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Abstract

Traffic assignment, the process by which vehicle origin-destination flows are loaded on to
discrete paths traversing a road network, has been traditionally approached as a non-linear
optimisation problem where it is expected that travellers will each minimise their own travel
time. While such models are suitable for obtaining an “average’ expected network state,
traffic conditions on a day to day basis are inherently uncertain due to variations in travel
patterns and incidents such as vehicle breakdowns, roadworks or bad weather resulting in
fluctuations in realised traffic flows. Further, such models do not consider the transition from
one “average’ state to another when an aspect of infrastructure is changed such as a new
road opening or the introduction of long term roadworks.

This paper therefore examines the evolution of driver route choice over time in stochastic
time-dependent networks, specifically focusing on how individual experience of network
conditions guides future decisions and its relationship with en-route switching opportunities.
Existing algebraic and empirical models of route choice evolution are assessed (particularly
using discrete whole path choices to assess benefits of information provision) and it is
proposed that incorporating adaptive path routing based on expected correlations in traffic
flow behaviour is more suitable than fixed path models for capturing the extent of observed
uncertainty in network conditions.

We present this issue and explore through simulation a model where drivers adapt expected
road link travel times for a given trip based on a combination of previous experience and
discovered link travel times on that trip. We show how adaptive behaviour produces travel
times which are on average faster than non-adaptive behaviour, confirming the potential of
this modelling approach.

1.0 Background

Traffic assignment is the process by which expected trips between origin and destination
zones, such as residential or business districts, are loaded on to a network representation of
the transportation system under consideration. It provides a forecast of the demand placed
on each transport link which can identify areas of congestion, travel times through a region,
turning proportions at road intersections, expected revenues for charging schemes and other
measurables (see Ortuzar and Willumsen, 2001 for an overview). The usefulness of
behavioural models in the assignment process is that as well as investigating the current
state of the network it is possible to develop predictions of how flows would vary given a
different scenario or change to the system including new roads, population growth and
infrequent special events such as sporting fixtures or urban evacuation.

Every traveller traversing a road network makes his or her route choice decision in response
to their perceived expected state of the network. In the traditional context of traffic
assignment it is assumed that a rational driver will adapt his or her route choice with a non-
cooperative goal of minimising their own overall travel costs (Sheffi, 1989). Stochastic
behavioural models are further capable of dealing with errors in perception and variation in
response to cost savings. The difficulty with analysing flows within a transportation network
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is that the choices each driver makes have an impact on the rest of the system as, for
example, high flows along a road link will cause congestion thereby increasing travel time
and making that link appear less attractive in future trips. The theoretical outcome of these
adjustments to route choice is that a situation is reached where no driver can reduce their
own travel costs by switching routes. Accordingly the system finds itself in an unchanging
“equilibrium’ position as first proposed by Wardrop (1952) which is effectively a realisation of
the game theoretic concept of "Nash equilibrium’ in the context of traffic flows.

The expectation that at equilibrium all travellers moving between the same origin and
destination points have equal journey costs has prompted assignment algorithms to be
developed which are based on iterative loading (see Sheffi, 1989 for an introduction to
techniques). Here, drivers are generally assigned to routes based initially on travel times in
an empty road network (so the shortest path is preferable for all) and then proportional flows
on each route are adjusted over proceeding iterations according to route travel times as
determined by link performance functions, which determine the relationship between volume
of traffic and the corresponding travel time on a given link. While the iterative process can be
described as modelling route flows varying as drivers discover the equilibrium location, it is
not the decisions of the individual travellers being explicitly modelled - rather aggregate flows
are adjusted according to how an outside observer would expect flows to change.

Such techniques further assume that the system under consideration is an essentially static
‘average’ flow description not varying over long periods of time. It is then impossible to
capture how network flows behave between such equilibrium positions as individual drivers
adapt their behaviour and behave in apparently suboptimal ways due to the instant lack of
knowledge caused by system change such as new roads opening or road closures. Dynamic
assignment models do consider driver behaviour over time (typically on a second by second
basis over a number of hours, see Florian et al., 2008 for a recent review) and such models
can consider opportunities for en-route rerouting and so can model localised delays and the
effects of intelligent transportation systems (ITS) but generally do not feature explicit driver
learning (Barcelo, 2010).

