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In this thesis we study analytic techniques from operator theory that
encapsulate geometric properties of a group. Rapid Decay Property
(Property RD) provides estimates for the operator norm of elements
of the group ring (in the left-regular representation) in terms of the
Sobolev norm. Roughly, property RD is the noncommutative analogue
of the fact that smooth functions are continuous. Our work then con-
centrates on a particular form of an approximation property for the
reduced C∗− algebra of a group: the invariant approximation prop-
erty. This statement captures a particular relationship between three
important operator algebras associated with a group: the reduced C∗−
algebra, the von Neumann algebra, and the uniform Roe algebra. The
main result is the proof of the invariant approximation property for
groups equipped with a conditionally negative length function. We
prove also that the invariant approximation property passes to sub-
groups and then discuss the behaviour of the invariant approximation
property with the respect to certain classes of extensions. We show
that the invariant approximation property passes to direct products
with finite group. We show that the invariant approximation property
passes to extensions of the following form. If G is a discrete group and
H is a finite index normal subgroup of G with IAP,

1 −→ H −→ G −→ G/H −→ 1

then G has IAP.
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CHAPTER 1

Introduction

1.1. Motivation and statement of the results

The study of C∗− algebra consists of two parts; one is concerned with

the intrinsic structure of algebras and the other deals with the represen-

tations of a C∗− algebra. We lay the foundations for later discussion,

giving elementary results on Banach algebra [2] and C∗-algebra [13].

Von Neumann introduced the theory of operator algebra and in 1943

[31], the work of Israel Gelfand, Mark Naimark and Irving Segal pro-

posed an abstract characterization of C∗− algebra making no reference

to Hilbert space. It is generally believed that C∗− algebra were first

considered primarily for their use in quantum mechanics as model al-

gebras of physical observables. In the case of the reduced C∗− algebra

that space is a space of representations of the group.

The purpose of this thesis is to provide an illustration of an interesting

and nontrivial interaction between analytic and geometric properties

of a group. We provide an approximation property of operator al-

gebras associated with discrete groups. There are various notions of

finite dimensional approximation properties for C∗− algebra and more

generally operator algebras. Among these are the completely bounded

approximation property (CBAP), the strong invariant approximation

property (SIAP), the approximation property (AP), the operator space

5
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approximation property (OAP), the strong operator space approxima-

tion property (SOAP) and exactness, and the reader is referred to [7],

[19] and [36] for these a interesting concepts. A first result in this

direction was Haagerup’s [18] discovery that that the reduced C∗−

algebra Fn, n ≥ 2 has the metric approximation property. Another

important theorem, due to Lance [27], states that a group is amenable

if and only if reduced C∗− algebra is nuclear.

For the reduced C∗− algebra of a discrete group most of these approx-

imation properties have a number of equivalent reformulations in term

of the discrete group: Haagerup and Kraus have proved in [19], that

approximation property (AP) of G is equivalent to the SOAP of C∗r (G)

and to the OAP of C∗r (G), Haagerup proved in [19], that the CBAP

for C∗r (G) is equivalent to the weak amenability of G. Approxima-

tion properties of group C∗− algebra are now important tools in group

theory.

Let G be a discrete group, then the characteristic function δg(s) of

g, s ∈ G is defined as follows [13]:

δg(s) =

{
1 if g = s,

0 if g 6= s.

If we assume that the G is a discrete group then the functions δg form

a basis for the Hilbert space `2(G) of square summable functions on G.

`2(G) =

{
f : G −→ C such that

∑
n∈G

|f(n)|2 <∞

}
One defines a scalar product as follows: For f, g ∈ `2(G)

〈f, g〉 =
∑
n∈G

f(n)g(n)
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Any element of `2(G) can be expressed as an infinite linear combination

of δg with square summable sequence. Let `2(G) be Hilbert space, the

algebra B(`2(G)) of bounded linear maps from `2(G) to itelf is a C∗−

algebra for the operator norm.

The group ring C[G] consists of all finitely supported complex-valued

functions on G, that is of all finite combinations

f =
∑
s∈G

ass

with complex coefficients.

Let us recall the left and right regular representation and reduced C∗−

algebra of a discrete group. The left regular representation

λ : C[G]→ B(`2(G))

is defined by

λ(s)δt(r) = δt(s
−1r) = δst(r) for s, r ∈ G.

The right regular representation

ρ : C[G]→ B(`2(G))

is defined by

ρ(s)δt(r) = δt(rs) = δts−1(r) for s, r ∈ G.

The reduced C∗− algebra C∗λ(G) of a group G (which we shall assume

to be discrete) arises from the study of the left regular representation

λ of the group ring C[G] on the Hilbert space of square-summable

functions on the group. The reduced group C∗− algebra G, denoted

by C∗λ(G) is the completion of C[G] in the norm given, for c ∈ C[G],
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by

‖c‖λ = ‖λ(c)‖ .

In the context of coarse geometry introduced by Roe [30]. There is a

natural way to associate a C∗− algebra with a discrete metric space

X. We shall denote the algebra of bounded operators associated with

finite propagation kernels on X by A∞(X). The uniform Roe algebra

of a metric space X is the closure of A∞(X) in the algebra B(`2(X))

of bounded operators on X.

The reduced C∗− algebra C∗λ(G) is naturally contained in C∗u(G) [30].

According to Roe [30] G has the invariant approximation property

(IAP) if and only if

C∗λ(G) = C∗u(G)G.

It is an interesting problem to determine which groups have this prop-

erty.

An important ingredient in our study is the property RD of P. Jolis-

saint’s results [21]. Let G be a discrete group. A length function on

G is a map ` : G −→ R taking values in the non-negative reals which

satisfies the following conditions:

(1) `(1) = 0 where 1 is the identity element of the group;

(2) For every g ∈ G, `(g) = `(g−1);

(3) For every g, h ∈ G, `(gh) ≤ `(g) + `(h).

For any length function ` and positive real numbers, we define a Sobolev

norm on the group ring C[G] by[21]:

‖f‖`,s =

√∑
γ∈G

|f(γ)|2 (1 + `(γ))2s.
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Following Jolissaint [21], we say that G has the Rapid Decay property

(property RD) with respect to the length function ` if there exist C ≥ 0

and s > 0 such that, for all f ∈ C[G],

‖f‖∗ ≤ C ‖f‖`,s ,

where ‖f‖∗ denotes the operator norm of f acting by left convolution

on `2(G) The rapid decay property for groups, generalizes Haagerup’s

[18] inequality for free groups and so for example of free groups have

property RD

This property RD for groups has deep implications for the analyti-

cal, topological and geometric aspects of groups. Jolissaint proved in

his thesis that groups of polynomial growth and classical hyperbolic

groups have property RD, and the only amenable discrete groups that

have property RD are groups of polynomial growth. He also showed

that many groups, for instance SL3(Z), do not have the Rapid Decay

property [21].

Examples of RD groups include group acting on CAT(0)-cube com-

plexes [12], hyperbolic groups of Gromov [16], Coxeter groups [12],

and torus knot groups [22].

Having introduced the basic notations, we study the interaction be-

tween property RD and the invariant approximation property, and

in particular we show that the invariant approximation property for

groups equipped with conditionally negative length function. We use

the proof requires working familiarity with elements of von Neumann

algebra theory, C∗− algebra, property RD, and key features of the

uniform Roe algebra.
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Our main result in this direction is the following (see Theorem 4.3.3).

Theorem 1.1.1. Let G be a discrete group satisfying the rapid decay

property with respect to a conditionally negative length function `. Then

the group G has the invariant approximation property.

We then use this to show the following groups have invariant approxi-

mation property (see Examples 4.3.5, 4.3.6, 4.3.7, 4.3.9 and 4.3.11):

• The classical hyperbolic group

• Hyperbolic groups

• CAT (0)-cubical groups

• finitely generated Coxeter group

• Torus Knot group

We also that if G is a free product group satisfying the rapid decay

property with respect to a conditionally negative length function `,

then the group G has the invariant approximation property (see Ex-

ample 4.3.14).

We give a general exposition of approximation properties which were

initiated by Grothendieck [5]. His fundamental ideas have been ap-

plied to the study of groups and these noncommutative approximation

properties have played a crucial role in the study of von Neumann al-

gebras and C∗− algebra. Some weaker conditions (i.e., weak amenabil-

ity and the approximation property) for locally compact groups have

been studied by Haagerup and Kraus [19]. We recall basic definitions

of approximation properties. Let C∗− algebra A is said to have the

completely bounded approximation property (CBAP) if there is a pos-

itive number C such that the identity map on A can be approximated
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in the point norm topology by a net {φα} of finite rank completely

bounded maps whose completely bounded norm are bounded by C,

that is if there exists a net of finite-rank maps {φα} : A −→ A such

that ‖φα‖cb ≤ C for some constant C and φα −→ idA in the point-

norm topology on A. The infimum of all values of C for which such

constants exist is denoted by Λcb(A) [19]. We say that discrete G is

weakly amenable if there is an approximate identity (φn) such that

C := sup ‖Mφn‖ <∞.

There are many other interesting approximation properties for C∗−

algebra. It is shown in [19] that a C∗− algebra A has the operator

approximation property (OAP) if there exists a net of finite-rank maps

Tα : A −→ A such that Tα −→ idA in the stable point-norm topology.

The discrete group G has the approximation property (AP) if there is

a net {φα} in A(G) such that Mφα −→ idA(G) in the stable point-norm

topology on A(G) [19]. Haagerup and Kraus (see [19]) show that a

discrete group G has the approximation property (AP) if and only if

C∗r (G) has the operator space approximation property (OAP) [19].

In particular, there is the following implication for discrete groups:

CBAP⇒ AP⇒ IAP.

We then use this to show the following groups have invariant approxi-

mation property:

• Amenable groups

• Hyperbolic groups [29]

• CAT (0)-cubical groups [32]

• SL2(Qp) [4].
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We give a general exposition of invariant approximation property(IAP),

which was initiated by Roe [36]. We study certain stability properties

of invariant approximation property, and we show that it passes to

extensions with a finite quotient, passes to subgroups and holds for

direct products with finite group. An important result of this thesis is

the following (see Theorem 6.1.1).

Theorem 1.1.2. Any subgroup H of a discrete group G with the invari-

ant approximation property has the invariant approximation property.

Brodzki, Niblo and Wright [6] show that the uniform Roe algebra of

metric space is a coarse invariant up to Morita equivalence. We trans-

late this result to the case of a coarse equivalence of metric spaces

X −→ Y ×N , where N is finite. We use this to show that the invari-

ant approximation property passes to direct products with finite factor

(see Theorem 6.3.2).

Theorem 1.1.3. Let H be a discrete group with the IAP and K a finite

group, then the direct product G = H ×K has IAP.

Our final result is to show that the invariant approximation property

passes to finite extensions (see Theorem 6.2.3).

Theorem 1.1.4. Let G is a discrete group and H is a finite index

normal subgroup of G with IAP,

1 −→ H −→ G −→ G/H −→ 1

then G has the IAP.
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1.2. Organisation of the thesis

The following is a rough synopsis; see the start of each chapter for a

more detailed outline: In Chapter 2, we explain some basic facts about

C∗− algebra (see section 2.1), the left and right regular representation

(see section 2.4), weak topologies (see section 2.2) and Von Neumann

algebras (see section 2.3) [31], [13]. In Chapter 2, we also explain

tensor product of C∗− algebras (see section 2.6).

In Chapters 3 to 6 have we develop various aspects of invariant ap-

proximation property. In Chapter 3, we recall coarse geometry, uni-

form Roe algebras, and the invariant approximation property under

sections 3.1, 3.2, and 3.3 respectively. In Section 3.3 contains a dis-

cussion of the role played by the left or right-invariance of the metric.

In Chapter 3, we show that uniform Roe algebras can be expressed as

crossed products.

In Chapter 4, we explain the basic notions related to property RD for

discrete groups. In Section 4.2, we study positive and negative type

kernels. In this chapter, we prove that for a discrete group G satisfy-

ing the rapid decay property with respect to a conditionally negative

length function `, the reduced C∗− algebra C∗λ(G) has the invariant

approximation property (see Theorem 4.3.3). We also provide some

examples of groups ( see Corollory 4.3.5, 4.3.7, 4.3.11, and 4.3.14) that

have invariant approximation property of Theorem 4.3.3.

Chapter 5 contains the basic definitions of various approximation prop-

erties. In Section 5.2, we study strong invariant approximation prop-

erty. This chapter also shows relationship among the CBAP, AP and
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IAP (see Proposition 5.2.11), and IAP and SIAP (see Proposition 5.3.3).

We show that the strong approximation property pass to semi di-

rect products (see Proposition 5.4.2), and extensions for discrete exact

groups (see Proposition 5.3.6). Section 5.5 provides an example, which

does not have SIAP.

In Chapter 6, we show the a relationship between uniform Roe algebra

and coarsely equivalence metric space (see Theorem 6.2.3). In addition

to this we show that the invariant approximation property passes to

subgroups (see Theorem 6.1.1), direct products with a finite group (see

Theorem 6.2.4), and finite extensions (see Theorem 6.3.2). There are

the main results of this thesis.



CHAPTER 2

C∗− algebra theory

We assume that the reader is familiar with basic notions in operator

algebras (the reader is referred to Takesaki [31], Blackadar [2], Effros

[15], Davidson [13], Brown and Ozawa [7] and Wassermann [33]). The

aim of this chapter is to introduce some of the important topological

techniques in the study of operator algebras, and in particular C∗−

algebra. For the most part, this chapter consists of basic definitions of

C∗− algebra and related topics. In Sections 2.4, 2.5, we study the left

and right regular representations and the reduced group C∗− algebra.

In Sections 2.2, 2.3, 2.6 of this work, we explain some basic facts about

weak topologies, Von Neumann algebras and tensor product of C∗−

algebra.

We first recall some basic facts about C∗− algebra.

2.1. Basic definitions

Most of the definitions given in this section is taken from [31] and [13].

Definition 2.1.1. A complex normed algebra U which is complete (as

a topological space) and satisfies the inequality

‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈ U

is called a Banach algebra.

15
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Definition 2.1.2. We say that U is Banach ∗− algebra if U is a com-

plex algebra with a conjugate linear involution ∗ (called the adjoint)

which is an anti-isomorphism. It is endowed with a map

∗ : U −→ U,

given by

∗ : A −→ A∗,

satisfying the following properties: For all A, B in U and λ in C,

(A+B)∗ = A∗ +B∗

(λA)∗ = λA

A∗∗ = A

(AB)∗ = B∗A∗.

We say that U is C∗− algebra if it is a Banach ∗− algebra with the

additional norm condition

‖A∗A‖ = ‖A‖2 for all A ∈ U.

Example 2.1.3. The algebra of all bounded operators on a Hilbert

space H is a C∗− algebra. Denote B(H) is the C∗− algebra with

respect to the operator norm. When H = Cn, we get the algebra

Mn(C) of n× n matrices with complex entries.

