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Although the acoustic analogy developed by Lighthill, Curle, and Ffowcs Williams and
Hawkings for sound generation by unsteady flow past solid surfaces is formally exact,
it has become accepted practice in aeroacoustics to use an approximate version in
which viscous quadrupoles are neglected. Here we show that, when sound is radiated
by non-rigid surfaces, and the smallest dimension is comparable to or less than the
viscous penetration depth, neglect of the viscous-quadrupole term can cause large
errors in the sound field. In addition, the interpretation of the viscous quadrupoles
as contributing only to sound absorption is shown to be inaccurate. Comparisons are
made with the scalar wave equation for linear waves in a viscous fluid, which is
extended using generalized functions to describe the effects of solid surfaces. Results
are also presented for two model problems, one in a half-space and one with simple
cylindrical geometry, for which analytical solutions are available.
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1. Introduction
Viscosity plays a fundamental role in the interactions between a fluid and a moving

object, in particular by coupling vorticity and sound waves at the surface. Despite
this effect being predominant only for relatively small length scales, it is seen in a
variety of real-world applications. For instance, in the cochlea, viscosity is crucial
in describing the coupling between the sound waves in the fluid-filled cochlear duct
and the travelling waves supported by the basilar membrane. Other examples include
micro-actuators or sensors such as microelectromechanical microphones. The present
paper aims to clarify the role of viscosity in the flow–acoustic coupling at a material
surface, and the framework of acoustic analogies is adapted for this purpose.

The acoustic analogy formulation for sound generation by unsteady flows interacting
with solid surfaces was developed by Curle (1955) following Lighthill (1952), and
generalized by Ffowcs Williams & Hawkings (1969). These formulations are exact,
but they involve a volume integral in which the viscous stress τ is convolved
with derivatives of a Green’s function over the fluid domain V , and this ‘viscous-
quadrupole’ contribution is typically neglected in aeroacoustic applications (Crighton
1975). Here we re-examine the validity of neglecting the viscous-quadrupole volume
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term, with particular reference to flows near solid boundaries. Although the analysis
will be presented for Curle’s analogy (that is, for a fixed control surface), the
conclusions apply equally to Ffowcs Williams and Hawkings’ formulation for moving
boundaries.

We argue below that, since τ is linearly related to the fluid velocity gradients, part
of the viscous-quadrupole ‘source term’ represents sound attenuation rather than sound
generation, and should therefore appear in the wave operator. However, the remainder
should be retained, since it may be needed to account for coupling between acoustic
and vortical motion. To that end, one should ideally reformulate the analogy using a
viscous wave operator, as was suggested by Pierce (1989).

To demonstrate the advantages of such an approach, we carry out the reformulation
for the restricted case of small perturbations from a uniform state of rest, and follow
Curle (1955) by assuming a fixed (but permeable) control surface as the boundary
of V . This allows the issue of viscous quadrupoles to be clearly highlighted, and our
conclusion (that they can be important under certain defined conditions) will remain
valid in more general situations where moving boundaries and nonlinear phenomena
are present. Further useful simplification is achieved by assuming a viscous fluid that
has zero thermal expansivity; in this special case the thermal and acoustic modes are
completely decoupled (Pierce 1989). The result is a viscous linearized wave equation,
valid for fluids of arbitrarily large viscosity, that describes the pressure perturbation
p at any point in V in terms of p, vn and ω on a fixed control surface S; here
ω = curl(v) is the vorticity, and vn is the fluid velocity normal to S.

As a first example, we solve in closed form the problem of a plane boundary
with tangential oscillations radiating into a viscous fluid. The solution is used to
provide the boundary data required by the viscous wave equation formulation, or by
the Curle–Lighthill formulation with the volume term omitted. Without this omission,
the two formulations are equivalent; the error resulting from the omission therefore
indicates the size of the volume-term contribution to the sound field. Since the
contribution depends on the choice of Green’s function, the error likewise depends
on this choice, as will be discussed further in § 4.

We then present results for the linearized model problem of a circular cylinder
whose surface oscillates both normally and tangentially in a viscous fluid. This is a
generalization of the corresponding inviscid problem of classical acoustics (Morse &
Ingard 1968), where only the normal surface velocity couples to sound radiation. Note
that it includes as a special case the transverse oscillation of a rigid cylinder. As in the
plane case, the unsteady pressure is calculated in three ways: (i) by using the Curle
surface terms alone, with input data (normal velocity, pressure and viscous stress at
the cylinder surface) provided from the analytical solution; (ii) by using the alternative
viscous-analogy formulation with input data (normal velocity, pressure and vorticity
at the surface) again provided from the analytical solution; and (iii) directly from the
exact analytical solution. Since formulation (ii) is also exact, comparison of (ii) and
(iii) provides a consistency check. Formulation (i) is approximate, so comparison of
(i) and (iii) will demonstrate the effect of neglecting viscous quadrupoles. In what
follows we refer to (i) as the Curle surface term (CST) approximation.

The paper begins, in §§ 2 and 3, with a theoretical analysis of the Curle–Lighthill
analogy and a comparison of its source terms with those of the viscous wave equation,
under the special conditions outlined above. Several issues with the commonly
accepted simplification of the Curle–Lighthill analogy are identified. In §§ 4 and 5
we introduce the two model problems, and identify the region of parameter space



Viscous noise sources on surfaces 443

f (x) < 0

S

n̂

n̂

x

x

FIGURE 1. Definition sketch showing a vibrating solid object, with perturbed material
surface S′, surrounded by a uniform viscous compressible fluid. The fixed control surface
S lies in the fluid, a small distance from the unperturbed solid boundary. Region V lies
outside S.

where the CST approximation leads to large errors. The principal conclusions are
summarized in § 6. An energy corollary for viscous fluids is discussed in appendix A.

2. Problem definition and notation
We consider a vibrating, impermeable object surrounded by a volume of fluid V ,

as shown in figure 1. Let S be a fixed control surface that just encloses the object.
To describe the acoustic sources on this surface, we will use a system of orthogonal
curvilinear coordinates yi. The local orthogonal basis is denoted by the unit vectors
ei. We identify e3 with the normal vector n̂, so the vectors e1 and e2 are tangential to
the surface. To avoid ambiguities, we use grad, div, curl and 1 to denote the gradient,
divergence, curl and Laplacian differential operators. The reader can refer to Irgens
(2008, chapter 12) for more details.