It is asserted that one of the major issues in standard equilibrium based modelling, such as
in those described above, is the lack of appreciation for modelling the varied between-day
learning processes which impact traveller decisions, usually making them suboptimal. These
drive the system out of equilibrium for a period after any network change occurs as drivers
re-learn new or changed network characteristics. Such events include not only permanent
changes, such as new roads, but also infrequent and unexpected congestion and delays.

1.1 Existing research regarding driver learning and route switching behaviour

A number of studies have investigated driver attitudes towards route choice over successive
trips in competitive lab based experiments with participants (lida et al., 1992, Selten et al.,
2007, Ben-Elia and Shiftan, 2010, Lu et al., 2010). These have confirmed, in a controlled
environment, that human route choice decisions do tend towards a single equilibrium
position and have gone some way to quantify the impact of variable message signs and
official information in influencing driver behaviour. It is generally found that if drivers have
access to information of previous travel times on all routes through the network then flows do
settle down to an (albeit noisy) equilibrium sooner than if only experienced travel times on
their one chosen route is available (Selten et al., 2007).

Models have been developed which use agent based modelling and simulation approaches
to model the actions of individual drivers’ route choice decisions over successive trips,
similar to dynamic models analysing traffic flows varying over the course of a single day by
representing drivers individually (Horowitz, 1984, Liu and Huang, 2007, Wang and Sun,
2010, Tian et al., 2010). At present these only consider route choice on discrete paths rather
than considering options for en-route rerouting or changes in departure time which dynamic
within-day models are able to capture.

Here an agent based model is presented to represent drivers adapting expected road link
travel times for a given trip en-route based on a combination of previous experience and
discovered network conditions on that trip. The expectation of a shorter travel time, obtained
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by switching on to a potentially faster route, leads informed drivers to take advantage of such
en-route switching opportunities and changing on to a different path through the network.

2.0 Traditional approaches for modelling route choice

The simple network shown in figure 1a is an example of a two route system consisting of two
discrete links connecting a journey origin "A’ to a destination "'B’, a simple case which has
received much attention in research investigating the evolution of route choice
(Katsikopoulos et al.,, 2002, Selten et al., 2007, Ben-Elia and Shiftan, 2010). Link
‘performance functions’, which model how travel time on each link in figure 1a, t(v), varies
given the number of vehicles wishing to travel along it, v, in figure 1b are based on the BPR
(Bureau of Public Roads) link travel time function where constants chosen are similar to
empirical values (Liu and Huang, 2007) though a time unit need not be specified throughout
this work.
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Figure la (left): Network structure and 1b (right): Link performance functions

The two routes can be categorised as a "‘major route’ and a "minor route’ because the
performance profiles determine that the upper route in figure 1a can accommodate more
vehicles with a lower travel time when compared against the minor route. Throughout this
work travel time is the only factor which drivers are expected to consider when determining
the “generalised cost’ of an option, which Outram and Thompson (1978) found to be a
plausible expectation and Ortiuzar and Willumsen (2001) assert still generally holds true.

As a brief illustrative example of assigning equilibrium flows, consider the assignment of 700
drivers travelling between A and B. Intuitively from figure 1b if all drivers chose the major
route then a shorter travel time could be found by any driver switching to use the minor route
so at equilibrium the flow is shared between the two routes. Straight forward equilibrium
based assignment would therefore assign 700 drivers according to the solution of the
simultaneous equations:

Va 4 _ Vp 4
30 (1 +0.15 (ﬁ) ) = 40 (1 +0.15 (ﬁ) ) L
Vg + v, =700 2

which gives v, = 454.304 and v, = 245.696 with a travel time of 53.665 time units on
each route.

Since equated route flows do not vary between days or within days this is known as “static
assignment’ where no aspect of the system varies with time. For such a trivial system a more
sophisticated algorithm to discover static equilibrium flows need not be used, however this
approach becomes mathematically intractable as network structure becomes more complex.
Algorithms such as the method of successive averages (MSA) use discrete choice models,
such as derivations of the multinomial logit (see Frejinger, 2008 for an overview of discrete
choice modelling of route choice) to assign flows on more complex networks.
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As an example of the issues which are addressed here, consider a temporary reduction in
speed limit along the major route. Given the formulations above it would be expected that, to
compensate for a higher travel time on the major route, a number of drivers would switch on
to the minor route so returning the system to equilibrium flows. Existing techniques tell us
nothing of how flows adapt to this new equilibrium and how long this process would take so
now a richer representation of driver knowledge is considered here.

