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COHOMOLOGICAL INVARIANTS FOR INFINITE GROUPS

by Giovanni Gandini

The main objects of interest in this thesis are H1F-groups. These are groups that
act on finite-dimensional contractible CW-spaces with finite stabilisers. Important
examples of these are given by groups admitting a finite-dimensional classifying
space for proper actions EFG. A large part of the thesis is motivated by an old
conjecture of Kropholler and Mislin claiming that every H1F-group G admits a
finite-dimensional model for EFG. The natural choice for studying algebraically
H1F-groups is F-cohomology. This is a form of group cohomology relative to
a G-set introduced by Nucinkis in 1999. In this theory there is a well-defined
notion of F-cohomological dimension and we study its behaviour under taking
group extensions. A conjecture of Nucinkis claims that every group G of finite
F-cohomological dimension admits a finite-dimensional model for EFG. Note that
it is unknown whether the class H1F is closed under taking extensions. It is also
unknown whether the class of groups admitting a finite-dimensional classifying
space for proper actions is closed under taking extensions.

In Chapter 3 we introduce and study the notion of F-homological dimension and
give an upper bound on the homological length of non-uniform lattices on locally
finite CATp0q polyhedral complexes, giving an easier proof that generalises an
important result for arithmetic groups over function fields, due to Bux and Wortman.

The first Grigorchuk group G was introduced in 1980 and has been extensively
studied since due to its extraordinary properties. The class HF of hierarchically
decomposable groups was introduced by Kropholler in 1993. There are very few
known examples of groups that lie outside HF. We answer the question regarding
the HF-membership of G by showing that G lies outside HF.

In the final chapter we introduce a new class of groups U, and show that the
Kropholler-Mislin conjecture holds for a subclass of U and discuss its validity in
general.
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Introduction

LetG be a group and let F be the class of finite groups. AG-CW-complex is proper

if all its cell stabilisers are in F. If a proper G-CW-complex X has the property

that for each F-subgroup K of G the fixed-point subcomplex XK is contractible,

then X is called a classifying space for proper actions of G (or a model for EFG).

The interest in this object is twofold: from a geometric group theory perspective the

spaces (or small modifications of these) on which “interesting” groups act are often

classifying spaces for proper actions satisfying some finiteness condition. Outside

the vast world of group theory, the equivariant K-homology of the classifying

space for proper actions forms the left-hand side of the celebrated Baum-Connes

conjecture. This conjecture is an important step for Connes’ non-commutative

geometry programme.

Generalisations of constructions due to Milnor [Mil56] and Segal [Seg68] show

that every group G admits a model for EFG. The Bredon geometric dimension of

G, denoted by gdFG, is the minimal dimension of a model for EFG. The Bredon

cohomological dimension cdFG plays a role analogous to that of the integral

cohomological dimension cdG in ordinary group cohomology and is an algebraic

counterpart of gdFG. In particular, cdFG is finite if and only if gdFG is finite

[Lüc89]. However, both invariants are often very difficult to compute. Hence several

possible “easy” geometric and algebraic invariants that guarantee their finiteness

have been proposed by various authors [Gui08, BDT09, Nuc00].

On the geometric side, Kropholler introduced the class of H1F-groups [Kro93]. A

group belongs to H1F if there is a finite-dimensional contractible G-CW-complex

X with cell stabilisers in F. The following problem has been open for almost 20

years.

Conjecture 1 (Kropholler-Mislin, [Gui08, Mis01]). Every H1F-group G admits a

finite-dimensional model for EFG.
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A result proved independently by Bouc [Bou99] and Kropholler and Wall [KW11]

implies that the augmented cellular chain complex C�pXq of any finite-dimensional

contractible proper G-CW-complex splits when restricted to the F-subgroups of

G. Nucinkis introduced a cohomology theory relative to a G-set ∆ in order to

algebraically mimic the behaviour of H1F-groups [Nuc99]. This theory can be

regarded as a cohomology relative to a class of proper short exact sequences as in

IX & XII [ML95] or as cohomology relative to the ZG-module Z ∆. It generalises

cohomology relative to a subgroup to cohomology relative to a family of subgroups.

When dealing with the family of F-subgroups, we will refer to this as F-cohomology.

In this setup there is a well-defined F-cohomological dimension F cdG [Nuc00].

It is an open question whether every group of finite F-cohomological dimension

lies in H1F. The converse holds by the result of Kropholler and Wall mentioned

above. Of course it is also unknown whether every group of finite F-cohomological

dimension admits a finite-dimensional model for EFG, and this is conjectured in

[Nuc00]. It is well-known that for any group Γ, cdQ Γ ¤ F cd Γ ¤ cdF Γ ¤ gdF Γ,

see for example [BLN01].

Remaining on the algebraic side, it is important to mention that Bahlekeh, Dem-

begioti and Talelli conjecture in [BDT09] that every group of finite Gorenstein

cohomological dimension GcdG has finite Bredon geometric dimension. Most of

these conjectures have positive answers in two important cases. The length lpHq

of an F-subgroup H of G is the supremum over all n for which there is a chain

H0   H1   � � �   Hn � H . Firstly, by applications of a result of Lück [Lüc00]

if G has a bound on the lengths of its F-subgroups then the finiteness of cdFG is

equivalent to the finiteness of GcdG and F cdG. Secondly, if G is a countable

elementary amenable group then cdQG   8, F cdG   8 and cdFG   8 are

equivalent by a theorem of Flores and Nucinkis [FN05].

We start this thesis by discussing the general theory of F-cohomology and by

introducing the notion of F-injective module. Next we show that the F-cohomology

can be calculated either with F-injective resolutions in the second variable or with

F-projective resolutions in the first variable and therefore the F-cohomological

dimension is independent of the chosen resolution. Complete F-cohomology via

F-projective modules was defined in [Nuc99]. We develop complete F-cohomology

via F-injective modules and prove some standard facts.
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Let dim be a function from the class of all groups to N Y t8u. We say that

dim is subadditive if for every group extension N ãÑ G�Q we have dimG ¤

dimN � dimQ. The good behaviour of F-cohomological dimension with respect

to several group operations is known [Nuc00] but its behaviour with respect to

taking group extensions remains unclear. In Chapter 2 we investigate the subad-

ditivity of F-cohomological dimension and we prove that it is subadditive if and

only if it is preserved under taking extensions by groups of prime order. Leary and

Nucinkis [LN03] build a group extension such that cdFN � F cdN � 2n and

cdFQ � F cdQ � 0 but cdFG � 3n and F cdG � 2n. Under extra conditions the

behaviour of gdFG under taking group extensions is known [Mis01, MP02, MP07].

It is still unknown whether there exists a group of infinite Bredon geometric dimen-

sion that is an extension of two groups of finite Bredon geometric dimension. On the

other hand it is known that the Gorenstein cohomological dimension is subadditive

[BDT09]. The precise connections between the Gorenstein cohomological dimen-

sion and the F-cohomological and rational cohomological dimensions are unclear.

We show that GcdG ¤ F cdG, but it is unknown whether the finiteness of GcdG

implies the finiteness of F cdG. If there exists a group G that has GcdG   8 or

F cdG   8 but admits no finite-dimensional model for EFG, then by the theorem

of Lück, G cannot have a bound on the lengths of its F-subgroups.

In Chapter 3 we look at pFq-cohomological conditions of finite type. We introduce

the notion of F-homological dimension and we prove some standard results. An

interesting source of groups with no bound on the orders of their F-subgroups is

given by non-uniform lattices on locally finite CATp0q polyhedral complexes; we

close the chapter by bounding their homological length.

Branch groups are certain subgroups of the full automorphism groups of spherically

homogeneous rooted trees. Several examples of finitely-generated periodic non-

elementary amenable groups with no bound on the lengths of their F-subgroups

lie in this class. Here we show that finitely-generated regular branch groups have

infinite rational cohomological dimension, which implies that the F-cohomological

dimension and the Bredon cohomological dimension are infinite as well. Let HF be

Kropholler’s class of hierarchically decomposable groups [Kro93]. The class HF

is defined as the smallest class of groups containing the class F and which contains

a group G whenever there is an admissible action of G on a finite-dimensional

contractible cell complex for which all isotropy groups already belong to HF. An
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important question in this area is to determine which branch groups belong to the

class HF. Until the recent work [ABJ�09], where groups with a strong global

fixed-point property are constructed, the only way to show that a group G does not

belong to HF was to find a subgroup of G isomorphic to Thompson’s group F. In

Chapter 4 we show that the first Grigorchuk group G is not contained in the class

HF. Furthermore, G is a counterexample to a conjecture of Petrosyan [Pet07] and

answers negatively a question of Jo-Nucinkis [JN08].

We introduce a new class of groups U defined in terms of actions on trees and taking

extensions starting from the class of groups admitting a finite-dimensional EFG

with a bound on the orders of their F-subgroups. The final chapter is dedicated to

the study of the class of U-groups. In particular we show that the Kropholler-Mislin

conjecture holds for a subclass of U.

Notation. We use standard notation for classes of groups. A collection Y of

groups is a class of groups if it contains the trivial group and it is closed under

taking isomorphisms. We write I for the class consisting of the trivial group, F for

the class of finite groups, A for the class of abelian groups and Fr for the class of

free groups. For a class of groups X, LX denotes the class of locally X-groups, i.e.

G lies in LX if and only if every finitely-generated subgroup of G lies in X. Less

common group operations will be defined later in the thesis.
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CHAPTER 1

F-Cohomology

We study cohomology of groups relative to a G-set ∆ which first appeared in

[Nuc99]. This theory can be regarded either as cohomology relative to a class of

proper short exact sequences as developed by Mac Lane in Chapter IX & XII in

[ML95] or as cohomology relative to a permutation G-module k∆. This theory

generalises cohomology relative to a subgroup to a family of subgroups. In the first

section we discuss the fundamental concepts. Next we introduce the notion of a ∆-

injective module which we use later in complete relative cohomology. We repeat two

constructions of complete cohomology groups in the context of relative cohomology

using ∆-injective modules. The first complete relative cohomology groups that we

construct, ∆}Ext
n

kGp�, Nq, are built similarly to Mislin’s completion via satellites

[Mis94]. The second construction follows Benson and Carlson’s approach [BC92]

and this leads to the groups ∆ |BC
n

kGp�, Nq.

We show that as for ordinary cohomology [Nuc98], these constructions are equiva-

lent.

Theorem. Let N be a kG-module, then there is a natural equivalence of functors

Θn : ∆}Ext
n

kGp�, Nq Ñ ∆ |BC
n

kGp�, Nq,@n P Z.

1. Cohomology relative to a G-set

Let G be a group, k a commutative ring of coefficients and ∆ an arbitrary G-set.

We write k∆ for the free k-module on the set ∆. The abelian group k∆ can be

regarded as a kG-module by extending the G-action on ∆ to a linear k-action of

G on k∆. The kG-module k∆ is called the permutation module on the G-set ∆.

We write b for the tensor product over k, and if M and N are kG-modules, the

G-action on M bN is defined as pmb nqg :� mg b ng for g P G, m P M and

n P N .
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Definition 1.1. [Nuc99, 2.1] A short exact sequence A�B � C of kG-modules

is called ∆-split if

Ab k∆ �B b k∆ � C b k∆

is a kG-split sequence.

A kG-module is ∆-projective if it is a direct summand of a module of the form

M b k∆ for some kG-module M . It is easy to characterise ∆-projective kG-

modules in a slightly different manner. In fact, the next lemma clarifies the definition

of ∆-projectivity.

Lemma 1.2. For a kG-module P the following are equivalent:

(1) P is ∆-projective,

(2) the functor HomkGpP,�q is exact on ∆-split sequences,

(3) every ∆-split epimorphism α : N �P splits over kG.