To perform the analysis presented in this paper, we make use of generalized
functions (Farassat 1994) and define the customary indicator function f such that

f (x) > 0 for x ∈ V, (2.1)
f (x) < 0 for x 6∈ V, (2.2)

with the additional requirement that, on the surface, |grad[f (x)]| = 1 so that we can
write n̂= grad(f ) for the unit vector normal to S. Note that this vector is pointing into
the fluid. The Heaviside function H(f ) will be used as a spatial windowing function in
the equations that follow. Thus we have H(f )= 1 in region V , and H(f )= 0 elsewhere.
In addition, the gradient of H(f ) is given by

grad[H(f )] = n̂δ(f ), (2.3)

where δ is the Dirac delta function.

3. Sound generation in a viscous fluid
We consider arbitrary small-amplitude oscillations of the material surface S′

(figure 1) in a uniform ambient fluid, and therefore use the Navier–Stokes equations
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in linearized form. The restriction to small perturbations is not an issue for present
purposes, since the volume quadrupole term whose effect we are investigating is linear
in the perturbation variables. In addition, to facilitate the discussion, we assume that
the thermal expansivity of the fluid is negligible so that acoustic waves in the fluid
are decoupled from entropy waves. The linearized relation between pressure, density
and entropy perturbations then reduces to (P− P0)= c2

0(ρ − ρ0), where c is the sound
speed and subscript 0 denotes the unperturbed state. In what follows, we write the
pressure perturbation P − P0 as p. The linearized equations of mass and momentum
conservation governing the propagation of linear acoustic waves in a viscous fluid at
rest can then be written as

1
c2

0

∂p

∂t
+ ρ0Θ = 0, (3.1)

ρ0
∂v
∂t
+ grad(p)− div(τ )= 0. (3.2)

Here Θ = div(v) is the dilatation rate. Finally, if the bulk and shear viscosity are
denoted by µv and µ, the viscous stress tensor is

τ = µ(L+ LT)+ (µv − 2µ/3)Θ1, (3.3)

with L = grad(v) and 1 indicating the identity tensor. Assuming that µ and µv are
constant, we write the divergence of the viscous stress tensor in terms of Θ and the
fluid vorticity ω = curl(v):

div(τ )= (µv + 4µ/3) grad(Θ)− µ curl(ω). (3.4)

3.1. Viscous wave equation
Equations (3.1), (3.2) and (3.4) can be combined to obtain a scalar wave equation for
small pressure perturbations in a viscous fluid,

1
c2

0

∂2p

∂t2
− (1+ R)1p= 0, (3.5)

where the operator R accounts for the viscous damping of acoustic waves as they
propagate through the fluid,

R= µv + 4µ/3
ρ0c2

0

∂

∂t
. (3.6)

We now apply the spatial windowing procedure outlined in § 2 to obtain a generalized
wave equation for the case with fixed boundaries[

1
c2

0

∂2

∂t2
− (1+ R)1

]
(Hp)

= ρ0
∂v
∂t

· n̂δ(f )+ div[−(1+ R)pn̂δ(f )+ µω × n̂δ(f )]. (3.7)

Note that in deriving this equation use has been made of the vector identity
div(ω × a)= a · curl(ω)− ω · curl(a) together with the fact that the vector a= n̂δ(n)=
grad[H(n)] has zero curl, to show that µ curl(ω) · n̂δ(n)= div[µω × n̂δ(n)].

In this equation the first term on the right-hand side is the standard monopole
source associated with the unsteady volume displacement of the fluid. The second
term corresponds to a dipole distribution on the surface S. The strength of the normal
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dipoles is governed by the surface pressure fluctuations (modified by the viscous
effects R) while the distribution of tangential dipoles is defined by the tangential
vorticity of the fluid on the surface. The latter term causes the sound field to be
coupled with the vorticity at the surface. This coupling has already been identified by
Pierce (1989) in the limit of weak viscosity; (3.7) represents an extension of Pierce’s
result, since we do not assume the viscosity to be small.

It is worth noting that (3.7) is in effect a generalization of Kirchhoff’s integral. It
shows that, to represent the acoustic field in a volume V containing a viscous fluid,
one needs to know not only the pressure and normal velocity on the boundary surface
S (as is the case with Kirchhoff’s integral), but also the tangential vorticity.

3.2. Curle–Lighthill analogy
We now consider the Curle–Lighthill analogy (Lighthill 1952; Curle 1955), which,
seemingly, leads to a different interpretation of the surface source terms. These
differences will be discussed and reconciled in the next section. The Curle–Lighthill
analogy in its exact form can be written as(

∂2

∂t2
− c2

01

)
[H(ρ − ρ0)] = div{div{Hρv⊗ v+ H[p− c2

0(ρ − ρ0)]1− Hτ }}

+ ∂

∂t
[ρv · n̂δ(f )] + div[−pn̂δ(f )+ n̂ · τδ(f )], (3.8)

for a fluid region with fixed boundaries S. By using the same assumptions as above,
i.e. small perturbations of a viscous fluid at rest with zero expansivity, only the viscous
stresses remain in the volume source term and the analogy can be written in terms of
the pressure perturbation:(

1
c2

0

∂2

∂t2
−1

)
(Hp)=−div[div(Hτ )] + ρ0

∂v
∂t

· n̂δ(f )+ div[tδ(f )], (3.9)

where we have introduced the unsteady traction t = −pn̂ + n̂ · τ on the surface S. It
is customary to neglect the double divergence of the windowed viscous stress (the first
term on the right-hand side of (3.9)) on the basis that this term represents viscous
absorption of sound inside the fluid – see, for instance, Lighthill (1952, p. 568) or
Goldstein (1976, p. 71). In other words, it is generally assumed that this term plays
the same role as the term R1 on the left-hand side of (3.7), which leads to the
identification of the surface traction as the exact surface dipole source. We shall show
below that this is not generally correct, and leads to a misinterpretation of the surface
sources.