2.1 Agent based assignment featuring explicit individual learning

’

Agent based models of route choice behaviour represent each driver individually as “agents
so the decision to choose one route rather than another is based on the expected travel time
of each route according to each agent’s (accumulated) heterogeneous knowledge. Once a
trip has been completed the agent is able to update their expectation of travel time so adding
the experience gained from that trip. The formulations of individual knowledge and route
choice decision used here are the same as proposed in Liu and Huang (2007), Wang and
Sun (2010) and Tian, Huang and Liu (2010).

To model the two route system each simulated driver should hold an expectation of the

travel time on each route through the network, Tfl't) which is the perceived travel time by

driver i on route r (belonging to the set of routes, R,,) between origin and destination pair w
(belonging to the set of pairs W) on trip number t. A trip is defined as a single unidirectional
journey from an origin to a destination so often in the study of commuter behaviour one trip
equates to a journey to a workplace on a single day (such as in Selten et al., 2007).

An agent’s ‘strategy’, being the decision to choose a particular route, is determined by a

straight forward logit function which determines the probability that a route r is chosen by
, : (it+1) |
agentiontript +1, p; :
(t+1) _  exp(-07EtD)y
N =

r€R,,wEW 3)

3 jery, exp(-07, )’
In this function 6 is a scaling parameter which sets the sensitivity to a unit change in 7. At the
end of a trip 7 is updated according to the reinforcement learning model:

Tﬁl’tﬂ) = acr(l'tﬂ) +(1- a)rﬁl't), a€[01],reR,,weEW (4)
where a represents a learning rate and cﬁl't) is the experienced travel time on trip ¢,
calculated directly from the functions in figure 1b so varies with flows along each link and
providing feedback from the decisions of other agents. As in reality, agents all play in “one
shot’ competitive games meaning that once all agents have decided upon a route choice,
route travel times are calculated and agents are informed of the resulting cr(i‘t) for their given
choice. Updating of route choice then occurs prior to the next round of the game.
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Figure 2a (left): Evolution of flows and figure 2b (right): travel time

Figure 2 shows the result of simulating 700 agents which are initialised with equal
expectations of travel time on each route, so have no preference to choose one route over
the other. Qualitatively these trends agree with those found by Liu and Huang, (2007) and
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Wang and Sun (2010). After an initial period of exploration, flows within the closed system
settle to an equilibrium position of approximately the same number of agents using each
route as is found by the previously shown static assignment case.

Such agent based approaches are therefore suitable for describing individual learning on a
static network so go some way towards answering the question of how flows evolve between
trips. Crucially however this representation can also be used as a base for studying rerouting
behaviour, where a traveller decides en-route to abandon their initial route choice and
pursue an expected faster alternative based on experience accumulated over previous trips.

2.2 Agent based assignment in stochastic networks with en-route rerouting

Thus far the only known examples of using agent based assignment to investigate flow
evolution in transport networks has been through simulation of whole discrete path choice as
in section 2.1 and some extensions in to mode choice switching (Wang and Sun, 2010). A
recent study has highlighted the impact of strategic en-route rerouting in response to variable
message signs in a participant based lab experiment over consecutive trips (Lu et al., 2010).

“Strategic rerouting’ is performed within trip in response to information gained prior to a route
switching opportunity (see Gao et al., 2010 for further description). In the case of Lu, Gao
and Ben-Elia’s study this information was provided by a variable message sign placed prior
to a junction in an experimental network similar to that described in figure 1. The variable
message sign informs travellers whether a single link is “perturbed’. In this sense perturbed
means a randomly occurring event giving rise to a deterministic increase in travel time -
caused by factors such as an incident or bad weather - and modelled by the link adopting a
‘'worse’ performance function. Lu, Gao and Ben-Elia found evidence that drivers not only
changed their route choice in response to this information when it was received, but were
also likely to adapt their route choice in order to gain the information from passing the sign.
Such information seeking behaviour has also been reported within a review of studies
observing driver behaviour on “real world’ road networks (Chorus et al., 2006).