PROOF. This can be proved analogously to the case of ordinary projective

modules. A proof for projective modules can be found in any homological algebra

book. �

The category of right kG-modules, denoted by ModkG has enough ∆-projectives

since the obvious surjection M b k∆ �M given by m b δ ÞÑ m is ∆-split. To

see this, let M b k∆bk∆ �M b k∆ given by mb δ1 b δ2 ÞÑ mb δ2 the split

is given by mb δ ÞÑ mb δb δ. Note that even if k∆ and M are finitely-generated

kG-modules this construction does not provide a finitely-generated ∆-projective

mapping onto M via a ∆-split surjection. This issue is briefly discussed in Chapter

3.

While it was clear what was the appropriate definition of a ∆-projective module,

there is in the literature some uncertainty on the correct definition of a ∆-free

module. The functor � b k∆ is the left adjoint of the functor Hompk∆,�q, so

it is reasonable to define ∆-free modules as direct sums of modules of the form

Mi b k∆, where Mi’s are kG-modules. Moreover, with this definition there is a

relative version of the Eilenberg Swindle Lemma:

Lemma 1.3. [Nuc00, 4.1] If P is a ∆-projective then there exist a ∆-free module

F such that F � P ` F .
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We want to have a theory that does not depend on the G-set ∆ up to G-maps; more

precisely:

Lemma 1.4. [Nuc99, 2.5] Let ∆1 and ∆2 be two G-sets. If there exists a G-

map φ : ∆1 Ñ ∆2, then every ∆2-split short exact sequence A�B � C of

kG-modules is ∆1-split.

Lemma 1.5. [Nuc99, 2.3] Let ∆1 and ∆2 be two G-sets. If there exists a G-map

φ : ∆1 Ñ ∆2, then every ∆1-projective kG-module is ∆2-projective.

Since the class of ∆-projective modules is closed under taking direct summands

and direct sums, it follows that the building blocks for the ∆-projectives are the

direct summands of modules of the form M ÒGH where H is a stabiliser of some

orbit representative for ∆. Moreover, by Lemma 1.5 if M is any abelian group the

module M b k∆ with action on the right side is ∆-projective.

Let M and N be two kG-modules. The cohomology functors relative to ∆ of M

with coefficient in N are defined by

∆ ExtnpM,Nq :� HnpHomkGpPM, Nqq,

that is the n-th right derived (relative) functor of HomZGp�, Nq as [ML95, pg.

389]. A ∆-projective dimension is well-defined, and we say that a group G has

∆-cohomological dimension over kG equal to n if k regarded as a kG-module with

trivial action has ∆-projective dimension over kG equal to n.

There is an obvious way to write the “standard ∆-projective resolution” of the

trivial kG-module k [Nuc00]. Let Pi � kp∆iq and Kn � ker dn�1, where the

maps di : Pi�1 Ñ Pi are defined as

dipδ0, δ1, . . . , δiq �
i̧

k�0

p�1qkpδ0, δ1, . . . , δ̂k, . . . , δiq

where δ̂k means δk is omitted.

The fact that any G-set ∆ admits a decomposition as a disjoint union of sets of

cosets suggests that we can use this cohomology to have a theory relative to a family

of subgroups closed under conjugation. In this work we are mostly interested in the

family of F-subgroups. More concretely, let ∆0 be a set of orbit representatives for

∆ and let Gδ be the stabiliser of δ P ∆0. Then we have:

∆ �
§
δP∆0

δG �
§
δP∆0

GδzG.
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Note that if one of the Gδ is non-trivial, then Z ∆ is not ZG-projective. To see

this is enough to recall that the module Z ∆ admits the decomposition Z ∆ �À
δ ZbZGδ ZG and that by [CK96, Lemma 6.1] the module A bZGδ ZG is

ZG-projective if and only if A is ZGδ-projective.

Lemma 1.6. [Nuc99, 6.1] For any pair ∆1, ∆2 of G-sets that satisfy the following

condition

p�q ∆H � Hô H ¤ G, H P F,

there exist G-maps: φ : ∆1 Ñ ∆2 and ρ : ∆2 Ñ ∆1.

An example of a such G-set is Φ �
�
H¤G,HPFHzG, but Lemma 1.5 implies that

every G-set satisfying condition p�q generates the same cohomology theory. For

any such G-set we replace the letter ∆ with F to designate this case in cohomology.

The following clarifies the concept of ∆-split short exact sequence.

Lemma 1.7. [Nuc99, 2.6, 6.2] A short exact sequence of kG-modulesA�B � C

is ∆-split if and only if it splits restricted to each stabiliser Gδ. In particular,

A�B�C is F-split if and only if it splits restricted to each F-subgroup of G.

Concretely to compute group cohomology we replace kG-projective resolutions

used in (ordinary) cohomology of groups with F-split resolutions made of direct

summand of sums of induced modules from F-subgroups of G. Note that any F-

split acyclic complex of kG-modules is k-split; and in particular every F-projective

resolution of k is k-split. Recently it was noticed that even if F-cohomology is

defined with respect to the family of F-subgroups it takes into consideration only

the finite P-subgroups,. We write PF for the class FXP.

Theorem 1.8. [LN10]


 A short exact sequence of kG-modules is F-split if and only if it is PF-split.


 A kG-module is F-projective if and only if it is PF-projective.


 F H�pG;�q � PF H�pG;�q.

Lemma 1.4 and Theorem 1.8 show that if G has a bound on the order of its F-

subgroups, then when we build a G-set Φ satisfying p�q we can just consider one

subgroup per conjugacy class of maximal PF-subgroups.
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Lemma 1.9. Let A � B � C be a short exact sequence of Z-free ZG-modules.

Suppose that the short exact sequence

A ÓP bZ {|P |Z �B ÓP bZ {|P |Z �C ÓP bZ {|P |Z

splits over ZP for every PF-subgroup P of G. Then A � B � C is F-split.

PROOF. It follows from [KW11, Lemma 3.4] and Theorem 1.8. �

Remark 1.10. In view of Chouinard’s Theorem [Cho76] it is natural to ask if

F-cohomology can be reduced to a cohomological theory relative to the family E of

finite elementary abelian subgroups. This is not the case; to see this let P be a non-

elementary abelian PF-group and let tHiu be the family of conjugacy classes of its

elementary abelian subgroups. The short exact sequence K�`i ZHizP
π
� Z is

E-split but does not split over ZP . Let σi P ZrHizP s denote the sum of the cosets of

Hi in P , that is σi �
°
HipPHizP

Hip. Since P {Hi is a transitive P -set the only well-

defined ZP -map from Z to ZHizP is the map 1 ÞÑ miσi where mi is a non-zero

integer. Any ZP -map ι : Z Ñ `i ZHizP � ZH1zP`ZH2zP`� � �`ZHnzP is

defined by 1 ÞÑ pm1σ1, . . . ,mnσnq for some choice of tm1,m2, . . . ,mnu. Since

π � ιp1q �
°n
i�1mirP : His �

°n
i�1mip

ni � 1 (ni � 0 for all i’s), π does not

split over ZP .

Lemma 1.11 (Shapiro’s Lemma). Let H be a subgroup of G and N be a ZH-

module. Then

F HnpH;Nq � F HnpG; CoindGH Nq,

where F H�pG;�q :� F Ext�ZGpZ,�q.

PROOF. At first we recall that any F-projective resolution P of ZG-modules can

be regarded as an F-projective resolution of ZH-modules. From the isomorphism

HomZHpM,Nq � HomZGpM,HomZHpZG,Nqq, it follows that

HomHpP, Nq � HomGpP,CoindGH Nq

which completes the proof. �

There is also a Shapiro’s Lemma for F-homology; this is presented in Chapter 3.

There are a few immediate consequences of Shapiro’s Lemma that we mention

explicitly:

9



Corollary 1.12. The group F HnpG; CoindGteupAqq � 0 for every abelian group A

and for every n ¡ 0.

Lemma 1.13. If rG : Hs   8, then

F H�pH; ZHq � F H�pG; ZGq.

PROOF. Since rG : Hs   8 we have for any ZH-module M , CoindGHM �

M ÒGH [Bro82, Proposition 5.9, III]. �

Lemma 1.14 (Transfer Maps). Let M be a ZG-module and rG : Hs   8. Then

there exist the following maps

F corGH : F H�pH;Mq Ñ F H�pG;Mq,

F resGH : F H�pG;Mq Ñ F H�pH;Mq.

PROOF. Apply F H�pG;�q to the canonical injectionM � HomZHpZG,Mq.

From Shapiro’s Lemma for F-cohomology there is a map α� : F H�pG;Mq Ñ

F H�pH;Mq. Again, since rG : Hs   8 we have CoindGHM � M ÒGH and

we can apply F H�pG;�q to the canonical surjection ZGbZH M �M to obtain

F corGH : F H�pH;Mq Ñ F H�pG;Mq.

Analogously, we apply the functor F H�pG;�q to the canonical surjection ZGbZH

M �M and by Shapiro’s Lemma for F-homology we obtain α� : F H�pH;Mq Ñ

F H�pG;Mq. Again, since rG : Hs   8 we have CoindGHM � M ÒGH and we

can apply F H�pG;�q to the canonical injection M � HomZHpZG,Mq to obtain

F resGH : F H�pG;Mq Ñ F H�pH;Mq. �

2. Complete ∆-cohomology via ∆-injective modules

Since the augmented cellular complex of a n-dimension contractibleG-CW-complex

with F-stabilisers gives rise to an F-projective resolution of the trivial module Z over

ZG, the natural choice of objects to work in algebra are F-projective modules. In

fact, Nucinkis developed the general theory using ∆-projective modules. However,

even if there is no geometric counterpart we show in this section that the category

of right K-modules ModkG has enough ∆-injective modules. In order to state and

prove standard results in group cohomology via F-injectives we need several dual

results included in Chapters IX & XII [ML95] for relative injective objects in some
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suitable category, and for this we avoid including the proofs that are completely

analogous to the ones for projectives.

Remark 1.15. Let N be a kG-module and let Homkpk∆, Nq be the kG-module

with the G-action defined as pϕgqδ � rϕpδg�1qsg, for ϕ P Homkpk∆, Nq. For

every kG-module N we have a G-map N
ι

� Homkpk∆, Nq given by ιpnq � ϕn,

where ϕnpδq � n for every δ P ∆. Moreover, ι is ∆-split, in fact the injection

ιN : N b k∆ Ñ Homkpk∆, Nq b k∆ defined by ιN pnb δq � ϕnb δ splits. The

splitting is given by ϕb δ ÞÑ ϕpδqb δ. From now on we write Hom for the functor

Homk.

Definition 1.16. [ML95] Let A be an abelian category and let P be a class of

short exact sequences. A monomorphism φ : A�B P Pm if there is an object

C P A and an epimorphism B�C such that A � B � C P P . Analogously, an

epimorphism ρ : B�C P Pe if there is an object A P A and a monomorphism

A�B such that A � B � C P P .

The class P is a proper class of short exact sequences if the following hold:


 P is closed under taking isomorphisms,


 A�A`B�B P P ,


 if A
φ
� B and B

ρ
� C P Pm then A

ρφ
� C P Pm,


 if B
φ
� C and C

ρ
� D P Pe then B

ρφ
� D P Pe,


 if A
φ
� B and B

ρ
� C are two monomorphisms such that A

ρφ
� C P Pm,

then A
φ
� B P Pm,


 if B
φ
� C and C

ρ
� D are two epimorphisms such that B

ρφ
� D P Pe,

then C
ρ
� D P Pe.

Lemma 1.17. [Nuc99, 3.1] The set of ∆-split short exact sequences forms a proper

class of short exact sequences.