Remark 2.1.4. Every finite dimensional C∗− algebra is a finite prod-

uct of full matrix algebras.
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Example 2.1.5. Given a locally compact space X, the C∗− algebra

C0(X) of continuous functions X to C, vanishing at infinity, is a com-

mutative C∗−algebra when equipped the norm

‖f‖ := sup
x∈X
|f(x)| ,

and the adjoint

f ∗(x) = f(x).

Remark 2.1.6. A norm closed subalgebra of a C∗− algebra is also C∗−

algebra. A norm closed subalgebra of B(H) will be called a concrete

C∗− algebra.

Definition 2.1.7. [3] A bounded operator T : H −→ H′ is a compact

if the image by TB1 of the closed unit ball B1 in H is relatively compact

H′ . This is equivalent to saying that whenever {xn} is a bounded se-

quence in H, we can select a subsequence {xnk} such that the sequence

{Txnk} converges.

The linear space of all compact operators from H to H′ is denoted by

K(H,H′). We write K(H) instead of K(H,H).

Definition 2.1.8. We say that an element A of a C∗− algebra U is

self-adjoint if A∗ = A; N is normal if N∗N = NN∗; N is an isometry

if NN∗ = I; and U is unitary if U∗U = I = UU∗.

Definition 2.1.9. A linear functional φ : A −→ C on a C∗− algebra

A is positive if and only if

φ(x∗x) ≥ 0 for all x ∈ A.

A positive linear functional of norm one is called a state [2].

If φ(x∗x) 6= 0 for every nonzero x ∈ A, then φ is said to be faithful.
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Definition 2.1.10. A map between C∗− algebra which preserves sum,

scalar multiplication, product, and adjoint, is called a ∗− homomor-

phism.

Maps between C∗− algebras can be extended to maps of matrix alge-

bras in the following way. Let A and B be two C∗− algebras and

φ : A −→ B

be a linear map. Then

φ⊗ idMn : Mn(A) −→Mn(B),

(ai,j) 7−→ (φ(ai,j))

is a linear map, denoted by φn. If φ is a ∗− homomorphism then φn is

also ∗− homomorphism. The completely bounded norm of φ is defined

as

‖φ‖cb = sup {‖φn‖ : n ∈ N} .

We say φ is completely bounded if

‖φ‖cb = sup {‖φn‖ : n ∈ N} <∞.

We define the CB(A,B) as the space of completely bounded maps from

A to B with completely bounded norm.
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2.2. Weak topologies

There are several important topologies on B(H) that are weaker than

the norm topology. The weak operator topology (WOT) on B(H) is

defined as the weakest topology such that the sets

W {T, x, y} = {U ∈ B(H) : 〈(T − U)x, y〉 ≤ 1 ∀ T ∈ B(H) and x, y ∈ H}

are open [13]. The sets

W {Ti, x, y; 1 ≤ i ≤ n} :=
n⋂
i=1

W {Ti, xi, yi}

form a base for the weak operator topology.

Definition 2.2.1. [13] A net Tα converges to T , for α ∈ Λ (index

set) in the weak operator topology (Tα
WOT−→ T ) if and only if for all

x, y ∈ H, 〈Tαx, y〉 −→ 〈Tx, y〉 i.e, there exists a continuous linear

functional φ : H −→ C such that φ(Tα) −→ φ(T ).

The strong operator topology (SOT) is defined [13] by the open sets

W {T, x} = {U ∈ B(H) : ‖(T − U)x‖ ≤ 1 ∀ T ∈ B(H) and x ∈ H} .

Definition 2.2.2. [13] We say that Tα, α ∈ Λ (index set), a net Tα

converges to T in the strong operator topology (Tα
SOT−→ T ) if and only

if for all x ∈ H, limα Tαx = Tx.

Next we also explain the Von Neumann algebra. The following is taken

from [31] and [13].
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2.3. Von Neumann algebra

Definition 2.3.1. Let M be a subset of B(H), let the commutant of

M be defined as

M
′
= {S ∈ B(H) : ∀ T ∈M, ST = TS} .

Remark 2.3.2. If M is self-adjoint, then M
′

is a self-adjoint unital

algebra. If M
′

= M then (M
′
)∗ = M

′
and also M

′′
:= (M

′
)
′
, and

M
′′′

:= (M
′′
)
′
, etc. If M

′′ ⊃M and M ⊂ T . Then M
′′ ⊂ T .

Definition 2.3.3. We say that weak operator topology is closed

(WOT - closed) if Tα ∈M
′

and Tα
WOT−→ T , then for every S ∈M

ST = WOTα − limSTα = WOTα − limTαS = TS

Definition 2.3.4. A C∗− subalgebra of B(H) which contains the iden-

tity operator and is closed in the weak operator topology is called a

von Neumann algebra.

Remark 2.3.5. The von Neumann algebra of G is the double commu-

tant of C[G] ⊆ B(H).
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2.4. Left and right regular representations

An important class of C∗− algebras arise in the study of groups. Let

G be a discrete group, then the characteristic function δg(s) of g, s ∈ G

is defined as follows [13]:

δg(s) =

{
1 if g = s,

0 if g 6= s.

If we assume that the G is a discrete group then the functions δg form

a basis for the Hilbert space `2(G) of square summable functions on G.

The group ring C[G] consists of all finitely supported complex-valued

functions on G, that is of all finite combinations

f =
∑
s∈G

ass

with complex coefficients.

The convolution product and the adjoint are defined as follows:

(∑
s∈G

ass

)(∑
t∈G

att

)
=
∑
s,t∈G

asatst

(∑
s∈G

ass

)∗
=
∑
s∈G

ass
−1.

Denote by B(`2(G)) the C∗− algebra of all bounded linear operator on

the Hilbert space `2(G). We may distinguish between the left regular

representation, which is induced by the left multiplication action, and

the right regular representation, which is comes from the multiplication

on the right.



2.4. LEFT AND RIGHT REGULAR REPRESENTATIONS 22

Definition 2.4.1. [13] The left regular representation

λ : C[G]→ B(`2(G))

is defined by

λ(s)δt(r) = δt(s
−1r) = δst(r) for s, r ∈ G.

The right regular representation is given by

ρ(s)δt(r) = δt(rs) = δts−1(r) for s, r ∈ G.

The left regular representation is implemented using the familiar con-

volution formula

(δg ∗λ δh)(s) =
∑
t∈G

δg(st
−1).δh(t) = δgh(s).

It follows that for any function f ∈ `2(G) the left action by δg is given

by

(δg ∗λ f)(s) =
∑
t∈G

δg(st
−1).f(t) = f(g−1s).

We can define the following right convolution:

(δg ∗ρ δh)(s) =
∑
t∈G

δg(t
−1s).δh(t) = δhg(s),

which gives rise to the right regular representation:

(δg ∗ρ f)(s) =
∑
t∈G

δg(t
−1s).f(t) = f(sg−1).

We note that:

δg ∗ρ δh(s) =
∑
t∈G

δg(t
−1s).δh(t)

=
∑
t∈G

δh(s((t
1)−1).δg(t

1)

= δh ∗λ δg(s),
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and hence:

δg ∗ρ δh(s) = δh ∗λ δg(s).

Proposition 2.4.2. The left and right representations commute,

that is for all s, t ∈ G:

ρ(s)λ(t) = λ(t)ρ(s).

Proof. We have:

ρ(s)λ(t)δr = ρ(s)δtr

= δtrs−1

= λ(t)δrs−1

= λ(t)ρ(s)δr.

Thus

ρ(s)λ(t) = λ(t)ρ(s).

�

Remark 2.4.3. The left regular representation λ of the group ring

C[G] assigns to each element f ∈ C[G] a bounded operator λ(f) which

acts on any ζ ∈ `2(G) by convolution:

λ(f)(ζ) = f ∗ ζ.

and

λ(f ∗) = (λ(f))∗ .

The image λ(C[G]) of the group ring under the left regular representa-

tion is a ∗− subalgebra of the algebra B(`2(G)) of bounded operators

on `2(G).
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Lemma 2.4.4. The left and right regular representations λ and ρ are

∗− homomorphisms.

Proof. Let f, g ∈ C[G],

λ(f)(ζ) = f ∗ ζ and λ(g)(ζ) = g ∗ ζ.

Consider

λ(f ∗ g)(ζ) = (f ∗ g) ∗ ζ

= f ∗ (g ∗ ζ)

= f ∗ (λ(g)ζ)

= (λ(f)λ(g)(ζ).

Thus

λ(f ∗ g) = λ(f)λ(g) for all f, g ∈ C [G] .

Thus λ satisfies the product. Consider

(λ(f) + λ(g)(ζ) = λ(f)(ζ) + λ(g)(ζ)

= f ∗ ζ + g ∗ ζ

= (f + g) ∗ ζ

= λ(f + g)(ζ)

Thus

λ(f + g) = λ(f) + λ(g) for all f, g ∈ C [G] .

Thus λ satisfies the sum. It is easy to prove scalar multiplication, and

adjoint. Therefore λ satisfies the properties of an ∗− homomorphisms.

The proof for ρ is similar. �
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Lemma 2.4.5. The left and right regular representations λ and ρ are

unitary bounded representations.

Proof. Let us define an operator

λg : `2(G) −→ `2(G)

which for any function ζ ∈ `2(G) is given by

λgζ(t) = (δg ∗ ζ)(t) = ζ(g−1t).

We have

〈λgζ, η〉 =
∑
t∈G

λgζ(t)η(t)

=
∑
t∈G

ζ(g−1t)η(t)

=
∑
t′∈G

ζ(t
′
)η(gt′)

= 〈ζ, λg−1η〉 .

This means that

λ∗g = λg−1 .

We have for every g ∈ G, ζ ∈ `2(G):

‖λgζ‖2 =
∑
t∈G

∣∣ζ(g−1t)
∣∣2

=
∑
t∈G

|ζ(t)|2

= ‖ζ‖2

therefore, λg is a unitary bounded representation. The proof for ρ is

similar. �
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Lemma 2.4.6. The left regular representation λ is a faithful represen-

tation.

Proof. Let us assume that, for some f ∈ C[G],

λ(f ∗ ∗ f)(δg)(s) = 0, ∀ g, s ∈ G.

Then using the fact that λ is a ∗− homomorphisms we have that

λ(f ∗ ∗ f)(δg)(s) = λ(f ∗).λ(f)δg(s)

=
∑
t∈G

f ∗(t)(λ(f)δg)(t
−1s)

=
∑
t∈G

∑
t′∈G

f ∗(t)f(t
′
δg)(t

′
)−1(t−1s)

=
∑
t∈G

∑
t′∈G

f(t−1)f(t−1sg−1)

= ‖f‖22

From this we deduce that ‖f‖2 = 0, and so f = 0, which implies that

λ is faithful. �

The same argument can be used to show that ρ is a faithful represen-

tation as well.
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2.5. The reduced group C∗− algebra

The reduced C∗− algebra C∗λ(G) of a group G (which we shall assume

to be discrete) arises from the study of the left regular representation

λ of the group ring C[G] on the Hilbert space of square-summable

functions on the group.

Definition 2.5.1. [13] The reduced group C∗− algebra G, denoted by

C∗λ(G) is the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖λ = ‖λ(c)‖

This means that the closure of C[G] for the operator norm as a subal-

gebra of B(`2(G)) is called the reduced C∗− algebra C∗λ(G) of a group

G. This is equivalently, it is the closure of C[G] is identified with its

image under the left regular representation. i.e.

C∗λ(G) := λ(C[G]).

The reduced C∗− algebra C∗ρ(G) of a group G (which we shall assume

to be discrete) arises from the study of the right regular representation

ρ of the group ring C[G] on the Hilbert space of square-summable

functions on the group.

Definition 2.5.2. The reduced group C∗− algebra G, denoted by

C∗ρ(G) is the completion of C[G] in the norm given, for c ∈ C[G],

by

‖c‖ρ = ‖ρ(c)‖ .

This means that the closure of C[G] for the operator norm as a subal-

gebra of B(`2(G)) is called the reduced C∗− algebra C∗ρ(G) of a group
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G. This is equivalently, it is the closure of C[G] is identified with its

image under the right regular representation. i.e.

C∗ρ(G) := ρ(C[G])

Next we also explain tensor product of C∗− algebra. The following is

taken from [31] and Brown and Ozawa [7].

2.6. Tensor product of C∗− algebra

We now recall some basic facts about the tensor product of C∗− alge-

bra. Let A and B be two C∗− algebras, and denote by A � B their

algebraic tensor product, which is a ∗− algebra, such that ‖x∗x‖ =

‖x‖2 for all x ∈ A�B.

Definition 2.6.1. [31] The minimal tensor product is defined by tak-

ing ∗− homomorphism,

π1 ⊗ π2 : A�B −→ B(H1)⊗B(H2) ⊆ B(H1 ⊗H2)

where π1 is a representation of A in some Hilbert space H1 and π2 is a

representation of B in some Hilbert space H2. Thus we define

‖x‖min = sup ‖(π1 ⊗ π2)(x)‖

where π1, π2 run over all representations of A and B respectively. The

minimal tensor product is the completion A ⊗min B of A � B for this

C∗− norm.

The minimal tensor product is the completion A ⊗min B of A � B for

this C∗− norm.
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Definition 2.6.2. [31] The maximal C∗− norm of x ∈ A�B is defined

by

‖x‖max = sup ‖π(x)‖

where π run over all ∗− homomorphisms from A�B into some B(H).

The maximal tensor product is the completion A⊗max B of A�B for

this C∗− norm.



CHAPTER 3

The Invariant Approximation Property

The uniform Roe C∗− algebra (also called uniform translation C∗−

algebra) provides a link between coarse geometry and C∗− algebra

theory. The uniform Roe algebra has a great importance in geometry,

topology and analysis.

In Sections 3.1 and 3.2, we define what a coarse space is, and we study a

number of ways of constructing a coarse structure on a set so as to make

it into a coarse space. We also consider some of the elementary concepts

associated with coarse spaces. A discrete group G has a natural coarse

structure which allows us to define the the uniform Roe algebra, C∗u(G)

[30]. We study in section 3.3, we recall the invariant approximation

property.

In Section 3.4, we study Stone -Čech compactification and the crossed

product of C∗− algebras. Our goal here is to characterise C∗u(G) as a

crossed product algebra.

30
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3.1. Coarse geometry

In this section we shall establish the basic definitions and notations

for the category of coarse metric spaces. Coarse geometry is the study

of the large scale properties of spaces. The notion of large scale is

quantified by means of a coarse structure.

First we recall the following definitions:

Definition 3.1.1. [30] Let X, Y be metric spaces and f : X −→ Y a

not necessarily continuous map.

(1) The map f is called coarsely proper (or metrically proper), if

the inverse image of a bounded set is bounded.