Here the impact of en-route rerouting behaviour is explored based not on official information
but instead from experience alone and the ability of drivers to infer downstream network
state based on previously discovered correlations. Our network model, shown in figure 3, is
an adaptation of the two route system as in figure 1, where the ‘major route’ is now
comprised of links 0 and 2 and the ‘minor route’ is comprised of links 1 and 3. Two (low
capacity) connector links — links 4 and 5— are added which enable travellers to switch
between the major and the minor routes at the half way positions of each route.
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Figure 3a (top): Network structure, figure 3b (top right): Clear and perturbed link profiles for
major route links, figure 3c (below left): link profiles for minor route links and figure 3d (below
right): Link profile for connector links 4 and 5 with free flow travel time, p = 10.0
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The model will be explored by adjusting the “cost of switching’, being a linear measure of
how much of a time penalty a driver incurs when switching between major and minor routes.
This is represented by a variation of the free flow travel time,p, on the connector links as in
figure 3d.

The four routes now traversing the network in figure 3 are:

Firstlink | Second link | Third link | Route nhame

Link 0 Link 2 - Route A (major route)

Link 0 Link 4 Link 3 Route B (major to minor route)
Link 1 Link 3 - Route C (minor route)

Link 1 Link 5 Link 2 Route D (minor to major route)

Table 1. Description of routes through network shown in figure 3

Conditions are imposed under which the links forming the major and minor routes can
become perturbed and adopt the “perturbed’ link profile shown in figures 3b and 3c. In this
model no form of pre-trip information is featured (such as social, internet, television or radio
based advice) which could inform drivers of whether a link will be perturbed or not. The
externally set conditional probabilities of links being perturbed are shown below. Notice that
there is zero probability that downstream links (beyond the switching opportunities) become
perturbed unless the upstream links on the same route (major or minor) are already
perturbed. The notation P(LOp) is used to denote the probability that link O is perturbed and
P(LO) is used to denote the probability that link O is clear.

P(LOp) = 0.1 (5)
P(L2p|LOp) = 0.85 (6)
P(L1p) = 0.15 @)
P(L3p|L1p) = 0.9 )

In our model agents are initially unaware of both link travel times, as in the simple model
described in section 2.1, and now also the correlations between perturbed link states on links
as described above. As with real world drivers, agents here must form their own knowledge
of network conditions, although it should be remembered that real world drivers usually have
more information available to them than this ‘learn from direct experience alone’ based
approach such as signage and radio based advice. For simplicity it is also specified that
drivers are aware that perturbations will only propagate downstream (towards the destination
'B’) so the expectation of links 0 and 1 being perturbed are independent of the expectation of
perturbation on links 2 and 3.

As per our definition of “perturbed’ links, being caused by observable effects such as bad
weather or incidents, it is supposed that an agent, i, is aware when they have experienced

perturbed conditions, and so can differentiate between unperturbed, yl(i't), and perturbed,

a)l(l’t), expected travel times for a given link, [ on trip t. The update mechanism for both
perturbed and unperturbed travel times remains the same as was previously proposed in

section 2.1;
yl(i'tﬂ) = acl(i'tﬂ) +(1- a)yl(i’t), a €[0,1] if link [ is not perturbed  (9)

a)l(i’t“) = acl(i’t“) +(1- a)wl(i’t), a €[0,1] if link [ is perturbed (10)

The formulation of expected travel times for a given route now becomes more complex due
to the stochastic nature of the network. The statistical independence of the probabilities of
links 0 and 1 being perturbed means that an agent’s expectation of these links being
perturbed is simply given as the experienced fraction of the link i being perturbed, f;:
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P(LOp) = fo, P(LO)=1—f, (11)
P(L1p)=f,, PU)=1-f 12)

To facilitate the learning of correlations between links which can become perturbed each
agent is equipped with two correlation matrices of size NxN, where N is the number of links
which can become perturbed, shown below.

doo <+ dy-1p Coo ° Cn-10
D= : : C= : : (13)
don-1 = dy-—1n-1 Con-1 *° CN-1N-1

Where dl-,j is the correlation that link i is also perturbed given that link j is found to be. A
value of di,j = 1 implies that link i is always perturbed when link j is and di,j = 0 implies no
correlation so the relationship is random.