A kG-module I is called ∆-injective if for every ∆-split ι : A�B and every

α : AÑ I there exists β : B Ñ I such that βι � α. Since for any ZG-projective

P , the surjection Z ∆bP �P splits any ZG-projective module is F-projective.

Analogously, any ZG-injective module is F-injective. We write I∆pkGq for the

class of ∆-injectives kG-modules. From basic properties of the functor Hom, we

have that I∆pkGq is closed under taking arbitrary direct product and finite direct

sums.
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Lemma 1.18. A kG-module I is ∆-injective if and only if the functor HomkGp�, Iq

is exact on ∆-split short exact sequences.

PROOF. Let I be a ∆-injective kG-module andA
ι

� B
τ
� C be a ∆-split short

exact sequence, by the left exactness of the contravariant functor HomkGp�, Iq

we only need to prove that γ : HomkGpB, Iq Ñ HomkGpA, Iq is an epimorphism.

Since ι is a ∆-split monomorphism and I is a ∆-injective module, every α P

HomkGpA, Iq factors through ι.

Conversely, assume that HomkGp�, Iq is exact on ∆-split short exact sequences

and let ι : A�B be a ∆-split monomorphism. Since α� : HomkGpB, Iq Ñ

HomkGpA, Iq is an epimorphism for every α P HomkGpA, Iq there is a β P

HomkGpB, Iq with α � α�pβq � ιβ. �

From Lemma 1.4 the next result follows immediately.

Corollary 1.19. Let ∆1 and ∆2 be two G-sets. If there exists a G-map φ : ∆1 Ñ

∆2, then every ∆1-injective kG-module is ∆2-injective.

Lemma 1.20. For any kG-module N , the kG-module Hompk∆, Nq is ∆-injective.

In particular, the category ModkG has enough ∆-injectives.

PROOF. LetA�B � C be a ∆-split short exact sequence. Since HomkGp�, Nq

is a left exact functor, is additive and so preserves splitting, i.e. if Ab k∆ �B b

k∆ � C b k∆ splits then HomkGpC b k∆, Nq� HomkGpB b k∆, Nq �

HomkGpAbk∆, Nq splits. By applying the natural isomorphism [ML95, Ex. 4 pg.

272 ] HomkGpU, HompV, T qq � HomkGpU b V, T q to every term in the short ex-

act sequence we obtain HomkGpC, Hompk∆, Nqq� HomkGpB, Hompk∆, Nqq

� HomkGpA, Hompk∆, Nqq. Hence by Lemma 1.18 Hompk∆, Nq is ∆-injective.

In Remark 1.15 we showed that the G-map N
ι

� Homkpk∆, Nq is ∆-split and

therefore the category ModkG has enough ∆-injectives. �

Lemma 1.21. Let I be a kG-module. Then the following are equivalent:

(1) I is a direct summand of Hompk∆, Nq for some kG-module N ,

(2) I is ∆-injective,

(3) every ∆-split monomorphism α : I� J splits.
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PROOF. The implication p2q ñ p3q is obvious, just take the identity map

α : I Ñ I . For p3q ñ p1q, by Remark 1.15 ι : I� Hompk∆, Iq is ∆-split, and so

splits by hypothesis, i.e. I ` L � Hompk∆, Iq for some kG-module L. For the

remaining implication p1q ñ p2q, if I is a direct summand of a module of the form

Hompk∆, Jq then by Lemma 1.20 and the splitting injection, I� Hompk∆, Jq, I

is ∆-injective. �

Lemma 1.22. For any G-module L and any F-subgroup H of G, the kG-module

CoindGH L is F-injective. For any G-set ∆ and any δ P ∆, CoindGGδ L is ∆-

injective.

PROOF. We first show that CoindGH L is HzG-injective, that is the functor

HomkGp�,CoindGH Lq is exact on H-split short exact sequences. Consider an

H-split short exact sequence A � B � C of kG-modules. The short exact se-

quence A bkH kG�B bkH kG�C bkH kG kG-splits by definition. For any

kG-module M the functor HomkGp�,Mq is exact on kG-split sequences. From

HomkGp�, HomkHpkG, Lqq � HomkGp�bkH kG, Lq [Bro82, Proposition 5.6

III] and the isomorphism � bkH kG � � ÓGH bkHkG it follows that CoindGH L

is HzG-injective. Let Φ �
�
K¤G,KPFKzG. Each element in HzG has an F-

stabiliser and so there exists a G-map HzG Ñ Φ. Hence by Corollary 1.19

CoindGH L is F-injective.

The previous argument applies by replacing H with Gδ, and there is an obvious

G-map G{Gδ Ñ ∆. �

Let A be an abelian category. A complex C�X0 Ñ X1 Ñ � � � Ñ Xn Ñ � � �

over an object C in A is an allowable injective resolution of C if it is an allowable

long exact sequence with Xi allowable injective for every i. Now we state the

analogue of the Theorem [ML95, IX, 4.3] for injective complexes.

Theorem 1.23 (Comparison Theorem). Let E be an allowable class of short exact

sequences in the abelian category A. If γ : AÑ A1 is a morphism of A, ε1 : A1 Ñ

Y1 an allowable injective complex over A1 and ε : AÑ Y an allowable resolution

of A, then there is a chain transformation f : Y Ñ Y1 of morphisms of A with

ε1γ � fε. Moreover, any two such chain transformations are chain homotopic.

Since any two proper injective resolutions of an object A are chain homotopic by

the previous theorem, the cohomology groups are well-defined.
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Definition 1.24. Let P be a class of proper short exact sequences in an abelian

category A, and C� I a proper injective resolution of an object C. Then we define,

for an object A,

ExtnPpA, Cq :� HnpHomApA, Iqq.

Let A be an abelian category with enough proper injectives, R be a selective

category and T : A Ñ R be an additive covariant functor. Each object A P

A has a proper injective resolution ε : A Ñ Y. By Theorem 1.23 it follows

that RnpAq � HnpT pYqq is independent of the choice of the resolution Y, and

Rnpαq � HnpT pfqq : RnpAq Ñ RnpA1q makes each Rn a covariant functor from

A toR. HenceRn is the n-th right derived functor of T [ML95, XII, pg. 389]. The

same holds for the right derived functors associated to a proper projective resolution

and a contravariant functor T . Hence, we have the following dimension shifting

corollaries.

Corollary 1.25. Let A
ε

� E0 d1

Ñ E1 d2

Ñ E2 Ñ � � � be a proper injective resolution

of an object A, and define L0 � impεq and Ln � impdnq for n ¥ 1. Then if T is

covariant, we have

pRn�1T qpAq � pRnT qpL0q � pRn�1T qpL1q � � � � � pR1T qpLn�1q.

In particular,

Extn�1
P pC, Aq � ExtnPpC, L

0q � � � � � Ext1
PpC, L

n�1q.

Corollary 1.26. Let � � � Ñ P2
d2

Ñ P1
d1

Ñ P0
ε

� C be a proper projective resolution

of an object C, and define K0 � kerpεq and Kn � kerpdnq for n ¥ 1. Then if T is

contravariant, we have

pRn�1T qpCq � pRnT qpK0q � pRn�1T qpK1q � � � � � pR1T qpKn�1q.

In particular, for the functors ExtnP , introduced in [Nuc99] we have

Extn�1
P pC, Aq � ExtnPpK0, Aq � � � � � Ext1

PpKn�1, Aq.

Now we are able to compare ExtnP with ExtnP .

Theorem 1.27. Let A�E0 Ñ E1 Ñ � � � be a proper injective resolution of an

object A and � � � Ñ P1 Ñ P0 � C be a proper projective resolution of an object

C. Then for all n ¥ 0

HnpHompPC, Aqq � HnpHompC, EAqq.
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Thus the two definitions ExtnP and ExtnP have the same value on pC, Aq.

PROOF. This is just a repetition of the ordinary case that can be found, for

example in [Rot79]. �

There is an obvious notion of proper injective dimension. Note that Lemma 1.21

holds in the generality of proper injectivity.

Theorem 1.28. The following properties for an object J are equivalent:

(1) J is proper injective;

(2) for each proper monomorphism x : A�B, x� : HompB, Jq Ñ HompA, Jq

is an epimorphism;

(3) every proper short exact sequence J �B � C splits;

(4) for every module C, Ext1
PpC, Jq vanishes.

PROOF. This is analogous to [ML95, III, 7.1]. �

Complete ∆-Cohomology via Satellites Using ∆-injectives. The purpose of

this subsection is to define the complete ∆-cohomology groups via satellites as

in [Nuc99]. In contrast to Nucinkis’ work, we use ∆-injective objects instead of

∆-projective ones.

Notation. When considering cohomology relative to a G-set ∆ as above we

denote Ext�PpA, Cq by ∆I Ext�kGpA, Cq. The ∆-injective dimension of a kG-

module M is the length of the shortest injective resolution of M . This is denoted

by ∆ idkGM .

In order to establish an analogue of [ML95, XII, 7.3] we need to rewrite some

notation. Since we assume that the category A has enough proper injective objects,

there is for each object C of A a proper monomorphism σ : C� I with I proper

injective; this gives a proper short exact sequence

EC : C� I
x
� J,

We call it, with abuse of language, a short proper injective resolution of C. Note

that J is not proper injective in general.

Regard each proper short exact sequence E : C�B � A as a complex in A, say

in dimensions 1, 0 and �1. Then T pEq : T pAq Ñ T pBq Ñ T pCq is a complex in
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R; its one dimensional homology H1pT pEqq is the object of R which makes

H1pT pEqq
µ
� T pAq Ñ T pBq, R,

exact. Each morphism Γ � pγ, β, αq : E Ñ E1 of proper short exact sequences

in A gives a chain transformation T pΓq : T pE1q Ñ T pEq and hence induces a

morphism

H1pΓq : H1pT pE
1qq Ñ H1pT pEqq, R,

which is characterized by µH1pΓq � T pαqµ1. Moreover, H1pΓq depends only on

γ, E and E1 and not on α or β. To see this, let Γ0 � pγ, β0, α0q : E Ñ E1 be any

other morphism (of proper short exact sequences) with γ as the first component. In

the A-diagram

C
� � σ ////

0
��

B
x //

β�β0

��

A

α�α0

��

s

~~

C 1 � � σ1 // B1 x1 // A1,

pβ� β0qσ � 0, so β� β0 � sx for some s. Also pα�α0qx � x1pβ� β0q � x1sx,

so x1s � α� α0, sx � β � β0. Hence s ia a homotopy Γ � Γ0. By the additivity

of T we have that T psq is a homotopy T pΓq � T pΓ0q : T pEq Ñ T pE1q, so

H1pΓq � H1pΓ0q. Now there exists:


 to each object C of A a short injective resolution EC ,


 to each γ : C Ñ C 1 in A a morphism Γγ � pγ,�,�q : EC Ñ EC
1

,


 to each proper short exact sequence E in A a morphism ΛE � p1,�,�q :

EC Ñ E.

Lemma 1.29. Given T : AÑ R contravariant additive and the data above,

SpCq � H1pT pE
Cqq and Spγq � H1pΓγq : SpC 1q Ñ SpCq

define a contravariant additive functor S : AÑ R, while for µ,

E� � µH1pΛEq : SpCq Ñ T pAq

defines a natural transformation which makes pS, E�, T q a P-connected con-

travariant pair such that SpCq�T pKq Ñ T pJq is a left exact R-sequence when-

ever J is proper injective and C� J � K is a proper short exact sequence.

PROOF. The proof is analogous to the proof of [ML95, XII, 7.3]. �
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Theorem 1.30. Let A be an abelian category with enough proper injectives. Then

the contravariant pair pT, E�, Sq is left P-couniversal if and only if each proper

short exact A-sequence

C� J � K

with J proper injective induces an exact R-sequence SpCq�T pKq Ñ T pJq.

