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In this thesis we study analytic techniques from operator theory that
encapsulate geometric properties of a group. Rapid Decay Property
(Property RD) provides estimates for the operator norm of elements
of the group ring (in the left-regular representation) in terms of the
Sobolev norm. Roughly, property RD is the noncommutative analogue
of the fact that smooth functions are continuous. Our work then con-
centrates on a particular form of an approximation property for the
reduced C*— algebra of a group: the invariant approximation prop-
erty. This statement captures a particular relationship between three
important operator algebras associated with a group: the reduced C*—
algebra, the von Neumann algebra, and the uniform Roe algebra. The
main result is the proof of the invariant approximation property for
groups equipped with a conditionally negative length function. We
prove also that the invariant approximation property passes to sub-
groups and then discuss the behaviour of the invariant approximation
property with the respect to certain classes of extensions. We show
that the invariant approximation property passes to direct products
with finite group. We show that the invariant approximation property
passes to extensions of the following form. If G is a discrete group and
H is a finite index normal subgroup of G with AP,

l1—H—G—G/H—1
then G has IAP.
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CHAPTER 1

Introduction

1.1. Motivation and statement of the results

The study of C*— algebra consists of two parts; one is concerned with
the intrinsic structure of algebras and the other deals with the represen-
tations of a C*— algebra. We lay the foundations for later discussion,
giving elementary results on Banach algebra [2] and C*-algebra [13].
Von Neumann introduced the theory of operator algebra and in 1943
[31], the work of Israel Gelfand, Mark Naimark and Irving Segal pro-
posed an abstract characterization of C*— algebra making no reference
to Hilbert space. It is generally believed that C*— algebra were first
considered primarily for their use in quantum mechanics as model al-
gebras of physical observables. In the case of the reduced C*— algebra

that space is a space of representations of the group.

The purpose of this thesis is to provide an illustration of an interesting
and nontrivial interaction between analytic and geometric properties
of a group. We provide an approximation property of operator al-
gebras associated with discrete groups. There are various notions of
finite dimensional approximation properties for C*— algebra and more
generally operator algebras. Among these are the completely bounded
approximation property (CBAP), the strong invariant approximation

property (SIAP), the approximation property (AP), the operator space
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approximation property (OAP), the strong operator space approxima-
tion property (SOAP) and exactness, and the reader is referred to [7],
[19] and [36] for these a interesting concepts. A first result in this
direction was Haagerup’s [18] discovery that that the reduced C*—
algebra F,,, n > 2 has the metric approximation property. Another
important theorem, due to Lance [27], states that a group is amenable

if and only if reduced C*— algebra is nuclear.

For the reduced C*— algebra of a discrete group most of these approx-
imation properties have a number of equivalent reformulations in term
of the discrete group: Haagerup and Kraus have proved in [19], that
approximation property (AP) of G is equivalent to the SOAP of C*(G)
and to the OAP of Cf(G), Haagerup proved in [19], that the CBAP
for C¥(G) is equivalent to the weak amenability of G. Approxima-
tion properties of group C*— algebra are now important tools in group

theory.

Let G be a discrete group, then the characteristic function d,(s) of
g,s € G is defined as follows [13]:

1 ifg=s
) = ’
o(9) {O if g # s.

If we assume that the G is a discrete group then the functions d, form
a basis for the Hilbert space £*(G) of square summable functions on G.

P (G) = {f : G — C such thatz 1f(n)|” < oo}

neG

One defines a scalar product as follows: For f, g € (*(G)

(fog9) = fn)g(n)

neG
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Any element of /?(G) can be expressed as an infinite linear combination
of &, with square summable sequence. Let ¢*(G) be Hilbert space, the
algebra B((*(G)) of bounded linear maps from ¢*(G) to itelf is a C*—

algebra for the operator norm.

The group ring C[G] consists of all finitely supported complex-valued

functions on G, that is of all finite combinations

f=2 as
seG

with complex coefficients.

Let us recall the left and right regular representation and reduced C*—

algebra of a discrete group. The left regular representation
M : C[G] — B(*(@Q))
is defined by
A(8)6:(r) = 6,(s7'r) = 0 (r) for s,7 € G.
The right regular representation
p: ClG] = B(*(G))
is defined by
p(8)0:(r) = 6¢(rs) = 051 (r) for s,r € G.

The reduced C*— algebra C}(G) of a group G (which we shall assume
to be discrete) arises from the study of the left regular representation
A of the group ring C[G] on the Hilbert space of square-summable
functions on the group. The reduced group C*— algebra GG, denoted

by C}(G) is the completion of C[G] in the norm given, for ¢ € C[G],
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by

lelly = T
In the context of coarse geometry introduced by Roe [30]. There is a
natural way to associate a C*— algebra with a discrete metric space
X. We shall denote the algebra of bounded operators associated with
finite propagation kernels on X by A*(X). The uniform Roe algebra
of a metric space X is the closure of A*(X) in the algebra B({*(X))

of bounded operators on X.

The reduced C*— algebra C5(G) is naturally contained in C}(G) [30].
According to Roe [30] G has the invariant approximation property
(IAP) if and only if

CA(G) = CH(G)°.
It is an interesting problem to determine which groups have this prop-

erty.

An important ingredient in our study is the property RD of P. Jolis-
saint’s results [21]. Let G be a discrete group. A length function on
G is a map ¢ : G — R taking values in the non-negative reals which

satisfies the following conditions:

(1) ¢(1) = 0 where 1 is the identity element of the group;
(2) For every g € G, l(g) = (g7 );
(3) For every g,h € G, £(gh) < {(g) + ((h).

For any length function ¢ and positive real numbers, we define a Sobolev

norm on the group ring C[G] by[21]:

Hf!le,s:\/ZIf (14 007))2

veG
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Following Jolissaint [21], we say that G has the Rapid Decay property
(property RD) with respect to the length function ¢ if there exist C' > 0
and s > 0 such that, for all f € C[G],

1AL < C Nl

where || f]|, denotes the operator norm of f acting by left convolution
on (?(G) The rapid decay property for groups, generalizes Haagerup’s
[18] inequality for free groups and so for example of free groups have

property RD

This property RD for groups has deep implications for the analyti-
cal, topological and geometric aspects of groups. Jolissaint proved in
his thesis that groups of polynomial growth and classical hyperbolic
groups have property RD, and the only amenable discrete groups that
have property RD are groups of polynomial growth. He also showed
that many groups, for instance SL3(Z), do not have the Rapid Decay

property [21].

Examples of RD groups include group acting on CAT(0)-cube com-
plexes [12], hyperbolic groups of Gromov [16], Coxeter groups [12],

and torus knot groups [22].

Having introduced the basic notations, we study the interaction be-
tween property RD and the invariant approximation property, and
in particular we show that the invariant approximation property for
groups equipped with conditionally negative length function. We use
the proof requires working familiarity with elements of von Neumann
algebra theory, C*— algebra, property RD, and key features of the

uniform Roe algebra.
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Our main result in this direction is the following (see Theorem 4.3.3).

THEOREM 1.1.1. Let G be a discrete group satisfying the rapid decay
property with respect to a conditionally negative length function €. Then

the group G has the invariant approzimation property.

We then use this to show the following groups have invariant approxi-

mation property (see Examples 4.3.5, 4.3.6, 4.3.7, 4.3.9 and 4.3.11):

e The classical hyperbolic group
e Hyperbolic groups

e C'AT(0)-cubical groups

o finitely generated Coxeter group

e Torus Knot group

We also that if G is a free product group satisfying the rapid decay
property with respect to a conditionally negative length function ¢,
then the group G has the invariant approximation property (see Ex-

ample 4.3.14).

We give a general exposition of approximation properties which were
initiated by Grothendieck [5]. His fundamental ideas have been ap-
plied to the study of groups and these noncommutative approximation
properties have played a crucial role in the study of von Neumann al-
gebras and C*— algebra. Some weaker conditions (i.e., weak amenabil-
ity and the approximation property) for locally compact groups have
been studied by Haagerup and Kraus [19]. We recall basic definitions
of approximation properties. Let C*— algebra A is said to have the
completely bounded approximation property (CBAP) if there is a pos-

itive number C' such that the identity map on A can be approximated
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in the point norm topology by a net {¢,} of finite rank completely
bounded maps whose completely bounded norm are bounded by C,
that is if there exists a net of finite-rank maps {¢,} : A — A such
that ||¢a]|, < C for some constant C' and ¢, — id, in the point-
norm topology on A. The infimum of all values of C' for which such
constants exist is denoted by An(A) [19]. We say that discrete G is
weakly amenable if there is an approximate identity (¢,) such that

C :=sup || My, || < cc.

There are many other interesting approximation properties for C*—
algebra. It is shown in [19] that a C*— algebra A has the operator
approximation property (OAP) if there exists a net of finite-rank maps
T, : A — A such that T, — id 4 in the stable point-norm topology.
The discrete group G has the approximation property (AP) if there is
anet {¢,} in A(G) such that My, — ida() in the stable point-norm
topology on A(G) [19]. Haagerup and Kraus (see [19]) show that a
discrete group G has the approximation property (AP) if and only if

C*(G) has the operator space approximation property (OAP) [19].
In particular, there is the following implication for discrete groups:

CBAP = AP = IAP.

We then use this to show the following groups have invariant approxi-

mation property:

e Amenable groups

e Hyperbolic groups [29]

e C'AT(0)-cubical groups [32]
o SLy(Qp) [4]-
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We give a general exposition of invariant approximation property(IAP),
which was initiated by Roe [36]. We study certain stability properties
of invariant approximation property, and we show that it passes to
extensions with a finite quotient, passes to subgroups and holds for
direct products with finite group. An important result of this thesis is

the following (see Theorem 6.1.1).

THEOREM 1.1.2. Any subgroup H of a discrete group G with the invari-

ant approrimation property has the invariant approximation property.

Brodzki, Niblo and Wright [6] show that the uniform Roe algebra of
metric space is a coarse invariant up to Morita equivalence. We trans-
late this result to the case of a coarse equivalence of metric spaces
X — Y x N, where N is finite. We use this to show that the invari-
ant approximation property passes to direct products with finite factor

(see Theorem 6.3.2).

THEOREM 1.1.3. Let H be a discrete group with the IAP and K a finite

group, then the direct product G = H x K has IAP.

Our final result is to show that the invariant approximation property

passes to finite extensions (see Theorem 6.2.3).

THEOREM 1.1.4. Let G is a discrete group and H is a finite index

normal subgroup of G with IAP,
l—H—G—G/H—1

then G has the IAP.
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1.2. Organisation of the thesis

The following is a rough synopsis; see the start of each chapter for a
more detailed outline: In Chapter 2, we explain some basic facts about
C*— algebra (see section 2.1), the left and right regular representation
(see section 2.4), weak topologies (see section 2.2) and Von Neumann
algebras (see section 2.3) [31], [13]. In Chapter 2, we also explain

tensor product of C*— algebras (see section 2.6).

In Chapters 3 to 6 have we develop various aspects of invariant ap-
proximation property. In Chapter 3, we recall coarse geometry, uni-
form Roe algebras, and the invariant approximation property under
sections 3.1, 3.2, and 3.3 respectively. In Section 3.3 contains a dis-
cussion of the role played by the left or right-invariance of the metric.
In Chapter 3, we show that uniform Roe algebras can be expressed as

crossed products.

In Chapter 4, we explain the basic notions related to property RD for
discrete groups. In Section 4.2, we study positive and negative type
kernels. In this chapter, we prove that for a discrete group G satisfy-
ing the rapid decay property with respect to a conditionally negative
length function ¢, the reduced C*— algebra C5(G) has the invariant
approximation property (see Theorem 4.3.3). We also provide some
examples of groups ( see Corollory 4.3.5, 4.3.7, 4.3.11, and 4.3.14) that

have invariant approximation property of Theorem 4.3.3.

Chapter 5 contains the basic definitions of various approximation prop-
erties. In Section 5.2, we study strong invariant approximation prop-

erty. This chapter also shows relationship among the CBAP, AP and
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IAP (see Proposition 5.2.11), and IAP and SIAP (see Proposition 5.3.3).
We show that the strong approximation property pass to semi di-
rect products (see Proposition 5.4.2), and extensions for discrete exact
groups (see Proposition 5.3.6). Section 5.5 provides an example, which

does not have SIAP.

In Chapter 6, we show the a relationship between uniform Roe algebra
and coarsely equivalence metric space (see Theorem 6.2.3). In addition
to this we show that the invariant approximation property passes to
subgroups (see Theorem 6.1.1), direct products with a finite group (see
Theorem 6.2.4), and finite extensions (see Theorem 6.3.2). There are

the main results of this thesis.



CHAPTER 2

C*— algebra theory

We assume that the reader is familiar with basic notions in operator
algebras (the reader is referred to Takesaki [31], Blackadar [2], Effros
[15], Davidson [13], Brown and Ozawa [7] and Wassermann [33]). The
aim of this chapter is to introduce some of the important topological
techniques in the study of operator algebras, and in particular C*—
algebra. For the most part, this chapter consists of basic definitions of
C*— algebra and related topics. In Sections 2.4, 2.5, we study the left
and right regular representations and the reduced group C*— algebra.
In Sections 2.2, 2.3, 2.6 of this work, we explain some basic facts about
weak topologies, Von Neumann algebras and tensor product of C*—

algebra.