3.3. Discussion of the differences
We now compare the surface source terms found in (3.9) with the corresponding terms
in (3.7). The second term on the right-hand side of (3.9) is the same monopole source
as in (3.7). The last term of (3.9) is a dipole distribution entirely defined by the
unsteady surface traction. To gain further insight into this dipole source, we can use
the definition (3.3) and after some algebra we can write

t =−(1+ R)pn̂+ µω × n̂− 2µ(Θn̂− n̂ · L)

=−(1+ R)pn̂+ µω × n̂− 2µ[div‖(v)n̂+ curl‖(v)× n̂], (3.10)

where div‖ and curl‖ are the divergence and curl operators confined to directions
tangential to the surface; for a full definition see (B 3). The derivation of (3.10) is not
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trivial and is detailed in appendix B.1. Comparison of (3.10) with the corresponding
group of terms in (3.7) indicates that the Curle–Lighthill analogy includes an
additional viscous dipole term −2µ[div‖(v)n̂ + curl‖(v) × n̂]. It is interesting to note
that this term is fully defined by the velocity of the surface and hence vanishes when
v= 0 on S.

To provide some insight into this additional viscous dipole, we can consider the
perturbed surface S′ of the solid object with unit normal n̂′ at each material point, as
illustrated in figure 1. The tensor Θ1 − L corresponds to the so-called rate-of-surface-
strain tensor as defined by Dishington (1965); see also Wu, Ma & Zhou (2006). It
describes the kinematics of a small surface element of S′ with area δs′ (which in
the unperturbed state has normal n̂ and area δs). For instance, one can show that
the linearized rate of surface extension is given by ∂(δs′)/∂t = div‖(v)δs, and hence
that the additional normal viscous dipole in (3.10) is associated with the tangential
dilatation of the fluid adhering to the surface. Furthermore, the rate of change in
orientation of the surface element is given by ∂n̂′/∂t = curl‖(v) × n̂, where curl‖(v)
can be interpreted as the angular velocity of the fluid layer attached to S′. This shows
that the tangential dipoles are related to rotation of the surface element.

A key point to recognize is that, despite their apparent differences, the two
formulations (3.7) and (3.9) are mathematically equivalent, provided that all the terms,
and especially the viscous quadrupoles, are retained. This is a consequence of the
following identity (the rather lengthy derivation is outlined in appendix B.2):

div[div(Hτ )] = −R1(Hp)− div[2µ(Θn̂− n̂ · L)δ(f )]
= −R1(Hp)− div{2µ[div‖(v)n̂+ curl‖(v)× n̂]δ(f )}, (3.11)

where the R term represents the effect of viscosity on sound propagation (it appears
on the left-hand side of (3.7)). The second term is a dipole source distributed on
the surface, and corresponds precisely to the difference noted between (3.7) and (3.9).
By using (3.11) one can rewrite the Curle–Lighthill analogy (3.9) in the form (3.7);
the two models are equivalent, provided all the terms are retained in both equations.
Equation (3.11) shows that interpreting div[div(Hτ )] as a dissipative term associated
only with the effect of viscosity on propagation is not valid, because from the
viewpoint of the viscous wave equation this term contains both propagation effects
and sound sources associated with the boundary S. As a consequence, the unsteady
surface traction n̂ · τ does not correctly represent the surface dipoles associated with
the viscous wave operator in (3.7).

To indicate further the origin of the problem, one can note that the viscous stress
tensor is in effect a differential operator acting on the velocity field:

τ (v)= µ grad(v)+ µ [grad(v)]T+(µv − 2µ/3)1 div(v). (3.12)

Before interpreting the double divergence of Hτ , one should move the window H
under this operator so that τ (·) applies to the windowed velocity. This is done as
follows:

Hτ (v)= τ (Hv)− [µ(v⊗ n̂+ n̂⊗ v)+ (µv − 2µ/3)1(v · n̂)]δ(f ). (3.13)

One can then proceed to derive (3.11) as outlined in appendix B.2.

3.4. Choice of Green’s function
An advantage of the two acoustic analogies discussed above is that both the inviscid
and viscous wave operators can be relatively easily solved using an appropriate
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Green’s function. Since both (3.7) and (3.9) are written in terms of generalized
functions and are valid in all space, one can choose a variety of Green’s functions,
provided that they are causal in the time domain, or that they satisfy the appropriate
radiation condition in the frequency domain. As long as the source terms are self-
consistent and appropriate to the wave operator under consideration, the sound field
found in V should be independent of the choice of Green’s function, as illustrated in
Morfey, Powles & Wright (2011).

On the other hand, if the source terms are approximated in any way, for example
by discarding the viscous quadrupoles in the standard formulation, this independence
property no longer holds. The source approximation may lead to serious errors with
one choice of Green’s function, but not with another. In §§ 4 and 5, we demonstrate
this numerically for two model problems by considering either the free-field Green’s
function or the Neumann Green’s function, which has the additional constraint that its
normal gradient on S vanishes.

3.5. Special cases
There are various special cases where it is possible to discuss the difference between
the two formulations in more detail.

First of all, for wave scattering problems where the solid surfaces are fixed,
it is clear that the surface source terms in the two formulations are equivalent
since the additional viscous dipoles identified in (3.10) are identically zero. This is
consistent with the conclusions of Davis & Nagem (2006), who have validated the
Curle–Lighthill analogy (with volume source terms omitted) in the compact limit for
the scattering of sound waves by a fixed sphere in a viscous fluid, using the analytical
solution as benchmark. The only discrepancy attributable to the omission of volume
terms was the absence of viscous attenuation.

Another special case is when the solid surface does not rotate but only deforms
tangentially. Such a case was considered by Shariff & Wang (2005) in order to test
the prediction of the Curle–Lighthill analogy that surface shear-stress fluctuations are
a source of sound. In this case it can be seen from (3.10) that the only difference
between (3.9) and (3.7) is a normal dipole associated with the extension of surface
elements. In Shariff & Wang (2005) a Neumann Green’s function was used to
solve the Curle–Lighthill radiation problem, leading to good agreement between direct
numerical simulations and the surface-term predictions of the analogy. We will revisit
this model problem in § 4 and demonstrate that, had a different Green’s function been
used, significant differences could have been observed.