Then S is a left satellite of T .

PROOF. The proof is analogous to the proof of [ML95, XII, 7.7]. �

Let C� J � K be a proper short exact sequence with J proper injective. We

define

SpCq :� kerpT pKq Ñ T pJqq.

The functor SpCq is additive and from above it is independent of the choice of

the proper injective J . We call S the left satellite of T and we can define the

iterated (left) satellites as: S0T pCq � T pCq, S�1T pCq � SpCq and S�nT pCq �

S�1pS�n�1T pCqq. If J is proper injective, then S�nT pJq � 0 for every n ¥ 1

by construction (as J � J � 0 is a proper short exact sequence and the basic

properties of the functor T ).

Lemma 1.31. If T is a contravariant half proper-exact functor (i.e. T pCq Ñ

T pBq Ñ T pAq is exact for every proper short exact sequence A�B � C)

and A has enough proper injectives, then for each proper short exact sequence

A�B�C there is an associated long exact sequence

� � � Ñ S�nT pCq Ñ S�nT pBq Ñ S�nT pAq Ñ S�n�1T pCq Ñ � � �

� � � Ñ S�1T pAq Ñ T pCq Ñ T pBq Ñ T pAq.

PROOF. Lemma 1.29 tells us that SpCq Ñ SpBq Ñ SpAq Ñ T pCq Ñ

T pBq Ñ T pAq forms a complex. By iterating this argument we have that the

sequence is a chain complex. The exactness can be proved as in [CE56, III, 3.1]. �

Definition 1.32. A P-connected sequence of contravariant functors is a sequence

of functors T � � tTn, n P Zu : AÑ R, which assigns to each proper short exact

sequence A�B � C of a A a complex

� � � Ñ T�n�1pAq Ñ T�npCq Ñ T�npBq Ñ T�npAq Ñ T�n�1pCq Ñ � � � .
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We say that the nonpositive part T¤0 � tT�n, n ¥ 0u of a P-connected sequence

of contravariant functors is of proper cohomological type if for each proper short

exact sequence A�B � C we have a long exact sequence

� � � Ñ T�npCq Ñ T�npBq Ñ T�npAq Ñ T�n�1pCq Ñ � � � Ñ T 0pAq.

In order to prove the proper I-completion analogue of Mislin’s completion [Mis94]

we need the following result.

Proposition 1.33. Let T¤0 and U¤0 be the nonpositive parts of P-connected

sequences of additive contravariant functors, and let f0 : T 0 Ñ U0 be a natural

transformation. If, in addition, U¤0 is of proper cohomological type and U�npIq �

0 for all n ¥ 0 and all proper injectives I , then:

(1) f0 extends uniquely to f¤0 : T¤0 Ñ U¤0 and f¤0 factors uniquely

through the canonical transformation T¤0 Ñ S¤0T 0,

(2) if T 0 is half P-exact and f0 is an equivalence then the induced transfor-

mation S¤0T 0 Ñ U¤0 is an equivalence.

Before we can prove this proposition we need one more result.

Lemma 1.34. Let A be an abelian category with enough proper injectives. Then

the following are equivalent for a P-connected sequence of contravariant functors

tT �, E�u:

(1) for each proper short exact A-sequence K� I � J with I proper

injective, the sequence

T�npKq�T�n�1pJq Ñ T�n�1pIq

is exact for every n ¡ 0;

(2) for each P-connected sequence of contravariant functors tV �, E
1�u and

each natural transformation f0 : V 0 Ñ T 0 there exist a unique natural

transformation fn : V �n Ñ T�n, extending f0.

PROOF. Suppose that we have p1q. Let tV �, E
1�u be a P-connected sequence

of contravariant functors and let f0 : V 0 Ñ T 0 be a natural transformation. We

construct by recursion on n the necessary natural transformation fn : V �n Ñ T�n.

Without loss of generality we can assume that f i commutes with the connecting

homomorphism for 0 ¤ i   n; now we apply point p1q of Theorem 1.30 to
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show that pTn, En, Tn�1q is left P-couniversal, and so we can construct a unique

fn : V �n Ñ T�n with Enfn � fn�1E
1n.

Suppose now, that we have p2q. From T 0 we construct the left satellite S1, and

we iterate the construction to obtain Sn : A Ñ R from Sn�1 for every n. Since

the resulting P-connected sequence satisfies SnpKq�Sn�1pJq Ñ Sn�1pIq, it is

couniversal and therefore it must coincide with the unique P-connected sequence

of contravariant functors tT �, E�u for the given T 0. �

Now we are ready to reformulate [ML95, XII, 8.4].

Lemma 1.35. Let A be an abelian category with enough proper injectives. Then

each contravariant functor T 0 is the 0-component for a P-connected sequence of

contravariant functors as in the previous lemma, where T�n is the n-th iterated left

satellite S�nT 0.

PROOF OF PROPOSITION 1.33. This is analogous of [Nuc98, 2.3]; T¤0 satis-

fies p1q of Lemma 1.34 and so there exists an unique transformation f¤0 : U¤0 Ñ

T¤0. The canonical transformation U¤0 Ñ S¤0T 0 can be deduced from Lemma

1.35. Applying Lemma 1.34 to U0 Ñ T 0 without viewing V 0 as the 0-th compo-

nent of the P-connected sequence of satellites, gives us a unique transformation

S¤0V 0 Ñ T¤0.

By Lemma 1.31 it follows that S¤0V 0 is of proper cohomological type. Since in

addition, S¤0U0pIq � 0 for all proper injective I , we can apply the first part to

T 0 Ñ U0 and therefore S¤0U0 Ñ T¤0 is an equivalence. �

A P-connected sequence of contravariant functors T � � tTn, n P Zu is called

a proper contravariant p�8, 8q-cohomological functor, if for each proper short

exact sequence A�B � C, we have a long exact sequence � � � Ñ TnpCq Ñ

TnpBq Ñ TnpAq Ñ Tn�1pCq Ñ � � � . Following [Nuc99, 3.7] we define:

Definition 1.36. A proper contravariant p�8, 8q-cohomological functor T � �

tTn, n P Zu is called proper I-complete if TnpIq � 0 for all n and every proper

injective module I . A morphism V � Ñ T � of proper contravariant p�8, 8q-

cohomological functors is called a proper I-completion of V � if T � is proper

I-complete and every morphism V � Ñ W � into a proper contravariant I-complete

functor W � factors uniquely through V � Ñ T �.
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Theorem 1.37. Every proper contravariant p�8, 8q-cohomological functor T � �

tTn, n P Zu admits a unique proper I-completion τ� : T � Ñ qT �. This completion

is obtained as: qTnpAq � lim
ÝÑ
k¥0

S�kTn�kpAq.

PROOF. We follow the proof of [Nuc98, 2.5]. For every n P Z we obtain a

proper contravariant p�8, 8q-cohomological functor by defining

T jxny �

"
Sj�nTn if j   n

T j if j ¥ n.

By p1q of Proposition 1.33, the identity morphism Tn Ñ Tn extends uniquely to a

canonical morphism, defined for all integers j ¤ n, as ιjn : T j Ñ Sj�nTn. This

induces a unique morphism ι�n : T � Ñ T �xny, where ιjn � idT j for all j ¡ n.

In the same fashion, we extend for all m ¡ n, the identity on Tm to a unique

ι�n,m : T �xny Ñ T �xmy. Since for all integers m ¥ n the morphisms ι�n,m are

uniquely determined, we have obtained a direct system tT �xny, ι�n,mu. Thus, we

can now define qT � � lim
ÝÑ

T �xny.

For all m ¥ n we have the equality ι�n,mι
�
n � ι�m, which enables us to define

qT � � lim
ÝÑ

ι�n : T � Ñ qT �,
which satisfies the universal property of Definition 1.36. �

Lemmas 2.6 and 2.7 in [Nuc98] or Lemmas 3.9 and 3.10 in [Nuc99] have proper

injective versions.

Lemma 1.38. Let T � be a proper contravariant p�8, 8q-cohomological functor

and n0 P Z such that TnpIq � 0 for all proper injective I and all n ¥ n0. Then

τnpAq : TnpAq Ñ qTnpAq is an isomorphism for all n ¥ n0.

Lemma 1.39. If f� : T � Ñ V � is a morphism of proper contravariant p�8, 8q-

cohomological functors where V � is proper I-complete and if fn : Tn Ñ V n is an

equivalence for all n ¥ n0 then the induced morphism qT � Ñ V � is an equivalence.

Cohomology relative to a G-set ∆ has a proper I-completion defined as follows:

Σ∆M � cokerpM � Hompk∆, Mqq

and inductively,

Σi
∆M � Σ∆Σi�1

∆ M.
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Since the definition of the left satellite is independent of the choice of the proper

injectives, we define:

S�1 ∆I ExtnkGpM, Nq � kerp∆I ExtnkGpΣ∆M,Nq Ñ ∆I ExtnkGpHompk∆, Mq, Nqq

and the proper ∆I-completion as:

∆}Ext
n

kGpM, Nq � lim
ÝÑ
k¥|n|

S�k ∆I Extn�kkG pM, Nq.

A Different Approach to Complete Relative Cohomology. In this subsec-

tion we present a ∆-relative version of Benson-Carlson’s approach to complete

cohomology via injectives that appears in [Nuc98].

Definition 1.40. Let ∆I HomkGpM,Nq be the subgroup of HomkGpM,Nq, con-

sisting of the homomorphisms in HomkGpM,Nq factoring through a ∆-injective.

We denote

rM,N s∆I � HomkGpM,Nq{∆I HomkGpM,Nq,

and by ∆I ModkG the category having as objects the kG-modules and whose

morphisms lay in r�,�s∆I. Note that there is an obvious surjection

HomkGpM,Nq � rM,N s∆I

Ψ ÞÑ rΨs � Ψ�∆I HomkGpM,Nq.

Lemma 1.41. Let N be a kG-module and A�B � C be a ∆-split short exact

sequence of kG-modules. Then every rφs P rA,N s∆I induces a unique rΨs P

rC,Σ∆N s∆I. In particular Σ∆ is a functor from I∆pkGq to itself.

PROOF. Take a representative φ of rφs in HomkGpA,Nq. Since Hompk∆, Nq

is a ∆-injective kG-module and τ is a ∆-split monomorphism, there exists a map

φ̄ : B Ñ Hompk∆, Nq making the left hand square of the diagram below commute.

We define a map Ψ : C Ñ Σ∆N as Ψpcq � πφ̄pbq where σpbq � c which makes

the right hand square commute (it is not unique, but this does not matter). Suppose

that there is another pair φ̄1, Ψ1 making the diagram commute:

N
� � ι// Hompk∆, Nq π // // Σ∆N

A
� � τ //

φ

OO

B

φ̄1

OO

φ̄

OO

σ // // C.

Ψ1

OO

Ψ

OO
Θ

ffLLLLLLLLLLLL
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We want to show that Ψ � Ψ1 factors through Hompk∆, Nq implies rΨs � rΨ1s.

We define the map Θ : C Ñ Hompk∆, Nq by Θpcq � pφ̄� φ̄1qpbq, where σpbq � c.

Hence we obtain πΘσ � πpφ̄ � φ̄1q � pΨ � Ψ1qσ, but σ is surjective and so

πΘ � Ψ�Ψ1. Therefore, rΨs � rπΘ�Ψ1s � rΨ1s.

Suppose φ factors through a ∆-injective J , then Σ∆J is ∆-injective since the short

exact sequence J � Hompk∆, Jq � Σ∆J and since Ψ� : C� Σ∆J is a ∆-split

monomorphism, Ψ factors through the relative injective Σ∆J .

