in free stream wind speed caused by temperature changes (up

to 3 %).   Figures 6.1 and 6.2 only show the flow above the deck house block,  as

this was more representative of the beam on flows measured over the research

ship.   The magnitude of the wind speed maxima above the bridge of the tanker
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and container ship are between 1.07  and 1.14,  Figure 4.14.   The thermal probe

measurements above the bridge of the tanker predicted wind speeds of about 1.20

(Figure 3.9),  which agreed well with PIV measurements corrected for the effect

of the tunnel contraction.   The thermal probe anemometer is robust,  was

normalised by a free stream profile measured at the same temperature (to within 1

°C),  and is considered to give good accuracy.

In comparison with other known measurements methods the Dantec PIV

system has shown spurious differences in wind speed of up to 10 % [89] in

measurements made within a recirculation bubble.   This discrepancy was not

located in the region of accelerated flow,  but highlights that wind tunnel

measurements using PIV could be prone to measurement errors.   These errors

could be due to the shape of the boundary layer profile and changes in velocity in

the wind tunnel,  and the set up of the PIV system.   The CFD has been validated

against independent wind tunnel studies (Section 4.3) and it is considered that the

CFD predicted wind speeds are of adequate standard to correct the wind speed

measurements made from research ships.   The exception may be around the front

edge of the bridge were the CFD predictions suffer from possible numerical error

caused by the overestimation of the turbulent kinetic energy,  k .   In this case the

PIV results could be preferable to calculate the airflow distortion for anemometers

in this region.

6.4   Applications of the developed techniques

At present,  information on the heights of the anemometers above the bridge

of merchant ships is limited.   The Voluntary Observing Ships’ Special Observing

Project – North Atlantic (VSOP-NA) selected a subset of 45 VOS operating in the

North Atlantic and produced detailed descriptions of the ship type and

instrumentation used [3].   The majority of the ships were container ships with

anemometers located between 6 m to 10 m above the bridge.   Using eq. 2.2 to

predict the step height from the LOA,   z/H varies between 0.7 to 1.5 and shows

that for container ships the majority of anemometers are located outside the
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recirculation region and wind speed measurements will have a positive bias of

between 3 % to 11 % (Figure 4.14).

Based on the work in this thesis recommendations are made for the best

location for placing anemometers on merchant ships.   Anemometers should be

located as far forwards and as high as possible;  ideally,  directly above the front

edge of the bridge.   If an anemometer cannot be located at the front edge of the

bridge it should at least be located above a height of z/H=0.3 to measure wind

speeds outside the recirculation region.   Anemometers should not be placed close

to the line of equality as high velocity gradients are present in this region.

Canadian coast guard vessels have already made use of these findings [90].

If the height of the anemometer above the bridge (z),  the distance of the

anemometer from the upwind leading edge (x), and the height of the bridge to the

deck (H) is known,  then the airflow distortion at a given anemometer position can

be estimated from Figure 4.14a) to 4.14d),  by finding the closest scaled distance

x/H,  and reading off the normalised wind speed for the scaled height of the

anemometer from the appropriate figure.

A potential subset of 200 Voluntary Observing Ships (VOS) are currently

being recruited and meteorological data from these ships will be used in the

Voluntary Observing Ship Climate program (VOSClim) project [52].   The scaling

laws developed in this Thesis will be used to estimate the bias in the wind speed

measurements made by fixed anemometers on tankers and container ships.   As

pointed out in Section 2,  bulk carriers are similar in shape to tankers and will also

be included.   In light of this study the WMO has already changed its reporting

methods to include the necessary information to apply the results of this thesis

[52].   The COADS will include additional information concerning the ship type,

step type,  vessel dimensions,  and the position of the anemometer relative to the

ship.   It will take time for the WMO to implement these changes.  In the

meantime,  the height of the bridge to the deck,  H, can either be calculated from:

1)  the length overall using eq.  2.1 (tanker) or eq.  2.3 and 2.4 (container ship);  or

2)  merging ship dimensions from Lloyds of London data base on to the VOSClim

data by call sign or International Maritime Organisation (IMO) identification
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number.   The ship type is included in the Lloyds data and the anemometer height

is included in the WMO47 metadata.   The application of the method to correct the

wind speed data is shown as a flow diagram in Figure 6.3.
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7.   CONCLUSIONS AND RECOMMENDATIONS

7.1   General

7.1.1   The current investigations using experimental and numerical techniques

have contributed to a better understanding of the flow over the bridge of

merchant ships.   The flow above the bridge of a tanker type shape and

container ship scales with the bridge to deck height,  H.   This is an

important result as H can be estimated from the ship length and the pattern

of the flow can be calculated for any length of ship.   Provided the

anemometer position is known,  the wind speed measurement above the

bridge can be corrected for the effects of airflow distortion.