We first recall some basic facts about C*— algebra.

2.1. Basic definitions
Most of the definitions given in this section is taken from [31] and [13].

DEFINITION 2.1.1. A complex normed algebra & which is complete (as

a topological space) and satisfies the inequality
|AB|| < ||A]| ||B|| forall A,Bei

is called a Banach algebra.

15
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DEFINITION 2.1.2. We say that i is Banach x— algebra if 4 is a com-
plex algebra with a conjugate linear involution * (called the adjoint)

which is an anti-isomorphism. It is endowed with a map
w0 U — 3

given by
x: A— A7,
satisfying the following properties: For all A, B in i and )\ in C,

(A+B)" = A"+ B*

(M) =24
A = A
(AB)* = B* A",

We say that U is C*— algebra if it is a Banach x— algebra with the

additional norm condition

|A*A|| = ||A||? for all A € 4.

ExAMPLE 2.1.3. The algebra of all bounded operators on a Hilbert
space H is a C*— algebra. Denote B(H) is the C*— algebra with

n

respect to the operator norm. When H = C", we get the algebra

M,,(C) of n x n matrices with complex entries.

REMARK 2.1.4. Every finite dimensional C*— algebra is a finite prod-

uct of full matrix algebras.
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ExaMPLE 2.1.5. Given a locally compact space X, the C*— algebra
Co(X) of continuous functions X to C, vanishing at infinity, is a com-

mutative C*—algebra when equipped the norm

/Il := sup [ f ()],
rzeX

and the adjoint

f(x) = f(@).

REMARK 2.1.6. A norm closed subalgebra of a C*— algebra is also C*—
algebra. A norm closed subalgebra of B(H) will be called a concrete

C*— algebra.

DEFINITION 2.1.7. [3] A bounded operator T : H — H' is a compact
if the image by T'B; of the closed unit ball By in H is relatively compact
#H'. This is equivalent to saying that whenever {z,} is a bounded se-
quence in ‘H, we can select a subsequence {x,, } such that the sequence

Tx,, } converges.
{Tn.} g

The linear space of all compact operators from H to H is denoted by

K(H,H'). We write K(H) instead of K(H, H).

DEFINITION 2.1.8. We say that an element A of a C*— algebra 4 is
self-adjoint if A* = A; N is normal if N*N = NN*; N is an isometry
if NN* =1I; and U is unitary if U*U =1 = UU*.

DEFINITION 2.1.9. A linear functional ¢ : A — C on a C*— algebra
A is positive if and only if

¢(z*x) > 0 for all z € A.

A positive linear functional of norm one is called a state [2].

If ¢p(z*z) # 0 for every nonzero = € A, then ¢ is said to be faithful.
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DEFINITION 2.1.10. A map between C*— algebra which preserves sum,
scalar multiplication, product, and adjoint, is called a *x— homomor-

phism.

Maps between C*— algebras can be extended to maps of matrix alge-

bras in the following way. Let A and B be two C*— algebras and
p:A— B

be a linear map. Then

¢ ®idy, » My(A) — M,(B),

(aiz) — (d(ai;))
is a linear map, denoted by ¢,,. If ¢ is a *— homomorphism then ¢,, is
also x— homomorphism. The completely bounded norm of ¢ is defined

as
6]l = sup {l[@nl| - n € N}.

We say ¢ is completely bounded if
6]l = sup {llgnl : 7 € N} < oo

We define the CB(A, B) as the space of completely bounded maps from

A to B with completely bounded norm.
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2.2. Weak topologies

There are several important topologies on B(H) that are weaker than
the norm topology. The weak operator topology (WOT) on B(H) is

defined as the weakest topology such that the sets

WHT,z,y} ={U € B(H) : ((T —U)x,y) <1V T € B(H) and z,y € H}

are open [13]. The sets

WAT, @, y;1 < i <n} = (\W{T, i, y:}

i=1

form a base for the weak operator topology.

DEFINITION 2.2.1. [13] A net T, converges to T, for @ € A (index
set) in the weak operator topology (7, Wor ) if and only if for all
x,y € H, (Thx,y) — (Tz,y) i.e, there exists a continuous linear

functional ¢ : H — C such that ¢(7,) — ¢(T).

The strong operator topology (SOT) is defined [13] by the open sets
WAT, 2} ={U € B(H): (T - U)z|| <1V T € B(H)and z € H}.
DEFINITION 2.2.2. [13] We say that T,, o € A (index set), a net T,

converges to T in the strong operator topology (7, 501 T) if and only

if for all x € H, lim, T,x = Tx.

Next we also explain the Von Neumann algebra. The following is taken

from [31] and [13].
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2.3. Von Neumann algebra

DEFINITION 2.3.1. Let M be a subset of B(H), let the commutant of
M be defined as

M ={Se€B(H):YT €M, ST=TS}.

REMARK 2.3.2. If M is self-adjoint, then M  is a self-adjoint unital

i

algebra. If M' = M then (M')* = M’ and also M~ := (M'), and

"

M" = (M"Y, etc. If M" > M and M C T. Then M" C T.

DEFINITION 2.3.3. We say that weak operator topology is closed

(WOT - closed) it T, € M and T, wor T, then for every S € M

ST =WOT, —lim ST, =WOT, —limT,S =TS
DEFINITION 2.3.4. A C*— subalgebra of B(?) which contains the iden-

tity operator and is closed in the weak operator topology is called a

von Neumann algebra.

REMARK 2.3.5. The von Neumann algebra of GG is the double commu-

tant of C[G] C B(H).



2.4. LEFT AND RIGHT REGULAR REPRESENTATIONS 21

2.4. Left and right regular representations

An important class of C*— algebras arise in the study of groups. Let
G be a discrete group, then the characteristic function d,(s) of g, s € G
is defined as follows [13]:

1 ifg=s
4] = ’
o(5) {0 if g # s.

If we assume that the G is a discrete group then the functions ¢, form

a basis for the Hilbert space £?(G) of square summable functions on G.

The group ring C[G] consists of all finitely supported complex-valued
functions on G, that is of all finite combinations

szass

seG

with complex coefficients.

The convolution product and the adjoint are defined as follows:

(Z a58> (Z att> =) a.ast

seG teG s,teG

(Z ass> = Za_ss’l.
seG seG

Denote by B(¢*(G)) the C*— algebra of all bounded linear operator on
the Hilbert space £*(G). We may distinguish between the left regular
representation, which is induced by the left multiplication action, and
the right regular representation, which is comes from the multiplication

on the right.
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DEFINITION 2.4.1. [13] The left regular representation
) : C[G] — B(*(@))
is defined by
A(8)6:(r) = 6,(s71r) = 0 (r) for s,7 € G.
The right reqular representation is given by

p(5)0:(r) = 6¢(rs) = 051 (1) for s,r € G.

The left regular representation is implemented using the familiar con-
volution formula

(84 %2 0n)( Zé (st gh(S).

teG

It follows that for any function f € ¢*(G) the left action by d, is given
by
(0g %) f)(s Zé (st™1).f(t) = f(g~'s).

teG

We can define the following right convolution:

(6 %5 6n)(5) = > _ 6,(t t) = Ong(s),

teG

which gives rise to the right regular representation:

(8g %, f)(s 2(5 = f(sg™").

teG

We note that:

Og % On(s) = ) ot

teG

= S (s((t) )5,

teG
= 5h *\ §g(8),
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and hence:

Og %, On(S) = 0p x5 G4(s).

PROPOSITION 2.4.2. The left and right representations commute,

that is for all s,t € G:

PROOF. We have:

Thus

0

REMARK 2.4.3. The left regular representation A of the group ring
C[G] assigns to each element f € C[G] a bounded operator A(f) which

acts on any ¢ € (*(G) by convolution:

A)Q) = f*C.

and

The image A(C[G]) of the group ring under the left regular representa-
tion is a *— subalgebra of the algebra B((*(G)) of bounded operators
on *(G).
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LEMMA 2.4.4. The left and right reqular representations A and p are

x— homomorphisms.

PRrROOF. Let f,g € C[G],

Af)(Q) = fxC and A(g)(C) = g*C.

Consider
Afx9)(€) = (fxg)*(
= fx(g=()
= [*(AN9)Q)
= (A(N)AM9)(C)
Thus

M f*xg)=A[f)A(g) for all f,g € C[G].

Thus A satisfies the product. Consider

(A) +A(9)(Q) = AN+ Alg)(C)
= [xC+gx(
= (f+9)*¢
= AMf+9)(Q)
Thus
A(f +9) =A(f) + Ag) forall f,geCI[G].

Thus A\ satisfies the sum. It is easy to prove scalar multiplication, and
adjoint. Therefore A satisfies the properties of an *— homomorphisms.

The proof for p is similar. U
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LEMMA 2.4.5. The left and right reqular representations A and p are
unitary bounded representations.

PROOF. Let us define an operator
A Q) — (G)
which for any function ¢ € /2(G) is given by
AC(E) = (8, % (1) = C(g7'%).

We have

(AgCom) = Z)‘g«t)m

teG
= ) _¢(t)nlgt)
t'eG
= <<7 )‘g_ln>
This means that
)\; = A1

We have for every g € G, (¢ € (?(G):

InCI? = D e )

teG

= > Ko

teG

= ¢l

therefore, )\, is a unitary bounded representation. The proof for p is

similar. O
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LEMMA 2.4.6. The left regular representation X is a faithful represen-

tation.

PROOF. Let us assume that, for some f € C[G],

A" [)(0g)(s) =0, Vg, s €G.

Then using the fact that A is a *— homomorphisms we have that

AT ) 0)(s) = AST)AS)dg(s)
= D SN "s)

teG

= D D [WFEs)E) T s)

teG ' eq@

= ST g

teG ¢ e

= I/l

From this we deduce that ||f||, = 0, and so f = 0, which implies that

A 1s faithful. O

The same argument can be used to show that p is a faithful represen-

tation as well.
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2.5. The reduced group C*— algebra

The reduced C*— algebra C5(G) of a group G (which we shall assume
to be discrete) arises from the study of the left regular representation
A of the group ring C[G] on the Hilbert space of square-summable

functions on the group.

DEFINITION 2.5.1. [13] The reduced group C*— algebra G, denoted by
C5(G) is the completion of C[G] in the norm given, for ¢ € C[G], by

lelly = A

This means that the closure of C[G] for the operator norm as a subal-
gebra of B((*(@)) is called the reduced C*— algebra C5(G) of a group
G. This is equivalently, it is the closure of C[G] is identified with its

image under the left regular representation. i.e.

C1(G) = MT[G)).

The reduced C*— algebra C%(G) of a group G' (which we shall assume
to be discrete) arises from the study of the right regular representation
p of the group ring C[G] on the Hilbert space of square-summable

functions on the group.

DEFINITION 2.5.2. The reduced group C*— algebra G, denoted by
C3(G) is the completion of C[G] in the norm given, for ¢ € C[G],
by

lell, = llpte)ll -

This means that the closure of C[G] for the operator norm as a subal-

gebra of B((*(@G)) is called the reduced C*— algebra C'%(G) of a group
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G. This is equivalently, it is the closure of C[G] is identified with its

image under the right regular representation. i.e.

Co(G) = p(C[G])

Next we also explain tensor product of C*— algebra. The following is

taken from [31] and Brown and Ozawa [7].

2.6. Tensor product of C*— algebra

We now recall some basic facts about the tensor product of C*— alge-
bra. Let A and B be two C*— algebras, and denote by A ® B their
algebraic tensor product, which is a *— algebra, such that ||z*z| =

|z||* for all z € A® B.

DEFINITION 2.6.1. [31] The minimal tensor product is defined by tak-

ing *— homomorphism,
T M : A® B — B(H1) ® B(Hy) C B(H1 ® Hs)

where 7 is a representation of A in some Hilbert space H; and 7 is a

representation of B in some Hilbert space Hy. Thus we define
1| 50 = sUP [|(711 @ 72) ()]
where 7y, 7 run over all representations of A and B respectively. The

minimal tensor product is the completion A ®,;n B of A ® B for this

C*— norm.

The minimal tensor product is the completion A ®,in B of A ® B for

this C*— norm.
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DEFINITION 2.6.2. [31] The maximal C*— norm of x € A® B is defined
by
12 spaxe = sup [[7(2) |

where 7 run over all x— homomorphisms from A ® B into some B(#H).

The maximal tensor product is the completion A ® .« B of A ® B for

this C*— norm.



CHAPTER 3

The Invariant Approximation Property

The uniform Roe C*— algebra (also called uniform translation C*—
algebra) provides a link between coarse geometry and C*— algebra
theory. The uniform Roe algebra has a great importance in geometry,

topology and analysis.