To show that Σ∆ is a functor we can replaceA�B � C byN � Hompk∆, Nq �

Σ∆N for some kG-module N , and verify the following:

i) Σ∆N P ∆I ModkG: immediate by the definition.

ii) Let M,N P ∆I ModkG and φ P rM,N s∆I. Then Σ∆φ P rΣ∆M,Σ∆N s∆I

follows from the way we have defined Σ∆φ.

iii) For φ P rM,N s∆I and ρ P rN,Os∆I we have Σ∆φ � Σ∆ρ � Σ∆pρφq. We

consider the diagram:

M
� � ι//

φ

��

Hompk∆,Mq

∆Iφ
��

π // // Σ∆M

Σ∆φ

��

N
� � τ //

ρ

��

Hompk∆, Nq

∆I ρ

��

// // Σ∆N

Σ∆ρ

��

O
� � σ// Hompk∆, Oq // // Σ∆O

We prove that Σ∆pρφq � Σ∆φ � Σ∆ρ factors through a ∆-injective. We define

Ψ : Σ∆M Ñ Hompk∆, Oq

m̄ ÞÑ p∆Ipρφq �∆I ρ �∆Iφqpmq

where πm � m̄ for some m P Hompk∆,Mq. Suppose there is a morphism

m1 P Hompk∆,Mq such that πpm1q � 0, then by the exactness of the first row
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there is an m̃ PM with ιm̃ � m1. Hence,

p∆Ipρφq �∆Iφ �∆I ρqpιm̃q � p∆I ρφqιpm̃q �∆Iφ �∆I ρ � ιpm̃q

� p∆I ρφqιpm̃q � p∆Iφqτρpm̃q

� p∆I ρφqιpm̃q � pσφqρpm̃q

� σpρφqpm̃q � pσφqρpm̃q

� 0,

and so Ψ is an homomorphism.

iv) For every M P ∆I ModkG, Σ∆p1M q � 1Σ∆M . Replace in the previous diagram

the second row with a copy of the first row and erase the third one. The identities

on Hompk∆,Mq and on Σ∆ make the diagram commute. �

By Lemma 1.41 there is a well-defined chain:

rM,N s∆I Ñ rΣ∆M,Σ∆N s∆I Ñ rΣ2
∆M,Σ2

∆N s∆I Ñ � � �

Definition 1.42. Let M,N P ModkG. Then we define the 0-th relative injective

Benson-Carlson group as:

∆|BC
0

kGpM,Nq � lim
ÝÑ
i¥0

rΣi
∆M,Σi

∆N s∆I.

We would like to show that the above defines a proper contravariant p�8,8q-

cohomological functor which is proper I-complete. We begin with the classical

Schanuel’s Lemma.

Lemma 1.43. Let A
τ

� I�C and A
ι

� J �D be short exact sequences in an

abelian category A. Suppose that there exist φ : I Ñ J and ψ : J Ñ I such that

ψι � τ and φτ � ι. Then J ` C � I `D. Suppose that there is an unique map

φ : I Ñ J such that φτ � ι. Then there is a short exact sequence I�C ` J �D.

PROOF. The proof is analogous to the proof of Lemma 2.7 in [Nuc99]. �

Corollary 1.44. Let A� I�C and A� J �D be proper short exact sequences

in A. If J and I are proper injectives then

J ` C � I `D.

Furthermore, let M �J and M � I be two proper injective resolution of M and

letDn and Cn be the n-th cokernels respectively. ThenDn`∆ -inj � Cn`∆ -inj.
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Lemma 1.45. The functor r�, N s∆I is half exact.

PROOF. Let A
ι

� B
π
� C be a ∆-split exact sequence. We have to show that

rC,N s∆I
π�
Ñ rB,N s∆I

ι�
Ñ rA,N s∆I is exact at rB,N s∆I.

From ι�π�rφs � rπιφs � r0s it follows that imπ� � ker ι�. Now we show that

ker ι� � imπ�. Let rφs P ker ι�, then φι factors through a ∆-injective I , and we

have

A
� � ι //

α

��

B

φ

��

ψ

~~

I
� � β // N

where βα � φι. Since I is ∆-injective and ι is a ∆-split monomorphism, there

exists ψ : B Ñ I such that ψι � α, and so rφs � rφ� βψs. Since

ι�rφ� βψs � pφ� βψqι

� βα� βψι

� βα� βα � 0,

then φ� βψ P ker ι, but Homp�, Nq is a left exact functor and so φ� βψ P imπ�,

hence rφs � rφ� βψs P imπ�. �

Lemma 1.46 (Horseshoe Lemma for proper injectives). Every proper short exact

sequence A � B � C in an abelian category A with enough proper injectives can

be embedded in a commutative diagram

A
� � //

� _

��

B // //
� _

��

C
� _

��

I
� � //

����

J // //

����

L

����

S
� � // T // // V.

in which all rows and columns are exact, the middle row splits and consists of

proper injectives. Moreover, the sequences A� I�S and C�L�V with I

and L proper injective, may be given in advance.

PROOF. Since A has enough proper injectives we can suppose without loss of

generality thatA� I�S and C�L�V with I and L proper injective are given.

Now let J � I ` L. Clearly the middle row splits and since A�B is a proper
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monomorphism there exists B Ñ I ` L that makes the upper squares commute.

Let T be the coker of B� I ` L and we see that the lower squares commute. �

Corollary 1.47. Every ∆-split short exact sequence A � B � C gives rise to a

∆-split sequence of the form Σ∆A� Σ∆B� Σ∆C, where Σ∆B :� cokerpB Ñ

Hompk∆, Aq `Hompk∆, Cqq.

PROOF. By the Horseshoe Lemma we have the commutative diagram

A //

��

B //

��

C

��

Hompk∆, Aq //

��

Hompk∆, Aq `Hompk∆, Cq //

��

Hompk∆, Cq

��

Σ∆A // Σ∆B // Σ∆C.

By tensoring it by k∆ we obtain a diagram with the side columns and the first two

rows split, and so the bottom row splits as well. �

Lemma 1.48. Every ∆-split short exact sequence induces a long exact sequence

� � � Ñ rΣ∆B,N s∆I Ñ rΣ∆A,N s∆I Ñ rC,N s∆I Ñ rB,N s∆I Ñ rA,N s∆I.

PROOF. By Lemma 1.45 we have exactness at rB,N s∆I. We first show exact-

ness at rΣ∆B,N s∆I. By Corollary 1.47 we obtain a short exact sequence

Σ∆A� Σ∆B� Σ∆C.

We apply Lemma 1.45 to have

rΣ∆A,N s∆I �rΣ∆B,N s∆I �rΣ∆C,N s∆I

which is exact at rΣ∆B,N s∆I. Schanuel’s Lemma for proper injectives implies

that Σ∆B `∆ -inj � Σ∆B `∆ -inj, and so

rΣ∆B,N s∆I � rΣ∆B `∆ -inj, N s∆I

� rΣ∆B `∆ -inj, N s∆I

� rΣ∆B,N s∆I,
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and so we have exactness at Σ∆B. Applying the Schanuel’s Lemma to

A
� � // B // //

��

C

��

A
� � // Hompk∆, Aq // // Σ∆A

we obtain a short exact sequence B�C `Hompk∆, Aq� Σ∆A.

Since rC`Hompk∆, Aq, N s∆I � rC,N s∆I, by applying Lemma 1.45 to the above

short exact sequence we have exactness at rC,N s∆I.

To prove exactness at rΣ∆A,N s∆I we use a similar argument. We apply Schanuel’s

Lemma to

B
� � // C `Hompk∆, Aq // //

��

Σ∆A

��

B
� � // Hompk∆, Bq // // Σ∆B

in order to obtain C `Hompk∆, Aq� Σ∆A`Hompk∆, Bq� Σ∆B. Hence

rΣ∆B,N s∆I
� � // rΣ∆A`Hompk∆, Bq, N s∆I

// // rC `Hompk∆, Aq, N s∆I

rΣ∆B,N s∆I
� � // rΣ∆A,N s∆I

// // rC,N s∆I

is exact at the middle by Lemma 1.45. �

Now we define for every n P Z, the n-th relative injective Benson-Carlson group:

∆ |BC
n

kGpM,Nq � ∆ |BC
0

kGpM,Σn
∆Nq.

Even if Σn
∆N is not defined for n   0, the definition is reasonable since in the

direct limit we omit only a finite number of initial terms. Since taking the direct

limit respects exactness, we take the direct limit for each column to conclude the

following.

Proposition 1.49. The relative injective Benson-Carlson groups ∆ |BC
�

kGp�, Nq

defines a proper contravariant p�8, 8q-cohomological functor.

Theorem 1.50. Let N be a kG-module. Then for all n P Z there is a natural

equivalence of functors

Θn : ∆}Ext
n

kGp�, Nq Ñ ∆ |BC
n

kGp�, Nq.
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PROOF. Let d : N � I� be a ∆-injective resolution of N such that for every

j ¥ 1 Σj
∆N � cokerpIj Ñ Ij�1q. From Σn�1

∆ N � In � Σn
∆N we have the

commutative diagram:

HomkGpM, Inq � � ι� //

π

��

HomkGpM,Σn
∆Nq

δ // //

π1

��

∆I Ext1pN,Σn�1
∆ Nq

θnuu

rM, Ins∆I
� � rι�s // rM,Σn

∆N s∆I.

By the surjectivity of δ we can define the map θn : ∆I Ext1pN,Σn�1
∆ Nq Ñ

rM,Σn
∆N s∆I by mapping every ā P ∆I Ext1pN,Σn�1

∆ Nq to π1paq where a is

a δ-preimage of ā. Since rM, Ins∆I � 0 the map θn is well-defined: choose

a1 � a such that δpa1q � ā then δpa � a1q � 0 and so a � a1 � ι�pãq for some

ã P HomkGpM, Inq and π1pa� a1q � rι�sπpãq � 0.

We show that θn is surjective as π1, since (dimension shifting)

∆I Ext1pM,Σn�1
∆ Nq � ∆I ExtnpM,Nq

we have for every n ¥ 1 the surjection θn : ∆I ExtnpM,Nq�rM,Σn
∆N s∆I. Now

direct limits respect surjectivity, so we have for each integer n, the surjection:

lim
ÝÑ
k¥|n|

∆I Extn�kpΣk
∆M,Nq� lim

ÝÑ
k¥|n|

rΣk
∆M,Σn�k

∆ N s∆I �: ∆ |BC
n
pM,Nq.

From the short exact sequence

Σk
∆pMq� Hompk∆,Σk

∆Mq� Σ∆
k�1M

we have

ζ : ∆I En�kkG pΣk
∆M,Nq Ñ ∆I En�k�1

kG pΣk�1
∆ M,Nq

im ζ � kerp∆I Extn�k�1
kG pΣk�1

∆ M,Nq Ñ ∆I Extn�k�1
kG pHompk∆,Σk�1

∆ Mq, Nqq

� S�1 ∆I Extn�k�1
kG pΣk

∆M,Nq

� S�k ∆I Extn�k�1
kG pΣ∆M,Nq.

Hence,

lim
ÝÑ
k¥|n|

∆I Extn�kkG pΣk
∆M,Nq � lim

ÝÑ
k¥|n|

S�k ∆I Extn�k�1
kG pΣ∆M,Nq

� ∆}Ext
n�1

pΣ∆M,Nq

� ∆}Ext
n
pM,Nq.
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Hence, for every n P Z we have the surjection,

Θn : ∆}Ext
n
pM,Nq� ∆|BC

n
pM,Nq.

We are left to deal with the injectivity of Θn, so we start by considering x̂ P ker Θn.