7.1.2   Wind tunnel,  CFD and full-scale in situ wind speed measurements from a

ship all show good agreement on the pattern of the flow above the bridge.

There is a decelerated region of air close to the bridge top where weak

recirculation of the flow is likely,  with a line of equality (measured wind

speed = free stream wind speed) above it.   Above the line of equality the

wind speed increases to a maximum and then decreases with increasing

height to a free stream value.   The height of the free stream value varies

depending on whether the flow is over a tanker or container ship.

7.1.3   The current investigations have demonstrated that wind speed

measurements made from anemometers above the bridge of a merchant

ship can be biased high by up to 15 ±5 %,  or low by up to 100 %.   This is

significant,   as a 15 % increase in wind speed caused by airflow distortion

would cause a 42 % increase in the estimated wind stress between the

ocean and the atmosphere.   The magnitude of the wind speed above the

container ship bridge was affected by the upwind bow step and should be

considered separately to the magnitude of the wind speed above the tanker.

Validation of the CFD results was successful and,  in both cases,  it is

recommended that the CFD modelling should be used to predict the

magnitude of the wind speed at the anemometer locations.
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7.2   Wind tunnel investigation

7.2.1   The smoke tests demonstrated that the flow over the bridge of a merchant

ship was similar to the flow over a cube.   On the front face of the bridge

there was evidence of a standing vortex with a stagnation point above.

The flow separated at the upwind leading edge of the bridge. No

reattachment of the flow to the bridge top was observed.

7.2.2   Wind tunnel tests using two different measurement techniques have

provided extensive measurements over the bridge of a tanker and container

ship.   Simple equations describing the positions of the line of equality:

z

H

x

H
= 





0 45
0 55

.
.

and the positions of the maximum wind speed

z

H

x

H
= 





0 62
0 50

.
.

and minimum wind speed

z

H

x

H
= 





0 31
0 71

.
.

were developed.   Comparative studies with CFD results have supported

these findings in predicting the general flow pattern above the bridge of the

tanker and deck house block.

7.2.3   When corrected for the wind tunnel contraction the PIV measured

magnitude of the maximum wind speed for a tanker is approximately 1.20

to 1.25 depending upon distance from the upwind leading edge.   The wind

speed maximum for the container ship is 10 % less than the tanker

geometry.
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7.2.4   Close to the line of equality the normalised wind speed varies between 0.2

to 1.1.   Such a large gradient suggests that positions along the line of

equality are not the ideal position to locate an anemometer.

7.2.5   The thermal probe study showed the presence of a wall jet close to the

tunnel floor which varied in magnitude with temperature and position in

the tunnel.   Therefore,  it is recommended that the scaled ship geometry be

raised above the wall jet.

7.2.6   Overall,  the wind tunnel investigation has demonstrated that if absolute

changes from the free stream wind speed are required,  then the free stream

or normalised wind speed must be measured after each measurement made

above the ship.   This is necessary to avoid changes in the free stream wind

speed due to temperature variations.

7.3   CFD Investigation

7.3.1   Early CFD investigations determined that the CFD code VECTIS is a valid

research tool to investigate the flow over bluff bodies.   Comparisons with

independent wind tunnel data for flows over cubes supported these

findings.

7.3.2   The flow above the bridge of the tanker was independent of the mesh

density for minimum cell sizes of less than 0.038H.   The k ~ ε  turbulence

closure overestimates the velocity field at the upwind leading edge,  and

the inlet wind speed profile has the largest influence (4 %) on the wind

speed above the bridge.

7.3.3   Apart from the container ship,  the CFD models all accurately reproduced

the pattern of the flow distortion seen in the PIV wind tunnel study.   The

CFD investigation into the airflow in the wind tunnel showed that the wind

speed at the measurement location was accelerated by up to 9 % by the

downstream wind tunnel contraction.   Applying this correction the
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magnitude PIV measurements agreed to within 10 % of the CFD

measurements.