Finally, it is worth noting that, for an acoustically compact solid boundary in
rigid-body oscillation, the additional surface source terms found in (3.10) make no
contribution to the far-field pressure. When the surface S is small compared to the
acoustic wavelength, it is possible to apply the compact source approximation and
represent the surface by its monopole and dipole moment integrals (Pierce 1989). The
difference in dipole strength between the two formulations (3.7) and (3.9) is then given
by

2µ
∫

S
[div‖(v)n̂+ curl‖(v)× n̂] dS. (3.14)

For rigid-body motion, the velocity field on S is of the form v(x, t) = V(t) +Ω(t) ×
[x − x0(t)], where V is the velocity of the centroid x0(t) of the oscillating body and
Ω is its angular velocity. One can show easily that in that case div‖(v) = 0 and
curl‖(v) =Ω + (Ω · n̂)n̂. It then follows that [curl‖(v)] × n̂ =Ω × n̂. Finally Stokes’
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theorem leads to the conclusion that the integral equation (3.14) vanishes:

2µ
∫

S
[div‖(v)n̂+ curl‖(v)× n̂] dS= 2µ

∫
S
Ω × n̂ dS=−2µ

∫
V

curl(Ω) dV = 0.

(3.15)

Thus for compact objects in rigid-body motion the two surface dipole distributions
in (3.7) and (3.9) are equivalent. Where the motion is purely translational, as for an
oscillating sphere (Pierce 1989), the equivalence holds for any Helmholtz number.

4. Application to an oscillating plane surface
As a first example, we solve in closed form the problem of a plane boundary with

tangential oscillations radiating into a viscous fluid (with the bulk viscosity µv set
equal to zero). In figure 2(a) an oscillating surface at x2 = 0 radiates into the upper
half-space filled with a viscous fluid at rest. The surface velocity is purely tangential,
and takes the form of a harmonic travelling wave:

v1(x1, x2 = 0, t)= V eik1x1−iωt, v2(x1, x2 = 0, t)= 0. (4.1)

This type of excitation is commonly referred to as a ‘dolphin-skin’ oscillation.
The solution depends on two non-dimensional parameters L = ωµ/(ρ0c2

0) and
M = ω/(k1c0), where M is the phase Mach number of the oscillation along the plane
boundary. The parameter L is directly related to the operator R introduced in (3.6) for
the viscous wave equation. For e−iωt time-harmonic solutions this operator corresponds
to a scalar R̂=−iω4µ/(3ρ0c2

0) and we have the relation L= 3iR̂/4.
This problem is similar to that solved using direct numerical simulation by Shariff

& Wang (2005). As shown in appendix C, one can solve the linearized equations (3.1)
and (3.4) to obtain closed-form expressions for all quantities of interest. It is
then straightforward to evaluate the acoustic pressure field using either the CST
approximation – namely (3.9) with the first term on the right omitted – or alternatively
the viscous formulation (3.7), and to compare the resulting pressure amplitudes on the
boundary with the exact solution. Because (3.7) and (3.9) are valid in all space rather
than only in V , any causal Green’s function for the relevant operator may be used to
obtain the correct pressure field (Morfey et al. 2011) provided the full source terms are
retained. However, the CST approximation leads to errors that depend on the choice of
Green’s function, as we demonstrate below.

Using the free-field Green’s function, G∞, for the inviscid acoustic wave operator
in (3.9) leads to the following expression for the pressure on the oscillating surface:

pCST (x1, x2 = 0, t)= ik1G∞(0 | 0; k20)τ + ik20G∞(0 | 0; k20)(σ − p). (4.2)

Here p, τ and σ on the right-hand side denote the pressure and the tangential and
normal components of the viscous surface traction that are provided by the closed-
form solution; G∞(x | y; κ) is the one-dimensional free-field Green’s function and k20
is the transverse wavenumber of the lossless acoustic wave, as defined in appendix C.
In (4.2) the first term on the right-hand side represents the tangential shear-stress
dipole while the second is the contribution from the normal dipole.

Alternatively, if we use the Neumann Green’s function GN with zero normal gradient
at the surface, the pressure is given directly by

pCST (x1, x2 = 0, t)= ik1GN(0 | 0; k20)τ, (4.3)

with no contribution from the normal dipole.
We can compare the predictions of the CST formulation against the exact closed-

form solution by plotting 20 log10|pCST/pexact|x2=0, which provides a measure of the
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FIGURE 2. (a) A plane surface with tangential oscillations radiating into a half-space.
(b) Definition sketch for the test case of a cylinder in a viscous fluid.

error based on the surface pressure. The results are shown in figure 3 using either
the free-field Green’s function or the Neumann Green’s function, and for a range of
parameters L and M. Figure 3 shows that, with the free-field Green’s function, the
error associated with the CST formulation can be large, especially for evanescent
waves (M < 1), where the pressure amplitude on the cylinder is severely overestimated
by the CST formulation and the error increases rapidly with L. However, with the
Neumann Green’s function, only minute differences can be observed. The explanation
can be found in (3.10), where the difference between the CST surface source
terms (3.9) and those of the exact viscous analogy (3.7) has been identified as a
dipole distribution 2µ[div‖(v)n̂ + curl‖(v) × n̂]. For a purely tangential oscillation of
the surface, there is no rotation of the surface elements, so curl‖(v) = 0 and only
the normal dipole 2µ div‖(v)n̂ associated with the extension of the surface elements
remains. When using the Neumann Green’s function to solve the CST formulation,
normal surface dipoles are naturally excluded, and we are left with surface source
terms that are consistent with those of (3.7). The small error observed in figure 3
originates from the fact that the inviscid Green’s function is used for the CST
formulation whereas the viscous wave operator appears on the left-hand side of (3.7).
The difference between solving the lossless or viscous wave equations yields only very
small errors in the pressure at the plane boundary, but would lead to increasingly
larger discrepancies as the observer moves farther away from the boundary.

This indicates that the good agreement observed by Shariff & Wang (2005) between
the CST formulation and their direct numerical simulation relies on the use of the
Neumann Green’s function. Had the free-field Green’s function been used instead, the
normal dipole source terms would have been included on the boundary and significant
discrepancies might have been observed, mainly in the near field, where the evanescent
waves would be strongly overestimated by the CST formulation.