In Sections 3.1 and 3.2, we define what a coarse space is, and we study a
number of ways of constructing a coarse structure on a set so as to make
it into a coarse space. We also consider some of the elementary concepts
associated with coarse spaces. A discrete group G has a natural coarse
structure which allows us to define the the uniform Roe algebra, C}(G)

[30]. We study in section 3.3, we recall the invariant approximation
property.
In Section 3.4, we study Stone -Cech compactification and the crossed

product of C*— algebras. Our goal here is to characterise C(G) as a

crossed product algebra.

30
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3.1. Coarse geometry

In this section we shall establish the basic definitions and notations
for the category of coarse metric spaces. Coarse geometry is the study
of the large scale properties of spaces. The notion of large scale is

quantified by means of a coarse structure.

First we recall the following definitions:

DEFINITION 3.1.1. [30] Let X, Y be metric spaces and f: X — Y a

not necessarily continuous map.

(1) The map f is called coarsely proper (or metrically proper), if
the inverse image of a bounded set is bounded.

(2) The map f is called coarsely uniform (or uniformly bornolo-
gous), if for every r > 0 there is s(r) > 0 such that for all

r1,To in X

d(ry,m2) < v = d(f(r1), f(z2)) < (7).

(3) The map f is called a coarse map, if it is coarsely proper and
coarsely uniform.
(4) Let S be a set. Two maps f,g: S — X are called close if

there is C' > 0 such that for all sin S

d(f(s), 9(s)) < C.

(5) A subset E of X x X is called controlled (or entourage), if the

coordinate projection maps m;, m : EF — X are close.

DEFINITION 3.1.2. [30] A coarse structure on a set X is a collection

of subsets of X x X, called the controlled sets or entourages for the
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coarse structure, which contains the diagonal and is closed under the

formation of subsets, inverses, products, and (finite) unions.

It is easy to see that the controlled sets associated to a metric space X

have the following properties:

(1) Any subset of a controlled set is controlled;

(2) The transpose E' = {(x,y) : (y,x) € E} of a controlled set E
is controlled;

(3) The composition E; o Ey of controlled sets E; and Ej is con-

trolled; where
EioEy ={(z,2) e X x X :3ye X, (z,y) € Eyand (y, 2) € E»};

(4) A finite union of controlled sets is controlled;

(5) The diagonal Ax := {(z,z) : € X} is controlled.

A set equipped with a coarse structure is called a coarse space. Coarse
geometry is the study of metric spaces (or perhaps more general ob-
jects) from a ‘large scale’ point of view, so that two spaces which ‘look

the same from a great distance’ are considered equivalent.

DEFINITION 3.1.3. [30] Let X and Y be metric spaces. A (not neces-
sarily continuous) map f : X — Y is a quasi-isometry equivalence if

there are constants C, A such that

d(z,y) < Cd(f(x), f(y)) + A
and

d(f(z), f(y)) < Cd(z,y) + A,

for all x and y in X.
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DEFINITION 3.1.4. [30] Let X and Y be metric spaces. A coarse map
f: X — Y is a coarse equivalence if there exixst g : ¥ — X such

that f o g and go f are coarsely uniform (or uniformly bornologous).
EXAMPLE 3.1.5. The following are some examples [30] of coarse spaces.

(1) The trivial coarse structure only consists of the diagonal and
its subsets.

(2) The discrete coarse structure on a set X consists of the diag-
onal together with subsets F of X x X which contain only a
finite number of points (z,y) of the diagonal.

(3) Any compact metric space is coarsely equivalent to a point.
The set R is coarsely equivalent to Z.

(4) The indiscrete coarse structure on a set X consists of the di-
agonal together with subsets E of X x X.

(5) Let X be a coarse space and Y a subset of X. We can equip YV’
with a coarse structure declaring that the controlled subsets
of Y x Y are those which are controlled when considered as

subsets of X x X.

DEFINITION 3.1.6. [30] A coarse structure on X is connected if each

point of X x X belongs to some controlled set.

DEFINITION 3.1.7. [30] Let (X, d) be a metric space, we say the metric
d induces a coarse structure on X, which is called a bounded coarse
structure. More precisely, we can define the bounded coarse structure

induced by the metric d as follows: Set
D, :={(z,y) € X x X :d(z,y) <r}.

Then £ C X x X is controlled, if £ C D, for some r > 0.
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EXAMPLE 3.1.8. The bounded coarse structure on a metric space (X, d)

is the collection A of all subsets A of X x X such that

sup {d(z,y) : (z,y) € A}

is finite. With this structure, the integer lattice Z" is coarsely equiva-

lent to Euclidean space.

The following is an example of coarse structure.

ExAMPLE 3.1.9. [30] We say that a coarse structure is generated by the
diagonals if it contains the diagonal and is closed under the formation
of subsets, inverses, products, and (finite) unions. Let G be a finitely
generated group. Then the bounded coarse structure associated to any

word metric on G is generated by the diagonals
Ay = {(hhg): h e G)
as g runs over G.

DEFINITION 3.1.10. [30] Let X and Y be coarse spaces. A map

1: X — Y is a coarse embedding if it is a coarse equivalence between

X and i(X) C Y.
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We next recall some basic facts about the uniform Roe algebra and

metric property of a discrete group.

3.2. The uniform Roe algebra

First we recall the following definitions; Let X be a discrete metric

space.

DEFINITION 3.2.1. [30] We say that discrete metric space X has
bounded geometry if for all R there exists N in N such that for all
x € X, |Bgr(x)| < N, where

Br(z) = {y € X : d(y,) < R}.

We will say that a kernel ¢ : X x X — C

e is bounded if there, exists M > 0 such that
lp(s,t)] < M for all s,t € X
e has finite propagation if there exists R > 0 such that
o(s,t) =0 if d(s,t) > R.

Let B(X) be a set of bounded finite propagation kernels on X x X.
Each such ¢ defines a bounded operator on ¢?(X) via the usual formula
for matrix multiplication

¢x((s) =D (s,7)¢(r) for ¢ € £7(X).

reX

Next, we show the operator associated with a bounded kernel is

bounded.
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LEMMA 3.2.2. Let X be a bounded geometry discrete metric space. An

operator associated with a bounded finite propagation kernel is bounded.

PROOF. Let ¢ be a bounded propagation kernel on X and ( €
(*(X). Consider

lo«cCll; = D lox @)

zeX

= 2

zeX

2

> oz, y)(y)

yeX

Given z, ¢(x,y) # 0 implies y € Br(x), where R is the propagation
of ¢. The ball Bg(z) is finite for all z € X and its size is bounded by
N € N. Thus for every x € X the sum

> oz y)(y)

yeX

has at most N nonzero terms and so

> ol y)(y)

yeX

< X lo(x )l [K(y)]

yeX

< > M)

yeX

< NpM|C(y)]

where, by bounded geometry Ng is the upper bound on the number of

elements in a ball Br(x). This is independent of z € X, so

1% Clly < D NRM?|¢(x)[* = NEM? ¢l

zeX
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Therefore an operator associated with a bounded kernel is

bounded. O

We shall denote the algebra of bounded operators associated with finite

propagation kernels on X by A>(X).

DEFINITION 3.2.3. The uniform Roe algebra of a metric space X is

the closure of A(X) in the algebra B(¢?(X)) of bounded operators on
X. This mean that the closure of A*(X) for the operator norm as a
sub C*— algebra of B(¢*(X)) of bounded operators on X is called the

uniform Roe algebra of a metric space X.

If a discrete group G is equipped with its bounded coarse structure
introduced in Example 3.1.9 then one can associated with it uniform

Roe algebra C(G) by repeating the above.
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3.3. Invariant approximation property

A discrete group G has a natural coarse structure which allows us to

define the uniform Roe algebra C(G). A group G can be equipped

with either the left or right-invariant the metric. Example of metric

on a group G include the word metric, or a metric associated with a

length function ¢, defined in Definition 4.1.1. A choice of one of these

determines whether C}(G) or C5(G) is a subalgebra of the uniform

Roe algebra C}(G) of G as we now explain. First we show that if the

metric on G is right-invariant then
C(G) C C:(Q).
Let dy be a right - invariant metric on G so that
di(x,y) = di(zg,yg) ¥V g € G.

For every g € GG, the operator A(g) is given by the following matrix:

1, ifz=gy
ANz, y) = ’ ’
oY) { 0, otherwise.

Indeed, with this defintion we have

A;\(St(s) = ZA2(37y>5t(y)
yeG
= (g 's)
= 5gt(5)

= Ag(0)(s).

Note that A;\ is right - invariant
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1, if ot = gyt <= = = gy,
0, otherwise.

A;]\(xt, yt) = {

Therefore:

Aj(a,y) = Ap(at, yt).

If the metric on G is right - invariant, A;‘ is of finite propagation ,

because A)(z,y) is non-zero when g = zy~" and so

dl(x>y) = d1($y717 6) = dl(Q? 6).
Hence any element of C[G] will give rise to a finite propagation kernel

Ag‘ and this assignment extends to an inclusion

Ci(GQ) = CI(G).

Next we show that if the metric on G is left - invariant then
C(G) C Cy(G).

Let dy be a left - invariant metric on G

do(x,y) = dy(g9z,9y) ¥V g € G.

For every g € G, the operator p(g) is given by the matrix.

1, ifx=yg
AP (x,y) = ’ ’
() { 0, otherwise.

Indeed, with this defintion we have

Aboy(s) = Z Al(s,y)0:(y)
yeG
= 5t(39_1)
= Gi(s)

= Pg(0)(s).
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Note that Ag is left - invariant

1, if te =tyg <= x = yg.

Ab(tr,ty) = {

0, otherwise.

Therefore:

Af(z,y) = Af(tz, ty).

If the metric on G is left - invariant, Af is of finite propagation and

AP € C(G), because A?(z,y) is non-zero when y~'z = g and so

dQ(xvy) = dg(!jilx, 6) = d2(g7e)'

Hence any element of C[G] will give rise to a finite propagation opera-

tors on ¢?(G) and this assignment extends to an inclusion
CH(G) = Ch(G).

Let us now choose a right invariant metric for G so that
Ci(G) — C(G).

The right regular representation p gives rise to the adjoint action on

C¥(G) defined by

Adp(9)T = p(g)Tp(g)* = p(9)Tp(g)~"

forall t € G, T € C}(G). Our remarks above show that elements
of C3(G) are invariant with respect to this action and so C}(G) is

contained in the invariant subalgebra C*(G)Y of C*(G).

LEMMA 3.3.1. If T € C*(QG), regarded as an operator on (*(GQ), arises
from a kernel function A(x,y), then for every t € G, Adp(t)T is asso-

ciated with the kernel function A(xt,yt).
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PROOF. Using the definition of the adjoint action Adp(t). We com-

pute that:

(Adp(t)T¢)(s) = p()(Tp(t)*C)(s)

Thus, Adp(t)T has kernel A(xt, yt). O

In general, if T' € C}(X) then V z,y € G:
(Ad(p(t))T0s,6,) = (p(t)Tp(t™")0s,d,)
= (Tp(t™")d, p(t™)d,)
= (T4, 04t) -
So the operator T is Adp— invariant if and only if
Va,ye XVteG (Tou,oy) = (T0,0,).
We now define the invariant approximation property (IAP).

DEFINITION 3.3.2. [30] Let discrete group G equipped with a left -

invariant metric. We say that G has the invariant approximation prop-

erty (IAP) if and only if

CL(G) = CX(G).
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3.4. The uniform Roe algebra as crossed product

In this section, we will characterize C(G) as a crossed product algebra.

We recall that the Stone - Cech compactification of a set X is a com-
pact Hausdorff space SX, equipped with an inclusion of the discrete
space X as an open dense subset and the following universal property:
Every continuous function f : X — Z extends uniquely to continuous
function f: BX — Z, where Z is a compact Hausdorff space. In par-
ticular, every bounded complex-valued function on X extends uniquely

to a continuous function on SX.
The following is taken from Takesaki [31] and Brown and Ozawa [7].

Let GG be a discrete group. Let o : G ~ H be an action of G on a C*—
algebra A: « is a homomorphism from group G into the group Aut(A)
of automorphisms of A. This means that for each g € G there is an

automorphisms «(g) of A given by:

a(gr)a(gz) = a(giga)-

The algebraic crossed product of A by G is the x— algebra generated
by A together with a unitary u; corresponding to each ¢ € G, with the

relation that
wa = at)(a)uy,
and

utl Ut2 = Ut1t2 .

Any element of the algebraic crossed product of A by G is the formal

sum

a= E iy,
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where a; € A and t € G. We denote by A[G] the x— algebra of formal

suIs

a = E AU,

where

t— a;

is a map from G into A with finite support and where the operations

are given by the following rules:
(ar)(bs) = acy(b)ts,

(a))" = ap-1(a)t™,

for a,b € A and s,t € G.

DEFINITION 3.4.1. [31], [7] A covariant representation of a: G ~ A,
is a pair (7, p) where m and p are unitary representations of G and of
A in the same Hilbert space H respectively, satisfying the covariance

rule
Va € GVt € G, pt)r(a)pt)" = n(a(a)),

where 7 : A — U(*(G)) and p : G — B({*(G)), and U(F*(G)) is

the set of unitary bounded operators.