The element x̂ can be represented by an element x̄ P ∆I Extn�kpΣk
∆M,Nq for

some k ¥ |n| such that its image in rΣk
∆M,Σk�n

∆ N s∆I is zero, i.e. it factors

through a ∆-injective. Using the ∆-injective resolution of N we can represent x̄

by a cocycle x : Σk
∆M Ñ In�k�1, which factors through Σn�k

∆ N . Thus we have

obtained

Σk
∆M

y

&&NNNNNNNNNNN

x

��

� � // Hompk∆,Σk
∆Mq

φ
��

In�k�1 Σn�k
∆ N.oooo

Since y is a representative of the image of x̄ under Θn in rΣk
∆M,Σk�n

∆ N s∆I (that

is zero) it factors through a ∆-injective. The injection Σn�k
∆ � In�k�1N is ∆-

split, and so we can assume that y factors through Hompk∆,Σk
∆Mq and the above

diagram commutes.

Now we examine at

Σk
∆M

y

��

� � ι // Ik�1M

zztttttttttt

��

π // // Σk�1
∆ M

Σy∆
��Ψyyssssssssss

Σk�1
∆ M

z

��

Σn�k
∆ N

� � // In�k�1 // // Σn�k�1
∆ N

� � // In�k�1N

and we note that y factors through Ik�1M , a ∆-injective. Now z represents x̄

in ∆I Extn�k�1
∆ pΣk�1

∆ M,Nq, z is a coboundary since z � τ 1σΨ � dΨ, where

d : In�k Ñ In�k�1. Hence δx̄ � 0 and x̂ � 0 in the direct limit. �

Theorem 1.51. Let M and N be kG-modules.

(1) If M or N has finite ∆-injective dimension then ∆}Ext
n

kGpM,Nq � 0,

for all n P Z.

(2) ∆}Ext
0

kGpM,Mq � 0 ðñ ∆ idkGM   8.

PROOF. It is analogous to [Nuc98, Theorem 3.7]. �

28



Complete ∆-injective Resolutions.

Definition 1.52. LetM be a kG-module. Then a complete ∆-injective resolution of

M is a ∆-split exact sequence of ∆-injectives I � pI�, dq, indexed by the integers

such that

(1) I coincides with a ∆-injective resolution of M in sufficiently high dimen-

sions,

(2) the chain complex HomkGpJ, I
�q is exact for any ∆-injective kG-module

J .

Lemma 1.53. Let M be a kG-module with a complete ∆-injective resolution

I � pI�, dq. Then:

(1) if J � pJ�, δq is a ∆-injective resolution of M with J i � 0 for all i   0,

and coinciding with I in sufficiently high dimensions, then there is a chain

map J Ñ I unique up to homotopy;

(2) any two complete ∆-injective resolutions of a kG-module M are chain

homotopy equivalent.

PROOF. The proof of (1) is analogous to [Nuc98, Lemma 7.2 ]. Part (2) follows

from Theorem 1.23 and part (1). �

Note that the functor H�pHomkGp�, Iqq is a proper (contravariant) complete

p�8,8q-cohomological functor.

Theorem 1.54. Let M be a kG-module with a complete ∆-injective resolution

I � pI�, dq. Then for any kG-module N we have the equivalence

∆}Ext
�

kGpN,Mq � H�pHomkGpN, I
�qq.

PROOF. Suppose M �J is a ∆-injective resolution of the module M such

that I coincides with J in sufficiently high dimensions. Then by Lemma 1.53 there

is a natural transformation

∆I Ext�kGp�,Mq Ñ H�pHomkGp�, I
�qq.

By Lemma 1.39 and by the uniqueness of the relative I-completion we have that

this natural transformation is a natural equivalence. �
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For any ringR, the functors}Ext
�

RpM,Nq andyExt
�

RpM,Nq are naturally equivalent

if and only if silpR and spliR are finite [Nuc98]. It would be interesting to know

when ∆}Ext
�

kGpM,Nq and ∆yExt
�

kGpM,Nq are naturally equivalent. If k has finite

self-injective dimension, Emmanouil answered an old open question by showing

that silp kG   8 ðñ spli kG   8 [Emm10]. Maybe a similar result holds for

∆ silp kG and ∆ spli kG, where these invariants are defined in the obvious way.

Corollary 1.55. Let N be a kG-module with a complete ∆-injective resolution.

Then,

(1) for every ∆-injective module I in sufficiently high dimensions,

∆I ExtikGpI,Nq � 0,

(2) if Q is ∆-projective module,

∆}Ext
�

kGpQ,Nq � 0.

PROOF. Part (1) is immediate from Theorem 1.54. For part (2) let N �J be a

∆-injective resolution of the module N and let Ci � cokerpJi�1 Ñ Jiq. By Theo-

rem 1.54 and dimension shifting, it follows ∆}Ext
n

kGpA,Nq � ∆ Ext1
kGpA,Cn�2q

for any kG-module A. When A is ∆-projective the functor HomkGpA,�q is exact

on ∆-split sequences, hence ∆ Ext1
kGpA,Cn�2q � 0 and so ∆}Ext

n

kGpA,Nq �

0. �

Proposition 1.56. [KT91] Let G be a group and BpG,Zq be the ZG-module of

bounded functions from G to Z. Then BpG,Zq satisfies the following


 BpG,Zq is a free ZF -module for each F-subgroup F of G,


 H0pG; BpG,Zqq � 0.

Moreover, we consider:


 Bp∆,Zq for the set of bounded functions from ∆ to Z,


 Bp∆, kq � Bp∆,Zq bZ k for the k-algebra of functions from ∆ to k

which takes only finitely many values.

As in [Nuc99] we define the G-action on Bp∆, kq as φgpδq � φpδg�1q. The

module Bp∆,Zq is in general not free over ZF . To see this, first consider the

F-split surjection Bp∆,Zq� Z. This implies that Z ∆ is a direct summand of

Bp∆,Zq b Z ∆ but Z ∆ is not ZG-free in general.
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Lemma 1.57. [Nuc99, 5.6]

(1) Bp∆, kq is a free k-module,

(2) there is a k-split inclusion k� Bp∆, kq of kG-modules,

(3) the inclusion k� Bp∆, kq is ∆-split.

Lemma 1.58. Let I be a ∆-injective kG-module. Then for any k-free kG-module

L, the module HompL, Iq is ∆-injective.

PROOF. Define the action of G on φ P HompB,Cq by φgpaq � φpag�1qg.

Then by [CK96, 3.2] it follows that there is a natural isomorphism:

HomkGpAbB,Cq � HomkGpA,HompB,Cqq.

Since the functor �b L is exact, and it takes split sequences to split sequences, the

result follows now by the ∆-injectivity of I . Again � b � is always associative

and since k is commutative, � b � is commutative and so pA b k∆q b L �

pAb Lq b k∆. �

Lemma 1.59. Let I be a ∆-injective kG-module. Then it is a direct summand of

I b Bp∆, kq.

PROOF. By tensoring k� Bp∆, kq we have a G-monomorphism ι : I� I b

Bp∆, kq. Then by (3) of Lemma 1.57 and by Lemma 1.17 we have that k� Bp∆, kq

splits when restricted to each stabiliser Gδ, and so does ι, hence ι is ∆-split. By

Lemma 1.21 we are done. �

We conclude the chapter with a result analogous to [Nuc99, 5.9].

Lemma 1.60 (A sufficient condition). Let L be a kG-module such that

∆ idkGpHompBp∆, kq, Lqq   8.

Then L has a complete ∆-injective resolution which splits under HompBp∆, kq,�q.

PROOF. We write B for Bp∆, kq, B̄ for the cokernel of the injection k�B, and

Cokr L for the r-th cokernel of a ∆-injective resolution of L. By Lemma 1.58 the

module HompB,Cokr Lq is ∆-injective for every r and since ∆ idkGpHompB, Lqq  

8, we may assume HompB, Lq is ∆-injective by replacing L with a suitable coker-

nel. By part (2) of Lemma 1.57 we have a surjective G-map,

π : HompB, Lq�L,
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that by 3 of Lemma 1.57 and by Lemma 1.17 we have that the inclusion k� B

splits for all finite subgroups of G, which implies that π is ∆-split. Now we write

HomipB̄, Lq for HompB̄,HompB̄, . . . ,HompB̄, L � � � qqq i-times. By the above,

HompB,HomipB̄, Lq is ∆-injective for every i ¥ 0. Hence we have a ∆-injective

exact complex:

� � � Ñ HompB,HomipB̄, Lqq Ñ � � � Ñ HompB,HompB̄, Lqq

Ñ HompB,Lq�L

that is ∆-split since the surjection to L is ∆-split.

Note that by Lemma 1.58 the module HompB,HomipB̄, Lqq is ∆-injective for

every i ¥ 0, and we have that the short exact ∆-split sequence

HompB,Homi�1pB̄, Lqq� HompB,HompB,HomipB̄, Lqqq

� HompB,HomipB̄, Lqq

by 3 of Lemma 1.57 splits. This clearly remains true even for a ∆-injective res-

olution of L. Splicing this together with a ∆-injective resolution J of L, we

have a complete ∆-injective resolution I of L; of course we are left to check that

HomkGpJ, Iq is exact for every ∆-injective J .

By Lemma 1.59 it is sufficient to show that HompJ bB, Iq � HompJ,HompB, Iqq

is exact, but by the above HompB, Iq splits and so HompJ,HompB, Iqq is exact. �
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CHAPTER 2

F-cohomological dimension

In the context of cohomology relative to a G-set there is a well-defined notion

of F-cohomological dimension. One of the main reasons why this dimension is

important comes from the fact that every H1F-group has finite F-cohomological

dimension. Nucinkis introduced F-cohomology in order to find an appropiate

algebraic counterpart for the minimal dimension of a contractible G-CW-complex

with F-stabilisers. This question remains unsolved after 12 years; in fact, it is

also unknown if the finiteness of the F-cohomological dimension implies H1F-

membership. There is hope that studying the behaviour of the F-cohomological

dimension will shed some light on the question above. For a group G, F cdG

denotes its F-cohomological dimension. In this chapter we focus our attention on

its behaviour under forming group extensions and we prove:

Theorem. Let N �G�Q be a group extension with F cdN ¤ n. Moreover,

assume that for any subgroup H of G with F cdH ¤ n and any extension L of H

by a group of prime order has F cdL ¤ n. Then F cdG ¤ F cdH � F cdQ.

We make a brief comment about the result. The behaviour of H1F-groups and

in particular the behaviour of the minimal dimension of a contractible G-CW-

complex with F-stabilisers is not completely understood with respect to taking

group extensions. There are several other algebraic dimensions defined for groups

for which finiteness is conjectured to imply membership of H1F. It is important to

recall that for these dimensions the exact and good behaviour with respect of taking

group extensions is often well-known.

1. Basics, examples and motivation

We begin by recalling the main group invariant for discussion in this chapter. Let G

be a group and ∆ a G-set.
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Definition 2.1. [Nuc00] The ∆-cohomological dimension of G is defined as

∆ cdkG :� ∆ pdkG k

:� inftn | k admits an ∆ -projective resolution of length nu

� suptn | ∆ HnpG;Mq � 0, for some ZG-module Mu,

where ∆ H�pG;�q :� ∆ Ext�kGpk,�q. The last equality can be shown analogously

to [Bro82, VIII, Lemma 2.1]. Since the augmented cellular chain complex of a

finite-dimensional contractible G-CW complex with F-stabilisers is an F-projective

resolution of Z over ZG, it is natural to work with Z as the ring of coefficients. We

write ∆ cdG for ∆ cdZG and F cdG when the G-set ∆ has the property p�q.