5. Application to a vibrating cylinder
5.1. Problem definition

To discuss further the issues identified in § 3, we now consider a two-dimensional test
case, shown in figure 2(b), of a cylinder with radius r0 in a viscous fluid at rest with
mean density ρ0, sound speed c0 and shear viscosity µ (including the bulk viscosity in
this test case does not change the conclusions). The surface of the cylinder oscillates
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FIGURE 3. Contours of the error in dB, 20 log10[|pCST/p|(x1, x2 = 0)], associated with the
CST formulation for the pressure on a plane boundary. The boundary motion is tangential, as
in (4.1). The error depends on the Green’s function: (a) free-field Green’s function (contour
lines from 0 to 10 dB every 1 dB, and then from 10 to 70 dB every 5 dB); (b) Neumann
Green’s function (contour lines from 0 to 5 dB every 1 dB).

with time-harmonic normal and tangential velocities given by

U(θ, t)= Um cos(mθ) e−iωt, V(θ, t)= Vm sin(mθ) e−iωt, with m= 0, 1, 2, . . . ,
(5.1)

respectively. The corresponding pressure field induced in the fluid by the oscillations
of the cylinder can be written as

p(r, θ, t)= pm(r) cos(mθ) e−iωt. (5.2)

As shown in appendix D, the complex amplitude pm can be obtained in closed form
by solving the linearized Navier–Stokes equations. This exact solution provides a
means to validate the predictions obtained from either the viscous wave equation (3.7)
or the Curle–Lighthill equation (3.9); in particular, we can examine the effect of
omitting the viscous-quadrupole term from (3.9). The response of the fluid to normal
(Um) and tangential (Vm) boundary oscillation is proportional to the respective forcing
amplitudes, and also depends on m and two real non-dimensional parameters,

S= ρ0r2
0ω

µ
and L= ωµ

ρ0c2
0

= K2

S
, (5.3)

where the Helmholtz number K = ωr0/c0 relates r0 to the lossless acoustic wavelength
and the Stokes number S relates r0 to the viscous penetration depth.

5.2. Comparisons of CST predictions with the exact solution
The predictions of the windowed viscous wave (3.7) are found to be in complete
agreement with the closed-form solution for this test case, for all values of m, L
and S. This is as expected, because (3.7) is a direct consequence of the linearized
Navier–Stokes equations used to derive the closed-form solution.

To assess rigorously the issues associated with the CST approximation based
on (3.9), we must first recognize that another source of error can play a role.
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FIGURE 4. Mode m= 1 with L= 10−1: (a) free-field Green’s function; (b) Neumann Green’s
function. Solid line: normal velocity forcing. Dashed line: tangential velocity forcing.

As already mentioned in § 4, the propagation operator in the Curle–Lighthill analogy
is that of a lossless fluid, whereas the exact solution includes the viscous damping of
waves radiating from the cylinder. To highlight more clearly the differences associated
with the surface source terms (rather than the effect of viscosity on propagation), we
compare solutions for surface pressure on the cylinder by plotting

20 log10[|p̂m(r0)/pm(r0)|], (5.4)

where p̂m is the Curle–Lighthill solution based on surface terms alone. This
eliminates the viscous damping of sound waves as they propagate away from the
cylinder. However, it does not completely remove the difference in Green’s functions

between (3.7) and (3.9) and, as shown in appendix D, a factor (1+ R̂)
−1/2

can be
observed in the limit of low Helmholtz numbers. Finally, since it was shown in § 4
that the choice of Green’s function can be significant, we present results for both
free-field and Neumann Green’s functions.

We begin by highlighting some cases where the CST approximation deviates
significantly from the closed-form solution. Figures 4 and 5 show the error measure
defined in (5.4), for m = 1 and two different L values (L = 10−1 and 10−5). With the
free-field Green’s function, G = G∞, the peak error is of the order of 10L1/2 dB
and thus becomes small for realistic values of L. On the other hand, if the
Neumann Green’s function is used, G = GN , then the errors associated with the CST
approximation increase without bound as S→ 0, and are relatively insensitive to L.

Changing the azimuthal order from m = 1 to m = 2 (figure 6) alters the G∞ errors
drastically at low Helmholtz numbers (K =√LS< 1); they now become comparable to
the GN errors for m= 1, amounting to several decibels at S = 10−2. On the other hand,
the GN errors for m= 2 show little change from m= 1.

The marked difference associated with the choice of Green’s function in figures 4,
5 and 6 indicates the problem in using the Curle–Lighthill analogy without the
div[div(Hτ )] term. Finally, we mention two special cases where, in contrast, the
latter term has no effect on the sound source.

The first such case is that of a rigid body oscillating in translation, which
corresponds to m = 1 and Um = −Vm. It has been verified that in this case the CST
approximation matches the closed-form solution exactly on the cylinder, apart from the



452 C. L. Morfey, S. V. Sorokin and G. Gabard

E
rr

or
 (

dB
)

(a) (b)

–2 0 2 4 6 8
–0.05

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

–2 0 2 4 6 8
–2

0

2

4

6

8

10

12

14

16

FIGURE 5. Mode m= 1 with L= 10−5: (a) free-field Green’s function; (b) Neumann Green’s
function. Solid line: normal velocity forcing. Dashed line: tangential velocity forcing.
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FIGURE 6. Mode m= 2 with L= 10−5: (a) free-field Green’s function; (b) Neumann Green’s
function. Solid line: normal velocity forcing. Dashed line: tangential velocity forcing.

factor (1+ R̂)
1/2

already mentioned and associated with the difference in propagation
operators.

The second case is that of a pulsating cylinder corresponding to m = 0, Vm = 0 and
Um 6= 0. In this case the surface elements on the cylinder undergo a time-harmonic
extension–contraction but no rotation and therefore the only additional viscous dipole
in (3.10) is the normal dipole of strength −2µ div‖(v). For that reason, the use of

the Neumann Green’s function yields the expected result (again with a (1+ R̂)
1/2

coefficient) because this Green’s function does not involve the normal dipole sources
on the surface. With the free-field Green’s function, figure 7 shows that there is a
small but finite error peaking at K ≈ 1. At low frequencies (K� 1), the error vanishes.
This is because the cylinder is then acoustically compact, and the dipole moment
integral (3.14) vanishes owing to the fact that div‖(v) is uniform over the cylinder.