A covariant representation gives rise to a *— homomorphism

7% p: A[G] — B(H)

(m % p) (Z att) = Zw(at)p(t).

teG teG
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DEFINITION 3.4.2. [31], [7] The full crossed product of AxG associated
with oo : G ~ A is the *x— algebra obtained as the completion of A[G]

in the norm
|all = sup [|(m x p)(a)]|,
P

where (7, p) runs over all covariant representation of av: G ~ A.

REMARK 3.4.3. [31], [7] By definition, every covariant representation

(7, p) extends to a representation of A x G, denoted by 7 x p.

DEFINITION 3.4.4. [31], [7] Let G be a discrete group. Let 7 be a

representation of A on a Hilbert space H, and
H = 3G, Ho) = *(G) @ Ho.

We define a covariant representation (7, \) of a : G ~ A, acting on H
by
T(a)((t) = m(eu-1(a))C()
and
A(s)8(t) = (™M)
for all @ € A, all s,t € G and all ¢ € (*(G,Hy). The covariant

representation (7, \) is said to be induced by 7.

A induced covariant representation gives rise to a *— homomorphism

7 xp: A[G] — B(H)

(7 x ) (Z att) = 3 w1 (@)plt).

teG teG
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DEFINITION 3.4.5. [31], [7] The reduced crossed product of A x, G is

the *— algebra obtained as the completion of A[G] in the norm

lall, = sup [[(7 x A)(a)

for a € A[G] , where 7 is a representation of A.

First we shall describe the following isomorphism:
CHG) = C(BG) x4, G=L17(G) %, G.

Any element of f € C(BG)[G] C C(BG) %, G, defined by

f:tht

teG

where f; € C(8G), t € G, and only finitely many f; are non-zero. We

define a map
C(BG)[G] — Cu(BG x G),

where C.(SG x @) is the algebra of contionous compactly supported
functions on G x G. For f € C(BG)|G], we put

O(f)(z,t) = fi(x) for everyt € G, = € BG.
This map turns out to be an isomorphism:
C(BG)[G] = Ce(BG x G).

The convolution product and the adjoint on the x— algebra C.(G X G)

are given by the following: Let F,G € C.(SG x G), then we define
(FxG)(x,s) =Y Fz, )Gt "z, t"s)
t

and
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Let
J:GxG—GxG

be an involution defined by:
J:(s,t) — (s~ s71).
The map
Fr—FolJ
establishes an isomorphism between C.(SG x G) and A®(G).
The uniform Roe algebra C*(G) is the norm closure in B(¢?(G)) of the
x— subalgebra formed by the operators Op(k), where k ranges over

the bounded kernel with finite propagation, and Op(k) is the bounded

operator associated with k.
The following Theorem is from Roe [30] and Brown and Ozawa [7].

THEOREM 3.4.6. The map Il : f — Op(0(f) o J) extends to an iso-
morphism between the C*— algebras C(G) and C(BG) X, G and

CH(G) = C(BG) x, G = (®(G) %, G.

PrOOF. To define C(SG) %, G we use representation m of C'(8G)
in /2(G) given by

T(f)E(E) = f(1)&(t) for f e C(BG) and € € £%(G).
Therefore C(SG) ., G is concretely represented on B(¢%(G x G)). And

also f =Y f, € C(BG)[G) acts on (*(G x G) by
seG

(fE)(z,t) = Z fs(tx)€(x, S_lt)'

seG
Let V be the unitary operator on ¢*(G x G) defined by

VE(x,t) =&zt
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We have

VIE(n,t) = VY futa)é(e,s )

seG
= Zfs(tx)V§(x,s_lt_1)
seG
= > fultw)é(e, (s e
seG

It follows that
for every f € C(BG)[G] C C(BG) %, G. This means that II is an

isometry and so extends to a continous isomorphism.
C1(G) = C(BG) %, G,
It follows from the definition of SG that
C(BG) = 0=(Q).

and the Theorem is proved. Il



CHAPTER 4

Property RD and Invariant Approximation
Property

In this chapter we discuss the rapid decay property (Property RD) for
discrete group. This property was first considered by P.Jolissaint [21]
and has generalised the work done by Haagerup on estimates of the

regular representation for the free group [18].

Jolissaint proved in his thesis that groups of polynomial growth and
classical hyperbolic groups have property RD, and the only amenable
discrete groups that have property RD are groups of polynomial growth.
He also showed that many groups, for instance SL3(Z), do not have

the property RD [21].

De la Harpe improved Jolissaint’s results and showed that the word
hyperbolic groups of Gromov [16] have property RD as well, and this
leads to the result of Connes and Moscovici that word hyperbolic groups
satisfy the Novikov conjecture. Since then, many important works
have been done on establishing the property RD, notably the works of
Lafforgue [25], Chatterji [8, 9, 10, 11, 12| and Ruane, and Drutu and
Sapir. Examples of RD groups include groups acting on CAT(0)-cube

complexes [12].

In this chapter we study the relation between property RD and the

invariant approximation property. Our main result (Theorem 4.3.3)

48
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states that groups which satisfy property RD with respect to a condi-

tionally negative length function have the TAP.

4.1. Property RD and length functions

We begin with a description of property RD. Our discussion is based

on Jolissaint’s paper [21].

DEFINITION 4.1.1. Let G be a discrete group. A length function on
G is a map ¢ : G — R taking values in the non-negative reals which

satisfies the following conditions:

(1) ¢(1) = 0 where 1 is the identity element of the group;
(2) For every g € G, l(g) =L(g7");
(3) For every g,h € G, {(gh) < {(g) + ((h).

A group equipped with a length function becomes a metric space with

the left - invariant metric
d(v, 1) = £y ).

EXAMPLE 4.1.2. Let G be a discrete group with a finite generating set
S. For convenience we will assume that S is symmetric, i.e. S7! = S.

For any g € G, define
lg|g =min{k:g=s1...5,,5 € S}.
This is the algebraic word length function of G induced by the gener-

ating set S.

EXAMPLE 4.1.3. Consider Z? with the symmetric generating set

S ={(1,0),(0,1),(0,-1),(-1,0)}.
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For (m,n) € Z?, we have the word length function
|(m,n)|g = |m| +|n],

where |m| and |n| are the absolute values of m and n respectively.

Let G be a countable, discrete group with symmetric finite generating
sets S and ', yielding word-length functions |.| s and |.|¢ respectively.
As the generating sets are different, these length functions, and the

metric functions they induce, are different.

ExXAMPLE 4.1.4. Let X be a metric space with base point 5 € X and

let G be the group of isometries on X. For every g € G, let

Lay(9) = d(o, g(0))-

Then L,, is a length function on G.

DEFINITION 4.1.5. Let ¢ be a length function on G. We define a Sobolev

norm on the group ring of G as follows:

(1) For any length function ¢ and positive real numbers, we define

a Sobolev norm on the group ring C[G] by:

o= [DLFOF L+ ().

yeG

(2) If s € R, the Sobolev space of order s is the set Hj(G) of
functions ¢ on G such that £(1 + £)* belongs to (*(G).

DEFINITION 4.1.6. Let H < G be a subgroup of G and ¢ a length
function on G. The restriction of ¢ to H induces a length function on

H that we call the induced length function.
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DEFINITION 4.1.7. If /1 and /5 are length functions on G, we say that
{5 dominates ¢y if there exist a,b € R such that ¢; < aly + b. If
(1 dominates ¢, and {5 dominates ¢, then ¢; and /¢y are said to be

equivalent.

LEMMA 4.1.8. If £y and {5 are equivalent then || f|,, . and ||fll,, , are

equivalent.

PROOF. Since

ly < aly + 0,

we have

1+£1 S 1+a€2+b

IN

1+b+a(l+0b)t,

IN

c(1+0b)(1+4s)

where ¢ = max {1,a}. Thus

1#Me,s = (Z|f(w)|2{1+z1(x)}2s>5
(S 1@ (e(1 + ) (L+ t(a))™)

< B [[fllg, s

NI

IN

where B* = {¢(1+0)}°.

Similarly
1 lleys < C AN, s

where C' is a constant. Therefore | f|[,, , and || f||,, , are equivalent. [J

We are now ready to define property RD. The following definition is

due to Jolissaint [21] (see also [12]).
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DEFINITION 4.1.9. [21] Let ¢ be a length function on a discrete group
G. We say that G has the Rapid Decay property (property (RD)) with
respect to the length function ¢ if there exist C> 0 and s > 0 such
that, for all f € C[G],

LA < CAflles

where || f||, denotes the operator norm of f acting by left convolution

on *(@G).

We denote by R, G the subset of C[G] consisting of functions with
target in R, . The following proposition of Chatterji and Ruane [12]
provides equivalent criteria for property RD and summaries various

characterizations of property RD.

PROPOSITION 4.1.10. [12] Let G be a discrete group endowed with a

length function €. Then the following are equivalent:

(1) The group G has property RD with respect to ¢;
(2) There exists a polynomial P such that for any r > 0 and any
f € R.G so that f vanishes on elements of length greater than

r, we have
Il < PCr)[Lfl,

(3) There exists a polynomial P such that, for any r > 0 and any
two functions f,g € RyG so that f vanishes on elements of

length greater than r, we have

1 gll. < Pr)LF 1l gl s

(4) There exists a polynomial P such that, for any r > 0 and any

three functions f,g,h € R.G so that f vanishes on elements
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of length greater than r, we have

frgxhle) < Pr)[ £l llglly (17125

(5) The space of rapidly decaying functions H)(G) is contained in
the reduced C*- algebra C5(G);
(6) Any subgroup H in G has property RD with respect to the

induced length function;

PrOOF. We sketch the proof given of the equivalence (1)<= (2)
by Chatterji and Ruane. We will be using the equivalence (1)<= (2)
later( section 4.3). We will If f € C[G] is a function whose support is
in B(e,r) then

Il < Cllfll
= C S +I(y))
vEB(e,r)
< C Z (14 1r)2s
~EB(e,r)
= Ca+r2(fly.

This is condition (2) where the polynomial is P(r) = C(1 4 r)*.

To prove the converse, for n € N, let

Sp={v€Gn<lIv) <n+1},
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and denote by f, the restriction of f to set S,. We have

1Al =

*

Z||fn||*

< ZP%L [ fnlly

IN

if we now replace the polynomial P(n + 1) by its highest order term

we have the estimate

1A, <> Cn+ 18| fall,
n=0
for some constant C.

Dividing and multiplying by (n + 1) we can use the Cauchy -Schwartz

inequality to obtain

Y Co+ D full, < Y Clur )7+ 1) fll,

N|=

IA

0(Z<n+1 ) (Z”+12k+2||fnllg>

where

g

DEFINITION 4.1.11. [21] We say that a discrete group G has polynomial
growth with respect to a length function ¢ if there exists a polynomial
P such that the cardinality of the ball of radius r (denoted by |B(e, r)|)
is bounded by P(r).
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EXAMPLE 4.1.12. [21] Let G be a discrete group endowed with a length
function ¢ with respect to which G is of polynomial growth. Then G

has property RD with respect to ¢. Indeed, take f € C[G] such that

supp(f) = Sy € Ble,r),

then
£ < £l

= > 1f)

veG

= > 1f0)l

’YESf

< IS [ 1P

= /1Sl s

the last inequality being just the Cauchy-Schwartz inequality. If G is

of polynomial growth, then
1Sl < [Ble, )| < P(r)

and thus

1L < VPE) A,

We note that the following important result from [21].

THEOREM 4.1.13. Let G be a discrete amenable group. Then G has
property (RD) with respect to a length function £ if and only if G is of

polynomial growth with respect to £.
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4.2. Positive and negative type kernels

Let us briefly recall basic definitions and facts concerning positive and

negative type kernels and functions.

DEFINITION 4.2.1. Let X be a set. A symmetric kernel on X is a

function f: X x X — R with f(x,y) = f(y,x).

DEFINITION 4.2.2. [30] A kernel f has conditionally positive type if for
all m € N, all m—tuples x1, s, ..., x,, of points of X and for all real

scalars Aq, Ag, ..., A\, one has

ij=1
DEFINITION 4.2.3. [30] A kernel f has conditionally negative type if

for all m € N, all m—tuples xq,xs, ..., x,, of points of X, and for all

real scalars Aj, Ag, ..., A\, such that >  A; = 0, one has

1,]

The following example is the connection between maps into Hilbert

spaces and positive and negative type kernels.

ExAMPLE 4.2.4. [30]

(1) A constant function on X x X has conditionally negative type.

A kernel of the form

f(x,y) = g(x)g(y),

where ¢ is any real-valued function, has positive type.



4.2. POSITIVE AND NEGATIVE TYPE KERNELS 57

(2) Suppose that # is a (real) Hilbert space. Then the kernel
flay) = (x,y); =,y in H,
has positive type, and the kernel
flay)=le—yll*; @ yin H
is of negative type.