(2) The map f is called coarsely uniform (or uniformly bornolo-

gous), if for every r > 0 there is s(r) > 0 such that for all

x1,x2 in X

d(x1, x2) ≤ r =⇒ d(f(x1), f(x2)) ≤ s(r).

(3) The map f is called a coarse map, if it is coarsely proper and

coarsely uniform.

(4) Let S be a set. Two maps f, g : S −→ X are called close if

there is C > 0 such that for all s inS

d(f(s), g(s)) < C.

(5) A subset E of X×X is called controlled (or entourage), if the

coordinate projection maps π1, π2 : E −→ X are close.

Definition 3.1.2. [30] A coarse structure on a set X is a collection

of subsets of X × X, called the controlled sets or entourages for the
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coarse structure, which contains the diagonal and is closed under the

formation of subsets, inverses, products, and (finite) unions.

It is easy to see that the controlled sets associated to a metric space X

have the following properties:

(1) Any subset of a controlled set is controlled;

(2) The transpose Et = {(x, y) : (y, x) ∈ E} of a controlled set E

is controlled;

(3) The composition E1 ◦ E2 of controlled sets E1 and E2 is con-

trolled; where

E1 ◦ E2 := {(x, z) ∈ X ×X : ∃ y ∈ X, (x, y) ∈ E1 and (y, z) ∈ E2} ;

(4) A finite union of controlled sets is controlled;

(5) The diagonal ∆X := {(x, x) : x ∈ X} is controlled.

A set equipped with a coarse structure is called a coarse space. Coarse

geometry is the study of metric spaces (or perhaps more general ob-

jects) from a ‘large scale’ point of view, so that two spaces which ‘look

the same from a great distance’ are considered equivalent.

Definition 3.1.3. [30] Let X and Y be metric spaces. A (not neces-

sarily continuous) map f : X −→ Y is a quasi-isometry equivalence if

there are constants C,A such that

d(x, y) ≤ Cd(f(x), f(y)) + A

and

d(f(x), f(y)) ≤ Cd(x, y) + A,

for all x and y in X.
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Definition 3.1.4. [30] Let X and Y be metric spaces. A coarse map

f : X −→ Y is a coarse equivalence if there exixst g : Y −→ X such

that f ◦ g and g ◦ f are coarsely uniform (or uniformly bornologous).

Example 3.1.5. The following are some examples [30] of coarse spaces.

(1) The trivial coarse structure only consists of the diagonal and

its subsets.

(2) The discrete coarse structure on a set X consists of the diag-

onal together with subsets E of X ×X which contain only a

finite number of points (x, y) of the diagonal.

(3) Any compact metric space is coarsely equivalent to a point.

The set R is coarsely equivalent to Z.

(4) The indiscrete coarse structure on a set X consists of the di-

agonal together with subsets E of X ×X.

(5) Let X be a coarse space and Y a subset of X. We can equip Y

with a coarse structure declaring that the controlled subsets

of Y × Y are those which are controlled when considered as

subsets of X ×X.

Definition 3.1.6. [30] A coarse structure on X is connected if each

point of X ×X belongs to some controlled set.

Definition 3.1.7. [30] Let (X, d) be a metric space, we say the metric

d induces a coarse structure on X, which is called a bounded coarse

structure. More precisely, we can define the bounded coarse structure

induced by the metric d as follows: Set

Dr := {(x, y) ∈ X ×X : d(x, y) < r} .

Then E ⊆ X ×X is controlled, if E ⊆ Dr for some r > 0.
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Example 3.1.8. The bounded coarse structure on a metric space (X, d)

is the collection A of all subsets A of X ×X such that

sup {d(x, y) : (x, y) ∈ A}

is finite. With this structure, the integer lattice Zn is coarsely equiva-

lent to Euclidean space.

The following is an example of coarse structure.

Example 3.1.9. [30] We say that a coarse structure is generated by the

diagonals if it contains the diagonal and is closed under the formation

of subsets, inverses, products, and (finite) unions. Let G be a finitely

generated group. Then the bounded coarse structure associated to any

word metric on G is generated by the diagonals

∆g = {(h, hg) : h ∈ G}

as g runs over G.

Definition 3.1.10. [30] Let X and Y be coarse spaces. A map

i : X −→ Y is a coarse embedding if it is a coarse equivalence between

X and i(X) ⊆ Y .
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We next recall some basic facts about the uniform Roe algebra and

metric property of a discrete group.

3.2. The uniform Roe algebra

First we recall the following definitions; Let X be a discrete metric

space.

Definition 3.2.1. [30] We say that discrete metric space X has

bounded geometry if for all R there exists N in N such that for all

x ∈ X, |BR(x)| < N , where

BR(x) = {y ∈ X : d(y, x) ≤ R} .

We will say that a kernel φ : X ×X −→ C

• is bounded if there, exists M > 0 such that

|φ(s, t)| < M for all s, t ∈ X

• has finite propagation if there exists R > 0 such that

φ(s, t) = 0 if d(s, t) > R.

Let B(X) be a set of bounded finite propagation kernels on X × X.

Each such φ defines a bounded operator on `2(X) via the usual formula

for matrix multiplication

φ ∗ ζ(s) =
∑
r∈X

φ(s, r)ζ(r) for ζ ∈ `2(X).

Next, we show the operator associated with a bounded kernel is

bounded.



3.2. THE UNIFORM ROE ALGEBRA 36

Lemma 3.2.2. Let X be a bounded geometry discrete metric space. An

operator associated with a bounded finite propagation kernel is bounded.

Proof. Let φ be a bounded propagation kernel on X and ζ ∈

`2(X). Consider

‖φ ∗ ζ‖22 =
∑
x∈X

|φ ∗ ζ(x)|2

=
∑
x∈X

∣∣∣∣∣∑
y∈X

φ(x, y)ζ(y)

∣∣∣∣∣
2

.

Given x, φ(x, y) 6= 0 implies y ∈ BR(x), where R is the propagation

of φ. The ball BR(x) is finite for all x ∈ X and its size is bounded by

N ∈ N. Thus for every x ∈ X the sum∑
y∈X

φ(x, y)ζ(y)

has at most N nonzero terms and so

∣∣∣∣∣∑
y∈X

φ(x, y)ζ(y)

∣∣∣∣∣ ≤ ∑
y∈X

|φ(x, y)| |ζ(y)|

≤
∑
y∈X

M |ζ(y)|

≤ NRM |ζ(y)|

where, by bounded geometry NR is the upper bound on the number of

elements in a ball BR(x). This is independent of x ∈ X, so

‖φ ∗ ζ‖22 ≤
∑
x∈X

N2
RM

2 |ζ(x)|2 = N2
RM

2 ‖ζ‖22
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Therefore an operator associated with a bounded kernel is

bounded. �

We shall denote the algebra of bounded operators associated with finite

propagation kernels on X by A∞(X).

Definition 3.2.3. The uniform Roe algebra of a metric space X is

the closure of A∞(X) in the algebra B(`2(X)) of bounded operators on

X. This mean that the closure of A∞(X) for the operator norm as a

sub C∗− algebra of B(`2(X)) of bounded operators on X is called the

uniform Roe algebra of a metric space X.

If a discrete group G is equipped with its bounded coarse structure

introduced in Example 3.1.9 then one can associated with it uniform

Roe algebra C∗u(G) by repeating the above.
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3.3. Invariant approximation property

A discrete group G has a natural coarse structure which allows us to

define the uniform Roe algebra C∗u(G). A group G can be equipped

with either the left or right-invariant the metric. Example of metric

on a group G include the word metric, or a metric associated with a

length function `, defined in Definition 4.1.1. A choice of one of these

determines whether C∗λ(G) or C∗ρ(G) is a subalgebra of the uniform

Roe algebra C∗u(G) of G as we now explain. First we show that if the

metric on G is right-invariant then

C∗λ(G) ⊂ C∗u(G).

Let d1 be a right - invariant metric on G so that

d1(x, y) = d1(xg, yg) ∀ g ∈ G.

For every g ∈ G, the operator λ(g) is given by the following matrix:

Aλg (x, y) =

{
1, if x = gy,

0, otherwise.

Indeed, with this defintion we have

Aλgδt(s) =
∑
y∈G

Aλg (s, y)δt(y)

= δt(g
−1s)

= δgt(s)

= λg(δt)(s).

Note that Aλg is right - invariant
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Aλg (xt, yt) =

{
1, if xt = gyt⇐⇒ x = gy,

0, otherwise.

Therefore:

Aλg (x, y) = Aλg (xt, yt).

If the metric on G is right - invariant, Aλg is of finite propagation ,

because Aλg (x, y) is non-zero when g = xy−1 and so

d1(x, y) = d1(xy
−1, e) = d1(g, e).

Hence any element of C[G] will give rise to a finite propagation kernel

Aλg and this assignment extends to an inclusion

C∗λ(G) ↪→ C∗u(G).

Next we show that if the metric on G is left - invariant then

C∗ρ(G) ⊂ C∗u(G).

Let d2 be a left - invariant metric on G

d2(x, y) = d2(gx, gy) ∀ g ∈ G.

For every g ∈ G, the operator ρ(g) is given by the matrix.

Aρg(x, y) =

{
1, if x = yg,

0, otherwise.

Indeed, with this defintion we have

Aρgδt(s) =
∑
y∈G

Aρg(s, y)δt(y)

= δt(sg
−1)

= δtg(s)

= ρg(δt)(s).
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Note that Aρg is left - invariant

Aρg(tx, ty) =

{
1, if tx = tyg ⇐⇒ x = yg.

0, otherwise.

Therefore:

Aρg(x, y) = Aρg(tx, ty).

If the metric on G is left - invariant, Aρg is of finite propagation and

Aρg ∈ C∗u(G), because Aρg(x, y) is non-zero when y−1x = g and so

d2(x, y) = d2(y
−1x, e) = d2(g, e).

Hence any element of C[G] will give rise to a finite propagation opera-

tors on `2(G) and this assignment extends to an inclusion

C∗ρ(G) ↪→ C∗u(G).

Let us now choose a right invariant metric for G so that

C∗λ(G) ↪→ C∗u(G).

The right regular representation ρ gives rise to the adjoint action on

C∗u(G) defined by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1

for all t ∈ G, T ∈ C∗u(G). Our remarks above show that elements

of C∗λ(G) are invariant with respect to this action and so C∗λ(G) is

contained in the invariant subalgebra C∗u(G)G of C∗u(G).

Lemma 3.3.1. If T ∈ C∗u(G), regarded as an operator on `2(G), arises

from a kernel function A(x, y), then for every t ∈ G, Adρ(t)T is asso-

ciated with the kernel function A(xt, yt).
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Proof. Using the definition of the adjoint action Adρ(t). We com-

pute that:

(Adρ(t)Tζ)(s) = ρ(t)(Tρ(t)∗ζ)(s)

= T (ρ(t)∗ζ) (st)

=
∑
x∈G

A(st, x)(ρ(t−1)ζ)(x)

=
∑
x∈G

A(st, x)ζ(xt−1)

=
∑
y∈G

A(st, yt)ζ(y).

Thus, Adρ(t)T has kernel A(xt, yt). �

In general, if T ∈ C∗u(X) then ∀ x, y ∈ G:

〈Ad(ρ(t))Tδx, δy〉 =
〈
ρ(t)Tρ(t−1)δx, δy

〉
=

〈
Tρ(t−1)δx, ρ(t−1)δy

〉
= 〈Tδxt, δyt〉 .

So the operator T is Adρ− invariant if and only if

∀ x, y ∈ X ∀ t ∈ G 〈Tδxt, δyt〉 = 〈Tδx, δy〉 .

We now define the invariant approximation property (IAP).

Definition 3.3.2. [30] Let discrete group G equipped with a left -

invariant metric. We say that G has the invariant approximation prop-

erty (IAP) if and only if

C∗u(G)G = C∗λ(G).
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3.4. The uniform Roe algebra as crossed product

In this section, we will characterize C∗u(G) as a crossed product algebra.

We recall that the Stone - Čech compactification of a set X is a com-

pact Hausdorff space βX, equipped with an inclusion of the discrete

space X as an open dense subset and the following universal property:

Every continuous function f : X −→ Z extends uniquely to continuous

function f̃ : βX −→ Z, where Z is a compact Hausdorff space. In par-

ticular, every bounded complex-valued function on X extends uniquely

to a continuous function on βX.

The following is taken from Takesaki [31] and Brown and Ozawa [7].

Let G be a discrete group. Let α : Gy H be an action of G on a C∗−

algebra A: α is a homomorphism from group G into the group Aut(A)

of automorphisms of A. This means that for each g ∈ G there is an

automorphisms α(g) of A given by:

α(g1)α(g2) = α(g1g2).

The algebraic crossed product of A by G is the ∗− algebra generated

by A together with a unitary ut corresponding to each t ∈ G, with the

relation that

uta = α(t)(a)ut,

and

ut1ut2 = ut1t2 .

Any element of the algebraic crossed product of A by G is the formal

sum

a =
∑

atut,
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where at ∈ A and t ∈ G. We denote by A[G] the ∗− algebra of formal

sums

a =
∑

atut,

where

t 7−→ at

is a map from G into A with finite support and where the operations

are given by the following rules:

(at)(bs) = aαt(b)ts,

(at)
∗ = αt−1(a)t−1,

for a, b ∈ A and s, t ∈ G.

Definition 3.4.1. [31], [7] A covariant representation of α : G y A,

is a pair (π, ρ) where π and ρ are unitary representations of G and of

A in the same Hilbert space H respectively, satisfying the covariance

rule

∀ a ∈ G ∀ t ∈ G, ρ(t)π(a)ρ(t)∗ = π(αt(a)),

where π : A −→ U(`2(G)) and ρ : G −→ B(`2(G)), and U(`2(G)) is

the set of unitary bounded operators.

A covariant representation gives rise to a ∗− homomorphism

π × ρ : A[G] −→ B(H)

by

(π × ρ)

(∑
t∈G

att

)
=
∑
t∈G

π(at)ρ(t).
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Definition 3.4.2. [31], [7] The full crossed product of AoG associated

with α : G y A is the ∗− algebra obtained as the completion of A[G]

in the norm

‖a‖ = sup
π,ρ
‖(π × ρ)(a)‖ ,

where (π, ρ) runs over all covariant representation of α : Gy A.

Remark 3.4.3. [31], [7] By definition, every covariant representation

(π, ρ) extends to a representation of AoG, denoted by π × ρ.

Definition 3.4.4. [31], [7] Let G be a discrete group. Let π be a

representation of A on a Hilbert space H0 and

H = `2(G,H0) = `2(G)⊗H0.

We define a covariant representation (π, λ) of α : Gy A, acting on H

by

π(a)ζ(t) = π(αt−1(a))ζ(t)

and

λ(s)ξ(t) = ζ(s−1t)

for all a ∈ A, all s, t ∈ G and all ζ ∈ `2(G,H0). The covariant

representation (π, λ) is said to be induced by π.