Similarly the “clear conditions’ correlation matrix, C, behaves in the same manner except it
models the correlation between link i being perturbed given that link j is experienced to be
clear. A value of ¢;; = 1 implies that link i is always clear when link j is perturbed and
¢;,j = 0 implies no correlation.

Every time an agent completes a trip the matrices C and D are updated with the experiences
gained from that trip. If the relationship has been found that link i is perturbed given that link
Jj is then +1 is added to the set of found relationships which inform d; ; and if the criterion is
not met then a -1 is added. This is also the update mechanism for the C matrix. The specific
values of d; j and ¢; ; are then the mean average of this set (with the exception that this

cannot return negative, if a correlation is found to be less than zero a value of 0.0 is
returned).

The formulation of expectation of perturbations on downstream links is more of a challenge
to implement since agents are unaware of the correlations which feature in perturbation
propagation downstream. Using the assumption that perturbations can only propagate
downstream the following equations can be used for determining the expected likelihood of
the state of a downstream link, E[P(...)], using the total probability theorem:

E[P(L2p)] =
E[P(L2p|LO,L1)]-E[P(LO,L1)] +
E[P(L2p|LO, L1p)] - E[P(LO, L1p)] +
E[P(L2p|LOp,L1)] - E[P(LOp, L1)] +
E[P(L2p|LOp, L1p)] - E[P(LOp, L1p)] (14)
The issue when trying to apply this model is that agents never have access to the knowledge
relating to the state of links 0 and 1 simultaneously. Instead equation 14 can be rewritten to

allow for the determination of the expected probability of a link being perturbed based on
actual experience:

2-E[P(L2p)] =
E[P(L2p|LO)] - E[P(LO)] +
E[P(L2p|LOp)] - E[P(LOp)] +
E[P(L2p|L1)] - E[P(LD)] +
E[P(L2p|L1p)] - E[P(L1p)] (15)

2-E[P(L2p)] =
20 (1= fo) +
dzo - (fo) +
czp (- f)+
dy1- (f1) (16)
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As equation 16 shows the expected probability of a downstream link being perturbed can
now be calculated. Similarly the expectation of link 3 being perturbed is given as:

2-E[P(L3p)] = c30 (1 —fo) +d30- (fo) +c31- (1 — f1) + d31 - (f1) (17)

The aim of this model is to allow agents to combine information accrued on previous trips
with information obtained en-route in order to facilitate the possibility of an agent recognising
that it would be more beneficial to switch routes than remain on a route which is
experiencing perturbations which are expected to continue. Accordingly at the route
switching opportunity agents re-evaluate route travel times given the conditions they have
experienced.

2-E[P(L2p)] =200+ dyo 1+ cy1 (1 —f1)+dy - fi Iflink O found perturbed (18)
2-E[P(L2p)] =20 1+dy0-0+cyq (1 —f1)+dyq-f1 [Iflink O found clear (19)
2-E[P(L2p)] =20 (1 —fo) +dap fo+C21°1+dzq-0 Iflink 1 found clear (20)

2-E[P(L2p)] =20 - (1= fo) +dao-fo+c1-0+dy; -1 Iflink 1 found perturbed (21)

Similarly for link 3:

2-E[P(L3p)] = c30°0+d3o-1+c3, - (1—f1)+d3q-fi Iflink 0 found perturbed (22)
2-E[P(L3p)] =30 1+d30:0+c3,°-(1—f1)+d3;-f1 Iflink 0found clear (23)
2-E[P(L3p)] = c30 - (1 —fo) +d30-fo+c31°-1+d3;-0 Iflink 1 found clear (24)

2-E[P(L3p)] =c30- (1 —fo) +d3g-fo+c31-0+ds;-1 Iflink 1 found perturbed (25)

When forming the expectation of link travel times, agents use the following formulation which
creates an "average’ expected travel time on a link, combining the expectation of a link being
perturbed and the expected travel times given perturbations:

o9 = B[P(LIp)] -y + B[PUD] - w4+
= E[P(LIp)] - v + (1 — E[P(LIp)]) - 0+ D (26)

The actual route choice decision is then based upon the simple logit model as in equation 3,
where route travel times are found as the sums of expected travel time along links forming
the whole route.