The following result in [30], which relates positive and negative type

kernels, is known as Schoenberg’s Lemma.

LEMMA 4.2.5. [30] Let f be a symmetric kernel on a space X. The

following statements are equivalent.

(1) The kernel f is of negative type.
(2) For each t > 0 the kernel exp(—tf) is of positive type.

REMARK 4.2.6. [30] Let G be a group. A function of positive type on
G is a function ¢ : G — R, (z,y) — ¢(x'y), is a kernel of positive

type.

We recall some definitions:

DEFINITION 4.2.7. [30] We say that a kernel f(z,y) on a coarse space

X is effective if the sets
{(z,y): fz,y) <R}, for R>0,
generate the coarse structure on X.

Let Cg(X x X) denote the algebra of bounded functions f on X x X.

which have the property that for each € > 0 the set

{(xy) e X x X o |f(z,y)] <e}
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is controlled. We assume that X is a uniformly discrete and of bounded
geometry. It can be seen that Cg(X x X) is isomorphic to Cy(G), where

Co(@) is the algebra of functions vanishing at oo.

These notations are brought together by the following result of Roe
(30].

THEOREM 4.2.8. [30] Let X be a coarse space. The following are equiv-

alent:

(1) X can be coarsely embedded into a Hilbert space.
(2) There is an effective negative type kernel on X.
(3) The algebra Cg(X x X) has an approzimate unit consisting of

a sequence {u,} of normalized positive kernels.

The normalized positive type kernels on X acting on B(¢?(X)) by Schur

multiplication.

DEFINITION 4.2.9. [30] We say that f is a normalized positive kernel

if f(z,y) =1, for all z,y € X.

LEMMA 4.2.10. [30] Let f be a normalized positive type kernel on a set

X. Then there 1s a unique unital completely positive map
M; : B(*(X)) — B(*(X))
such that

((MyT) 04, 0y) = f(2,y) (T0s,0y) ,

for all T € B(H).
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4.3. RD and Invariant approximation property

In this section we show that the invariant approximation property for
groups equipped with conditionally negative length function. The fol-
lowing proposition due to Roe shows a sufficient condition to invariant
approximation property. We shall use this to prove the main Theorem

of this chapter.

PROPOSITION 4.3.1. [30] Suppose that there is an approximate unit for

Co(G) comprised of a sequence of functions ¢,, such that

(1) each ¢, is of positive type and normalized,
(2) the operator My, of Schur multiplication by ¢, maps L(G)
into C5(G).

Then G has the invariant approzimation property.

We will need the following convergence result. Which is important
proposition, which is used for the main result (see Theorem 4.3.3) of

this Chapter.

PROPOSITION 4.3.2. [30] Let G be a discrete group satisfying the rapid
decay property with respect to a length function ¢, for s > 0. Let
f € H(G) be given by
f=> fMog), f,€ClG]
geG

Then the series Z foA(g) converges in norm to an element of C5(G).
geG

PROOF. Let {F,} be a family of finite subsets of G such that

FCFHRCFRC---CF,---
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and

G:UFR.

neN

Then for every n € N we have by the rapid decay property

I < o{z | fg|z(1+g(g))2s}

geF,

< Ol -

60

Letting n tend to infinity we see that the series on the left converges

to an element C5(G).

i

We will use this Proposition 4.3.2 as follows. Let T in L(G) be repre-

sented by a series

Z byA(9)-

geG

Then be complex coefficient b, form a square-summable sequence. To

see this, let {F,} be a family of finite subsets of G as in the previous

Proposition 4.3.2. For every n, and s € G.

<Z beA(9)6s, bng(g/)55> = > ) b, <A(9)5S,A(g/)5s>

gEF, g €F, 9€Fn g’ cF,

- Z Z bgb_s/<(595’5g’8>

9€Fn ¢'eF,

- Z |b9|2‘

geF,

But for every n,

Z byA(9)

geEFy,

< |7
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and so by letting n go to infinity we see that the sequence b, is square

summable.

We now prove the main result of this Chapter.

THEOREM 4.3.3. Let G be a discrete group satisfying the rapid decay
property with respect to a conditionally negative length function . Then

the group G has the invariant approzimation property.

PROOF. By Schoenberg’s Lemma (Lemma 4.2.5), for every n the

function
On(7) = exp(—L(y)/n)

is of positive type and family {¢,} forms an approximate unite for
Co(G). The function ¢,, are normalizrd as ¢,(e) = 1 for all n. The

Theorem 4.3.3 will be proved if we show that for every n, the map
T v— My, T
sends
L(G) — C}(G).

For this we use the rapid decay property and the method of Proposi-
tion 4.3.2.

If T is represented by the series

T =7 by

geG

then M, T is given by

M¢>nT = Z Cbnbg)‘(9)

geG
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Then by the rapid decay property, for every k € N

= C (Z (@ (9)b]” (1 +€(9))25>

geF

N[

S 6u(9)b,\9)

geF

= Csup{|n(g)| (1 +£(9))"} <Z !bg\2>

geG geFy,

= CK) |b|* < o0,

geG

where K = ilelg{lsbn(gﬂ (1+4(9)°}-

Then, letting k — oo we see that

Z ¢n<g)bg)‘(g)

IS

converges in norm to an element of C}(G), and on the other hand it

convegers to My, T', proving the result. U

We now use this to show the following examples: First, we first recall

the definitions of hyperbolicity for metric space.

DEFINITION 4.3.4. A metric space (X,d) is said to be hyperbolic if
there is a constant o > 0 such that for any points w,z,y,z € X we

have that:

d(w,x) + d(y, z) < max{d(w,y) + d(z, z),d(w, z) + d(x,y)} + 0.

Jolissaint showed that classical hyperbolic groups have property RD
[21]. Faraut and Harzallah showed that the natural metrics on these
hyperbolic spaces are conditionally negative and they give rise to condi-

tionally negative length function on these group [5]. Hence we obtain:

COROLLARY 4.3.5. Let G be a classical hyperbolic group. Then the

group G has the invariant approzimation property.
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We note that Ozawa has a more general result for hyperbolic groups

29].

THEOREM 4.3.6. [29] Hyperbolic groups have the invariant approxima-

tion property.

Let G be a CAT(0) cubical group, which means G acts properly and
cocompactly on a CAT(0) cube complex [28]. Now according to Niblo
and Reeves [28] given a group acting on a CAT(0) cube complex, they
obtain a conditionally negative length kernel on the group which gives
rise to a conditionally negative length function. Chatterji and Ru-
ane [12] proved that CAT(0) cube complexes have property RD with
respect to this length function provided that the action is properly dis-
continuous, stabilizers are uniformly bounded and the cube complexes

have finite dimension. We deduce that:

COROLLARY 4.3.7. CAT(0) cubical groups have the invariant approz-

1mation property.

Recall the following:

DEFINITION 4.3.8. [20] A Cozeter group is a discrete group G given

by the presentation with a finite set of generators
W =A{w;,...,w,}
and a finite set of relations defined as follows:

mij

2 4 . . .
w; =1 = (w;w;)™, where m;; is either co or an integer > 2.
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Chatterji proved that Coxeter groups have property RD [10]. Jolis-
saint showed that finitely generated Coxter groups have conditionally

negative length function [22]. Hence we have

EXAMPLE 4.3.9. Let GG be a finitely generated Coxeter group. Then

the group G has the invariant approximation property.

We recall the definition of torus knot groups:

DEFINITION 4.3.10. [22][21] We define the torus knot groups by, for p

and ¢ positive integers such that (p,q) = 1,
G=A{zy|a"=y"},

Jolissaint showed that torus knot groups have conditionally negative
length function [22] and proved that torus knot groups have property

RD [21]. This gives us another example of invariant approximation

property.

COROLLARY 4.3.11. Let G be a torus knot group. Then the group G

has the invariant approximation property.

First we recall the definition of the free product G *x G5 of two groups,

Gy and Gs.

DEFINITION 4.3.12. [22] We say that the free product of G; x Gy of
two groups GG1 and Gy is the set consisting of the empty word (denoted
by e) together with all reduced words w = a1, as ... a,, where the a;’s
are elements of either (G; or (G5 different from the identity and satisfy

the condition:

Q; € Gl', 1mphes Qj41 € Ggfl' (1 Sj S n — 1, 1= 1,2)
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The following Theorem can be found in [21].

THEOREM 4.3.13. If G1 and Gy have property (RD) then so does their
free product G = Gy * Gs.

EXAMPLE 4.3.14. Let G be a free product two groups GG; and G5, which
satisfying the rapid decay property with respect to a conditionally neg-
ative length function ¢. By using Theorem 4.3.13, G = G, * G5 have
property RD. Jolissaint showed that, if G; and G5 have conditionally
negative length function then their free product G; * G5 also has con-
ditionally negative length function [22]. By using Theorem 4.3.3. We

deduce that the G has the invariant approximation property.



CHAPTER 5

Strong Invariant Approximation Property

In this Chapter we will study the strong invariant approximation prop-
erty in various contexts. In particular, we investigate its links to the
completely bounded approximation property (CBAP), the strong in-
variant approximation property (SIAP), the approximation property
(AP), the operator space approximation property (OAP), and exact-
ness. The reader is referred to the book by Brown and Ozawa [7] for a
beautiful exposition of these concepts. In this Chapter we describe and

study the strong invariant approximation property for stability results.

In section 5.3, we show the following implications for discrete groups

(see Proposition 5.2.11):
CBAP = AP = IAP.

Our interest in these properties comes from a link to the strong invari-
ant approximation property (SIAP) of Zacharias, which implies the
IAP (see Proposition 5.3.3). We shall use results of Haagerup and
Kraus [19] on the AP to investigate some permanence properties of
the IAP and the SIAP for discrete groups. This can be done most

efficiently for exact groups.

66
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5.1. Approximation properties
We begin with an outline of results of Haagerup and Kraus [19].

DEFINITION 5.1.1. [5] A C*— algebra A is nuclear if and only if it has
the following completely positive approximation property (CPAP): The
identity map on A can be approximated in the point norm topology
by finite rank completely positive contractions. This means that there
exist nets of operators 7, : A — M,,_(C) and S, : M, (C) — A

such that for alla € A

lim ||S, T (a) — al| = 0.

A C*— algebra A has the metric approximation property (MAP) of
Grothendieck if and only if the identity map on A can be approximated

in the point-norm topology by a net of finite rank contractions.

Comparing the definitions we see that CPAP implies MAP (see for ex-
ample [5]). Lance [27] has shown that G is a discrete group amenable
if and only if its reduced C*— algebra A has the CPAP which is equiv-
alent to C*(G) being nuclear. Completely positive maps are in partic-

ular completely bounded, which suggest the following weakening of the

CPAP.

DEFINITION 5.1.2. [5] A C*—algebra A is said to have the completely
bounded approximation property (CBAP) if there is a positive num-
ber C' such that the identity map on A can be approximated in the
point norm topology by a net {¢,} of finite rank completely bounded
maps whose completely bounded norms are bounded by C'. This means

that there exists a net of finite-rank maps {¢,} : A — A such that
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l¢all, < C for some constant C' and ¢, — ida in the point-norm

topology on A (i.e. |[¢q(x) — z|| — 0 for all x € A).

The infimum of all values of C' for which such constants exist is de-
noted by A4(A) and is called the Cowling - Haagerup constant. We
set Awp(G) = oo if the discrete group G does not have the CBAP. Ob-
viously, a nuclear C*— algebra has the metric approximation property.
On the other hand, Haagerup [18] proved that the reduced C*— algebra
F,,, n > 2 has the metric approximation property, a very remarkable

result since C*(F,,), n > 2, is not nuclear, [F,, not being amenable.

We have the following definition of weak amenability.

DEFINITION 5.1.3. [5] An approximate identity on G is a sequence
(¢y) of finitely supported functions such that ¢, uniformly converge

to constant function 1. We say that discrete G is weakly amenable if

there is an approximate identity (¢, ) such that

C = sup || My,||,, < oo.
n

We have the following important result by Haagerup [19].

THEOREM 5.1.4. Let G be a discrete group. The following are equiva-

lent:

(1) G is weakly amenable,
(2) C*(G) has the CBAP.

DEFINITION 5.1.5. [7] We say that discrete group G is amenable if and
only if there is an approximate identity consisting of positive definite

functions.
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LEMMA 5.1.6. An amenable discrete group is weakly amenable.

ProOOF. We recall that G is an amenable discrete group if and only
if there is an approximate identity on G consisting of positive definite
functions (see definition 5.1.5). A sequence (¢,) of finitely supported
functions such that ¢, — 1. Then M, completely positive on C5(G)

and also M, completely bounded and

Thus Awp(G) = 1. Therefore G has CBAP. By Theorem 5.1.4, G is

weakly ameable. U

Haagerup and Kraus have provided in [19] a detailed characterisation

of AP.

First we recall the Fourier algebra

A(G) :=A{f: f(t) = (MB)E | m) for some &, n € £r(G)}

is the space of all coefficient function of the left regular representation

A. Given f € A(G), its norm is given by

[P =t {[El nll = £(2) = A@Em]

With this norm, A(G) is a Banach algebra with the pointwise multi-

plication [19].

