The University of Southampton
University of Southampton Institutional Repository

High power pulsed ytterbium doped fibre lasers and their applications

High power pulsed ytterbium doped fibre lasers and their applications
High power pulsed ytterbium doped fibre lasers and their applications
The aim of my project is to develop pulsed Ytterbium (Yb) doped fibre master oscillator power amplifier (MOPA) systems seeded by semiconductor lasers. I was principally focused on two specific projects aligned to sponsored programs of research within the ORC pulsed fibre laser group: the first project, TSB funded project LAMPS, aimed to develop an important class of next generation laser system capable of average output powers of more than 100 W when operating in both the nanosecond and picosecond regimes. The goal was to develop a fully fiberized, polarisation maintaining, single transverse mode system. The full project included the development of the necessary diode & micro-optic systems, fibre beam delivery technology and with application focused evaluations in collaboration with our industrial partners. The main project partners were BAE Systems, Selex, Ceram, Intense Photonics, ORC, Herriot Watt University, Power Photonics, OptoCap and Rofin Sinar. I contributed to the development of the single transverse mode Ytterbium (Yb)-doped fibre system and achieved the full target specifications of 100 W of output power with single mode and single polarisation operation in both the nanosecond and picosecond regimes. In addition, second harmonic generation pumped by the fundamental beam at 1.06 µm was also achieved. In order to transfer from picosecond pulses to nanosecond pulses it is only necessary to switch the seed laser, the power amplifier system remaining unchanged making for a highly flexible system. Both fundamental and second harmonic beam were successfully used to do material processing and various high power frequency conversion experiments (visible, broadband supercontinuum and mid-IR). The second project, called HEGAC (also funded by the TSB), was a collaboration with the University of Cambridge and SPI Lasers Ltd. The aim of the HEGAC project was to develop a high power nanosecond fibre laser with an active pulse shaping capability suitable for cutting metals. This project targeted mJ pulses with more than 100 W average power at the final output – with a 200 W stretch objective. We first achieved more than 310 W using a free space seeding and pumping configuration in our laboratories proving power scaling of our proposed approach. I subsequently rebuilt and improved this system and developed a fully- fiberized version (including all pump launches). The laser was capable of generating >100 W of output power and pulse energies up to 2.5 mJ. This project also involved spatial mode as well as temporal pulse shaping. Using a pair of axicon lenses the normal Gaussian beam profile was converted to a ring shaped profile as required and the system tested up to average powers of 100 W. In addition to the normal temporal pulse shapes required using our pulse shaping system (square, triangle and step), I also achieved high average power pulses with smooth shaped pulses (Parabolic and Gaussian) using an adaptive pulse shaping technique. The laser was transported and successfully used in materials processing experiments at Cambridge, proving the robustness of the design and implementation. I also did some novel experiments on high efficiency Raman conversion exploiting the square shaped pulses possible using this laser.
University of Southampton
Chen, Kang Kang
37c5f50d-c027-44bb-ac51-23624f4ebcd4
Chen, Kang Kang
37c5f50d-c027-44bb-ac51-23624f4ebcd4
Richardson, D.J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Malinowski, A.
54fd31d4-b510-4726-a8cd-33b6b2ad0427

Chen, Kang Kang (2011) High power pulsed ytterbium doped fibre lasers and their applications. University of Southampton, Faculty of Physical and Applied Sciences, Doctoral Thesis, 150pp.

Record type: Thesis (Doctoral)

Abstract

The aim of my project is to develop pulsed Ytterbium (Yb) doped fibre master oscillator power amplifier (MOPA) systems seeded by semiconductor lasers. I was principally focused on two specific projects aligned to sponsored programs of research within the ORC pulsed fibre laser group: the first project, TSB funded project LAMPS, aimed to develop an important class of next generation laser system capable of average output powers of more than 100 W when operating in both the nanosecond and picosecond regimes. The goal was to develop a fully fiberized, polarisation maintaining, single transverse mode system. The full project included the development of the necessary diode & micro-optic systems, fibre beam delivery technology and with application focused evaluations in collaboration with our industrial partners. The main project partners were BAE Systems, Selex, Ceram, Intense Photonics, ORC, Herriot Watt University, Power Photonics, OptoCap and Rofin Sinar. I contributed to the development of the single transverse mode Ytterbium (Yb)-doped fibre system and achieved the full target specifications of 100 W of output power with single mode and single polarisation operation in both the nanosecond and picosecond regimes. In addition, second harmonic generation pumped by the fundamental beam at 1.06 µm was also achieved. In order to transfer from picosecond pulses to nanosecond pulses it is only necessary to switch the seed laser, the power amplifier system remaining unchanged making for a highly flexible system. Both fundamental and second harmonic beam were successfully used to do material processing and various high power frequency conversion experiments (visible, broadband supercontinuum and mid-IR). The second project, called HEGAC (also funded by the TSB), was a collaboration with the University of Cambridge and SPI Lasers Ltd. The aim of the HEGAC project was to develop a high power nanosecond fibre laser with an active pulse shaping capability suitable for cutting metals. This project targeted mJ pulses with more than 100 W average power at the final output – with a 200 W stretch objective. We first achieved more than 310 W using a free space seeding and pumping configuration in our laboratories proving power scaling of our proposed approach. I subsequently rebuilt and improved this system and developed a fully- fiberized version (including all pump launches). The laser was capable of generating >100 W of output power and pulse energies up to 2.5 mJ. This project also involved spatial mode as well as temporal pulse shaping. Using a pair of axicon lenses the normal Gaussian beam profile was converted to a ring shaped profile as required and the system tested up to average powers of 100 W. In addition to the normal temporal pulse shapes required using our pulse shaping system (square, triangle and step), I also achieved high average power pulses with smooth shaped pulses (Parabolic and Gaussian) using an adaptive pulse shaping technique. The laser was transported and successfully used in materials processing experiments at Cambridge, proving the robustness of the design and implementation. I also did some novel experiments on high efficiency Raman conversion exploiting the square shaped pulses possible using this laser.

Text
KKChen-thesis-final.pdf - Version of Record
Available under License University of Southampton Thesis Licence.
Download (3MB)

More information

Published date: January 2011
Organisations: University of Southampton, Optoelectronics Research Centre

Identifiers

Local EPrints ID: 207735
URI: http://eprints.soton.ac.uk/id/eprint/207735
PURE UUID: 316674df-c7bd-44fa-be81-72bd0444c63d
ORCID for D.J. Richardson: ORCID iD orcid.org/0000-0002-7751-1058

Catalogue record

Date deposited: 25 Jan 2012 11:20
Last modified: 15 Mar 2024 02:41

Export record

Contributors

Author: Kang Kang Chen
Thesis advisor: D.J. Richardson ORCID iD
Thesis advisor: A. Malinowski

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×