A induced covariant representation gives rise to a ∗− homomorphism

π × ρ : A[G] −→ B(H)

by

(π × ρ)

(∑
t∈G

att

)
=
∑
t∈G

π(αt−1(a))ρ(t).
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Definition 3.4.5. [31], [7] The reduced crossed product of A or G is

the ∗− algebra obtained as the completion of A[G] in the norm

‖a‖r = sup
∥∥(π × λ)(a)

∥∥
for a ∈ A[G] , where π is a representation of A.

First we shall describe the following isomorphism:

C∗u(G) ∼= C(βG) or G ∼= `∞(G) or G.

Any element of f ∈ C(βG)[G] ⊂ C(βG) or G, defined by

f =
∑
t∈G

ftt

where ft ∈ C(βG), t ∈ G, and only finitely many ft are non-zero. We

define a map

C(βG)[G] −→ Cc(βG×G),

where Cc(βG × G) is the algebra of contionous compactly supported

functions on βG×G. For f ∈ C(βG)[G], we put

θ(f)(x, t) = ft(x) for every t ∈ G, x ∈ βG.

This map turns out to be an isomorphism:

C(βG)[G] ∼= Cc(βG×G).

The convolution product and the adjoint on the ∗− algebra Cc(βG×G)

are given by the following: Let F,G ∈ Cc(βG×G), then we define

(F ∗G)(x, s) =
∑
t

F (x, t)G(t−1x, t−1s)

and

F ∗(x, s) = F (s−1x, s−1).
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Let

J : G×G −→ G×G

be an involution defined by:

J : (s, t) −→ (s−1, s−1t).

The map

F 7−→ F ◦ J

establishes an isomorphism between Cc(βG×G) and A∞(G).

The uniform Roe algebra C∗u(G) is the norm closure in B(`2(G)) of the

∗− subalgebra formed by the operators Op(k), where k ranges over

the bounded kernel with finite propagation, and Op(k) is the bounded

operator associated with k.

The following Theorem is from Roe [30] and Brown and Ozawa [7].

Theorem 3.4.6. The map Π : f −→ Op(θ(f) ◦ J) extends to an iso-

morphism between the C∗− algebras C∗u(G) and C(βG) or G and

C∗u(G) ∼= C(βG) or G ∼= `∞(G) or G.

Proof. To define C(βG) or G we use representation π of C(βG)

in `2(G) given by

π(f)ξ(t) = f(t)ξ(t) for f ∈ C(βG) and ξ ∈ `2(G).

Therefore C(βG)orG is concretely represented on B(`2(G×G)). And

also f =
∑
s∈G

fs ∈ C(βG)[G] acts on `2(G×G) by

(f.ξ)(x, t) =
∑
s∈G

fs(tx)ξ(x, s−1t).

Let V be the unitary operator on `2(G×G) defined by

V ξ(x, t) = ξ(x, t−1x−1).
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We have

V fξ(x, t) = V
∑
s∈G

fs(tx)ξ(x, s−1t−1)

=
∑
s∈G

fs(tx)V ξ(x, s−1t−1)

=
∑
s∈G

fs(tx)ξ(x, (s−1t−1)−1x−1)

It follows that

V fV ∗ = Id`2(G) ⊗Op(θ(f) ◦ J)

for every f ∈ C(βG)[G] ⊂ C(βG) or G. This means that Π is an

isometry and so extends to a continous isomorphism.

C∗u(G) ∼= C(βG) or G.

It follows from the definition of βG that

C(βG) ∼= `∞(G).

and the Theorem is proved. �



CHAPTER 4

Property RD and Invariant Approximation

Property

In this chapter we discuss the rapid decay property (Property RD) for

discrete group. This property was first considered by P.Jolissaint [21]

and has generalised the work done by Haagerup on estimates of the

regular representation for the free group [18].

Jolissaint proved in his thesis that groups of polynomial growth and

classical hyperbolic groups have property RD, and the only amenable

discrete groups that have property RD are groups of polynomial growth.

He also showed that many groups, for instance SL3(Z), do not have

the property RD [21].

De la Harpe improved Jolissaint’s results and showed that the word

hyperbolic groups of Gromov [16] have property RD as well, and this

leads to the result of Connes and Moscovici that word hyperbolic groups

satisfy the Novikov conjecture. Since then, many important works

have been done on establishing the property RD, notably the works of

Lafforgue [25], Chatterji [8, 9, 10, 11, 12] and Ruane, and Drutu and

Sapir. Examples of RD groups include groups acting on CAT(0)-cube

complexes [12].

In this chapter we study the relation between property RD and the

invariant approximation property. Our main result (Theorem 4.3.3)

48
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states that groups which satisfy property RD with respect to a condi-

tionally negative length function have the IAP.

4.1. Property RD and length functions

We begin with a description of property RD. Our discussion is based

on Jolissaint’s paper [21].

Definition 4.1.1. Let G be a discrete group. A length function on

G is a map ` : G −→ R taking values in the non-negative reals which

satisfies the following conditions:

(1) `(1) = 0 where 1 is the identity element of the group;

(2) For every g ∈ G, `(g) = `(g−1);

(3) For every g, h ∈ G, `(gh) ≤ `(g) + `(h).

A group equipped with a length function becomes a metric space with

the left - invariant metric

d(γ, µ) = `(γ−1µ).

Example 4.1.2. Let G be a discrete group with a finite generating set

S. For convenience we will assume that S is symmetric, i.e. S−1 = S.

For any g ∈ G, define

|g|S = min {k : g = s1 . . . sk, si ∈ S} .

This is the algebraic word length function of G induced by the gener-

ating set S.

Example 4.1.3. Consider Z2 with the symmetric generating set

S = {(1, 0), (0, 1), (0,−1), (−1, 0)} .



4.1. PROPERTY RD AND LENGTH FUNCTIONS 50

For (m,n) ∈ Z2, we have the word length function

|(m,n)|S = |m|+ |n| ,

where |m| and |n| are the absolute values of m and n respectively.

Let G be a countable, discrete group with symmetric finite generating

sets S and S
′
, yielding word-length functions |.|S and |.|S′ respectively.

As the generating sets are different, these length functions, and the

metric functions they induce, are different.

Example 4.1.4. Let X be a metric space with base point x0 ∈ X and

let G be the group of isometries on X. For every g ∈ G, let

Lx0(g) = d(x0, g(x0)).

Then Lx0 is a length function on G.

Definition 4.1.5. Let ` be a length function on G. We define a Sobolev

norm on the group ring of G as follows:

(1) For any length function ` and positive real numbers, we define

a Sobolev norm on the group ring C[G] by:

‖f‖`,s =

√∑
γ∈G

|f(γ)|2 (1 + `(γ))2s.

(2) If s ∈ R, the Sobolev space of order s is the set Hs
` (G) of

functions ξ on G such that ξ(1 + `)s belongs to `2(G).

Definition 4.1.6. Let H < G be a subgroup of G and ` a length

function on G. The restriction of ` to H induces a length function on

H that we call the induced length function.
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Definition 4.1.7. If `1 and `2 are length functions on G, we say that

`2 dominates `1 if there exist a, b ∈ R such that `1 ≤ a`2 + b. If

`1 dominates `2 and `2 dominates `1, then `1 and `2 are said to be

equivalent.

Lemma 4.1.8. If `1 and `2 are equivalent then ‖f‖`1,s and ‖f‖`2,s are

equivalent.

Proof. Since

`1 ≤ a`2 + b,

we have

1 + `1 ≤ 1 + a`2 + b

≤ 1 + b+ a (1 + b) `2

≤ c(1 + b) (1 + `2)

where c = max {1, a}. Thus

‖f‖`1,s =
(∑

|f(x)|2 {1 + l1(x)}2s
) 1

2

≤
(∑

|f(x)|2 (c(1 + b) (1 + l2(x)))2s
) 1

2

≤ Bs ‖f‖`2,s

where Bs = {c(1 + b)}s .

Similarly

‖f‖`2,s ≤ C ‖f‖`1,s ,

where C is a constant. Therefore ‖f‖`2,s and ‖f‖`1,s are equivalent. �

We are now ready to define property RD. The following definition is

due to Jolissaint [21] (see also [12]).
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Definition 4.1.9. [21] Let ` be a length function on a discrete group

G. We say that G has the Rapid Decay property (property (RD)) with

respect to the length function ` if there exist C≥ 0 and s > 0 such

that, for all f ∈ C[G],

‖f‖∗ ≤ C ‖f‖`,s ,

where ‖f‖∗ denotes the operator norm of f acting by left convolution

on `2(G).

We denote by R+G the subset of C[G] consisting of functions with

target in R+. The following proposition of Chatterji and Ruane [12]

provides equivalent criteria for property RD and summaries various

characterizations of property RD.

Proposition 4.1.10. [12] Let G be a discrete group endowed with a

length function `. Then the following are equivalent:

(1) The group G has property RD with respect to `;

(2) There exists a polynomial P such that for any r > 0 and any

f ∈ R+G so that f vanishes on elements of length greater than

r, we have

‖f‖∗ ≤ P (r) ‖f‖2 ;

(3) There exists a polynomial P such that, for any r > 0 and any

two functions f, g ∈ R+G so that f vanishes on elements of

length greater than r, we have

‖f ∗ g‖∗ ≤ P (r) ‖f‖2 ‖g‖2 ;

(4) There exists a polynomial P such that, for any r > 0 and any

three functions f, g, h ∈ R+G so that f vanishes on elements
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of length greater than r, we have

f ∗ g ∗ h(e) ≤ P (r) ‖f‖2 ‖g‖2 ‖h‖2 ;

(5) The space of rapidly decaying functions H∝` (G) is contained in

the reduced C∗- algebra C∗λ(G);

(6) Any subgroup H in G has property RD with respect to the

induced length function;

Proof. We sketch the proof given of the equivalence (1)⇐⇒ (2)

by Chatterji and Ruane. We will be using the equivalence (1)⇐⇒ (2)

later( section 4.3). We will If f ∈ C[G] is a function whose support is

in B(e, r) then

‖f‖∗ ≤ C ‖f‖l,s

= C

√ ∑
γ∈B(e,r)

|f(γ)|2 (1 + l(γ))2s


≤ C

√ ∑
γ∈B(e,r)

|f(γ)|2 (1 + r)2s


= C(1 + r)s ‖f‖2 .

This is condition (2) where the polynomial is P (r) = C(1 + r)s.

To prove the converse, for n ∈ N, let

Sn = {γ ∈ G;n ≤ l(γ)) < n+ 1} ,
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and denote by fn the restriction of f to set Sn. We have

‖f‖∗ =

∥∥∥∥∥
∞∑
n=0

fn

∥∥∥∥∥
∗

≤
∞∑
n=0

‖fn‖∗

≤
∞∑
n=0

P (n+ 1) ‖fn‖2 ,

if we now replace the polynomial P (n + 1) by its highest order term

we have the estimate

‖f‖∗ ≤
∞∑
n=0

C(n+ 1)k ‖fn‖2

for some constant C.

Dividing and multiplying by (n+ 1) we can use the Cauchy -Schwartz

inequality to obtain

∞∑
n=0

C(n+ 1)k ‖fn‖2 ≤
∞∑
n=0

C(n+ 1)−1(n+ 1)k+1 ‖fn‖2

≤ C

(
∞∑
n=0

(n+ 1)−2

) 1
2
(
∞∑
n=0

(n+ 1)2k+2 ‖fn‖22

) 1
2

= C
π√
6
‖f‖l,k+1 ,

where

π√
6

=

(
∞∑
n=0

(n+ 1)−2

) 1
2

.

�

Definition 4.1.11. [21] We say that a discrete group G has polynomial

growth with respect to a length function ` if there exists a polynomial

P such that the cardinality of the ball of radius r (denoted by |B(e, r)|)

is bounded by P (r).
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Example 4.1.12. [21] Let G be a discrete group endowed with a length

function ` with respect to which G is of polynomial growth. Then G

has property RD with respect to `. Indeed, take f ∈ C[G] such that

supp(f) = Sf ⊆ B(e, r),

then

‖f‖∗ ≤ ‖f‖1

=
∑
γ∈G

|f(γ)|

=
∑
γ∈Sf

|f(γ)|

≤
√
|Sf |

√∑
γ∈Sf

|f(γ)|2

=
√
|Sf | ‖f‖2 ,

the last inequality being just the Cauchy-Schwartz inequality. If G is

of polynomial growth, then

|Sf | ≤ |B(e, r)| ≤ P (r)

and thus

‖f‖∗ ≤
√
P (r) ‖f‖2 .

We note that the following important result from [21].

Theorem 4.1.13. Let G be a discrete amenable group. Then G has

property (RD) with respect to a length function ` if and only if G is of

polynomial growth with respect to `.
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4.2. Positive and negative type kernels

Let us briefly recall basic definitions and facts concerning positive and

negative type kernels and functions.

Definition 4.2.1. Let X be a set. A symmetric kernel on X is a

function f : X ×X −→ R with f(x, y) = f(y, x).

Definition 4.2.2. [30] A kernel f has conditionally positive type if for

all m ∈ N, all m−tuples x1, x2, . . . , xm of points of X and for all real

scalars λ1, λ2, . . . , λm, one has

m∑
i,j=1

λiλjf(xi, xj) ≥ 0.

Definition 4.2.3. [30] A kernel f has conditionally negative type if

for all m ∈ N, all m−tuples x1, x2, . . . , xm of points of X, and for all

real scalars λ1, λ2, . . . , λm such that
∑
λi = 0, one has

∑
i,j

λiλjf(xi, xj) ≤ 0.

The following example is the connection between maps into Hilbert

spaces and positive and negative type kernels.

Example 4.2.4. [30]

(1) A constant function on X×X has conditionally negative type.

A kernel of the form

f(x, y) = g(x)g(y),

where g is any real-valued function, has positive type.
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(2) Suppose that H is a (real) Hilbert space. Then the kernel

f(x, y) = 〈x, y〉 ; x, y in H,

has positive type, and the kernel

f(x, y) = ‖x− y‖2 ; x, y in H

is of negative type.

The following result in [30], which relates positive and negative type

kernels, is known as Schoenberg’s Lemma.

Lemma 4.2.5. [30] Let f be a symmetric kernel on a space X. The

following statements are equivalent.

(1) The kernel f is of negative type.

(2) For each t > 0 the kernel exp(−tf) is of positive type.

Remark 4.2.6. [30] Let G be a group. A function of positive type on

G is a function φ : G −→ R, (x, y) 7−→ φ(x−1y), is a kernel of positive

type.

We recall some definitions:

Definition 4.2.7. [30] We say that a kernel f(x, y) on a coarse space

X is effective if the sets

{(x, y) : f(x, y) < R} , for R > 0,

generate the coarse structure on X.