A complex-valued function ¢ on G is a multiplier for A(G) if the linear

map

My(f) = of
sends A(G) to A(G). If the map M, is completely bounded on A(G), we

call ¢ a completely bounded multiplier of A(G). The set of multipliers
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of A(G) is denoted by MyA(G). If ¢ € A(G) then ¢ is a bounded

continuous function and M, is a bounded operator on the space A(G).
The discrete group G has the approzimation property (AP) if there is a

net {¢a} e in A(G) such that My, — ida(c) in the stable point-norm

topology on A(G).

We say that the C*— algebra A has the strong operator approzimation
property (SOAP) if there is a net T, in A(G) such that T, — id4 in

the stable point-norm topology.

If Ais a C*— algebra, and H is a separable infinite Hilbert space, a
net T, in C'B(A) is said to converge in the stable point-norm topology
to T in CB(A) if T, ® idxpy(a) — T ® idi(s)(a) in norm for all
a € AR K(H). Here K(H) denotes the ideal of compact operators on
H.

We say that C*— algebra, A has the operator approximation property
(OAP) if there exists a net of finite - rank maps 7, : A — A such
that T, — id4 in the stable point-norm topology. This means that

there exists a net of finite rank linear maps
T,: A— A
such that for all x € K(H) @pmin A,

I d ® Ty(x) — z|| — 0.
We have the following important result from Haagerup and Kraus [19]:

THEOREM 5.1.7. [19] Let G be a discrete group. Then the following

are equivalent:

(1) G has the AP,
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(2) C*(G) has the operator approzimation property (OAP),

(3) C*(G) has the strong operator approximation property (strong
OAP).

EXAMPLE 5.1.8. The following groups have AP [19]. This implies that
these groups have the OAP, and thus also SOAP:

o SL(2,7Z)[19]
o 72 x SL(2,7) [19]

Exactness of groups has been Kirchberg and Wassermann [24].

DEFINITION 5.1.9. [33] A C*— algebra A is ezact if, given any exact
sequence

0—J—B—0C-—70

of C*— algebras, the sequence
0 —>A®minJ—>A®minB —)A®m1n0—>0

is again exact.

DEFINITION 5.1.10. [33] We say that a discrete group G is exact if and

only if C¥(G) is an exact C*— algebra.

EXAMPLE 5.1.11. Kirchberg and Wassermann [23] show that if a C*(G)
has the CBAP then G is exact. On the other hand a group G is weakly
amenable if and only if it has the CBAP [19], and so all weakly amean-

ble groups are exact.

EXAMPLE 5.1.12. The following are examples of exact group:

e linear groups [17]
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e Hyperbolic groups [1]
e Coxeter groups [14]

e countable subgroups of almost connected Lie groups [17]

5.2. Joachim Zacharias’s IAP with coefficients

In this section we will give definition of the strong invariant approxi-

mation property. Let S C B(H) be a closed subspace.

DEFINITION 5.2.1. [36] We define the operator space C; (G, S) as the

closure of finite width matrices [z ] where x,; € S and ||zs|| is

s,teG?

uniformly bounded for all s,¢ € G acting on /*(G) ® H.

We have that
CiG)® S CCHG,D9).
In general C (G, S) is an operator space and it is a C*— algebra if S is

C*— algebra. C(G,—) is a functor on the categery of C*— algebras.

DEFINITION 5.2.2. [36] We say that C(G, —) is an ezact functor if the
functor A — C?(G, A) takes short exact sequences of C*— algebras
to short exact sequences of C*— algebras, so that given a short exact

sequence

0—J—B—0C—70

of C*— algebras the induced sequence
0—CiG,J)— CiHG,B) — C:(G,C) — 0

is exact.
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Let S € B(H) be a closed subspace and let H be a Hilbert space.
For any x € CX(G,S): x € C(G, B(H)) such that z,, € S for all
s,t € G [Tst], e is the finite width matrices; [[2s,[| is uniformly
bounded for all s,t € G acting on (*(G) ® H. The following Theorem

is proved in [36].

THEOREM b5.2.3. [36] For a discrete exact group the following condi-

tions are equivalent:

(1) G is ezact;
(2) CHG) is exact;
(3) For all Hilbert spaces H and closed subspaces S C B(H)

CiG,S)={2xe€C;(G,B(H));xst € S forall s,t € G};

(4) C:(G,—) is an exact functor.

We describe an outline of proof of Theorem 5.2.3: We have
CiG,S) C{r e C;(G,B(H));xs: € S for all s,t € G};

For the reverse inclusion note that If C*(G) is exact, then there exists

a net of finite width positive definite kernels
ko : GxG—C

(as in Theorem 2.1(3) [36]) such that for all € > 0 and every finite
subset F' C G there is o such that |k, (s,t) —1| < € whenever st™! € F'
and a > ag. The Schur multiplier Mj, associated with k, defines a
completely positive map on B(¢*(G) ® H) such that M, (z) — z is
norm for all z € C(G, B(H)). Moreover

My, {z € Ci(G,B(H))| zs4 € S forall s,t € G}),
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whose norms are uniformly bounded and is a subset of C(G, S). This
means that: (2) implies (3). (1) and (2) are equivalent by definition.
(4) implies (1) follows from a characterisation of exactness of G given

in Lemma 2.2 [36].

Next, we define the set of fixed points of C*(G, S)%:

DEFINITION 5.2.4. We define

CH(G,8)Y ={T € C:(G,S); Ad(p, @ id)T =T for all t € G} .

We now define Joachim Zacharias’s IAP with coefficients (SIAP):

DEFINITION 5.2.5. [36] We say that a discrete group G has the strong
invariant approzimation property (SIAP) if for any closed subspace S

of the compact operators K (on ¢*(N)). We have an isomorphism

C*(G, S)¢ = C}(G) ® S holds.

We have the following Lemma of Joachim Zacharias [36].

LEMMA 5.2.6. [36] Suppose that G is exact and S C B(H) is an arbi-

trary closed subspace, then

Ci(G,8)% = (C(G) ® 8)°.

Sketch of proof of Lemma 5.2.6: Given A € C(G, S)¢ we have
A(z,y) = A(at,yt) € S for all z,y,t € G.

In particular

A(x,y) = A(xy te) € S for all 2,y € G.
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Let F C G be finite and A" (z,y) the element obtained from A by

replacing A(z,y) by 0 when xy~1 ¢ F. We have

AT =3 "N\ ® Alte) € C[G] © S,

tel

where C[G] ® S is the algebraic tensor product and C[G] is the group
ring. Since,

My, (A") = My, (A),
provided k, has width F'. (This means that there is M > 0 such that
|ko| < M for all @« € G.) But

My, (A7) =) " M (M) @ A(te) € CL(G)© S

tel

thus
My, (CHG,9)) CCiH(G)® S V o
Since
My, (A) — AVA € CIG,S).
it follows that
Ci(G,8)¢ = (Ci(G)®S)NCy(G,9)"
= (CXG)® 9)°.

The following Theorem can be found in [36].

THEOREM 5.2.7. For a discrete exact group G the following conditions

are equivalent:

(1) G has the strong invariant approximation property (Joachim
Zacharias’s IAP with coefficients (SIAP));
(2) C:(G,9)¢ = (CHG)® S)Y = C3(G) ® S for any closed sub-

space S C IC;
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(3) C:(G,9)¢ = (CHG)®8)Y = C;(G)® S for any Hilbert space
H and closed subspace S C B(H);
(4) G has the AP.

Comment on proof of Theorem 5.2.7: Given GG exact with the strong
invariant approximation property (SIAP), for any closed subspace S of

the compact operator K (on ¢?(N)) we have the equality
CxG,9)Y =C{G)® S.

By Lemma 5.2.6

Ch(G,9)¢ = (Cy(G) ® )7
for any closed subspace S. Then
Ci(G,9) = (Ch(G) @ 5)F =C3(G) @ S

for any closed subspace S C K. This implies that (1) <= (2). Next
we describe the (1) = (4): Given G exact with the strong invariant
translation approximation property (SIAP), we need to show that G
has AP. Haagerup and Kraus have shown that G has AP if and only
if C*(G) has strong OAP. They also show that C(G) has strong OAP
if and only if C*(G) has the slice map property for closed subspace
S C K. Joachim Zacharias [36] shows that C*(G) has the slice map
property for closed subspace S C K. Let A and B be C*— algebras
and X C B be a closed subspace. For arbitrary A the kernel of the
map

AR B — A®RC

is the Fubini product: We define

F(A,B,J)={z € A® B: (¢ ®id)(x) € J Vo € A*}.
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We say a triple (A, B, J) satisfies the slice map property if
F(A,J)=A® J.

Next we describe the (4) = (3): G has the AP, by using definitions
of AP. Let ¢, € A.(G) , which means that ¢, have finite support, such
that
My, (x) — x, Vo € C;(G, B(H)).
But
M, Adp(t) = Adp(t)M,y,,, YVt € G.
Let us first note that completely bounded multiplier ¢, € MyA(G)
define M,, € CB(Cy(G,S)) for any operator space S C B(H), given
by
My, [w54) = [dalst™ )ws,]

But a completely bounded operators My, € CB(C!(G,S)) maps in-

variant elements to invariant elements. Moreover,
My, (Ci(G, S)G) cClgles.
By similar proof of Lemma 5.2.6. Since
M,, () — x Yx € C)(G,9).
It follows that
Ci(G,9) C C3(G) @ S,
Therefore
CH@G,9)% = CG) ® S.
This implies that (4) = (3). Next we describe the (3) = (1). We

assume that

Ci(G,8)" = (Ch(G)® 95" =C}(G) @ S



5.2. JOACHIM ZACHARIAS’S TAP WITH COEFFICIENTS 78
for any Hilbert space H and closed subspace S C H.

Therefore
(@G, S)G =Ci(G)® S
for any Hilbert space H and closed subspace S C H.

This implies that (3) = (1).

REMARK 5.2.8. For a discrete exact group G, G has the AP «<— G
has SIAP (Zacharias’s IAP with coefficients).

We note also the following results.
LEMMA 5.2.9. [19] If G is weakly amenable, then G has the AP.
LEMMA 5.2.10. If G has the AP, then G has the [AP.

PROOF. For group C*— algebra of discrete groups the OAP if and
only if G has AP [19]. Thus G has exactness, and so condition (4)
in Thorem 5.2.7 implies the other condition for all discrete group
G. Moreover (see Theorem 5.2.7), the strong invariant approximation
property with coefficients implies the one without coefficients. This

means:
Ci(G,0)Y = Ch(@)®C=Ci(G)®C.
and therefore
Ci(G)Y = C3(G),

Thus G has IAP, O

We are now ready to prove the following proposition.
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PrROPOSITION 5.2.11. The following implications hold for a discrete
group:

CBAP = AP = IAP.

Proor. By Theorem 5.1.4 if GG is discrete group, then G is weakly
amenable if and only if C*(G) has the CBAP. But G is weakly amenable
implies that G has AP. As now we use Lemmas 5.2.9 and 5.2.10 to
conclude

CBAP = AP = IAP.

g

REMARK 5.2.12. The converse of the first implication does not hold:
a counter example is given by Z2 x SL(2,7): since AP is preserved by
semi-direct products [19], this group has the AP. But Haagerup [19]
proved that it does not have the CBAP.

The following groups are all weakly amenable. This implies that these

groups have the AP, and thus also IAP:

e Amenable groups

e Hyperbolic groups [29]

e C'AT(0)-cubical groups [32]
o SLy(Qy) (4]

REMARK 5.2.13. For discrete groups we have the following implica-

tions:
Amenability = weak amenability = AP = exactness.

The first implication is explained in Lemma 5.1.6. The first impli-

cation is not an equivalence: the non-abelian free groups are weakly
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amenable, but they are not amenable. The second implication is proved
by Lemma 5.2.9 and also this implication is not an equivalence: a
counter-example is given by Z? x SL(2,Z); this group has the AP [19].
But it was proved in [19] that it is not weakly amenable. The third
implication is not an equivalence: Haagerup and Kraus showed in [19]

that SLy(Z) is an exact group without AP.

5.3. Analytic properties of strong IAP

In this section, we study some of the analytic properties of the strong

invariant approximation property for discrete exact groups.

REMARK 5.3.1. For a discrete exact group G the following are equiv-

alent.

(1) G has the AP.
(2) C*(G) has the OAP.
(3) G has SIAP (Zacharias’s IAP with coefficients)

The above remark means for a discrete exact group the following prop-

erties are actually equivalent:

AP < OAP < SIAP.

REMARK 5.3.2. For a discrete exact group GG, by Remark 5.3.1 and
Remark 5.2.8, G has the SIAP if for any closed subspace S C B(H)
the equality
CH(G,8)¢ = C5(G) ® S holds.
But G has IAP, so
CH(G) = CR(G)
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and therefore
CHG, 8 =Cr(@)® S

for any closed subspace S C B(H).