7.3.6   Overall,  the CFD investigations have demonstrated that the technique can

be suitably employed for the investigation of the flow over merchant ships.

7.4   In situ wind speed measurements from the RRS Charles Darwin

7.4.1   The in situ data confirmed that the CFD and PIV results predicted the

pattern of the flow well.   For flow over the deck house block the CFD

results and corrected PIV measurements predicted a maximum normalised

wind speed of  up to 1.14 and 1.23 respectively.   The CFD results agreed

to within 3 % of the in situ wind speed measurement of 1.17,  confirming

the suitability of CFD for use in this study of airflows over merchant ships.

7.4.2   Analysis of the in situ wind speed data showed that the pattern of the flow

may be sensitive to the relative wind direction,  but not to wind speed.

7.5   Achievement of objectives

7.5.1   It is considered that the objectives of the investigation have been achieved.

The numerical and experimental investigations have provided an improved

understanding of the airflow distortion about the bridge of merchant ships.

7.5.2   It is well known that airflow distortion could effect the wind speed

measurements made by merchant ships,  but no knowledge of the sign and

magnitude of the distortion was previously known.   The current

investigation has,  for the first time,  provided a method to quantify the

flow distortion at anemometer sites on merchant ships.
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7.6   Recommendations for future work

As a result of the research programme using experimental,  CFD and in situ

wind speed measurements.  The following recommendations are put forward:

7.6.1   Full-scale in situ wind speed measurements from anemometers on

merchant ships should be made to further evaluate the results of this thesis.

A contract between the Woods Hole Oceanographic Institution and

Southampton Oceanography Centre has been accepted to fund the

instrumentation of a container ship with a number of anemometers.

7.6.2   The loading of container ships is generally not even and gaps are left

between the containers.   The effect of the gaps on the airflow travelling

across the container top and ultimately any change in flow pattern above

the bridge is currently unknown.    A CFD analysis of the effect of the

container ship loading on the wind speed measurements above the bridge

should be undertaken.

7.6.3   Further work on the effect of different relative wind directions on the

airflow properties over the hull and superstructure should be undertaken.
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APPENDIX A

A   MATHEMATICS MODELS

A.1   Governing equations of fluid flow

The Navier-Stokes equations describe the behaviour of Newtonian fluids.  A

Newtonian fluid is one for which the components of stress are linearly related to

the components of the rate of strain,  and the fluid properties are uniform in all

directions,  i.e.  isotropic.   Most common liquids and gases at ordinary

temperatures and pressures conform to the Newtonian model.

In principle any flow of a Newtonian fluid is completely determined by:

a)  the three Navier-Stokes equations of motion,  which are represented by a

single vector equation

ρ µ µ ρ
Dq

Dt
p q q B= −∇ + ∇ + ∇ ∇( ) +2 1

3
. (A.1)

where q u v w= { }, , ,  the differential operator 
D

Dt t
u

x
v

y
w

z
= + + +
∂
∂

∂
∂

∂
∂

∂
∂

 and

B x y z= { }, ,  is the body force vector.   The coefficient of viscosity of the fluid is

defined as µ ;  u v w, ,  are the x y z, ,  components of velocity;  and ρ  is the density.

b)   the equation of continuity.  (No fluid can be created or destroyed)

ρ
ρ

∇ + =.q
D

Dt
0 (A.2)

c)  an internal energy equation

∂ ρ
∂

ρ
i

t
iq p q k T Si

( )
+∇ ( ) = − ∇ +∇ ∇( ) + +. . . Φ (A.3)
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where i  is the specific internal energy and Φ  is the dissipation of the internal

energy,  and Si  is a source term for internal energy and T  is the temperature.

d)  any thermodynamic relations between density (ρ ),  temperature ( T ) and

pressure ( p),  and ρ ,  T  and internal energy ( i).

e.g.  for a perfect gas:

p RT= ρ  (A.4)

i C Tv= (A.5)

where R  is the universal gas constant,  T  is the temperature and Cv  is the specific

heat capacity of a gas at a constant volume.