The classifying space for proper actions. Let G be a group and X be a CW-

complex. The cell complex X is a G-CW-complex if G acts admissibly on X

by self-homeomorphisms. The action is admissible if the set-wise stabiliser of

each cell coincides with its point-wise stabiliser. A G-CW-complex is proper if

all its cell stabilisers are finite. If a proper G-CW-complex has the property that

for each F-subgroup K of G the fixed-point subcomplex XK is contractible, it is

called a classifying space for proper actions of G and it is denoted by EFG. A

classifying space for proper actions of G can also be defined as a terminal object in

the homotopy category of proper G-CW-complexes. Note that, since G does not

act freely on X , usually it is not possible to recover G from X{G, contrary to what

happens on free G-CW-complexes and there is no notion of proper Eilenberg-Mac

Lane space for G.

Examples of models for EFG arise virtually everywhere in geometric group theory;

many natural spaces on which infinite groups act are classifying spaces for proper

actions. Forcing the action to be free leads to an infinite-dimensional space whenever

G has torsion, while for any F-group F a point is a suitable EFF . Of course, if

G is torsion-free, then any model for EG is a model for EFG. We will mention

here some examples; the interested reader is advised to consult [Lüc05] for a more

explicit and wide survey on the topic.

Examples 2.2.


 If G � D8 :� C8 � C2, then R with the usual D8-action is a model for

EFG.
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 If G is a countable LF-group, then G acts on a tree T with F-stabilisers

and T is a 1-dimensional model for EFG [Ser03].


 If G is a word-hyperbolic group, then the second barycentric subdivision

of the Rips complex RdpGq is a finite model for EFG for large enough d

[MS02].


 The barycentric subdivision of the splineK 1
n is a finite (2n�3)-dimensional

model for EF OutpFnq[KV93, BV01].

Remark 2.3. By generalisations of constructions in [Mil56, Seg68] every group

G admits a model for EFG. It is interesting to study groups admitting classifying

spaces for proper actions satisfying some finiteness properties; the most popular

properties are being finite-dimensional, being of finite type and being cocompact.

Our work is mainly focused on the first property, and for a group G the minimal

dimension of a model for an EFG is called Bredon geometric dimension and is

denoted by gdFG.

The orbit category OFG has as objects the G-sets HzG where H is an F-subgroup

ofG and the morphisms are theG-maps. An OFG-module is a contravariant functor

from OFG to the category of abelian groups. For any G-set X with F-stabilisers,

Zr?, XsG denotes the Z-free module on the set of G-maps from ? to X . It turns out

that the free OFG-modules are precisely the modules of the form Zr?, XsG where

X is a G-set with F-stabilisers, and their direct summands are the projective OFG-

modules. Moreover, in the category of OFG-modules there are enough projective

OFG-modules and there exists a well-defined notion of projective dimension. Let Z
be the OFG-module that sends every G-set to Z. Then the Bredon cohomological

dimension of G, denoted by cdFG, is the projective dimension of Z.

A group G that admits a model for EFG of dimension n   8 has finite Bredon

cohomological dimension, finite F-cohomological dimension, finite rational co-

homological dimension and the integral homology groups HipGq with arbitrary

coefficients are torsion for i ¡ n [KM98]. There is another class of groups closely

related to the class of groups having a finite-dimensional classifying space for proper

actions, the class H1F. This is the first “non-trivial” step for building up Kropholler’s

class H F. A group is an H1 F-group if it admits a contractible finite-dimensional G-

CW-complex with F-stabilisers. We introduce the notion of Kropholler dimension.

This is, for a group G, the minimal dimension of a contractible G-CW-complex
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with F-stabilisers. We denote the Kropholler dimension of a group G by KpGq. Of

course G P H1F if and only if KpGq   8.

Clearly every group that has a finite-dimensional model for EF is in H1 F and

a conjecture of Kropholler and Mislin claims that this implication is reversible.

If G P H1 F then the augmented chain complex over Z is a resolution of finite

length of Z over ZG made of permutation modules with F-stabilisers. A result

proved independently by Bouc [Bou99] and Kropholler-Wall [KW11] implies that

this resolution is F-split. Hence, every H1 F-group has finite F-cohomological

dimension and in particular F cdG ¤ KpGq. One of the main questions was how to

algebraically characterise groups that admit finite-dimensional classifying spaces for

proper actions. The problem was solved with Bredon cohomology. It turns out that

every group G of finite Bredon cohomological dimension has a finite-dimensional

EFG [Lüc89]; more precisely for any groupGwe have gdFG ¤ maxt3, cdFGu. It

is important to recall that in [BLN01] the authors show a family of counterexamples

for the proper Eilenberg-Ganea conjecture; i.e. they exhibit examples of groups

G such that gdFG � 3 and cdFG � 2. The Bredon cohomological dimension

is often problematic to compute, and it would be interesting to find alternative

algebraic invariants that guarantee its finiteness. With this in mind, our interest is to

understand groups of finite F-cohomological dimension.

Another interesting unsolved question asks if the F-cohomological dimension mir-

rors the Kropholler dimension.

Recently Leary and Nucinkis looked at groups admitting a classifying space with

stabilisers of prime power order PF. They showed the following.

Lemma 2.4 ([LN10]). A group G admits a finite-dimensional EPF
G if and only if

every finite subgroup ofG is of prime power order andG admits a finite dimensional

EFG.

The class of groups admitting a finite-dimensional EPF
G is much smaller than the

class of groups admitting a finite-dimensional EFG. It does not even contain the

class F. Does F-cohomology that is a cohomology theory relative to PF detect the

finiteness of a model for an EFG?

The Weyl-groups of a given group G are the groups WH :� NGpHq{H . When

looking at the classifying space for proper actions or at cohomological theories
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relative to the family of F-subgroups the Weyl-groups play a relevant role. Assume

that ∆ is a G-set satisfying condition p�q and that H is a finite subgroup of G. It

is possible to show [Nuc00] that the fixed-point set ∆H is a WH-set satisfying

condition p�q. This leads to the strong relation that exists between F-cohomology

and Bredon cohomology with respect to the family of finite subgroups. We assume

the reader to be familiar with the basic theory of Bredon cohomology. The inter-

ested reader can consult [Lüc89, MV03]. Since we are exclusively interested in

group cohomology with respect to the family of finite subgroups we write “Bredon

cohomology” for “Bredon cohomology with respect to the family of F-subgroups”.

Evaluating anOFG-module atHzG gives a ZWH-module and the next result links

the Bredon cohomological dimension with the F-cohomological dimension.

Theorem 2.5. [Nuc00, 3.2] Consider an OFG-projective resolution Pp�q of the

Bredon module Z. Evaluated at HzG for any finite subgroup H of G, it gives an

F-projective resolution of Z over ZWH . In particular, we have for each finite

subgroup H of G, F cdWH ¤ cdFG.

So we can picture a Bredon projective resolution of Z as a sequence of F-projective

resolutions over ZWH with various connecting homomorphisms, i.e. for every

G-map from G{H to G{K there is a morphism of complexes from PpKzGq to

PpHzGq. An OFG-module is a free OFG-module if it is isomorphic to a direct sum

of OFG-modules of the form Zr�, HzGs. At this point it is natural to ask if in the

theorem above we can replace the OFG-module Z with any Z-free OFG-module.

On the other hand we have:

Lemma 2.6. [Nuc00, 4.3] F cdWH ¤ F cdG for every F-subgroup H of G.

Remark 2.7. Since Leary and Nucinkis [LN03] showed the existence of groups G

with F cdG   cdFG   8 it is not possible in general to glue the resolutions of the

Weyl-groups coming from the F-projective resolution of Z over ZG to construct an

OFG-projective resolution of Z of the same length.

Lemma 2.8. Let H be a subgroup of G, M be a kH-module and N be a kG-

module. Then:


 M bkH kG is kG-projective if and only if M is kH-projective;


 pdkGN bkH kG � pdkH N ¤ pdkGN.
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PROOF. These hold in a more general context and proofs can be found in

[CK96, Lemma 6.1, 6.3]. �

If G has finite F-cohomological dimension than this can be calculated by evaluating

the F-cohomology groups in F-free modules.

Lemma 2.9. If F cdG   8, then

F cdG � suptn | F HnpG;F q � 0, F F -freeu,

where a module is F-free if it is of the form Z ∆bM for some ZG-module M .

PROOF. It is analogous to [Bro82, 2.3, VIII]. �

Note that in the lemma above we are unable to take F as a permutation module

with F-stabilisers. However, Proposition 2.18 tells us that if F cdG   8 then there

exists some G-set Ω with F-stabilisers and an m P N such that F HmpG; Z Ωq � 0.

In very low dimension everything is known by Dunwoody’s work on groups of

rational cohomological dimension equal to 1 [Dun79].

Lemma 2.10. [Nuc00, 2.8, 2.9]


 F cdG � 0 if and only if G P F,


 F cdG ¤ 1 if and only if G acts on a tree with F-stabilisers.

Examples 2.11. Groups of F-cohomological dimension equal to 1 include virtually-

free groups and infinite countable L F-groups. Since the additive group of the

rational numbers is torsion-free, we have

F cd Q � cd Q � 2,

where the second equality follows from Berstein’s Theorem and the fact that Q
is not free. Restricted wreath products of the form F o Z where F is a F-group

are commonly called lamplighter groups. It is known that for a lamplighter group

G there exists a 2-dimensional model for EFG by [Lüc00, Theorem 3.1]. We

will see later in Proposition 2.30 a simple proof that for torsion-free groups the

F-cohomological dimension agrees with the integral cohomological dimension. In

particular, a free abelian group of rank n has F-cohomological dimension equal to

n and the free abelian group of infinite countable rank has infinite F-cohomological
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dimension. This shows that the class of groups of finite F-cohomological dimension

is not L-closed.

Remark 2.12 (The augmentation module). Let I∆ � ker ε, where ε : Z∆ Ñ Z is

defined as pδqε � 1, hence, p
°
δP∆ nδδqε �

°
δP∆ nδ.


 F cdG ¤ 1 if and only if I∆ is an F-projective module. This is equivalent

to stating that the map I∆ b Z ∆ � I∆ splits. Note also that I∆ b Z ∆ �

Z ∆ for some G-set ∆ with F-stabilisers.


 The finiteness of the F-cohomological dimension does not this imply the

finiteness of the relative dimension rdG :� pdZG I∆. Any countable

infinite periodic A-group G has infinite relative cohomological dimension

but the F-cohomological dimension of G is equal to 1 [Alo91, Corollary

7].


 For any group G, F cdG ¤ rdG. Let rdG ¤ n. Then by [Alo91,

Theorem 3], there exists a n-dimensional acyclic G-CW-complex X such

that G acts with F-stabilisers on the 0-skeleton and freely in positive

dimension. The augmented cellular chain complex of X over Z gives the

desired upper bound. It is important to remark that even in this extreme

case we do not have an algebraic proof for F cdG ¤ rdG.


 Let GcdG be the Gorenstein cohomological dimension of G [BDT09].

Then GcdG ¤ rdG since the ZG-module Z ∆ is Gorenstein projective

for any G-set ∆ with F-stabilisers.


 Suppose Gcd Γ � n   8. Consider the standard F-projective resolution

of Z. This is a Gorenstein projective resolution of Z. The pn � 1qth

kernel Kn where ι : Kn � Z ∆n�1 is Gorenstein projective. We ask

the following. Is Kn F-projective? Is F pdKn   8? We know that ι

is F-split. Note that by [BDT09] every cofibrant module is Gorenstein

projective and by [DT10] the two concepts coincide over an LHF-group.

Does every cofibrant module over an LHF-group have finite F-projective

dimension?

Lemma 2.13 (Dimension shifting).


 F HnpG;Aq � F Hn�1pG; HompI∆, Aqq, for n ¥ 2.