5.3. Relative sound pressures due to tangential and normal surface oscillation
The cylinder test case allows one to compare the relative efficiency of normal and
tangential oscillations of the surface as a source of sound. This can be measured by
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FIGURE 8. Ratio of sound pressure amplitudes between the case of tangential oscillations
and normal oscillations, with L = 10−5 and for m = 1 (solid line) and m = 2 (dashed line).
Altering L to 10−3 produces no visible change in the graph.

computing the ratio between the acoustic-wave amplitudes Am given in appendix D
for tangential oscillations (Um = 0 and Vm = 1) and normal oscillations (Um = 1 and
Vm = 0). The ratio is plotted in figure 8 for m = 1 and m = 2. It can be seen that, as
expected, for S > 1 normal oscillations are much more efficient at radiating sound. For
S < 1 the efficiency of tangential oscillations approaches that of normal oscillations.
Interestingly, this ratio was found to be virtually independent of L.

It is interesting to compare the cylinder results in figure 8 with the corresponding
result for the oscillating plane boundary considered in § 4. The ratio in the latter
case can be derived explicitly as (iM2/L− 1)−1/2. The two cases can be connected by
‘unwrapping’ the cylinder to form a plane boundary, and equating the phase speed c0M
along the plane boundary to aω/m. This procedure, asymptotically valid for S� 1,
yields M2/L = S/m2; thus when S is large, the ratio of sound pressure amplitudes
should be a function of S alone (for given m), as is indicated in figure 8. Note that the
amplitude ratio approaches unity for small Stokes numbers (S< 1).
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6. Summary and concluding remarks
The viscous-quadrupole volume source term found in the acoustic analogy

formulations of Lighthill (1952), Curle (1955) and Ffowcs Williams & Hawkings
(1969) has been discussed in detail, with emphasis on sound radiation near boundaries,
where the relevant term takes the form div[div(Hτ )] with H a spatial windowing
function (defined in § 2). The shear viscosity µ of the fluid is treated as a constant,
but the viscous parameter ωµ/ρ0c2

0 is not required to be small. In the absence of
solid surfaces, (3.4) shows directly that div[div(τ )] = (µv + 4µ/3)1Θ , indicating that
this source depends only on the dilatation rate, and not on the local vorticity. As a
consequence, the compact-source argument used to scale multipole sources in Lighthill
(1952) does not apply. Moreover, considering each octupole component of the viscous
source term independently as in Crighton (1975) does not necessarily reveal the actual
nature of this source. In contrast to previous analyses by Lighthill (1952) and Crighton
(1975), which were limited to unbounded flows, we find that the role of the viscous
volume term is not restricted to sound absorption.

This viscous term can be reformulated, following a suggestion by Pierce (1989),
to reveal an extra surface-dipole distribution that supplements the viscous traction
dipoles given by Curle’s theory (1955). The additional surface-dipole sources become
significant at Stokes numbers S of order one or less, as we demonstrate in § 5 for
radiation from a vibrating cylindrical surface.

The following principal conclusions can be drawn from the present work.

(a) The role of the viscous-quadrupole volume source term is made apparent by
changing from the lossless wave operator used by Lighthill (1952) and Curle
(1955) to a viscous wave operator, as in (3.7).

(b) With this change, viscous effects on sound propagation appear on the left-hand
side of the wave equation. In an unbounded fluid, with thermal expansivity set
equal to zero, the pressure perturbation p satisfies a homogeneous linearized
equation at small amplitudes. For a bounded region (with spatial windowing
function H), the linearized equation for Hp involves monopole and dipole sources
on the boundary S, with a dipole source distribution that differs from the one
found by Curle (1955).

(c) More specifically, extension or stretching of fluid surface elements on S is
responsible for the difference in the normal-dipole component. Likewise, if
such fluid elements change their orientation at a finite rate, the tangential-dipole
component is different in the two formulations.

(d) The difference in surface-dipole distributions, as between the lossless
Curle–Lighthill analogy and the present viscous analogy, vanishes if the fluid
velocity is zero on S. Thus for problems of wave scattering by rigid surfaces, the
two formulations yield identical surface source terms (although the different wave
operators imply different Green’s functions).

(e) In sound radiation problems characterized by one or both of the features in (c),
using the Curle surface terms to estimate the sound field will generally lead
to serious errors at low Stokes numbers. This is separate from any propagation
effects. Thus when the dimensions of the radiating surface are smaller than the
viscous penetration depth, a viscous formulation as in (3.7) is required.

(f ) Because use of the Curle surface terms alone is an approximation, the error in the
resulting sound-field estimate will depend on the choice of Green’s function. For
example, in the case of radiation from ‘dolphin-skin’ expansions and contractions
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of a vibrating surface, errors in near-field pressure are largely eliminated by
choosing the Neumann Green’s function whose normal derivative vanishes on S
(as demonstrated in figure 3).
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Appendix A. Energy balance
It is also useful to relate the present analysis with the energy balance in the fluid. To

that end we apply the scalar product between v and the momentum equation (3.2), and
then use the mass equation (3.1) and the identity (3.4) to arrive at an energy balance
equation of the form

∂e

∂t
+ div(f )=−d, (A 1)

with the following definitions for the density e, flux f and dissipation d of energy:

e= p2

2ρ0c2
0

+ 1
2
ρ0|v |2, f = (1+ R)pv+ µω × v, d = (µv + 4µ/3)Θ2 + µ|ω |2 .

(A 2)

These definitions are consistent with those obtained by Pierce (1989). One difference
is that, in the case considered here of a fluid with zero expansivity, entropy waves
are decoupled from acoustic waves so the terms involving entropy and temperature
fluctuations s and T are not involved in the energy balance (A 1) (in fact, one could
derive a separate energy balance for the entropy waves). Another difference is the use
of (3.4) to separate more clearly the contributions from acoustic waves and vorticity in
the energy flux and dissipation.

Note that the energy balance defined by (A 2) is not restricted to acoustic-mode
disturbances; for example, the vortical component of v contributes to the second term
in each of e, f and d. In (A 2) the dissipation of energy is clearly defined as two
distinct contributions from the dilatation rate and the enstrophy (defined as |ω |2). As
for the flux of energy, the contributions of acoustic pressure and vorticity are now
apparent. Because both vorticity and sound waves contribute to the velocity field v,
the flux terms pv and ω × v contain cross-terms between vorticity and acoustics. One
should not view (1 + R)pv as the contribution of acoustic waves alone to the energy
flux, and µω × v as the contribution of vorticity alone.