A.2  The Boussinesq concept

For turbulent flows,  Boussinesq proposed that the Reynolds stresses are

exactly proportional to the rates of strain,  with the proportionality coefficient

defining the turbulent (or eddy) viscosity of the fluid.   This can be expressed

mathematically (in tensor notation) as:

− = +








 −u u v

u

x

u

x
ki j t

i

j

j

i
ij

∂
∂

∂

∂
δ

2
3

(A6)

where ui is the velocity vector u v w, ,{ } and xi  is the position vector x y z, ,{ },  vt  is

the kinematic eddy viscosity,  k  is the turbulent kinemtic energy and δ ij  is the

Kronecker delta function defined by:

δ ij

if i j

if i j
=

≠

=




0

1
(A7)

Therefore,  the unknown  correlation terms can be estimated if vt  and k  can

be parameterised.
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A.3   The k ~ ε  parameterisation

The k ~ ε  parameterisation uses an eddy viscosity hypothesis for the

turbulence.   An exact equation for k  and ε  can be derived from the Navier-

Stokes equations [84].   The derivation will not be shown here.  The complete

k ~ ε  parameterisation equations are as follows:

∂ ρ
∂

ρ
µ
σ

ρε
k

t
kq k Pt

k

( )
+∇ ( ) = ∇ ∇









 + −. . (A8)

∂ ρ
∂

ρε
µ
σ

ε
ε

ρ
ε

ε ε

k

t
q C

k
P C

k
t

k

( )
+∇ ( ) = ∇ ∇









 + −







. . 1 2

2

(A9)

ν
εµt C
k

=
2

(A10)

where µt  is the eddy viscosity,  ν
µ
ρt

t=   is the kinematic eddy viscosity,

ρ  is the density, q u v w= { }, , , and P is the rate of turbulent production of k .   The

equations contain five adjustable constants Cµ ,  σ k ,  σε ,  C1ε  and C2ε .   The

standard k ~ ε  parameterisation employ values for the constants that are arrived at

by comprehensive data fitting for a wide range of turbulent flows,  and are listed

in Table A1.

A.4   The RNG based k ~ ε  parameterisation

The RNG k ~ ε  parameterisation is derived from a Renormalisation Group

analysis of the Navier-Stokes equations and differs from the standard model only

through a strain-dependant modification to the term Cε1 and the use of a different

set of model constants.   According to Speziale and Thangam [91] the complete

RNG k ~ ε  parameterisation equations are as A8,  A9, and A10 with the

exception of:

Cε

η η η

βη1
0

31 42
1

1
= −

−( )
+

.
/

(A11)
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where η
ε

=
Sk

 is the ratio of the turbulent time scale and the mean flow time scale;

and S S Sij ij= ( )2
0 5.

 where S
u

x

u

uij
i

j

j

i

= +










1
2

∂
∂

∂

∂
is the mean rate of strain tensor;  and

constants η0 4 38= .  and β = 0 015. .

Cµ σ k σε C1ε C2ε

k − ε 0.09 1.00 1.30 1.44 1.92

RNG k − ε 0.085 0.7179 0.7179 - 1.68

Table A.1   The coefficients for the two turbulence closure models.
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TABLES

Name Type Length
overll
(LOA)

(m)

Bridge to
sea level

(BH)
(m)

Deck to
sea level

(F)
(m)

Bridge
length

(L)
(m)

Breadth

(B)
(m)

Siam VLCC 332 26 11 14 58
Okinoshima Maru VLCC 333 30 12 20 60

New Wisdom VLCC 334 31 12 19 59
New Vitality VLCC 330 29 10 18 56
Knock Clune COT 274 25 8 - 44

GlenRoss COT 247 25 7 15 42
George Shultz COT 259 26 8 16 48

Eridge BULK 266 22 7 14 41
EOS COT 244 28 12 15 46

ELEO Maersk VLCC 344 28 9 23 56
Cosmo Delphinus VLCC 322 27 10 17 58

Berge Sigval VLCC 332 28 10 17 58
Arosa VLCC 328 27 9 18 58

Wilomi Tanana COT 274 25 8 13 43
Nisyros COT 274 24 8 15 45

New Fortuner COT 277 27 8 16 44
Mayon Spirit COT 245 27 9 12 41
Golar Stirling VLCC 332 24 10 16 58

Chevron Atlantic COT 269 24 7 14 46
Bergeland BULK 339 24 10 15 55

Arabat PT 183 23 6 11 32
Bunga Siantan POT 143 17 6 11 22

Congor ChT 170 19 7 12 25
Fandango MT 183 4 10 13 32

Front Driver OBO 285 22 7 15 45
Jo Alder ChT 139 14 6 18 21
Katarina ChT 102 16 2 15 18