Next, we show the following:
PROPOSITION 5.3.3. SIAP implies IAP for discrete exact groups.

PROOF. Let G be a group with STAP. By applying Theorem 5.2.7

to case S = C, we have that
CHG,C)¢ =CHG®C) =05(G)® C.

But
CHGeC)Y=CHA)Y®C,
so that
CHG)®C=C(G)®C.
This implies
Ci(G)E = C3(G).

We note also the following results.

THEOREM 5.3.4. [34] Let G be a discrete group. Let
l—H—G-"—>G/H—1.

If H is a normal subgroup in G with H and G/H are exact, then G is

exact.

We have the following important result of Haagerup and Kraus [19].
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THEOREM 5.3.5. Let G be locally compact group, and suppose that H
is a closed normal subgroup of G. If H and G/H have the AP, then G
has the AP.

In the following Proposition, we show that the strong invariant approx-
imation property (SIAP) passes to extensions for discrete exact groups.

Note that AP <= STAP for discrete exact groups (see Remark 5.3.1).

PROPOSITION 5.3.6. Let G be a discrete group. Let
l—H—G-"—>G/H—1.

Let us assume that H is a normal subgroup in G, and that H and G/H
are ezact groups. If H and G/H have the SIAP, then G has SIAP.

PROOF. Let G be a discrete group and suppose that H is a normal
subgroup of G. By Remark 5.3.1, if H has the STAP then H has AP.
If G/H has the SIAP then G/H has the AP. By Theorem 5.3.5, if H
and G/H have the AP, then G has the AP. By Theorem 5.3.4, if H
and G/H are exact groups, then so is G. Thus G is a discrete exact

group with AP. By Remark 5.3.1, G has STAP. O
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5.4. The stability properties of strong IAP

In this section, we first show that the semidirect product of two dis-
crete exact groups with the STAP has the STAP. We have the following

important result in [19].

PROPOSITION 5.4.1. The semidirect product of two discrete groups with

the AP has the AP.

From this we can deduce the following.

PROPOSITION 5.4.2. The semidirect product of two discrete exact

groups with the SIAP has the SIAP.

PROOF. For an exact group G, G has AP <= G has SIAP. The
semidirect product of two discrete groups with the AP has the AP [19].
The semidirect product of two discrete exact groups is an exact group
[35]. The semidirect product of two discrete groups with the AP has
the AP (see Proposition 5.4.1). Therefore the semidirect product of

two discrete exact groups with the STAP has the STAP. O

EXAMPLE 5.4.3. [7] We have the following short exact sequence of

groups

1 — 7> — 7Z* x SL(2,Z) — SL(2,Z) —> 1.

Indeed, Z?* and SL(2,Z) are weakly amenable groups [19]. The semidi-
rect product of two discrete groups with the AP has the AP [19]. Thus,
Z? x SL(2,Z) has AP [19]. By using Proposition 5.2.11. Therefore
72 x SL(2,7) has IAP.

We also note the following.
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PROPOSITION 5.4.4. Let {G;,i € I} be a family of amenable groups,
and let H be an open compact subgroup of G; for each i € I. Then

G = xgG; has the invariant approximation property.

PROOF. Amalgamated products of amenable groups are weakly
amenable [4]. Then G is weakly amenable. By Proposition 5.2.11,

G has the invariant approximation property. U

5.5. Examples of groups without the strong IAP

Lafforgue and de la Salle [26] have proved that SL3(Z), does not satisfy
CBAP and OAP property.

THEOREM 5.5.1. [26] SL3(Z) does not have the AP. Equivalently, the
reduced C*— algebra of SL3(Z) does not have the operator space ap-
proximation property (OAP), and hence does not have the completely

bounded approzimation property (CBAP).

Linear groups are exact [17]. This provides an example of exact C*-
algebra without the OAP [26], by Remark 5.3.1. In particular we can
conclude that SL3(Z) does not have the SIAP.



CHAPTER 6

Invariant Approximation Property for Subgroups

and Extensions

In this chapter we will study the invariant approximation property in
various contexts. First we shall show that it passes to subgroups (see
Theorem 6.1.1). An interesting question, which we will address next
is the behavior of this property with respect to group extensions. To
prepare for that we first study a relationship of uniform Roe algebras
attached to coarsely equivalent metric spaces in the following case. Let
X be a bounded geometry metric space and assume that there is a

bijective coarse equivalence
p: X —Y XN,
where N is a finite metric space. Then there is an isomorphism
CiX) = CLY)® i)
= CUY) ® My (C),
where n = |N| (see Theorem 6.2.3).

In section 6.2, we shall use this result to prove that the invariant ap-
proximation property is preserved under taking direct product with a
finite group : let H be a discrete group with the IAP and K a finite
group. Then the direct product G = H x K has IAP (see Theo-
rem 6.2.3).

85
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We then study a generalization of this result to extensions with finite
quotient: let G be a discrete group then, if H is a finite index normal
subgroup of G with the IAP, G also has the IAP (see Theorem 6.3.2).
An important technical tool in the proof is the fact that the left regular
representation \g is equivalent to the left regular representation
A @ Ag/m (see Proposition 6.3.7). These are the main results of this

thesis.

6.1. The IAP passes to subgroups

THEOREM 6.1.1. Any subgroup H of a discrete group G with the invari-

ant approrimation property has the invariant approximation property.

This proof is based on an idea of Joachim Zacharias. I am grateful to

him for sharing this idea with me.

PROOF. Let us fix a set of representatives R of the right cosets
G/H so that for every element g € G there is a unique representation
g = hgry where hy, € H and vy € R. We then have the isomorphism of

Hilbert spaces:
C(G) = (H) @2 (G/H),
given by
dg > On, @ Oy,

with the converse map given by

5h & 57‘ — 5hr'
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The uniform Roe algebra C(H) acts on this space by T'® 1 for every
T € C(H), which gives an embedding, i.e

Co(H) = C(G)

T—T®I1.
Using this inclusion, we shall show that
CrH(H) = C*(H)C.

First, it is clear that a G— invariant operator in C}(H) is also H—
invariant operator, restricting the Adp action from G to H. To show

the converse,
Ch(H) C Cy(H)°,

we proceed as follows. We want to extend a kernel on H x H which is
invariant with respect to the Adpy action to a kernel on G x G which

is invariant with respect to the Adpg action. Given a(h, h’) we define
A:GxG—C

as follows: for every s,t € G and h,h' € H
Als, ) = a(h,h'), if there. exists r € R s.t (s,t) = (hr,h'r),
0, otherwise.

Now we need to show that A(s,t) is Adpg—invariant. If we write

rt:hlrl for hleH, T, TleR
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we get
Adpg(t)A(hr,h'r) = A(hrt, h'rt)
= A(hhlrl, h'hlrl)
= a(hhl, h/hl)
= a(h,h)
= A(hr,h'r).
Given that invariant Roe kernels form a dense subset of C*(H)¥, it
follows that
Co(H)" C Cy(H)“,
and so we have an isomorphism,
CrH(H) = ¢ (H)C.
Let T € Ci(H)Y. Then T € C*(G)¢ and T € C#(H), and we have
CL(H)? C CH(G) N Cy(H).
Since
CH(G)NC(H) € Ci(H)S,
we have
Ch(H) = Ci(G) NCy(H).
We now want to show that a similar isomorphism holds for the regular
C*— algebras:
Cx(H) = CX(G) N CL(H).
First there is an inclusion

ClG] — A=(G),

g9 — Ug(z,y),
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where
1, if x =gy,

Ug(,y) = {

0, otherwise.

This extends to a ring homomorphism so we have
ClG] = A(G) = CL(G),
where A*°(@G) is the uniform translation algebra. Since H is normal
subgroup of G, we have an inclusion
ClH| — C[qG].
Then
& : C[H] — C[G] N A®(H).
By taking completion of both sides, we have
CY(H) =2 CY(G)NCI(H).
We now suppose that G has IAP. Then
CH(G)T = C3(G),
and using the above results we have that,
cimy = i)
= CUG)NCi(H)
= CX(G)NCL(H)
=~ C5(H).
Hence
CL(H)" = C3(H)

and so the IAP passes to subgroups. Il



6.2. THE IAP FOR DIRECT PRODUCTS WITH FINITE GROUP 90

6.2. The IAP for direct products with finite group

In this section, we show that the invariant approximation property is
preserved under taking direct product with a finite group. We first

recall the definition of Morita equivalence:

DEFINITION 6.2.1. [6] We say that two unital C*-algebras A and B
are Morita equivalent if and only if they are stably isomorphic, which
means that A ® K =2 B ® K, where K denotes the algebra of compact

operators.

The following Theorem can be found in [6].

THEOREM 6.2.2. [6] If X and Y are uniformly discrete bounded geom-
etry spaces, and X is coarsely equivalent to Y then, C:(X) is Morita

equivalent to C(Y).

This statement can be made a little more precise in the following situ-

ation.
THEOREM 6.2.3. Let X be a bounded geometry metric space and as-
sume that there is a bijective coarse equivalence

p: X —Y XN,

where Y is a bounded geometry metric space and N is a finite metric

space. Then there is an isomorphism
Cu(X) = Cu(Y)® Cy(N)
> C(Y) @ My (C).

where n = |N|.
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Proor. We shall assume that the bijection ¢ is implemented by

means of two maps
f: X—Yadn: X —N

so that
o(z) = (f(z),m(x)) for all x € X.
The bijection ¢ gives rise to a unitary isomorphism
P(X)=rP YY) (N).
This induces a continuous isomorphism
O : B((*(X)) — B((Y) ® (*(N)) = B((*(Y)) ® M,(C),

where we use the fact that ¢2 (N) = C". We shall show that ® restricts

to an isomorphism
O:CHX) — Ch(Y) ®@ M,(C).
First we need to show that, if T' is a finite propagation operator on
(*(X) then
O(T) € CI(Y) ® M,(C).
For every i = 1...n, let X; = 7 !(i) and note that the restriction of f
to X; gives a bijection
We shall denote by V; the corresponding unitary isomorphism
Vi 2(X;) — C(Y),
and let P; be the projection

PP (X) — P (X;).
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Then any operator T' € C(X) admits a decomposition

T:iPiTPj

ij=1
where P,TP; is an operator from (?(X;) to £*(X;).
Let S; ; = B TP;. Then

ViSi Vi B(Y) — 2(Y)
is a unitary isomorphism and we have

®(5i;) = Visi; Vi @ Ey,

where E;; is the (4, j)—th elementary matrix. We want to show that
ViSi;Vi" is a finite propagation operator on Y. This will follows from

the fact that
f: X—Y
is a coarse map. Let y;, y2 € Y. Then
<Vi8i7jv;'*5y175y2> = <ViPiTPjVj*5y1> 5y2>
= <TPjVj*5y1> Pin‘*‘Sy2>

- <T5x1a 51‘2> 5

where 1 is the preimage of y; in X; and x5 is the preimage of y» in
X;. As T is a bounded propagation operator, there exists R > 0 so

that

(Ty,,02,) =0 when d(z1,z2) > R.

Since f is a coarse map, 3.5 > 0 such that

dy(f(l'1>,f(l'2)) > S = dx(l'l,.xg) > R.
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As f is a surjection we now have that for all y;, y» € Y such that
dy (y1,y2) > S, there exist x; in X, xo in X; such that dx(x1,22) >

R and
<V;Si,j‘/;‘*5y17 5y2> = <T51‘1) 5&72)
= 0

So V;Si; Vi € Cy(Y) has required. Next, we need to show that @ is an

isomorphism and for this we shall construct an inverse map
U:CHY)® M,(C) — CI(X).
fT®E;eCi(Y)® M,(C). Then define
V(T'® L) = BV TV;P;.

Using the same argument as before we prove that the operator
P,V*TV;P; is of finite propagation, since f is a coarse equivalence. We

extend ¥ by linearity and continuity to a map
U:CHY)® M,(C) — Ci(X).
We need to show that
Vod=>poW=1Id
First we have
PoV(T'®E;;) = ®PVTV,P))
= Z ViP (P VTV P) RV @ By

Lk
Note that for 1 <[,k <n

.
pp = 0 HRAL
P if k=i.
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and

PjPl:{o if 147,

P ifl=j.
Hence the above sum can be simplified as follows
CoW(T @ Ey;) = Y VPPV TV;P)PV] ® By,
kel
= ViBV;TV;PV; ® E;.

Since Pjle(x;) = idx,, we have

ViBVit = ViVj = Idx;,

and
ViRV = ViV = Idx,,
we have
PoV(T®E;;) = ViBVITV;PV] @ Ey
= T®E;.
Moreover:
Vod(T) = o' {Z ViP, TPV ® E,ﬁl}
Lk
= ) PRV;ViRTRVV;P,
Lk
= >_PTH
4,J
= T
Therefore

Vod=qPoW =]d.

We conclude that

Co(X) = CL(Y) @ M, (C) = CL(Y) © CL(N);

94
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Hence the result. O

Next we prove that the invariant approximation property is preserved

under taking direct product with a finite group.