The link with the viscous wave analogy (3.7) becomes more obvious when
considering the normal flux of energy on a boundary:

f · n̂= (1+ R)pv · n̂+ µ(ω × v) · n̂
= [(1+ R)pn̂− µ(ω × n̂)] ·v. (A 3)

In the last expression the two terms in square brackets are precisely the normal
and tangential surface dipoles identified in the analogy based on the viscous wave
equation (3.7). This underlines again the central role played by these terms in
transferring energy from a vibrating surface into the fluid.
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Appendix B. Details of mathematical derivations
B.1. Derivation of (3.10)

To derive equation (3.10) we begin by using the definition (3.3) together with the
identity n̂ · LT = n̂ · L+ ω × n̂ to obtain

t =−pn̂+ (µv + 4µ/3)Θn̂+ µω × n̂− 2µ(Θn̂− n̂ · L). (B 1)

Then we use (3.1) to rewrite the dilatation rate in terms of pressure, giving

t =−(1+ R)pn̂+ µω × n̂− 2µ(Θn̂− n̂ · L). (B 2)

To proceed further we introduce the following differential operators, confined to the
directions tangential to the surface, with hi (i = 1, 2, 3) denoting the coordinate scale
factors:

grad‖(·)=
∑
i=1,2

∂(·)
∂yi
⊗ ei

hi
, div‖(·)=

∑
i=1,2

∂(·)
∂yi

·
ei

hi
, curl‖(·)=

∑
i=1,2

ei

hi
× ∂(·)
∂yi

.

(B 3)

For the last term in (B 2), we first consider the normal component of this vector:

(Θn̂− n̂ · L) · n̂=Θ − n̂ · L · n̂=
∑

i,j

ei

hi
·
∂(vjej)

∂yi
−
∑

i,j

e3 ·
∂(vjej)

∂yi
⊗ ei

hi
· e3

=
∑

i,j

ei

hi
·
∂(vjej)

∂yi
−
∑

j

e3

h3
·
∂(vjej)

∂y3
= div‖(v). (B 4)

And for the tangential component of Θn̂− n̂ · L it is possible to write:

Θn̂− n̂ · L− [(Θn̂− n̂ · L) · n̂]n̂= (n̂ · L · n̂)n̂− n̂ · L

= grad‖(n̂) ·v− grad‖(v · n̂)

= curl‖(v)× n̂. (B 5)

Combining the normal and tangential components of Θn̂− n̂ ·L leads directly to (3.10).

B.2. Derivation of (3.11)

We begin by noting that (3.4) for the divergence of the viscous stress tensor also
applies to the windowed velocity field:

div[τ (Hv)] = (µv + 4µ/3) grad[Θ(Hv)] − µ curl[ω(Hv)]. (B 6)

As explained in § 3.3, to derive (3.11) one starts with the viscous stress tensor
associated with the windowed velocity field given in (3.13). After taking the double
divergence of (3.13) and using the expression above, we obtain

div{div[Hτ (v)]} = (µv + 4µ/3)1[Θ(Hv)]
− div{div{[µ(v⊗ n̂+ n̂⊗ v)+ (µv − 2µ/3)1(v · n̂)]δ(f )}}. (B 7)

The windowed equation for the conservation of mass obtained from (3.1) reads

1
c2

0

∂Hp

∂t
+ ρ0Θ(Hv)= v · n̂δ(f ) (B 8)



Viscous noise sources on surfaces 457

and can be used to rewrite the dilatation rate in terms of the windowed pressure,
giving

div{div[τ (Hv)]} = −R1(Hp)− div{div{[µ(v⊗ n̂+ n̂⊗ v)− 2µ(v · n̂)1]δ(f )}}.
(B 9)

If we now develop the first divergence in the second term we find

div{[(v⊗ n̂+ n̂⊗ v)− 2(v · n̂)1]δ(f )}
= v div[n̂δ(f )] + n̂δ(f ) div(v)− n̂δ(f ) · grad(v)− v · grad[n̂δ(f )]
− 2n̂δ(f )× ω. (B 10)

Then we can use the vector identity curl(a × b) = div(b)a − a · grad(b) − div(a)b
+ b · grad(a) and apply the second divergence to arrive at

div{div[τ (Hv)]} = −R1(Hp)− div{2µ[div(v)n̂− n̂ · grad(v)+ ω × n̂]δ(f )}
= −R1(Hp)− div{2µ[Θn̂− n̂ · LT + ω × n̂]δ(f )}. (B 11)

Finally, after using the identity n̂ ·LT = n̂ ·L+ω× n̂ and the results from appendix B.1
for Θn̂− n̂ · L, we can obtain (3.11).

Appendix C. Solutions for the oscillating plane surface
By using the mass and momentum equations (3.1) and (3.2) together with the

velocity field (4.1) imposed at the plane boundary we can solve for all the variables
of interest. In particular we can obtain the following expression for pressure p on the
plane boundary:

p(x1, x2 = 0)= ρ0c0
k1

k0

1+ k′22 /k
2
1

1+ k′2k′′2/k
2
1

V eik1x1−iωt, (C 1)

where k0 = ω/c0 is the lossless acoustic free-field wavenumber, and k′2 and k′′2 are the
normal components of the acoustic and vortical wavenumbers κ ′ and κ ′′, respectively,
given by

k′2 =
√
κ ′ 2 − k2

1, k′′2 =
√
κ ′′ 2 − k2

1 with κ ′ 2 = k2
0

1− 4iL/3
, κ ′′ 2 = ik2

0

L
. (C 2)

Similarly we get the following expressions for the normal and tangential
components of the viscous surface traction:

σ =−2iρ0c0
k1

k0
L

(
1− 2

3
1+ k′ 22 /k

2
1

1+ k′2k′′2/k
2
1

)
V eik1x1−iωt, (C 3)

τ =−ρ0c0
k0k′2/k

2
1

1+ k′2k′′2/k
2
1

V eik1x1−iωt. (C 4)

These expressions can be used in (4.2) and (4.3) to evaluate the solution of the CST
formulation. The one-dimensional Green’s function is defined by

∂2G

∂x2
+ κ2G=−δ(x− y) with κ = k′20 =

√
k2

0 − k2
1, (C 5)

together with the appropriate radiation condition at infinity. We can use either the free-
field Green’s function G∞ or the Neumann Green’s function GN defined by requiring
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that ∂GN/∂x= 0 at x= 0. The corresponding expressions are as follows:

G∞(x | y; κ)= i
2κ

eiκ(x−y), GN(x | y; κ)= i
2κ
[eiκ(x−y) + e−iκ(x+y)] with x>y>0.