Knock Allen COT 274 26 8 16 44
Landsort CO/PT 274 22 8 16 48

Olympic Serenity COT 232 20 6 13 42
Salamina PT 183 22 8 13 32

Solidarnosc BULK 228 22 8 13 32
TS Prosperity VLCC 338 30 11 14 58

Tirumalai AT 175 21 4 - 31
Western Bridge BULK 250 27 5 17 38
Yeoman Burn BULK 245 24 6 13 32
BP Admiral PT 176 21 7 16 31

China Pride BULK 225 22 6 19 32
Dicto Knutsen COT 243 26 10 15 43

Hanjin Gladstone BULK 309 24 7 15 50
Jahre Traveller COT 269 23 9 14 45

Onzo Spirit COT 245 26 8 13 41
Sea Duke COT 326 29 11 19 56

Zafra CO/PT 229 22 6 14 32

Table 2.1   Dimensions (to the nearest meter) and type of tankers/bulk carriers

taken from Significant Ships 1990 to 1993 [49].
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tankers and bulk carriersship dimension

= +a b LOA* a b R2

bridge to

waterline, HB

10.65 5.15 ×10-2 0.65

freeboard, F 1.54 2.54 ×10-2 0.52

bridge length, L 10.16 1.98 ×10-2 0.24

breadth, B -3.00 0.18 0.93

Bridge to deck, H

(H=HB-F)

9.11 2.6 ×10-2 0.29

Table 2.2  Coefficients of the linear fit to the principal dimensions of tankers and

bulk carriers extracted from Significant Ships 1990-1993 [49].

Deck to
Bridge
Height

Bridge
Height
(BH)

Freeboard

(F)

Bridge
Length

(L)

Breadth

(B)

Tanker 1
(LOA= 170m )

13.5 19.4 5.9 13.5 27.3

Tanker 2
(LOA= 250 m)

15.6 23.5 7.9 15.1 41.6

Tanker 3
(LOA= 330 m)

17.7 27.6 9.9 16.7 55.9

Table 2.3   Dimensions of the three simple tanker ship shapes.
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Name Aft
loading

LOA

(m)

BH

(m)

F

(m)

L

(m)

B

(m)

H

(m)

Cbo
w

(m)

Baft

(m)

Contship
Pacific

- 164 27 9 17 28 5 17 -

San Lorenzo - 167 26 10 16 27 5 16 -
Tokyo
Senator

- 216 31 13 13 32 4 21 -

Betelgeuse 4 Single 192 29 10 10 32 4 22 39
Cape

Bonavista
- 140 22 9 9 23 - - -

Cape Hatteras - 147 25 10 8 24 6 22 -
Hanjin Osaka 5 Single 290 31 13 20 32 7 25 52

Hyundi
Admiral

4 long
1 single

275 32 12 15 37 7 21 68

Kairo - 150 23 10 6. 22 4 15 -
Muscat Bay 2 Single 182 27 11 11 28 6 18 18
R. J. Pfeiffer 4 Long 218 30 16 10 32 7 22 59
Secil Angola - 124 19 7 9 21 3 12 -
Uni Crown 2 Long 152 20 8 11 26 3 14 29

Zim Hong
Kong

2 Long 236 32 13 14 32 8 18.9 32

Bunga Kenari 2 Single 177 26 12 12 28 7 25 26
Hanjin

Bangkok
- 121 17 5 11 20 - - -

Hannover
Express

3 Large 294 32 13 11 32 8 19 56

Kota Wijaya 4 Single 185 20 11 8 28 6 20 33
Nedlloyd
Europa

4 Large
2 Single

266 31 13 18 32 7 9 73

Vladivostok 2 Single 237 31 13 13 32 10 21 35
Cap Polonio - 200 29 12 15 32 7 19 -

CGM
Provence

- 177 26.0 10 12 28 6 17 -

Katherine Sif - 134 26 8 7 23 5 15 -
Nordlight 2 Single 157 25 9 9 23 6 19 22

Roberta Jull - 93 18 7 5 15 3 13 -
Sea Bird - 94 15 6 7 16 2 9 -
Serenity 2 Single 159 22 9 12 23 3 19 42