3.0 Result of simulation incorporating en-route rerouting opportunities

The simulation model was entirely developed in C# featuring a custom netlist parser which
was supplied with a description of the network shown in figure 3 featuring link delay
interdependencies specified in equations 5-8. 700 driver agents were initialised with naive
intelligence as is described in the model description in section 2.3 and allowed to evolve their
route choice preferences over a period 6000 trips. The general results of a run of the
simulation are shown in figure 4.

Figure 4 shows the outcome of our model facilitating route switching behaviour with ¢ = 0.1,
B =0.01 and p = 10.0. It shows that the system does reach the theoretical equilibrium
position where agents begin their trip choosing to travel along the four routes. Clearly visible
is that driver agents do take advantage of the route switching opportunities when a delay
causing perturbation occurs, causing the large fluctuations in route flows after the switching
opportunity. These fluctuations also generally correspond to drivers deserting the “major’ or
‘minor’ routes in favour of the other. One clear observation is that while at equilibrium one
would not expect link 4 to handle any traffic at all, if the first half major route is delayed then
approximately one fifth of all network traffic traverses link 4 because agents have learned
that link 2 will probably also be perturbed and a shorter travel time can be found by diverting.
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Figure 4. Flows varying across all four routes in a single simulation run with route switching
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Figure 5. Change in flows relative to a perturbation at various trip numbers throughout the
simulation
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To illustrate the presence of evolution of switching behaviour figure 5 shows how flows
switching between the “major route’ (route A) to “major route to minor route’ (route B) vary
across trips leading up to a trip where a perturbation on link 0 (the first link of the major
route) at trip O relative to a perturbation. Initially agents have no conception of the benefit of
switching, so the experience of 6 trips line fluctuates more than at later periods and holds
little or no response to the perturbation. As the time progresses more agents ‘learn’ the
benefit of switching to avoid expected perturbations, thus the spike increases.

The existence of four possible network configurations upstream of the switching opportunity
results in four realised possible sets of equilibrium flows across the network:

Upstream Conditions | Link 0 Link 1 Link 2 Link 3 Link 4 Link 5

LO clear,
L1 clear 358.951 | 341.050 | 393.418 | 306.583 | 0.000 34.467

LO clear,

L1 perturbed 358.942 | 341.058 | 479.170 | 220.830 | 0.000 120.228

LO perturbed,

L1 clear 358.845 | 341.155 | 260.170 | 439.830 | 132.888 | 34.213

LO perturbed,

L1 perturbed 360.500 | 339.500 | 346.750 | 353.250 | 133.417 | 119.667

Table 2. Equilibrium network flows in the four possible network states prior to switching

Table 3 shows how the mean travel time for agents varies as the “cost of switching’, p, is
increased (discouraging use of “major to minor’ and “minor to major’ routes) and then when
route switching is not available (so agents cannot adapt their route in response to
perturbations). Clearly route switching is encouraged when agents are able to do so, as in
this scenario a lower mean travel time is found.

Simulation experiment Mean travel time (units)
p=10.0 Runs with 0 perturbed links 86.475
(With switching) Runs with 1+ perturbed links | 446.420
All 2000 runs at equilibrium | 172.502
p=500.0 Runs with 0 perturbed links 89.477
(With switching) Runs with 1+ perturbed links | 502.071

All 2000 runs at equilibrium | 189.623

p=10.0 Runs with 0 perturbed links 95.177

(Without switching) | Runs with 1+ perturbed links | 503.868

All 2000 runs at equilibrium | 190.402

Table 3. Mean travel times for agents in simulation runs with varying cost of switching

These results verify that a simulation model has been developed which illustrates that if
drivers are equipped with the ability to learn the correlations between found delays on links,
such that given a set of observable network conditions they are capable of inferring future
conditions on the network, they can undertake strategic rerouting in order to avoid expected
upcoming delays.