Let CE(X ×X) denote the algebra of bounded functions f on X ×X.

which have the property that for each ε > 0 the set

{(x, y) ∈ X ×X : |f(x, y)| < ε}
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is controlled. We assume that X is a uniformly discrete and of bounded

geometry. It can be seen that CE(X×X) is isomorphic to C0(G), where

C0(G) is the algebra of functions vanishing at ∞.

These notations are brought together by the following result of Roe

[30].

Theorem 4.2.8. [30] Let X be a coarse space. The following are equiv-

alent:

(1) X can be coarsely embedded into a Hilbert space.

(2) There is an effective negative type kernel on X.

(3) The algebra CE(X×X) has an approximate unit consisting of

a sequence {un} of normalized positive kernels.

The normalized positive type kernels on X acting on B(`2(X)) by Schur

multiplication.

Definition 4.2.9. [30] We say that f is a normalized positive kernel

if f(x, y) = 1, for all x, y ∈ X.

Lemma 4.2.10. [30] Let f be a normalized positive type kernel on a set

X. Then there is a unique unital completely positive map

Mf : B(`2(X)) −→ B(`2(X))

such that

〈(MfT ) δx, δy〉 = f(x, y) 〈Tδx, δy〉 ,

for all T ∈ B(H).
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4.3. RD and Invariant approximation property

In this section we show that the invariant approximation property for

groups equipped with conditionally negative length function. The fol-

lowing proposition due to Roe shows a sufficient condition to invariant

approximation property. We shall use this to prove the main Theorem

of this chapter.

Proposition 4.3.1. [30] Suppose that there is an approximate unit for

C0(G) comprised of a sequence of functions φn, such that

(1) each φn is of positive type and normalized,

(2) the operator Mφn of Schur multiplication by φn maps L(G)

into C∗λ(G).

Then G has the invariant approximation property.

We will need the following convergence result. Which is important

proposition, which is used for the main result (see Theorem 4.3.3) of

this Chapter.

Proposition 4.3.2. [30] Let G be a discrete group satisfying the rapid

decay property with respect to a length function `, for s > 0. Let

f ∈ Hs
l (G) be given by

f =
∑
g∈G

fgλ(g), fg ∈ C[G].

Then the series
∑
g∈G

fgλ(g) converges in norm to an element of C∗λ(G).

Proof. Let {Fn} be a family of finite subsets of G such that

F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ Fn · · ·
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and

G =
⋃
n∈N

Fn.

Then for every n ∈ N we have by the rapid decay property

‖λ(f |Fn)‖∗ ≤ C

{∑
g∈Fn

|fg|2 (1 + `(g))2s

} 1
2

≤ C ‖f‖l,s .

Letting n tend to infinity we see that the series on the left converges

to an element C∗λ(G). �

We will use this Proposition 4.3.2 as follows. Let T in L(G) be repre-

sented by a series ∑
g∈G

bgλ(g).

Then be complex coefficient bg form a square-summable sequence. To

see this, let {Fn} be a family of finite subsets of G as in the previous

Proposition 4.3.2. For every n, and s ∈ G.

〈∑
g∈Fn

bgλ(g)δs,
∑
g′∈Fn

bg′λ(g
′
)δs

〉
=

∑
g∈Fn

∑
g′∈Fn

bgbg′
〈
λ(g)δs, λ(g

′
)δs

〉
=

∑
g∈Fn

∑
g′∈Fn

bgbg′
〈
δgs, δg′s

〉
=

∑
g∈Fn

|bg|2 .

But for every n, ∥∥∥∥∥∑
g∈Fn

bgλ(g)

∥∥∥∥∥ ≤ ‖T‖
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and so by letting n go to infinity we see that the sequence bg is square

summable.

We now prove the main result of this Chapter.

Theorem 4.3.3. Let G be a discrete group satisfying the rapid decay

property with respect to a conditionally negative length function `. Then

the group G has the invariant approximation property.

Proof. By Schoenberg’s Lemma (Lemma 4.2.5), for every n the

function

φn(γ) = exp(−`(γ)/n)

is of positive type and family {φn} forms an approximate unite for

C0(G). The function φn are normalizrd as φn(e) = 1 for all n. The

Theorem 4.3.3 will be proved if we show that for every n, the map

T 7−→MφnT

sends

L(G) −→ C∗λ(G).

For this we use the rapid decay property and the method of Proposi-

tion 4.3.2.

If T is represented by the series

T =
∑
g∈G

bgλ(g)

then MφnT is given by

MφnT =
∑
g∈G

φnbgλ(g).
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Then by the rapid decay property, for every k ∈ N∥∥∥∥∥∑
g∈Fk

φn(g)bgλ(g)

∥∥∥∥∥ = C

(∑
g∈Fk

|φn(g)bg|2 (1 + `(g))2s

) 1
2

= C sup
g∈G
{|φn(g)| (1 + `(g))s}

(∑
g∈Fk

|bg|2
) 1

2

= CK
∑
g∈G

|bg|2 <∞,

where K = sup
g∈G
{|φn(g)| (1 + `(g))s}.

Then, letting k −→∞ we see that∑
g∈Fk

φn(g)bgλ(g)

converges in norm to an element of C∗λ(G), and on the other hand it

convegers to MφnT , proving the result. �

We now use this to show the following examples: First, we first recall

the definitions of hyperbolicity for metric space.

Definition 4.3.4. A metric space (X, d) is said to be hyperbolic if

there is a constant δ ≥ 0 such that for any points w, x, y, z ∈ X we

have that:

d(w, x) + d(y, z) ≤ max {d(w, y) + d(x, z), d(w, z) + d(x, y)}+ δ.

Jolissaint showed that classical hyperbolic groups have property RD

[21]. Faraut and Harzallah showed that the natural metrics on these

hyperbolic spaces are conditionally negative and they give rise to condi-

tionally negative length function on these group [5]. Hence we obtain:

Corollary 4.3.5. Let G be a classical hyperbolic group. Then the

group G has the invariant approximation property.
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We note that Ozawa has a more general result for hyperbolic groups

[29].

Theorem 4.3.6. [29] Hyperbolic groups have the invariant approxima-

tion property.

Let G be a CAT(0) cubical group, which means G acts properly and

cocompactly on a CAT(0) cube complex [28]. Now according to Niblo

and Reeves [28] given a group acting on a CAT(0) cube complex, they

obtain a conditionally negative length kernel on the group which gives

rise to a conditionally negative length function. Chatterji and Ru-

ane [12] proved that CAT(0) cube complexes have property RD with

respect to this length function provided that the action is properly dis-

continuous, stabilizers are uniformly bounded and the cube complexes

have finite dimension. We deduce that:

Corollary 4.3.7. CAT(0) cubical groups have the invariant approx-

imation property.

Recall the following:

Definition 4.3.8. [20] A Coxeter group is a discrete group G given

by the presentation with a finite set of generators

W = {wi, . . . , wn}

and a finite set of relations defined as follows:

w2
i = 1 = (wiwj)

mi,j , where mi,j is either ∞ or an integer ≥ 2.
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Chatterji proved that Coxeter groups have property RD [10]. Jolis-

saint showed that finitely generated Coxter groups have conditionally

negative length function [22]. Hence we have

Example 4.3.9. Let G be a finitely generated Coxeter group. Then

the group G has the invariant approximation property.

We recall the definition of torus knot groups:

Definition 4.3.10. [22][21] We define the torus knot groups by, for p

and q positive integers such that (p, q) = 1,

G = {x, y | xp = yq} ,

Jolissaint showed that torus knot groups have conditionally negative

length function [22] and proved that torus knot groups have property

RD [21]. This gives us another example of invariant approximation

property.

Corollary 4.3.11. Let G be a torus knot group. Then the group G

has the invariant approximation property.

First we recall the definition of the free product G1 ∗G2 of two groups,

G1 and G2.

Definition 4.3.12. [22] We say that the free product of G1 ∗ G2 of

two groups G1 and G2 is the set consisting of the empty word (denoted

by e) together with all reduced words w = a1, a2 . . . an, where the aj’s

are elements of either G1 or G2 different from the identity and satisfy

the condition:

aj ∈ Gi, implies aj+1 ∈ G3−i (1 ≤ j ≤ n− 1, i = 1, 2).
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The following Theorem can be found in [21].

Theorem 4.3.13. If G1 and G2 have property (RD) then so does their

free product G = G1 ∗G2.

Example 4.3.14. Let G be a free product two groups G1 and G2, which

satisfying the rapid decay property with respect to a conditionally neg-

ative length function `. By using Theorem 4.3.13, G = G1 ∗ G2 have

property RD. Jolissaint showed that, if G1 and G2 have conditionally

negative length function then their free product G1 ∗G2 also has con-

ditionally negative length function [22]. By using Theorem 4.3.3. We

deduce that the G has the invariant approximation property.



CHAPTER 5

Strong Invariant Approximation Property

In this Chapter we will study the strong invariant approximation prop-

erty in various contexts. In particular, we investigate its links to the

completely bounded approximation property (CBAP), the strong in-

variant approximation property (SIAP), the approximation property

(AP), the operator space approximation property (OAP), and exact-

ness. The reader is referred to the book by Brown and Ozawa [7] for a

beautiful exposition of these concepts. In this Chapter we describe and

study the strong invariant approximation property for stability results.

In section 5.3, we show the following implications for discrete groups

(see Proposition 5.2.11):

CBAP ⇒ AP ⇒ IAP.

Our interest in these properties comes from a link to the strong invari-

ant approximation property (SIAP) of Zacharias, which implies the

IAP (see Proposition 5.3.3). We shall use results of Haagerup and

Kraus [19] on the AP to investigate some permanence properties of

the IAP and the SIAP for discrete groups. This can be done most

efficiently for exact groups.

66
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5.1. Approximation properties

We begin with an outline of results of Haagerup and Kraus [19].

Definition 5.1.1. [5] A C∗− algebra A is nuclear if and only if it has

the following completely positive approximation property (CPAP): The

identity map on A can be approximated in the point norm topology

by finite rank completely positive contractions. This means that there

exist nets of operators Tα : A −→ Mnα(C) and Sα : Mnα(C) −→ A

such that for all a ∈ A

lim
α
‖SαTα(a)− a‖ = 0.

A C∗− algebra A has the metric approximation property (MAP) of

Grothendieck if and only if the identity map on A can be approximated

in the point-norm topology by a net of finite rank contractions.

Comparing the definitions we see that CPAP implies MAP (see for ex-

ample [5]). Lance [27] has shown that G is a discrete group amenable

if and only if its reduced C∗− algebra A has the CPAP which is equiv-

alent to C∗r (G) being nuclear. Completely positive maps are in partic-

ular completely bounded, which suggest the following weakening of the

CPAP.

Definition 5.1.2. [5] A C∗−algebra A is said to have the completely

bounded approximation property (CBAP) if there is a positive num-

ber C such that the identity map on A can be approximated in the

point norm topology by a net {φα} of finite rank completely bounded

maps whose completely bounded norms are bounded by C. This means

that there exists a net of finite-rank maps {φα} : A −→ A such that
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‖φα‖cb ≤ C for some constant C and φα −→ idA in the point-norm

topology on A (i.e. ‖φα(x)− x‖ −→ 0 for all x ∈ A).

The infimum of all values of C for which such constants exist is de-

noted by Λcb(A) and is called the Cowling - Haagerup constant. We

set Λcb(G) =∞ if the discrete group G does not have the CBAP. Ob-

viously, a nuclear C∗− algebra has the metric approximation property.

On the other hand, Haagerup [18] proved that the reduced C∗− algebra

Fn, n ≥ 2 has the metric approximation property, a very remarkable

result since C∗r (Fn), n ≥ 2, is not nuclear, Fn not being amenable.

We have the following definition of weak amenability.

Definition 5.1.3. [5] An approximate identity on G is a sequence

(φn) of finitely supported functions such that φn uniformly converge

to constant function 1. We say that discrete G is weakly amenable if

there is an approximate identity (φn) such that

C := sup
n
‖Mφn‖cb <∞.

We have the following important result by Haagerup [19].

Theorem 5.1.4. Let G be a discrete group. The following are equiva-

lent:

(1) G is weakly amenable,

(2) C∗r (G) has the CBAP.

Definition 5.1.5. [7] We say that discrete group G is amenable if and

only if there is an approximate identity consisting of positive definite

functions.
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Lemma 5.1.6. An amenable discrete group is weakly amenable.

Proof. We recall that G is an amenable discrete group if and only

if there is an approximate identity on G consisting of positive definite

functions (see definition 5.1.5). A sequence (φn) of finitely supported

functions such that φn −→ 1. Then Mφn completely positive on C∗λ(G)

and also Mφn completely bounded and

‖Mφn‖cb = φn(1).

Thus Λcb(G) = 1. Therefore G has CBAP. By Theorem 5.1.4, G is

weakly ameable. �

Haagerup and Kraus have provided in [19] a detailed characterisation

of AP.

First we recall the Fourier algebra

A(G) := {f : f(t) = 〈λ(t)ξ | η〉 for some ξ, η ∈ `2(G)}

is the space of all coefficient function of the left regular representation

λ. Given f ∈ A(G), its norm is given by

‖f‖ = inf {‖ξ‖ ‖η‖ : f(t) = 〈λ(t)ξ | η〉} .

With this norm, A(G) is a Banach algebra with the pointwise multi-

plication [19].

A complex-valued function φ on G is a multiplier for A(G) if the linear

map

Mφ(f) = φf

sends A(G) to A(G). If the mapMφ is completely bounded on A(G), we

call φ a completely bounded multiplier of A(G). The set of multipliers
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of A(G) is denoted by M0A(G). If φ ∈ A(G) then φ is a bounded

continuous function and Mφ is a bounded operator on the space A(G).

The discrete group G has the approximation property (AP) if there is a

net {φα}α∈∧ in A(G) such that Mφα −→ idA(G) in the stable point-norm

topology on A(G).

We say that the C∗− algebra A has the strong operator approximation

property (SOAP) if there is a net Tα in A(G) such that Tα −→ idA in

the stable point-norm topology.

If A is a C∗− algebra, and H is a separable infinite Hilbert space, a

net Tα in CB(A) is said to converge in the stable point-norm topology

to T in CB(A) if Tα ⊗ idK(H)(a) −→ T ⊗ idK(H)(a) in norm for all

a ∈ A⊗ K(H). Here K(H) denotes the ideal of compact operators on

H.

We say that C∗− algebra, A has the operator approximation property

(OAP) if there exists a net of finite - rank maps Tα : A −→ A such

that Tα −→ idA in the stable point-norm topology. This means that

there exists a net of finite rank linear maps

Tα : A −→ A

such that for all x ∈ K(H)⊗min A,

‖Id⊗ Tα(x)− x‖ −→ 0.