Table 2.4  Dimensions (to nearest meter) of two types of container ship:  1)

forward loading and 2)  aft loading.
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Forward loading Forward and aft loadingdimension
= +a b LOA* a b a a

bridge to waterline
height, BH

5.54 0.12 10.95 7.7 ×10-2

free board, F 0.66 5.59 ×10-2 5.37 2.9 ×10-2

bridge length, L -0.91 7.68 ×10-2 2.96 4.42 ×10-2

breadth, B 2.28 0.145 15.32 6.7 ×10-2

bridge to container top,
H

-3.28 ×10-2 3.01 ×10-2 1.2 2.3 ×10-2

container front to bow,
Cbow

4.63 7.55 ×10-2 18.70 2.78 ×10-3

bridge aft to aft edge of
hull,  Baft

not used not used -13.16 0.254

Table 2.5   Coefficients of the linear fit to principal dimensions of container ships

extracted from Significant Ships 1990-1993 [49].

Forward loading Forward and aft loadingy

Container 1
LOA = 125 m

Container 2
LOA = 180 m

Container 3
LOA = 180 m

Container 4
LOA = 270 m

BH 20.5 27.1 24.8 31.7
F 7.7 10.7 10.6 13.2
L 8.7 12.9 10.9 14.9
B 20.4 28.4 27.4 33.4
H 3.7 5.4 5.3 7.4

Cbow 14.1 18.2 19.2 19.5
Baft not used not used 32.6 55.5

Table 2.6   Dimensions of the fore, and fore and aft loading generic container ship

shapes.

Ship length,  l

(m)

Wind speed,  U

(ms-1)

Reynolds number,

Re

Wind tunnel scale 3.7 7 1.8×106

Full-scale 170 10 1.2×108

Table 3.1   A comparison of the Reynolds number, Re ,  for the full scale and wind

tunnel scale flows.
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LOA,

m

Container top

to waterline

height, m

H

Bow to

waterline

height, m

H

Container

front to

bridge

distance, m

Depth of

recirculation

region at

bridge, m

Bridge to

deck height,

m

Case (a) Case (b) (a) (b)

100 14.57 6.25 81.05 16.8 11.5 2.97

150 19.35 9.05 123.43 24.1 17.1 4.48

Table 3.2   The predicted depth of the decelerated region in front of the bridge of a

container ship.
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Name

Model

size

Step

height,

H

(m)

Mesh

resolution

Turbulence

model

Total

number

of cells

y+

Section

model was

included

in

Channel flow

[64]

full 0.025 0.024H k-eps and

RNG k-eps

243,696 14 <y+

<40

4.3.2

Channel flow

[64]

full 0.025 0.016H RNG k-eps 519,886 12 <y+

<40

4.3.2

Boundary

layer flow

[65]

full 0.2 0.023H k-eps and

RNG k-eps

280,180 15 <y+

<30

4.3.3

Tanker

(RUN A)

full 13.54 0.040H RNG k-eps 147,293 3000

<y+

<4000

4.4.2a

Tanker

(RUN B)

full 13.54 0.038H RNG k-eps 270,305 3000

<y+

<4000

4.4.2a

Tanker

(RUN C)

full 13.54 0.018H RNG k-eps 427,230 2500

<y+

<4000

4.4.2

a, b, c, d

Tanker

(RUN D)

full 13.54 0.018H k-eps 427,230 2500

<y+

<4000

4.4.2b

tanker

(RUN E)

Full.

(uniform

inlet

profile)

13.54 0.018H RNG k-eps 427,230 2500

<y+

<4000

4.4.2c

Tanker

(RUN F)

scaled 0.14 0.018H RNG k-eps 427,230 20<y+<

100

4.4.2d

container ship scaled 0.106 0.031H RNG k-eps 692,638 40<y+<

200

4.5

tanker scaled 0.294 0.011H RNG k-eps 631,754 35

<y+<

300

4.5

deck house scaled 0.422 0.008H RNG k-eps 485,699 40<y+<

200

4.5

Table 4.1   The various CFD models used to predict the flow over the bluff body

shapes.
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Angle,  θ ,  (degrees) for relative wind directionAnemometer Height

(m) -90° -30° -15° 0° 15° 30° 90°

HS sonic 15.2 6 7 7 7 8 8 9

R2 sonic 19.6 11 2 3 4 3 4 13

anemometer A 18.45 11 2 3 5 4 4 14

anemometer B 17.45 11 2 3 5 3 3 15

anemometer C 16.45 9 0 3 4 2 0 16

anemometer D 15.78 6 -2 3 3 0 -3 16

anemometer E 14.45 -1 -5 1 -14 -5 -12 13

Table 5.1   The CFD predicted angle, θ ,  of the flow to the horizontal at the

anemometer sites on the RRS Charles Darwin.