(C 6)

Appendix D. Solutions for the oscillating cylinder
This section provides more details on the analytical solution for the test case of a

vibrating cylinder in a viscous fluid described in § 5.1. The equations in this section
are non-dimensionalized using r0, ρ0 and c0 as reference values.

D.1. Exact solution
The velocity field can be expressed as follows:

u(r, θ, t)= ∂ϕ
∂r
+ 1

r

∂ψ

∂θ
and v(r, θ, t)= 1

r

∂ϕ

∂θ
− ∂ψ
∂r
, (D 1)

which corresponds to the Helmholtz decomposition of the vector field v, with the
scalar potential ϕ and the vector potential ψez representing the irrotational and vortical
components of the velocity, respectively. With the choice of surface velocity given
by (5.1), it is possible to infer the azimuthal dependences for the other variables as

(ϕ, p, u, σ )= (ϕm, pm, um, σm) cos(mθ) e−iωt, (ψ, v, τ )= (ψm, vm, τm) sin(mθ) e−iωt,

(D 2)

where σ and τ denote the total normal and tangential stresses on r = constant.
Solutions for other quantities of interest can then be written in terms of the scalar
potentials:

pm = iKϕm + 4
3

K

S

(
d2

dr2
+ 1

r

d
dr
− m2

r2

)
ϕm, (D 3)

σm =−iKϕm − 2
K

S

[(
1
r

d
dr
− m2

r2

)
ϕm − m

d
dr

(
1
r
ψm

)]
, (D 4)

τm = iKψm + 2
K

S

[(
1
r

d
dr
− m2

r2

)
ψm − m

d
dr

(
1
r
ϕm

)]
. (D 5)

The linearized Navier–Stokes equations (3.1)–(3.3) can be expressed as two
uncoupled Bessel equations for the potentials:

d2ϕm

dr2
+ 1

r

dϕm

dr
− m2

r2
ϕm + K2

1+ R̂
ϕm = 0, (D 6)

d2ψm

dr2
+ 1

r

dψm

dr
− m2

r2
ψm + iSψm = 0. (D 7)

In addition, we require that both ϕm(r) and ψm(r) behave as decaying outgoing
waves in the far field (r→∞). Therefore, the solutions are directly given by Hankel
functions of the first kind:

ϕm(r)= AmHm(K
′r), ψm(r)= BmHm(K

′′r), (D 8)

where K ′ = K/
√

1+ R̂ and K ′′ =√iS are the radial wavenumbers for the acoustic and
vorticity waves, respectively. The amplitudes Am and Bm of these waves are specified
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by the no-slip boundary conditions at the cylinder wall r = 1:

dϕm

dr
+ m

r
ψm = Um,

dψm

dr
+ m

r
ϕm =−Vm. (D 9)

If we consider a unit normal forcing (Um = 1 and Vm = 0) we have

1
Am
= SL

1+ R̂
H′m(K

′)− (−iL)1/2 m2Hm(K ′′)Hm(K ′)
H′m(K ′′)

, (D 10)

Bm =−mAmHm(K ′)
K ′′H′m(K ′′)

. (D 11)

Alternatively, if we consider a unit tangential ‘dolphin-skin’ forcing (Um = 0 and
Vm = 1) the coefficients are given by

Am =−mBmHm(K ′′)
K ′H′m(K ′)

, (D 12)

1
Bm
= (1+ R̂)

1/2
m2Hm(K ′′)Hm(K ′)
H′m(K ′)

− (iL)1/2 SH′m(K
′′). (D 13)

D.2. Solutions for the acoustic analogies

The prediction of the Curle–Lighthill analogy for the test case can be calculated by
using (D 2) to write[

1
r

d
dr

(
r

d
dr

)
− m2

r2
+ K2

]
(Hpm)=−qmδ(r − r0)+ 1

r

d
dr

[dmrδ(r − r0)] , (D 14)

where dm = −σm(1) represents the strength of the normal dipole while qm = −iKUm +
mτm(1) is an equivalent surface monopole, representing the normal acceleration and
the tangential stress on the surface. These expressions for dm and qm are directly
obtained from (3.9). Note that the volume term is omitted in (D 14).

The solution to (D 14) can be written as

pm(r)= qmGm(r | 1;K)+ dm

[
∂Gm(r | a;K)

∂a

]
a=1

, (D 15)

with r>1 and the Green’s functions being defined by[
1
r

d
dr

(
r

d
dr

)
− m2

r2
+ K2

]
Gm(r | a;K)=−1

a
δ(r − a). (D 16)

As explained in § 3.4, (D 14) is a generalized Helmholtz-type equation valid in all
space, which can be solved using any causal Green’s function of the operator on
the left. We use either the free-field Green’s function Gm,∞ or the Neumann Green’s
function Gm,N that satisfies the hard-wall boundary condition ∂Gm,N/∂r = 0 at r = 1.
The corresponding expressions are, for r>a>1,

Gm,∞(r | a;K)= iπ
2

Jm(Ka)Hm(Kr), Gm,N(r | a;K)= −1
Ka

Hm(Kr)

H′m(Ka)
. (D 17)
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For the analogy based on the viscous wave equation (3.7), the equation for the
modal pressure pm is {

(1+ R̂)

[
1
r

d
dr

(
r

d
dr

)
− m2

r2

]
+ K2

}
(Hpm)

=−qmδ(r − r0)+ 1
r

d
dr
[dmrδ(r − r0)], (D 18)

with the source terms given by dm = (1 + R)pm(1) and qm = −iKUm + iKmψm(1). The
solution is formally the same as in (D 15):

pm(r)= qmĜm(r | 1;K ′)+ dm

[
∂Ĝm(r | a;K ′)

∂a

]
a=1

, (D 19)

but with the difference that one uses the Green’s function Ĝm for the viscous wave
operator in (D 18), which can be written as

Ĝm(r | a;K ′)= 1

1+ R̂
Gm(r | a;K ′), (D 20)

where Gm can be either the free-field or Neumann Green’s function. It can be shown
that the ratio Ĝm(1 | 1;K ′)/Gm(1 | 1;K) tends to (1+ R̂)

−1/2
for small Helmholtz

numbers K.
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