We have the following important result from Haagerup and Kraus [19]:

Theorem 5.1.7. [19] Let G be a discrete group. Then the following

are equivalent:

(1) G has the AP,
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(2) C∗r (G) has the operator approximation property (OAP),

(3) C∗r (G) has the strong operator approximation property (strong

OAP).

Example 5.1.8. The following groups have AP [19]. This implies that

these groups have the OAP, and thus also SOAP:

• SL(2,Z)[19]

• Z2 o SL(2,Z) [19]

Exactness of groups has been Kirchberg and Wassermann [24].

Definition 5.1.9. [33] A C∗− algebra A is exact if, given any exact

sequence

0 −→ J −→ B −→ C −→ 0

of C∗− algebras, the sequence

0 −→ A⊗min J −→ A⊗min B −→ A⊗min C −→ 0

is again exact.

Definition 5.1.10. [33] We say that a discrete group G is exact if and

only if C∗r (G) is an exact C∗− algebra.

Example 5.1.11. Kirchberg and Wassermann [23] show that if a C∗r (G)

has the CBAP then G is exact. On the other hand a group G is weakly

amenable if and only if it has the CBAP [19], and so all weakly amean-

ble groups are exact.

Example 5.1.12. The following are examples of exact group:

• linear groups [17]
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• Hyperbolic groups [1]

• Coxeter groups [14]

• countable subgroups of almost connected Lie groups [17]

5.2. Joachim Zacharias’s IAP with coefficients

In this section we will give definition of the strong invariant approxi-

mation property. Let S ⊆ B(H) be a closed subspace.

Definition 5.2.1. [36] We define the operator space C∗u(G,S) as the

closure of finite width matrices [xs,t]s,t∈G, where xs,t ∈ S and ‖xs,t‖ is

uniformly bounded for all s, t ∈ G acting on `2(G)⊗H.

We have that

C∗u(G)⊗ S ⊆ C∗u(G,S).

In general C∗u(G,S) is an operator space and it is a C∗− algebra if S is

C∗− algebra. C∗u(G,−) is a functor on the categery of C∗− algebras.

Definition 5.2.2. [36] We say that C∗u(G,−) is an exact functor if the

functor A 7−→ C∗u(G,A) takes short exact sequences of C∗− algebras

to short exact sequences of C∗− algebras, so that given a short exact

sequence

0 −→ J −→ B −→ C −→ 0

of C∗− algebras the induced sequence

0 −→ C∗u(G, J) −→ C∗u(G,B) −→ C∗u(G,C) −→ 0

is exact.
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Let S ⊆ B(H) be a closed subspace and let H be a Hilbert space.

For any x ∈ C∗u(G,S): x ∈ C∗u(G,B(H)) such that xs,t ∈ S for all

s, t ∈ G; [xs,t]s,t∈G is the finite width matrices; ‖xs,t‖ is uniformly

bounded for all s, t ∈ G acting on `2(G) ⊗H. The following Theorem

is proved in [36].

Theorem 5.2.3. [36] For a discrete exact group the following condi-

tions are equivalent:

(1) G is exact;

(2) C∗r (G) is exact;

(3) For all Hilbert spaces H and closed subspaces S ⊆ B(H)

C∗u(G,S) = {x ∈ C∗u(G,B(H)) ;xs,t ∈ S for all s, t ∈ G} ;

(4) C∗u(G,−) is an exact functor.

We describe an outline of proof of Theorem 5.2.3: We have

C∗u(G,S) ⊆ {x ∈ C∗u(G,B(H)) ;xs,t ∈ S for all s, t ∈ G} ;

For the reverse inclusion note that If C∗r (G) is exact, then there exists

a net of finite width positive definite kernels

kα : G×G −→ C

(as in Theorem 2.1(3) [36]) such that for all ε > 0 and every finite

subset F ⊆ G there is α0 such that |kα(s, t)−1| < ε whenever st−1 ∈ F

and α ≥ α0. The Schur multiplier Mkα associated with kα defines a

completely positive map on B(`2(G) ⊗ H) such that Mkα(x) −→ x is

norm for all x ∈ C∗u(G,B(H)). Moreover

Mkα ({x ∈ C∗u(G,B(H))| xs,t ∈ S for all s, t ∈ G}) ,
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whose norms are uniformly bounded and is a subset of C∗u(G,S). This

means that: (2) implies (3). (1) and (2) are equivalent by definition.

(4) implies (1) follows from a characterisation of exactness of G given

in Lemma 2.2 [36].

Next, we define the set of fixed points of C∗u(G,S)G:

Definition 5.2.4. We define

C∗u(G,S)G = {T ∈ C∗u(G,S) ; Ad(ρt ⊗ id)T = T for all t ∈ G} .

We now define Joachim Zacharias’s IAP with coefficients (SIAP):

Definition 5.2.5. [36] We say that a discrete group G has the strong

invariant approximation property (SIAP) if for any closed subspace S

of the compact operators K (on `2(N)). We have an isomorphism

C∗u(G,S)G = C∗λ(G)⊗ S holds.

We have the following Lemma of Joachim Zacharias [36].

Lemma 5.2.6. [36] Suppose that G is exact and S ⊆ B(H) is an arbi-

trary closed subspace, then

C∗u(G,S)G = (C∗u(G)⊗ S)G.

Sketch of proof of Lemma 5.2.6: Given A ∈ C∗u(G,S)G we have

A(x, y) = A(xt, yt) ∈ S for all x, y, t ∈ G.

In particular

A(x, y) = A(xy−1, e) ∈ S for all x, y ∈ G.
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Let F ⊆ G be finite and AF (x, y) the element obtained from A by

replacing A(x, y) by 0 when xy−1 /∈ F . We have

AF =
∑
t∈F

λt ⊗ A(t, e) ∈ C[G]� S,

where C[G]� S is the algebraic tensor product and C[G] is the group

ring. Since,

Mkα

(
AF
)

= Mkα (A) ,

provided kα has width F . (This means that there is M ≥ 0 such that

|kα| ≤M for all α ∈ G.) But

Mkα

(
AF
)

=
∑
t∈F

Mkα(λt)⊗ A(t, e) ∈ C∗u(G)� S

thus

Mkα

(
C∗u(G,S)G

)
⊆ C∗u(G)� S ∀ α.

Since

Mkα(A) −→ A ∀A ∈ C∗u(G,S).

it follows that

C∗u(G,S)G = (C∗u(G)⊗ S) ∩ C∗u(G,S)G

= (C∗u(G)⊗ S)G.

The following Theorem can be found in [36].

Theorem 5.2.7. For a discrete exact group G the following conditions

are equivalent:

(1) G has the strong invariant approximation property (Joachim

Zacharias’s IAP with coefficients (SIAP));

(2) C∗u(G,S)G = (C∗u(G) ⊗ S)G = C∗λ(G) ⊗ S for any closed sub-

space S ⊆ K;
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(3) C∗u(G,S)G = (C∗u(G)⊗S)G = C∗λ(G)⊗S for any Hilbert space

H and closed subspace S ⊆ B(H);

(4) G has the AP.

Comment on proof of Theorem 5.2.7: Given G exact with the strong

invariant approximation property (SIAP), for any closed subspace S of

the compact operator K (on `2(N)) we have the equality

C∗u(G,S)G = C∗λ(G)⊗ S.

By Lemma 5.2.6

C∗u(G,S)G = (C∗u(G)⊗ S)G

for any closed subspace S. Then

C∗u(G,S)G = (C∗u(G)⊗ S)G = C∗λ(G)⊗ S

for any closed subspace S ⊆ K. This implies that (1) ⇐⇒ (2). Next

we describe the (1) =⇒ (4): Given G exact with the strong invariant

translation approximation property (SIAP), we need to show that G

has AP. Haagerup and Kraus have shown that G has AP if and only

if C∗r (G) has strong OAP. They also show that C∗r (G) has strong OAP

if and only if C∗r (G) has the slice map property for closed subspace

S ⊆ K. Joachim Zacharias [36] shows that C∗r (G) has the slice map

property for closed subspace S ⊆ K. Let A and B be C∗− algebras

and X ⊂ B be a closed subspace. For arbitrary A the kernel of the

map

A⊗B −→ A⊗ C

is the Fubini product: We define

F (A,B, J) = {x ∈ A⊗B : (φ⊗ id)(x) ∈ J ∀φ ∈ A∗} .
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We say a triple (A,B, J) satisfies the slice map property if

F (A, J) = A⊗ J.

Next we describe the (4) =⇒ (3): G has the AP, by using definitions

of AP. Let φα ∈ Ac(G) , which means that φα have finite support, such

that

Mφα(x) −→ x, ∀x ∈ C∗u(G,B(H)).

But

MφαAdρ(t) = Adρ(t)Mφα , ∀ t ∈ G.

Let us first note that completely bounded multiplier φα ∈ M0A(G)

define Mφα ∈ CB(C∗u(G,S)) for any operator space S ⊆ B(H), given

by

Mφα [xs,t] =
[
φα(st−1)xs,t

]
.

But a completely bounded operators Mφα ∈ CB (C∗u(G,S)) maps in-

variant elements to invariant elements. Moreover,

Mφα

(
C∗u(G,S)G

)
⊆ C[G]� S.

By similar proof of Lemma 5.2.6. Since

Mφα(x) −→ x ∀x ∈ C∗u(G,S).

It follows that

C∗u(G,S)G ⊆ C∗λ(G)⊗ S.

Therefore

C∗u(G,S)G = C∗λ(G)⊗ S.

This implies that (4) =⇒ (3). Next we describe the (3) =⇒ (1). We

assume that

C∗u(G,S)G = (C∗u(G)⊗ S)G = C∗λ(G)⊗ S
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for any Hilbert space H and closed subspace S ⊆ H.

Therefore

C∗u(G,S)G = C∗λ(G)⊗ S

for any Hilbert space H and closed subspace S ⊆ H.

This implies that (3) =⇒ (1).

Remark 5.2.8. For a discrete exact group G, G has the AP ⇐⇒ G

has SIAP (Zacharias’s IAP with coefficients).

We note also the following results.

Lemma 5.2.9. [19] If G is weakly amenable, then G has the AP.

Lemma 5.2.10. If G has the AP, then G has the IAP.

Proof. For group C∗− algebra of discrete groups the OAP if and

only if G has AP [19]. Thus G has exactness, and so condition (4)

in Thorem 5.2.7 implies the other condition for all discrete group

G. Moreover (see Theorem 5.2.7), the strong invariant approximation

property with coefficients implies the one without coefficients. This

means:

C∗u(G,C)G = C∗u(G)G ⊗ C = C∗λ(G)⊗ C.

and therefore

C∗u(G)G = C∗λ(G),

Thus G has IAP, �

We are now ready to prove the following proposition.
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Proposition 5.2.11. The following implications hold for a discrete

group:

CBAP ⇒ AP ⇒ IAP.

Proof. By Theorem 5.1.4 if G is discrete group, then G is weakly

amenable if and only if C∗r (G) has the CBAP. But G is weakly amenable

implies that G has AP. As now we use Lemmas 5.2.9 and 5.2.10 to

conclude

CBAP ⇒ AP ⇒ IAP.

�

Remark 5.2.12. The converse of the first implication does not hold:

a counter example is given by Z2 o SL(2,Z): since AP is preserved by

semi-direct products [19], this group has the AP. But Haagerup [19]

proved that it does not have the CBAP.

The following groups are all weakly amenable. This implies that these

groups have the AP, and thus also IAP:

• Amenable groups

• Hyperbolic groups [29]

• CAT (0)-cubical groups [32]

• SL2(Qp) [4]

Remark 5.2.13. For discrete groups we have the following implica-

tions:

Amenability =⇒ weak amenability =⇒ AP =⇒ exactness.

The first implication is explained in Lemma 5.1.6. The first impli-

cation is not an equivalence: the non-abelian free groups are weakly
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amenable, but they are not amenable. The second implication is proved

by Lemma 5.2.9 and also this implication is not an equivalence: a

counter-example is given by Z2oSL(2,Z); this group has the AP [19].

But it was proved in [19] that it is not weakly amenable. The third

implication is not an equivalence: Haagerup and Kraus showed in [19]

that SL2(Z) is an exact group without AP.

5.3. Analytic properties of strong IAP

In this section, we study some of the analytic properties of the strong

invariant approximation property for discrete exact groups.

Remark 5.3.1. For a discrete exact group G the following are equiv-

alent.

(1) G has the AP.

(2) C∗r (G) has the OAP.

(3) G has SIAP (Zacharias’s IAP with coefficients)

The above remark means for a discrete exact group the following prop-

erties are actually equivalent:

AP ⇐⇒ OAP ⇐⇒ SIAP.

Remark 5.3.2. For a discrete exact group G, by Remark 5.3.1 and

Remark 5.2.8, G has the SIAP if for any closed subspace S ⊆ B(H)

the equality

C∗u(G,S)G = C∗λ(G)⊗ S holds.

But G has IAP, so

C∗u(G)G = C∗λ(G)
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and therefore

C∗u(G,S)G = C∗u(G)G ⊗ S

for any closed subspace S ⊆ B(H).

Next, we show the following:

Proposition 5.3.3. SIAP implies IAP for discrete exact groups.

Proof. Let G be a group with SIAP. By applying Theorem 5.2.7

to case S = C, we have that

C∗u(G,C)G = C∗u(G⊗ C)G = C∗λ(G)⊗ C.

But

C∗u(G⊗ C)G = C∗u(G)G ⊗ C,

so that

C∗u(G)G ⊗ C = C∗λ(G)⊗ C.

This implies

C∗u(G)G = C∗λ(G).

�

We note also the following results.

Theorem 5.3.4. [34] Let G be a discrete group. Let

1 −→ H −→ G
π−→ G/H −→ 1.

If H is a normal subgroup in G with H and G/H are exact, then G is

exact.

We have the following important result of Haagerup and Kraus [19].
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Theorem 5.3.5. Let G be locally compact group, and suppose that H

is a closed normal subgroup of G. If H and G/H have the AP, then G

has the AP.

In the following Proposition, we show that the strong invariant approx-

imation property (SIAP) passes to extensions for discrete exact groups.

Note that AP ⇐⇒ SIAP for discrete exact groups (see Remark 5.3.1).

Proposition 5.3.6. Let G be a discrete group. Let

1 −→ H −→ G
π−→ G/H −→ 1.

Let us assume that H is a normal subgroup in G, and that H and G/H

are exact groups. If H and G/H have the SIAP, then G has SIAP.

Proof. Let G be a discrete group and suppose that H is a normal

subgroup of G. By Remark 5.3.1, if H has the SIAP then H has AP.

If G/H has the SIAP then G/H has the AP. By Theorem 5.3.5, if H

and G/H have the AP, then G has the AP. By Theorem 5.3.4, if H

and G/H are exact groups, then so is G. Thus G is a discrete exact

group with AP. By Remark 5.3.1, G has SIAP. �
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5.4. The stability properties of strong IAP

In this section, we first show that the semidirect product of two dis-

crete exact groups with the SIAP has the SIAP. We have the following

important result in [19].