Absolute wind speed error (%) for relative wind

direction

Anemometer Height

(m)

-90° -30° -15° 0° 15° 30° 90°

HS sonic 15.2 7.3 -1 -6.1 -8.4 -6.9 -6.1 3.8

R2 sonic 19.6 7.6 7.7 6.9 4.4 5.6 5.9 7.5

anemometer A 18.45 5.2 9.0 8.4 1.9 6.8 7.0 8.2

anemometer B 17.45 -0.4 9.2 9.1 -2.5 7.3 7.4 8.4

anemometer C 16.45 -18 5.5 8.4 -7.6 6.7 7.1 6.9

anemometer D 15.78 -38 3.8 3.6 -13.4 3.2 5.9 0

anemometer E 14.45 -78 -36 -61 -87 -50.2 -15.0 -47.8

Table 5.2   The CFD predicted wind speed error for anemometers on the RRS

Charles Darwin.   A negative value indicates that the anemometer is

located in a region of decelerated air flow.
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Figure 1.1   A numerical simulation of the air flow over a simple generic tanker

ship shape.
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Figure 2.1   Merchant ships as a proportion of the VOSClim project [52] and as a

percentage of the world fleet (ISL,  [53]) and as a percentage of the

ships registered by Lloyds of London during 1999.
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Figure 2.2   The shape and principal dimensions of a block geometry

representation of a tanker.
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Figure 2.3   The bridge to waterline height (BH) from [49].   The dimensions of

the generic model are overlaid.
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Figure 2.4   As Figure 2.3,  but for the height of the freeboard (F).
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Figure 2.5   As Figure 2.3,  but for the bridge length (L).
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Figure 2.6   As Figure 2.3,  but for the ship’s breadth (B).
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Figure 2.7   As Figure 2.3,  but for bridge to deck height (H).
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Figure 2.8 b)   Illustration showing dimensions of a fore-and-aft-loading bluff

body representation of generic container ship.   Containers are loaded
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forward loading containers and fore and aft loading containers.



113

0

5

10

15

20

50 100 150 200 250 300

fore loading
fore and aft loading
generic fore loading
generic fore and aft loading

fr
ee

bo
ar

d,
  

m

length overall (LOA),  m

Figure 2.10   As for Figure 2.9,  but for the freeboard (F).

0

5

10

15

20

25

30

35

50 100 150 200 250 300

fore loading
fore and aft loading
generic fore loading
generic fore and aft loading

br
id

ge
 le

ng
th

, 
 m

length overall (LOA),  m

Figure 2.11   As for Figure 2.9,  but for the bridge length (L)

10

20

30

40

50

60

50 100 150 200 250 300

fore loading
fore and aft loading
generic fore loading
generic fore and aft loading

br
ea

dt
h,

  m

length overall (LOA),  m
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Figure 2.13 As for Figure 2.9,  but for the distance from the container front to the
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THERMAL
PROBE

Figure 3.4   The Southampton University wind tunnel.   The thermal probe is

located in front of the bridge of the tanker and the view is looking

downstream towards the high speed section.
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Figure 3.13   Flow visualisation above (a) and in front of (b) the bridge of the

generic tanker geometry.   The dashed line indicates the path of the

smoke.
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Figure 3.14   Flow visualisation above the bridge of the container ship.   The

dashed line indicates the path of the smoke.
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Figure 3.15   An illustration of the possible flow field over the bow and bridge of

a container ship.
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Figure 3.24   The height that the wind speed returns to the free stream,  or

undisturbed,  wind speed.
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Figure 4.1   The dimensions of the computational domain for the flow over the

full-scale generic tanker geometry (LOA=170m).   The tanker

geometry is located in the centre of the tunnel floor.