THEOREM 6.2.4. Let H be a discrete group with the IAP and K a finite
group, then the direct product G = H X K has the [AP.
PROOF. Let us denote the identification G = H x K by ¢:
¢:G— HxK.
Then
CHG)=Cl(H x K).
The map ¢ is G— equivariant we have
CHG)Y = CrHH x K)T*E,
By Theorem 6.2.3, we have,
CHHx K)=ZC!(H)®CHK)

so that

Ci(H x K)T5 = (Ci(H) @ C(K))" "
Since the identification G = H x K is a group isomorphism, the unitary
isomorphism

Q)= (H)®*(K)

induces a unitary equivalence

e = Ag @ Ak

and

pa = pa Q pi.
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This means H x K acts on C(H) @ C*(K) by Adpy ® Adpy and so
CH(H x K)T*K = cx(H)" @ C*(K)X.
By the same remark,
(@) = CX(H) @ CX(K).

K is a finite group, so it amenable and so has the IAP, Roe [30]. Since

H has the TAP by assumption
CiG) = i) & CK)"
— Ci(H) ® C}(K)
= C}(H x K)
= CJ(G).

Therefore

Ci(G)Y = C3(G).
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6.3. The TAP passes to extensions with a finite quotient

In this section, we show that the invariant approximation property
passes to extensions with a finite quotient. Consider a group G with
a finite index normal subgroup H, so that we have the following exact

sequemnce.

1— H<S G5 G/H — 1.

We identify G with H x G/H as a set as follows. We choose a set-
theoretic section of 7 in the above sequence which amounts to a choice
of a finite set R C G of coset representatives in G/H. Then any element
g € G can be written uniquely as g = hyry, where hy € H, r, € R. We

then define

¢:G— HxG/H
gr—r (hg,Tg).
While G/H is a group, it is not true in general that
rir; € R when 1, 7; € R.

The product on R, arising from the group structure on G/H, can be
described in terms of the product in G as follows. For ri,ry € R, we
denote by 7 % o, the representative R of the coset of Hriry. We then

note that
(H’f’l)(H’f’g) = HTlT’Q =H (7”17"2 (Tl * 7"2>_1) (T’l *7’2) .

where 779 (17 * 7“2)71 € H. We will later need an explicit formula that
will express the product ¢gg in the form

’

qgqg =h,_r .

— Y99 " g9
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This is done as follows. If g = hyry, g = h,r, then

ggl = (hgrg> (h’g/Tg/)
= hy (rgh /r_l) oy

9 9

— -1 -1
= h, (rghg/rg ) reTy (rg * rg/) (’I“g * rg/) .

Since H is a normal subgroup of G, ryh, T;l € H. By previous remark

—1 -1
Ty (rg * rg/) € H and so I, (rghg/rg_l) ToTy (7“9 * rg/) € H and
rg* 1, € R, giving the required representation. We can now equip the

set H x G/H with the product:

- -1
(hgsrg)(hy,7y) = (hg (rghg/rg Y TyTy (rg * rg/) ,Tg * T‘g/> :

The identity of R = G/H will be denoted by eg, and identity elements
of H will be denoted by ey € H:

(hg,rg)(em,er) = (hy (rgeHr;I) re€r (g * eR)_l ,Tg ¥ eR)

(
= (hg (rg’rg’l) rgrg’l,'rg)
(

Next we need to find (e,s)™" € H x G/H: The inverseof s € R~ G/H
will be denoted by 5. If (e, s) and (h,s) € H x G/H: we have

(e,8)(h,5) = ((shs™")(s5)(sx5)"", (s *5))
If (e,s)~! = (h,3s) then

((shs™")(s5)(s x35)7", (s%35)) = (e, e),
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If sx5=e¢=35%s. Then s = s 't, for some t € H if and only s5 = ¢

and
(shs )t =e if and only t = sh™'s™!,
thus
5=s5't=h"'s""if and only h = (5s)"".
Thus,

(e,5)"t = (h,3) = ((35)71,3).
Therefore H x G/H is a group structure. We record the following:

LEMMA 6.3.1. Let the set H x G/H be equipped with the above product.

Then the bijection

¢»:G— H xG/H,

1S a group isomorphism.

PRrooF.
0l99) = (hy (rehyry ") rory (rg 1) ™ (g )

= (hgry) (hy,ry)
= ¢(9)9(g)-

g

From now on we shall denote by H X G/H the set H x G/H equipped
with the above product. As remarked above, H x G/H is a group, but
it is not the direct product of H and G/H.

We note that H is a subgroup of H X G/H, since for h,h' € H

(h,e)(h',e) = (hh',e).
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However, G/H is not in general a subgroup of H x G/H as for any

(e,r)(er) = (rr’ (rer') e r'> .

G/H is a subgroup when the assignment:

r,r €R

[rfj—r €R C G

. . . / .
is a a group homomorphism. i.e. when r * ' = rr, which happens

when G is the direct product of H and G/H.

Our main goal in this chapter is to prove the following result.

THEOREM 6.3.2. Let G be a discrete group. If H is a finite index
normal subgroup of G with the IAP then G satisfies the IAP.

The strategy of proof is as follows: First we will establish the isomor-

phism of C*— algebras
Cu(G) = Ci(H) @ CL(G/H).

Then it is natural to ask if a similar isomorphism can be obtained for

regular C*— algebras, i.e.
(1) CX(G) = CX(H) @ CX(G/H).

We shall prove that this is true by constructing a unitary equivalence
between A\g and Ay ® A\g/u, where Ag, Ay and Ag, g are the left regular
representations of the respective groups. We will also need to under-

stand the action of G on C}(G) and of H x G/H on C}(H x G/H)

and we will prove that

(2) Ci(G) = C5(H) ® CX(G/H).
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Together with the isomorphism (1) this will show that
CL(G) = C3(G),
so that G has the IAP.

The bijection

¢:G — HxG/H,
defined above gives, by Theorem 6.2.3 an isomorphism of C*— algebras
O :CH(G) — C:(H)® C:(G/H)

where we use the fact that G/H is finite, so there is no ambiguity
concerning the choice of tensor product. In our present context, this
isomorphism can be described as follows: Because H is a normal sub-
group of G, its left and right cosets are the same because for every
reR

rH = (rHr ')r = Hr.

It follows that the group G can be given a disjoint union decomposition
as either left or right cosets, which leads to isomorphisms of Hilbert

spaces

e @G =P H) =P rH).
reR reR
This coset decomposition is preserved by both the left and the right

multiplication by elements of H.

Using the right coset decomposition, we have the following isomorphism

of Hilbert spaces

(G =P (Hr).
reR
We will denote by P, the orthogonal projection

P.: *(G) — ¢*(Hr), r€R
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and by V, the unitary isomorphism
*(Hr) — (*(H)
given by
Opr —> O, for all h € H.

We note that P, commutes with the left regular representation and it

also commutes with the right representation modulo the isomorphism
rH = Hr.

To see that this is true for the left cosets, we argue as follows: We can

represent each function ¢ € (?(G) as a linear combination

(=Y g,

where ¢, € (?(rH) (this is understood as a subspace of £*(G) so that

(. is a function in ¢?(G) which vanishes outside rH) then

Pi(¢) = G

Then for every t € G and h e H

p(h)C(E) =Y G (th).

reR

We have

(Pap(R)Q)(t) = (p(h)C5) (t)
= (p(h)P:Q)(2).

As in Theorem 6.2.3, every element 7" € C(G) can be represented as

T= > RBTP,..

T‘,T‘IER
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This decomposition is invariant with respect to p(h), h € H (assum-
ing left-coset decomposition for G). We also note that the unitary

isomorphism
V. P(rH) — (*(H),

commutes with p ; because

V;“(p(t)érh) = V;“((Srht)

= p(t)Vidrh.
Now recall that the isomorphism
®: CHGE) — CH(H) @ C*(G/H)
is given by

©:T=Y PIP.— Y V,PTPV;®E,,.

r,s€ER r,s€ER

We obtain the following important Proposition:

PROPOSITION 6.3.3. The isomorphism ® commutes with the adjoint

action Adp of H.
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PROOF. We use the left coset decomposition so that p commutes

the with P. and V,. Vh e H
®(Adp(h)T) = @(p(h)Tp(h))

= & (Z PrAdp(h)(T)Ps>

r,s€ER

= @ (Z Pm(h)Tp(h)*Ps)

r,sER

= Y (V,PAdp(h)TP,V; ® E,)

r,sER

= Y Adp(h) (V, ,TP.V;)® E,,

r,s€ER

= Adp(h) (Z V,P,TP,V} ® E)

r,sER

—  Adp(h)®(T).

In the last equality we use the fact that H acts trivially on G/H. O

We can summarise these calculation as follows.

THEOREM 6.3.4. We have
GG = Co(H)" ® CL(G/H).
If H has the IAP, then
CHG)H =2 Cy(H) ® CH(G/H).
PROOF. By using Proposition 6.3.3 we have that
Cx(GY=CrH xG/H)®
which gives the isomorphism

CLG)T = Ci(H)" ® Cy(G/H)
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since the action of H on G/H is trivial. When H has the IAP,
Ci(H) = ()
and the result follows. g
REMARK 6.3.5. Note that if T € C*(G), then for every s € R.
Ad(p(s)) T € CH(G)".
Indeed, take any h € H, then
Adp(h)Adp(s) (T) = Adp(hs) (T)
— ad(p(s (s70)) (1)
= Adp(s)Adp ((s~"'hs)) (T)
= Adp(s)(T).
Now take r,t € R and T € C}(G)". We have
Adp(r)Adp(t) (T) = Adp(rt)T
= Ad(p((r=t)(r*t)"'rt)) T
— Ad(p(r =) (Ad(p ((r1)'r0)) T)
= Ad(p(r+ ) (T)
because (r xt)"'rt € H and T is Adpy— invariant. We have that

Ad (p(rt)) (T) = Ad (p(r % 1)) (T).

This proves (Remark 6.3.5) the first part of the following important

Theorem.

THEOREM 6.3.6. The group (R,*) = G/H acts on C:(G)" using the

action induced by Adpg. We also have the following:

G/H

Co@) = (Cu))
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G/H

PROOF. First note if T' € (C;(G)¥) then T' € C(G)“. Indeed,

since for every g € G, such that g = hyry and
Adp(hgrg)T = Adp (ry (r, hery)) (T)
= Adp(ry)Ad (r; hyrg) (T)
= T.

So:

(CaeM T ceie)”.

We also have

C(G) C Cu@)",

and
C:(G)¢ = (Cr (@)™
O
Note also:
Ci (@) < i)

C Ci(H)"®C;(G/H)

C  My(C5(H)).
Thus

CL(G)E = My (G (H)y (1),

u
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We now prove the following.

THEOREM 6.3.7. Let H be normal finite index subgroup of G. Then

and

P = pr @ pc/a-

PROOF. Let R be a set of coset representatives, which is the same
for the left and the right cosets. We identify (R, ) with G/H as before.
Then if g = hyry, hy € H, r, € R then

A(g) @62 (Hr) = @€2 (g*IHT)

reR reR

= @ 02 (rg_lhg_lHr)

reR

= D (ry by ) () Hrg) )

reER

= @ 2 (ad(Tg_l)(h;1>T;1HTgT’;lT)

reR

— @EQ (ad(’r‘;l)(hgl>HT;1T (rg_l * r)fl (Tg_l * r)) .

reER

Since rytr (!t * r)_l € H we have that Hr,'r (r;* 7“)_1 is in bijec-

tion with H and so

Mg) @ (Hr) = @ ¢ (ad(r, ) (hy ) H (ry" x7)) .

reR reR

Now using the isomorphism & this is mapped to

D ¢ (ad(r,")(h, ") @ C3, 1,

reER

or in other words

PAc(hgry) = )‘H(ad(rg_lxhg) ® Aa/n(rg)-
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Given that

ad(r;'): H — H

is a group isomorphism, Ay o ad is is a representation of H equivalent

to )\H

Similarly, if if g = r4hg, hy € H, 14 € R then

p(9) P (rH) = ¢ (rHrh,)

reR reR

= @62 (rrg (Tg_lHTg) hg)

reR

= @ 0? (rryHhy)

reR

= @62 ((r G rg)_l rrthg)

reR

= @EQ ((r*mry) Hhy)

reR
where we use that (r % 7,) " rr, € H and so (r % 7,) " rryH is again in
bijection with H and so induces a unitary isomorphism on ¢?(H). The

isomorphism ¢ will transport this to :

Qpa(ryhy) = pu(hy) ® IOG/H(TQ)‘

We now finish the proof of Theorem 6.3.2 as follows. It follows from

the Theorem 6.3.7 that
Ci(G)Y = Co(H)" @ Cy(G/H) M

and that

Ci(G)=Ci(H)® CY(G/H).
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Therefore, if H has the invariant approximation property, and using

the fact that finite groups satisfy this property we have
CLG)E = CH) @ C(G/H)E
= C\(H) @ CX(G/H)
=~ CY(G).

This proves Theorem 6.3.2.
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