Proposition 5.4.1. The semidirect product of two discrete groups with

the AP has the AP.

From this we can deduce the following.

Proposition 5.4.2. The semidirect product of two discrete exact

groups with the SIAP has the SIAP.

Proof. For an exact group G, G has AP ⇐⇒ G has SIAP. The

semidirect product of two discrete groups with the AP has the AP [19].

The semidirect product of two discrete exact groups is an exact group

[35]. The semidirect product of two discrete groups with the AP has

the AP (see Proposition 5.4.1). Therefore the semidirect product of

two discrete exact groups with the SIAP has the SIAP. �

Example 5.4.3. [7] We have the following short exact sequence of

groups

1 −→ Z2 −→ Z2 o SL(2,Z) −→ SL(2,Z) −→ 1.

Indeed, Z2 and SL(2,Z) are weakly amenable groups [19]. The semidi-

rect product of two discrete groups with the AP has the AP [19]. Thus,

Z2 o SL(2,Z) has AP [19]. By using Proposition 5.2.11. Therefore

Z2 o SL(2,Z) has IAP.

We also note the following.
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Proposition 5.4.4. Let {Gi, i ∈ I} be a family of amenable groups,

and let H be an open compact subgroup of Gi for each i ∈ I. Then

G = ∗HGi has the invariant approximation property.

Proof. Amalgamated products of amenable groups are weakly

amenable [4]. Then G is weakly amenable. By Proposition 5.2.11,

G has the invariant approximation property. �

5.5. Examples of groups without the strong IAP

Lafforgue and de la Salle [26] have proved that SL3(Z), does not satisfy

CBAP and OAP property.

Theorem 5.5.1. [26] SL3(Z) does not have the AP. Equivalently, the

reduced C∗− algebra of SL3(Z) does not have the operator space ap-

proximation property (OAP), and hence does not have the completely

bounded approximation property (CBAP).

Linear groups are exact [17]. This provides an example of exact C∗-

algebra without the OAP [26], by Remark 5.3.1. In particular we can

conclude that SL3(Z) does not have the SIAP.



CHAPTER 6

Invariant Approximation Property for Subgroups

and Extensions

In this chapter we will study the invariant approximation property in

various contexts. First we shall show that it passes to subgroups (see

Theorem 6.1.1). An interesting question, which we will address next

is the behavior of this property with respect to group extensions. To

prepare for that we first study a relationship of uniform Roe algebras

attached to coarsely equivalent metric spaces in the following case. Let

X be a bounded geometry metric space and assume that there is a

bijective coarse equivalence

φ : X −→ Y ×N,

where N is a finite metric space. Then there is an isomorphism

C∗u(X) ∼= C∗u(Y )⊗ C∗u(N)

∼= C∗u(Y )⊗Mn(C),

where n = |N | (see Theorem 6.2.3).

In section 6.2, we shall use this result to prove that the invariant ap-

proximation property is preserved under taking direct product with a

finite group : let H be a discrete group with the IAP and K a finite

group. Then the direct product G = H × K has IAP (see Theo-

rem 6.2.3).

85
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We then study a generalization of this result to extensions with finite

quotient: let G be a discrete group then, if H is a finite index normal

subgroup of G with the IAP, G also has the IAP (see Theorem 6.3.2).

An important technical tool in the proof is the fact that the left regular

representation λG is equivalent to the left regular representation

λH ⊗ λG/H (see Proposition 6.3.7). These are the main results of this

thesis.

6.1. The IAP passes to subgroups

Theorem 6.1.1. Any subgroup H of a discrete group G with the invari-

ant approximation property has the invariant approximation property.

This proof is based on an idea of Joachim Zacharias. I am grateful to

him for sharing this idea with me.

Proof. Let us fix a set of representatives R of the right cosets

G/H so that for every element g ∈ G there is a unique representation

g = hgrg where hg ∈ H and rg ∈ R. We then have the isomorphism of

Hilbert spaces:

`2 (G) ∼= `2 (H)⊗ `2 (G/H) ,

given by

δg 7−→ δhg ⊗ δrg ,

with the converse map given by

δh ⊗ δr 7−→ δhr.
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The uniform Roe algebra C∗u(H) acts on this space by T ⊗ 1 for every

T ∈ C∗u(H), which gives an embedding, i.e

C∗u(H) ↪→ C∗u(G)

by

T 7−→ T ⊗ 1.

Using this inclusion, we shall show that

C∗u(H)H ∼= C∗u(H)G.

First, it is clear that a G− invariant operator in C∗u(H) is also H−

invariant operator, restricting the Adρ action from G to H. To show

the converse,

C∗u(H)H ⊆ C∗u(H)G,

we proceed as follows. We want to extend a kernel on H ×H which is

invariant with respect to the AdρH action to a kernel on G×G which

is invariant with respect to the AdρG action. Given a(h, h′) we define

A : G×G −→ C

as follows: for every s, t ∈ G and h, h′ ∈ H

A(s, t) =

{
a(h, h′), if there exists r ∈ R s.t (s, t) = (hr, h′r),

0, otherwise.

Now we need to show that A(s, t) is AdρG−invariant. If we write

rt = h1r1 for h1 ∈ H, r, r1 ∈ R
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we get

AdρG(t)A(hr, h′r) = A(hrt, h′rt)

= A(hh1r1, h
′h1r1)

= a(hh1, h
′h1)

= a(h, h
′
)

= A(hr, h′r).

Given that invariant Roe kernels form a dense subset of C∗u(H)H , it

follows that

C∗u(H)H ⊆ C∗u(H)G,

and so we have an isomorphism,

C∗u(H)H ∼= C∗u(H)G.

Let T ∈ C∗u(H)G. Then T ∈ C∗u(G)G and T ∈ C∗u(H), and we have

C∗u(H)G ⊆ C∗u(G)G ∩ C∗u(H).

Since

C∗u(G)G ∩ C∗u(H) ⊆ C∗u(H)G,

we have

C∗u(H)G = C∗u(G)G ∩ C∗u(H).

We now want to show that a similar isomorphism holds for the regular

C∗− algebras:

C∗λ(H) ∼= C∗λ(G) ∩ C∗u(H).

First there is an inclusion

C[G] −→ A∞(G),

g 7−→ Ug(x, y),
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where

Ug(x, y) =

{
1, if x = gy,

0, otherwise.

This extends to a ring homomorphism so we have

C[G] ↪→ A∞(G) ↪→ C∗u(G),

where A∞(G) is the uniform translation algebra. Since H is normal

subgroup of G, we have an inclusion

C[H] ↪→ C[G].

Then

Φ : C[H]
∼=−→ C[G] ∩ A∞(H).

By taking completion of both sides, we have

C∗λ(H) ∼= C∗λ(G) ∩ C∗u(H).

We now suppose that G has IAP. Then

C∗u(G)G = C∗λ(G),

and using the above results we have that,

C∗u(H)H ∼= C∗u(H)G

= C∗u(G)G ∩ C∗u(H)

= C∗λ(G) ∩ C∗u(H)

∼= C∗λ(H).

Hence

C∗u(H)H ∼= C∗λ(H)

and so the IAP passes to subgroups. �
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6.2. The IAP for direct products with finite group

In this section, we show that the invariant approximation property is

preserved under taking direct product with a finite group. We first

recall the definition of Morita equivalence:

Definition 6.2.1. [6] We say that two unital C∗-algebras A and B

are Morita equivalent if and only if they are stably isomorphic, which

means that A⊗K ∼= B ⊗K, where K denotes the algebra of compact

operators.

The following Theorem can be found in [6].

Theorem 6.2.2. [6] If X and Y are uniformly discrete bounded geom-

etry spaces, and X is coarsely equivalent to Y then, C∗u(X) is Morita

equivalent to C∗u(Y ).

This statement can be made a little more precise in the following situ-

ation.

Theorem 6.2.3. Let X be a bounded geometry metric space and as-

sume that there is a bijective coarse equivalence

φ : X −→ Y ×N,

where Y is a bounded geometry metric space and N is a finite metric

space. Then there is an isomorphism

C∗u(X) ∼= C∗u(Y )⊗ C∗u(N)

∼= C∗u(Y )⊗Mn(C).

where n = |N |.
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Proof. We shall assume that the bijection φ is implemented by

means of two maps

f : X −→ Y and π : X −→ N

so that

φ(x) = (f(x), π(x)) for all x ∈ X.

The bijection φ gives rise to a unitary isomorphism

`2 (X) ∼= `2 (Y )⊗ `2 (N) .

This induces a continuous isomorphism

Φ : B(`2(X))
∼=−→ B(`2(Y )⊗ `2(N)) ∼= B(`2(Y ))⊗Mn(C),

where we use the fact that `2 (N) = Cn. We shall show that Φ restricts

to an isomorphism

Φ : C∗u(X) −→ C∗u(Y )⊗Mn(C).

First we need to show that, if T is a finite propagation operator on

`2(X) then

Φ(T ) ∈ C∗u(Y )⊗Mn(C).

For every i = 1 . . . n, let Xi = π−1(i) and note that the restriction of f

to Xi gives a bijection

f |Xi : Xi

∼=−→ Y.

We shall denote by Vi the corresponding unitary isomorphism

Vi : `2(Xi)
∼=−→ `2(Y ),

and let Pi be the projection

Pi : `2 (X) −→ `2 (Xi) .



6.2. THE IAP FOR DIRECT PRODUCTS WITH FINITE GROUP 92

Then any operator T ∈ C∗u(X) admits a decomposition

T =
n∑

i,j=1

PiTPj

where PiTPj is an operator from `2(Xj) to `2(Xi).

Let Si,j = PiTPj. Then

ViSi,jV
∗
j : `2(Y ) −→ `2(Y )

is a unitary isomorphism and we have

Φ(Si,j) = ViSi,jV
∗
j ⊗ Eij,

where Eij is the (i, j)−th elementary matrix. We want to show that

ViSi,jV
∗
j is a finite propagation operator on Y . This will follows from

the fact that

f : X −→ Y

is a coarse map. Let y1, y2 ∈ Y . Then

〈
ViSi,jV

∗
j δy1 , δy2

〉
=

〈
ViPiTPjV

∗
j δy1 , δy2

〉
=

〈
TPjV

∗
j δy1 , PiV

∗
i δy2

〉
= 〈Tδx1 , δx2〉 ,

where x1 is the preimage of y1 in Xj and x2 is the preimage of y2 in

Xi. As T is a bounded propagation operator, there exists R > 0 so

that

〈Tδx1 , δx2〉 = 0 when d(x1, x2) > R.

Since f is a coarse map, ∃ S > 0 such that

dY (f(x1), f(x2)) > S ⇒ dX(x1, x2) > R.
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As f is a surjection we now have that for all y1, y2 ∈ Y such that

dY (y1, y2) > S, there exist x1 in Xj, x2 in Xi such that dX(x1, x2) >

R and 〈
ViSi,jV

∗
j δy1 , δy2

〉
= 〈Tδx1 , δx2〉

= 0

So ViSi,jV
∗
j ∈ C∗u(Y ) has required. Next, we need to show that Φ is an

isomorphism and for this we shall construct an inverse map

Ψ : C∗u(Y )⊗Mn(C) −→ C∗u(X).

If T ⊗ Eij ∈ C∗u(Y )⊗Mn(C). Then define

Ψ(T ⊗ Eij) = PiV
∗
i TVjPj.

Using the same argument as before we prove that the operator

PiV
∗
i TVjPj is of finite propagation, since f is a coarse equivalence. We

extend Ψ by linearity and continuity to a map

Ψ : C∗u(Y )⊗Mn(C) −→ C∗u(X).

We need to show that

Ψ ◦ Φ = Φ ◦Ψ = Id.

First we have

Φ ◦Ψ(T ⊗ Ei,j) = Φ(PiV
∗
i TVjPj)

=
∑
l,k

VkPk(PiV
∗
i TVjPj)PlV

∗
l ⊗ Ek,l.

Note that for 1 ≤ l, k ≤ n

PkPi =

{
0 if k 6= i,

Pi if k = i.
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and

PjPl =

{
0 if l 6= j,

Pj if l = j.

Hence the above sum can be simplified as follows

Φ ◦Ψ(T ⊗ Ei,j) =
∑
k,l

VkPk(PiV
∗
i TVjPj)PlV

∗
l ⊗ Ek,l

= ViPiV
∗
i TVjPjV

∗
j ⊗ Ei,j.

Since Pj|`2(Xj) = idXj , we have

VjPjV
∗
j = VjV

∗
j = IdXj ,

and

ViPiV
∗
i = ViV

∗
i = IdXj ,

we have

Φ ◦Ψ(T ⊗ Ei,j) = ViPiV
∗
i TVjPjV

∗
j ⊗ Ei,j

= T ⊗ Ei,j.

Moreover:

Ψ ◦ Φ(T ) = Φ−1

{∑
l,k

VkPkTPlV
∗
l ⊗ Ek,l

}
=

∑
l,k

PiV
∗
i VkPkTPlV

∗
l VjPj

=
∑
i,j

PiTPj

= T.

Therefore

Ψ ◦ Φ = Φ ◦Ψ = Id.

We conclude that

C∗u(X) ∼= C∗u(Y )⊗Mn(C) ∼= C∗u(Y )⊗ C∗u(N);
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Hence the result. �

Next we prove that the invariant approximation property is preserved

under taking direct product with a finite group.

Theorem 6.2.4. Let H be a discrete group with the IAP and K a finite

group, then the direct product G = H ×K has the IAP.

Proof. Let us denote the identification G = H ×K by φ:

φ : G
∼=−→ H ×K.

Then

C∗u(G) = C∗u(H ×K).

The map φ is G− equivariant we have

C∗u(G)G = C∗u(H ×K)H×K .

By Theorem 6.2.3, we have,

C∗u(H ×K) ∼= C∗u(H)⊗ C∗u(K)

so that

C∗u(H ×K)H×K ∼= (C∗u(H)⊗ C∗u(K))H×K .

Since the identification G = H×K is a group isomorphism, the unitary

isomorphism

`2 (G) = `2 (H)⊗ `2 (K)

induces a unitary equivalence

λG ∼= λH ⊗ λK

and

ρG ∼= ρH ⊗ ρK .
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This means H ×K acts on C∗u(H)⊗ C∗u(K) by AdρH ⊗ AdρK and so

C∗u(H ×K)H×K ∼= C∗u(H)H ⊗ C∗u(K)K .

By the same remark,

C∗λ(G) ∼= C∗λ(H)⊗ C∗λ(K).

K is a finite group, so it amenable and so has the IAP, Roe [30]. Since

H has the IAP by assumption

C∗u(G)G = C∗u(H)H ⊗ C∗u(K)K

= C∗λ(H)⊗ C∗λ(K)

= C∗λ(H ×K)

= C∗λ(G).