Figure 4.2   The CFD simulation reproducing the flow of air over a cube of height

H=0.025 m in the wind tunnel experiment of Martinuzzi and Tropea

[64].   The figure shows the velocity field normalised by the inlet

wind speed of U=25 ms-1.
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Figure 4.5   Boundary layer flow over a surface mounted cube of height, H=0.2 m.
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Figure 4.6   A streamwise view of the coarse mesh resolution (RUN A) above the

bridge of the tanker.
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Figure 4.7   A streamwise view of the fine mesh resolution (RUN B) above the

bridge of the tanker.
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Figure 4.8   Vertical profiles of normalised velocities obtained from three

simulations for the 170 m tanker modelled with different mesh

densities.
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Figure 4.9   Vertical profiles of normalised velocities obtained from two

simulations of the 170 m tanker modelled with different turbulence

closures.
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Figure 4.10   Vertical profiles of normalised velocities obtained from two

simulations for the 170 m tanker modelled with different inlet wind

speed profiles.
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Figure 4.11   Vertical profiles of normalised velocities obtained from two

simulations for the 170 m tanker modelled at different geometric

scales.
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Figure 4.12   The region of variability of the CFD predictions of the flow above

the bridge of the full-scale tanker geometry.



145

5                                m/s                            10

> 7

> 7 < 5

18.56 m

10 m

flow direction 9.91 m

Figure 4.13   The CFD simulation of a free surface flow over the tanker.   The

velocity field in the centre of the wind tunnel is displayed.
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Figure 4.14   CFD predicted vertical profiles of normalised velocities obtained

from the wind tunnel scale models.
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scale geometries compared with the PIV measurements.   
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Figure 5.1   A photograph of the RRS Charles Darwin (reproduced with

permission from NERC Research Ship Unit, Southampton, UK).

Figure 5.2   The ship track for the RRS Charles Darwin cruises CD140 (solid line)

and CD141 (dotted line).
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Figure 5.3   The foremast of the RRS Charles Darwin,  showing the HS sonic

anemometer (indicated by the arrow) on the starboard side of the

platform.
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Figure 5.4   The position of the HS sonic anemometer on the foremast platform of

the RRS Charles Darwin looking from astern (top),  and above

(bottom).
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Figure 5.5   The temporary mast above the bridge of the RRS Charles Darwin,

looking towards the starboard side.
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Figure 5.6   The scaled positions of the anemometer locations for flows over the

port beam (filled squares) and starboard beam (open squares).   The

positions of the line of equality (thick line),  the maximum and

minimum wind speeds (thin lines) are overlaid.
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Figure 5.8   Schematic side view of the Vector anemometers on the temporary 6 m

mast above the bridge of the RRS Charles Darwin cruise.
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Figure 5.9   The CFD model of the air flow over the starboard beam of the RRS

Charles Darwin.   Streamlines showing the path of the flow of air

over the bridge top are overlaid.
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Figure 5.10   Relative wind speed ratios (expressed as a fraction of the wind speed

measured by the HS sonic on the foremast) for in situ wind speed

measurements made on the RRS Charles Darwin (lines) and for the

CFD models (open squares).
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Figure 5.11   Normalised wind speed profiles compared to the in situ results from

the anemometers for an air flow over the starboard beam.
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Figure 5.12   As Figure 5.11,  but for an air flow over the port beam.
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Figure 5.13   The CFD simulation of a free surface flow over the deck house

block.   The velocity field in the centre of the wind tunnel is

displayed.
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Figure 5.14   The CFD simulation of the flow over the deck house block,

enclosed in the low speed section of the wind tunnel.   The velocity

field in the centre of the wind tunnel is displayed.
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Figure 5.15   The CFD simulation of the airflow through the Southampton

University wind tunnel,  including the contraction.   The velocity field

in the centre of the wind tunnel is displayed.
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Figure 5.16   CFD simulations and PIV results of the flow above the deck house

block.   The error bars indicate the standard error of the data.
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Figure 5.17   As figure 5.16,  but at a distance of x/H=0.51 from the upwind

leading edge.
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Figure 5.18   CFD simulations of the normalised wind speed profiles above the

deck house block.
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Figure 5.19   Normalised in situ wind speed profiles selected at for flows 5° fore

and aft of the starboard beam,  compared to beam on flow.
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Figure 5.20   As figure 5.19,  but for the flow over the port beam.
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Figure 5.21   The normalised wind speed profiles at two different wind speeds for

flows over the starboard beam.   The vertical dashed line indicates no

change in the normalised wind speed.
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Figure 5.22  As Figure 5.21,  but for the flow over the port beam.
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Figure 6.1   Normalised wind speed profiles over the deck house block for various

methods.
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Figure 6.2   Normalised wind speed profiles over the deck house block for various

methods.
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Figure 6.3   Flow chart showing the application of the results.