4.0 A different equilibrium?

Perhaps the key finding from this model is shown in figure 7, comparing the initial route
choice equilibrium flows when varying the probability of link O being perturbed for both the
non route switching and route switching behaviour. Since initial route choice is being
examined here it can be assumed that these observations are valid for describing whole
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network flows on totally unperturbed trips (entirely clear days) as standard equilibrium
models predict as described earlier.

Intuitively as the probability of link 0 being perturbed increases, the attractiveness of the
entire major route (route A) falls (due to the correlation between upstream and downstream
links) and at some probability the minor route (route C) becomes more appealing as an initial
route choice. Figure 6 shows that when allowing switching the major route can actually
remain the favoured choice for higher probabilities of perturbations occurring. This is
because with route switching enabled agents expect a portion of others to switch off the
major route in response to a perturbation, practically resulting in a lower expected perturbed
link travel time, than if all agents using the major route are unable to switch.

Without route switching

1 With route switching

1 :
o =% A, Major Route * =>=A, Major Routg
- 4B, Major -> Minor Route z “+B, Major -> Minor Route
= 0.8f C, Minor Route 1 = 0.8 C, Minor Route
3 =¥D, Minor -> Major Route El =¥ D, Minor -> Major Route
= | « L
5 Cl.ﬁ> S 06)\‘
b= b=
=\, e
So04p * S04 M
5 TN 5
=02} 202
g k. ol o
& ,r»#-#-ﬂ?#:,*_* e 0 4 |
% o0z 04 08 08 1 o TR T o T Tl
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Figure 6a (left): Equilibrium whole route flows under non route switching behaviour and
figure 6b (right): Equilibrium whole route flows with route switching capability

Although the major route (route A) remains more the more attractive route option for an
extended period, found in figure 6, figure 7 shows how the corresponding flows on the major
route upstream link O (figure 7a) and downstream link 2 (figure 7b) vary with the probability
of perturbations occurring, taking in to account the impact of agents which start their journey
intending to use routes B and D. Here link O flows are approximately the same for all
variation in perturbation probability because in the “without switching’ case a portion of
travellers intend to switch on to the minor route (using route B), which does not occur in the
‘with switching’ scenario. Accordingly in the “with switching’ case flows are higher on link 2
because the proportion which use route B has already diverted along connector link 4.

1

1

=}-=With route switching
=¥=\\\lithout route switching

=}=With route switching
=»=\\ithout route switching

08¢

.*‘*~+.-+

0.4 ~~a

0.2 0.2

Equilibrium proportional flows on link 0

Equilibrium proportional flows on link 0

0 02 0.4 06 06 1 0 02 0.4 06 08 1
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Figure 7a (left): Equilibrium flows on link 0 on unperturbed conditions and figure 7b (right):

Equilibrium flows on link 2 in unperturbed conditions

5.0 Conclusions

By including the ability for travellers to divert in the presence of individually perturbed links,
the network exists as a set of multiple (in this case, four) potential equilibrium flows,
dependent on upstream conditions determining how travellers react to the perturbation
configurations. It is not difficult to imagine such an outcome occurring in an urban network

This paper is produced and circulated privately and its inclusion
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where drivers have one set of preferred routes given particular observable system conditions
— such as no delays on a main carriageway — and a different set of preferred routes used
given those conditions being different — such as delays or incidents occurring.

It has also been shown that the novelty in the approach of modelling switching behaviour is
found in the observation that clear condition equilibrium flows are different when compared
with modelling whole route choice, as existing equilibrium approaches do. This is because
drivers are implicitly being modelled as reacting to risk and learn that even in perturbed
conditions the option exists to switch away from a poor decision, whereas in the whole route
choice case drivers are locked in to one path. Accordingly an extension to this model would
be to incorporate observed (often counter-intuitive) reactions toward risk behaviour (see
Katsikopoulos et al., 2002) rather than the ‘rational traveller model presented here.

Generally, modelling the reactions of drivers to information gained en-route, and its
relationship to knowledge held by drivers prior to beginning a trip, is important to
understanding how flows vary in a transport system as has been shown here. Further, this
includes not only correlations between stochastically perturbed roads, as explored here, but
other information sources such as variable message signs, media outlets, social contacts or
simply “variety seeking’ which all count as viable extensions for research.
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