Therefore

C∗u(G)G = C∗λ(G).

�
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6.3. The IAP passes to extensions with a finite quotient

In this section, we show that the invariant approximation property

passes to extensions with a finite quotient. Consider a group G with

a finite index normal subgroup H, so that we have the following exact

sequence.

1 −→ H
i
↪→ G

π−→ G/H −→ 1.

We identify G with H × G/H as a set as follows. We choose a set-

theoretic section of π in the above sequence which amounts to a choice

of a finite set R ⊂ G of coset representatives in G/H. Then any element

g ∈ G can be written uniquely as g = hgrg, where hg ∈ H, rg ∈ R. We

then define

φ : G −→ H ×G/H

g 7−→ (hg, rg).

While G/H is a group, it is not true in general that

rirj ∈ R when ri, rj ∈ R.

The product on R, arising from the group structure on G/H, can be

described in terms of the product in G as follows. For r1, r2 ∈ R, we

denote by r1 ∗ r2, the representative R of the coset of Hr1r2. We then

note that

(Hr1)(Hr2) = Hr1r2 = H
(
r1r2 (r1 ∗ r2)−1

)
(r1 ∗ r2) .

where r1r2 (r1 ∗ r2)−1 ∈ H. We will later need an explicit formula that

will express the product gg
′

in the form

gg
′
= hgg′rgg′ .
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This is done as follows. If g = hgrg, g
′
= hg′rg′ then

gg
′

= (hgrg)
(
hg′rg′

)
= hg

(
rghg′r

−1
g

)
rgrg′

= hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1 (
rg ∗ rg′

)
.

Since H is a normal subgroup of G, rghg′r
−1
g ∈ H. By previous remark

rgrg′
(
rg ∗ rg′

)−1 ∈ H and so hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1 ∈ H and

rg ∗ rg′ ∈ R, giving the required representation. We can now equip the

set H × G/H with the product:

(hg, rg)(hg′ , rg′ ) =
(
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1
, rg ∗ rg′

)
.

The identity of R ∼= G/H will be denoted by eR, and identity elements

of H will be denoted by eH ∈ H:

(hg, rg)(eH , eR) =
(
hg
(
rgeHr

−1
g

)
rgeR (rg ∗ eR)−1 , rg ∗ eR

)
=

(
hg
(
rgr
−1
g

)
rgr
−1
g , rg

)
=

(
hg
(
rgr
−1
g

)
rgr
−1
g , rg

)
= (hg, rg)

Next we need to find (e, s)−1 ∈ H ×G/H: The inverse of s ∈ R ∼= G/H

will be denoted by s. If (e, s) and (h, s) ∈ H ×G/H: we have

(e, s)(h, s) =
(
(shs−1)(ss)(s ∗ s)−1, (s ∗ s)

)
If (e, s)−1 = (h, s) then

(
(shs−1)(ss)(s ∗ s)−1, (s ∗ s)

)
= (e, e),
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If s ∗ s = e = s ∗ s. Then s = s−1t, for some t ∈ H if and only ss = t

and

(shs−1)t = e if and only t = sh−1s−1,

thus

s = s−1t = h−1s−1 if and only h = (ss)−1.

Thus,

(e, s)−1 = (h, s) = ((ss)−1, s).

Therefore H × G/H is a group structure. We record the following:

Lemma 6.3.1. Let the set H×G/H be equipped with the above product.

Then the bijection

φ : G −→ H ×G/H,

is a group isomorphism.

Proof.

φ(gg
′
) =

(
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1
,
(
rg ∗ rg′

))
= (hg, rg)

(
hg′ , rg′

)
= φ(g)φ(g

′
).

�

From now on we shall denote by H ×G/H the set H ×G/H equipped

with the above product. As remarked above, H ×G/H is a group, but

it is not the direct product of H and G/H.

We note that H is a subgroup of H ×G/H, since for h, h
′ ∈ H

(h, e)(h
′
, e) = (hh

′
, e).
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However, G/H is not in general a subgroup of H ×G/H as for any

r, r
′ ∈ R

(e, r)(e, r
′
) =

(
rr
′
(
r ∗ r′

)−1
, r ∗ r′

)
.

G/H is a subgroup when the assignment:

[r] 7−→ r ∈ R ⊂ G

is a a group homomorphism. i.e. when r ∗ r′ = rr
′
, which happens

when G is the direct product of H and G/H.

Our main goal in this chapter is to prove the following result.

Theorem 6.3.2. Let G be a discrete group. If H is a finite index

normal subgroup of G with the IAP then G satisfies the IAP.

The strategy of proof is as follows: First we will establish the isomor-

phism of C∗− algebras

C∗u(G) ∼= C∗u(H)⊗ C∗u(G/H).

Then it is natural to ask if a similar isomorphism can be obtained for

regular C∗− algebras, i.e.

(1) C∗λ(G) ∼= C∗λ(H)⊗ C∗λ(G/H).

We shall prove that this is true by constructing a unitary equivalence

between λG and λH⊗λG/H , where λG, λH and λG/H are the left regular

representations of the respective groups. We will also need to under-

stand the action of G on C∗u(G) and of H × G/H on C∗u(H × G/H)

and we will prove that

(2) C∗u(G)G ∼= C∗λ(H)⊗ C∗λ(G/H).
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Together with the isomorphism (1) this will show that

C∗u(G)G ∼= C∗λ(G),

so that G has the IAP.

The bijection

φ : G
∼=−→ H ×G/H,

defined above gives, by Theorem 6.2.3 an isomorphism of C∗− algebras

Φ : C∗u(G)
∼=−→ C∗u(H)⊗ C∗u(G/H)

where we use the fact that G/H is finite, so there is no ambiguity

concerning the choice of tensor product. In our present context, this

isomorphism can be described as follows: Because H is a normal sub-

group of G, its left and right cosets are the same because for every

r ∈ R

rH = (rHr−1)r ∼= Hr.

It follows that the group G can be given a disjoint union decomposition

as either left or right cosets, which leads to isomorphisms of Hilbert

spaces

`2 (G) =
⊕
r∈R

`2 (Hr) =
⊕
r∈R

`2 (rH) .

This coset decomposition is preserved by both the left and the right

multiplication by elements of H.

Using the right coset decomposition, we have the following isomorphism

of Hilbert spaces

`2 (G) =
⊕
r∈R

`2 (Hr) .

We will denote by Pr the orthogonal projection

Pr : `2(G) −→ `2(Hr), r ∈ R
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and by Vr the unitary isomorphism

`2(Hr) −→ `2(H)

given by

δhr 7−→ δh, for all h ∈ H.

We note that Pr commutes with the left regular representation and it

also commutes with the right representation modulo the isomorphism

rH ∼= Hr.

To see that this is true for the left cosets, we argue as follows: We can

represent each function ζ ∈ `2(G) as a linear combination

ζ =
∑
r∈R

αrζr,

where ζr ∈ `2(rH) (this is understood as a subspace of `2(G) so that

ζr is a function in `2(G) which vanishes outside rH) then

Ps(ζ) = ζs.

Then for every t ∈ G and h ∈ H

ρ(h)ζ(t) =
∑
r∈R

ζr(th).

We have

(Psρ(h)ζ)(t) = (ρ(h)ζs) (t)

= ζs(th)

= (ρ(h)Psζ)(t).

As in Theorem 6.2.3, every element T ∈ C∗u(G) can be represented as

T =
∑
r,r′∈R

PrTPr′ .
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This decomposition is invariant with respect to ρ(h), h ∈ H (assum-

ing left-coset decomposition for G). We also note that the unitary

isomorphism

Vr : `2(rH) −→ `2(H),

commutes with ρ ; because

Vr (ρ(t)δrh) = Vr (δrht)

= δht

= ρ(t)Vrδrh.

Now recall that the isomorphism

Φ : C∗u(G)
∼=−→ C∗u(H)⊗ C∗u(G/H)

is given by

Φ : T =
∑
r,s∈R

PrTPs 7−→
∑
r,s∈R

VrPrTPsV
∗
s ⊗ Er,s.

We obtain the following important Proposition:

Proposition 6.3.3. The isomorphism Φ commutes with the adjoint

action Adρ of H.
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Proof. We use the left coset decomposition so that ρ commutes

the with Pr and Vr. ∀ h ∈ H

Φ(Adρ(h)T ) = Φ(ρ(h)Tρ(h)∗)

= Φ

(∑
r,s∈R

PrAdρ(h)(T )Ps

)

= Φ

(∑
r,s∈R

Prρ(h)Tρ(h)∗Ps

)
=

∑
r,s∈R

(VrPrAdρ(h)TPsV
∗
s ⊗ Er,s)

=
∑
r,s∈R

Adρ(h) (VrPrTPsV
∗
s )⊗ Er,s

= Adρ(h)

(∑
r,s∈R

VrPrTPsV
∗
s ⊗ Er,s

)
= Adρ(h)Φ(T ).

In the last equality we use the fact that H acts trivially on G/H. �

We can summarise these calculation as follows.

Theorem 6.3.4. We have

C∗u(G)H ∼= C∗u(H)H ⊗ C∗u(G/H).

If H has the IAP, then

C∗u(G)H ∼= C∗λ(H)⊗ C∗u(G/H).

Proof. By using Proposition 6.3.3 we have that

C∗u(G)H ∼= C∗u(H ×G/H)H

which gives the isomorphism

C∗u(G)H ∼= C∗u(H)H ⊗ C∗u(G/H)
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since the action of H on G/H is trivial. When H has the IAP,

C∗u(H)H ∼= C∗λ(H)

and the result follows. �

Remark 6.3.5. Note that if T ∈ C∗u(G)H , then for every s ∈ R.

Ad (ρ(s))T ∈ C∗u(G)H .

Indeed, take any h ∈ H, then

Adρ(h)Adρ(s) (T ) = Adρ(hs) (T )

= Ad
(
ρ
(
s
(
s−1hs

)))
(T )

= Adρ(s)Adρ
((
s−1hs

))
(T )

= Adρ(s) (T ) .

Now take r, t ∈ R and T ∈ C∗u(G)H . We have

Adρ(r)Adρ(t) (T ) = Adρ(rt)T

= Ad
(
ρ
(
(r ∗ t)(r ∗ t)−1rt

))
T

= Ad (ρ(r ∗ t))
(
Ad(ρ

(
(r ∗ t)−1rt)

)
T
)

= Ad (ρ(r ∗ t)) (T )

because (r ∗ t)−1rt ∈ H and T is AdρH− invariant. We have that

Ad (ρ(rt)) (T ) = Ad (ρ(r ∗ t)) (T ) .

This proves (Remark 6.3.5) the first part of the following important

Theorem.

Theorem 6.3.6. The group (R, ∗) ∼= G/H acts on C∗u(G)H using the

action induced by AdρG. We also have the following:

C∗u(G)G ∼=
(
C∗u(G)H

)G/H
.
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Proof. First note if T ∈
(
C∗u(G)H

)G/H
then T ∈ C∗u(G)G. Indeed,

since for every g ∈ G, such that g = hgrg and

Adρ(hgrg)T = Adρ
(
rg
(
r−1g hgrg

))
(T )

= Adρ(rg)Ad
(
r−1g hgrg

)
(T )

= T.

So: (
C∗u(G)H

)G/H ⊆ C∗u(G)G.

We also have

C∗u(G)G ⊆ C∗u(G)H ,

and

C∗u(G)G ∼=
(
C∗u(G)H

)G/H
.

�

Note also:

C∗u(G)G ⊆ C∗u(G)H

⊆ C∗u(H)H ⊗ C∗u(G/H)

⊆ Mn(C∗λ(H)).

Thus

C∗u(G)G ∼= Mn(C∗λ(H))Adρ(G/H).
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We now prove the following.

Theorem 6.3.7. Let H be normal finite index subgroup of G. Then

λH ∼= λH ⊗ λG/H

and

ρH ∼= ρH ⊗ ρG/H .

Proof. Let R be a set of coset representatives, which is the same

for the left and the right cosets. We identify (R, ∗) with G/H as before.

Then if g = hgrg, hg ∈ H, rg ∈ R then

λ(g)
⊕
r∈R

`2 (Hr) =
⊕
r∈R

`2
(
g−1Hr

)
=

⊕
r∈R

`2
(
r−1g h−1g Hr

)
=

⊕
r∈R

`2
(
r−1g h−1g (r−1g )−1

(
r−1g Hrg

)
r−1g r

)
=

⊕
r∈R

`2
(
ad(r−1g )(h−1g )r−1g Hrgr

−1
g r
)

=
⊕
r∈R

`2
(
ad(r−1g )(h−1g )Hr−1g r

(
r−1g ∗ r

)−1 (
r−1g ∗ r

))
.

Since r−1g r
(
r−1g ∗ r

)−1 ∈ H we have that Hr−1g r
(
r−1g ∗ r

)−1
is in bijec-

tion with H and so

λ(g)
⊕
r∈R

`2 (Hr) =
⊕
r∈R

`2
(
ad(r−1g )(h−1g )H

(
r−1g ∗ r

))
.

Now using the isomorphism Φ this is mapped to⊕
r∈R

`2
(
ad(r−1g )(h−1g )

)
⊗ Cδr−1

g ∗r

or in other words

ΦλG(hgrg) ∼= λH(ad(r−1g )(hg)⊗ λG/H(rg).
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Given that

ad(r−1g ) : H −→ H

is a group isomorphism, λH ◦ ad is is a representation of H equivalent

to λH .

Similarly, if if g = rghg, hg ∈ H, rg ∈ R then

ρ(g)
⊕
r∈R

`2 (rH) =
⊕
r∈R

`2 (rHrghg)

=
⊕
r∈R

`2
(
rrg
(
r−1g Hrg

)
hg
)

=
⊕
r∈R

`2 (rrgHhg)

=
⊕
r∈R

`2
(
(r ∗ rg) (r ∗ rg)−1 rrgHhg

)
=

⊕
r∈R

`2 ((r ∗ rg)Hhg)

where we use that (r ∗ rg)−1 rrg ∈ H and so (r ∗ rg)−1 rrgH is again in

bijection with H and so induces a unitary isomorphism on `2(H). The

isomorphism Φ will transport this to :

ΦρG(rghg) = ρH(hg)⊗ ρG/H(rg).

�

We now finish the proof of Theorem 6.3.2 as follows. It follows from

the Theorem 6.3.7 that

C∗u(G)G ∼= C∗u(H)H ⊗ C∗u(G/H)G/H

and that

C∗λ(G) ∼= C∗λ(H)⊗ C∗λ(G/H).
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Therefore, if H has the invariant approximation property, and using

the fact that finite groups satisfy this property we have

C∗u(G)G ∼= C∗u(H)H ⊗ C∗u(G/H)G/H

∼= C∗λ(H)⊗ C∗λ(G/H)

∼= C∗λ(G).

This proves Theorem 6.3.2.
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