 F H1pG;Aq � cokertF H0pG; HompZ ∆, Aqq Ñ F H0pG; HompI∆, Aqqu,

for n � 1 where HompI∆, Aqq is a ZG-module with the usual action.
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PROOF. It is analogous to VI, 12.1 in [HS97] or [Bro82, pg. 64]. Recall that

since the sequence I∆ � Z ∆ � Z is Z-split, the functor Hom is exact and so we

have that cokertA� HompZ ∆, Aqu � HompI∆, Aq. �

Proposition 2.14. Let G be an infinite group with finitely many conjugacy classes

of PF-subgroups and M be any ZG-module. Consider a finitely-generated ZG-

module Z ∆ such that ∆ satisfies p�q. Then pM b Z ∆qG � 0. In particular,

pP qG � 0 for any finitely-generated F-projective module P .

PROOF. pM ÓHÒ
G
Hq

G � 0 for every F-subgroup H by [Bro82, Ex.4 pg.71].

Hence,

pM b Z ∆qG :� HomZGpZ,M b Z ∆q � HomZGpZ,M b p`δP∆0 ZGδzGqq

� HomZGpZ,`δP∆0pM b ZGδzGqq �
à
δP∆0

HomZGpZ,M b ZGδzGq � 0,

where the last equality follows from the basic fact that HomZGpZ,�q commutes

with products, but since ∆0 is finite, products and sums coincide. �

Theorem 2.15. [Nuc00, 2.7] The property of having “finite F cd” is closed under

taking subgroups, HNN-extensions and free products with amalgamation.

Lemma 2.16. Let N be a ZG-module, n P N and

Mn �Mn�1 Ñ � � � ÑM1 ÑM0 �M�1

be an F-split exact sequence of ZG-modules. Assume F ExtiZGpN,Miq � 0 for

0 ¤ i ¤ n. Then F Ext0
ZGpN,M�1q � 0.

PROOF. It can be proved by induction similarly to [DKLT02, Lemma 7.3]. If

n � 0 then M0 �M�1 and the statement is trivial.

Let M
1

n�1 � cokerpMn �Mn�1q then we have two exact F-split sequences:

(1) Mn �Mn�1 �M
1

n�1,

(2) M
1

n�1 �Mn�2 Ñ � � � ÑM0 �M�1.

From the long exact sequence in F-cohomology that arise from p1q we have:

� � � Ñ F Extn�1pN,Mn�1q Ñ F Extn�1pN,M
1

n�1q Ñ F ExtnpN,Mrq Ñ � � �

where F Extn�1pN,Mn�1q and F ExtnpN,Mnq are zero by assumption and so

the group F Extn�1pN,M
1

n�1q is zero as well. Now by the induction hypothesis

applied to (2) we can conclude F Ext0
ZGpN,M�1q � 0. �
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Corollary 2.17. If n P N and

Mn �Mn�1 Ñ � � � ÑM0 � Z

is an F-split resolution of the trivial ZG-module Z, then there exists 0 ¤ i ¤ n

such that F HipG;Miq � 0.

PROOF. Arguing by contradiction, we suppose that F HipG;Miq � 0 for all

0 ¤ i ¤ n. By the lemma above follows F H0pG;M�1q � 0 but F H0pG;M�1q �

HomZGpZ,Zq � 0. �

The next proposition is the relative version of [DKLT02, Proposition 7.7].

Proposition 2.18. Let G be a group such that either the functors H�pG; Z ∆q � 0

or F H�pG; Z ∆q � 0 for every G-set ∆ with F-stabilisers. Then F cdG � 8.

PROOF. It follows straight from [DKLT02, Corollary 7.6] that if n P N and

Mn �Mn�1 Ñ � � �M0 � Z

is an exact sequence of ZG-modules then there exists an 0 ¤ i ¤ n such that

HipG;Miq � 0. Analogously to Corollary 2.17 it follows that F HipG;Miq � 0.

Suppose F cdG � m. Then by Lemma 2.28 there is an F-split resolution of Z of

length m made of permutation modules with F-stabilisers, and Corollary 2.17 gives

a contradiction. �

As an immediate corollary we obtain a well-known result.

Corollary 2.19. Let G be a non-trivial group such that H�pG;F q � 0 for every

ZG-free module F . Then cdG � 8.

PROOF. We can assume G to be torsion-free and apply Proposition 2.18. �

It is important to remember that if G is infinite and H�pG;P q � 0 for every

ZG-projective module P then GcdG � 8.

Examples of groups with cohomology groups vanishing on all projective modules

are given by the free abelian group of infinite countable rank, Thompson’s group F

and GLpn, F q where F is a subfield of the algebraic closure of Q [CK97, 5.3].
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Proposition 2.20. [Nuc00, 2.5] Suppose

G � lim
ÝÑ
λPΛ

Gλ

where Λ is countable. Then F cdG ¤ 1� suptF cdGλ |λ P Λu.

We state explicitly a few consequences of the proposition above.

Corollary 2.21.


 A countable LF-group has F-cohomological dimension at most 1.


 Let 1 � H0 ¤ H1 ¤ � � � be a series of normal subgroups of G such that

F cdG{Hi ¤ k for all i ¥ 0. Then F cdG{
�
Hi ¤ 1� k.


 If G is countable and locally of F cd ¤ k, then F cdG ¤ 1� k.

Proposition 2.22. LetA be a countable A-group. Then F cdA ¤ r0pAq�1, where

r0pAq denotes the torsion-free rank of A.

PROOF. Since G P A there exists T �A�A{T where T is the torsion

subgroup of A, A{T is a torsion-free quotient and F cdpT {Aq � cdpT {Aq �

r0pT {Aq � r0pAq. Since T P LF, then F cdpT q ¤ 1. The result follows from the

spectral sequence in [Nuc00]. �

2. Group extensions

Suppose N �G�Q is a group extension. In the context of ordinary cohomology

it is an immediate consequence of the Lyndon-Hochschild-Serre spectral sequence

that the property of having finite cohomological dimension is extension closed.

Furthermore, if cdN � n and cdQ � m then cdG ¤ n � m. This property

suggests the following question.

Question 2.23. Let N �G�Q be a group extension, with F cdN � s and

F cdQ � r. Is F cdG ¤ r � s?

Remark 2.24. When Q is a torsion-free group, the above question has a positive

answer by Proposition 2.4 [Nuc00].

In [Nuc00] it is shown that the class of groups of finite F-cohomological dimen-

sion is closed under taking extensions by groups of finite integral cohomological

dimension.
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We begin by recalling some results needed in the proof of the main theorem,

Theorem 2.35.

Lemma 2.25. [Nuc00, 2.2] Let N �G
π
� Q be a group extension and let H be a

family of groups satisfying the following condition: if H is a subgroup of G and

H P H, then πpHq P H. Then every H-split short exact sequence of ZQ-modules is

H-split when regarded as a sequence of ZG-modules.

For a ZH-module M , we use the standard notation M ÒGH :� ZGbZH M .

Lemma 2.26. [Nuc99, 8.2] Let H be a subgroup of G and let A�B�C be an

F-split short exact sequence of kH-modules. Then the sequence A ÒGH �B ÒGH

�C ÒGH is an F-split sequence of kG-modules.

Any ZG-module M induced up from an F-subgroup H of G is F-projective (Corol-

lary 2.4, [Nuc99]). This is not true for arbitrary subgroups H , but holds if M is

induced up from an F-projective ZH-module.

Lemma 2.27. Let H be a subgroup of G and P be an F-projective ZH-module.

Then P ÒGH is an F-projective ZG-module.

PROOF. If ∆ �
�
δP∆0

GδzG is a G-set that satisfies condition p�q then ∆ has

an H-orbit decomposition of the form
�
δP∆0

p
�
gPΩδ

pH XGgδqzHq, where Ωδ is a

set of representatives of the double cosets GδgH . Clearly ∆ regarded as an H-set

satisfies condition p�q. Let M be an F-projective ZH-module. Then by definition

M is a direct summand of N bZ ∆ for some ZH-module N . Since induction is an

exact functor, M ÒGH is a direct summand of pN b Z ∆q ÒGH . The statement follows

by the Frobenius Reciprocity pN b Z ∆q ÒGH� N ÒGH bZ ∆ (Exercise 2(a), 5, III

[Bro82]). �

Lemma 2.28. Suppose G is a group of finite F-cohomological dimension equal

to n. Then there is an F-projective resolution of Z of length n made of permutation

modules with F-stabilisers.

PROOF. Since F cdG � n, the general relative Schanuel’s Lemma implies

that the kernel Kn of the standard F-projective resolution is F-projective and so

Zp∆nq�Kn splits, i.e. Kn ` P � Zp∆nq. Let Z ∆̂ be a module isomorphic to a
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direct sum of countably many copies of Zp∆nq. Then Kn ` Z ∆̂ � Z ∆̂ and we

have the required resolution:

Z ∆̂ � Zp∆n�1q ` Z ∆̂ Ñ � � � Ñ Z ∆ � Z . �

Note that in the proof above the relative Eilenberg swindle produces a permutation

module; this does not hold for general F-projective modules. For further discussion

consult Section 4, [Nuc00].

Corollary 2.29. For any group G, GcdG ¤ F cdG.

PROOF. Every permutation ZG-module with F-stabilisers is a Gorenstein pro-

jective ZG-module by Lemma 2.21 [ABS09]. The result now follows from Lemma

2.28. �

Martinez-Pérez and Nucinkis prove using Mackey functors that for every virtually

torsion-free group G the equality vcdG � F cdG holds [MPN06]. We give a proof

of a weaker result, sufficient for our purpose, using an elementary method.

Proposition 2.30. Let G be torsion-free. Then G has finite F-cohomological di-

mension equal to n if and only if G has finite cohomological dimension equal

to n.

PROOF. If cdG � n, then by Proposition 2.6 VIII in [Bro82] there is a ZG-

free resolution F� of Z of length n. Since G is a torsion-free group, any ZG-free

module is F-projective and any acyclic Z-split ZG-complex is F-split. This shows

that F� is an F-projective resolution of Z of length n.

Now we consider the standard ZG-free resolution of Z:

� � � Ñ Fn�1 Ñ Fn�2 Ñ � � � Ñ F0 � Z,

where Fi � ZpGi�1q. By the above this is an F-split sequence. By the relative

general Schanuel’s lemma applied to Kn �Fn�1 Ñ Fn�2 Ñ � � � Ñ F0 � Z it

follows that Kn is F-projective. In particular Kn is a direct summand of Fn and so

it is ZG-projective. �

Lemma 2.31 (Dimension shifting). Let Nm �Nm�1 Ñ � � � Ñ N0 �L be an

F-split exact sequence of ZG-modules such that F pdNi ¤ n for all 0 ¤ i ¤ m.

Then F pdL ¤ m� n.
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PROOF. We argue by induction on m. If m � 0 then N0 � L and F pdL ¤ n.

Let k ¥ 1 and assume that the statement holds for m ¤ k � 1. Consider the

F-split short exact sequence Nk
ι

� Nk�1 � im ι. By the induction hypothesis,

F pdpim ιq ¤ n � 1. We have an F-split resolution of L, im ι�Nk�2 Ñ � � � Ñ

N0 �L of length k � 1 made of modules of F-projective dimension at most n+1

and by the induction hypothesis we obtain F pdL ¤ pk�1q�pn�1q � k�n. �

Proposition 2.32. Let N �G
π
� Q be a group extension with F cdQ ¤ m.

Moreover, assume that any finite extensionH ofN has F cdH ¤ n. Then F cdG ¤

n�m.

PROOF. For any finite extension H of N , let

Pn �Pn�1 Ñ � � � Ñ P0 � Z

be a F-projective resolution of Z over ZH . By Lemma 2.27 and Lemma 2.26, the

resolution

Pn Ò
G
H �Pn�1 Ò

G
HÑ � � � Ñ P0 Ò

G
H � Z ÒGH

is an F-projective resolution of Z ÒGH over ZG.

Now, Lemma 2.28 implies that there is an F-projective resolution of Z over ZQ of

the form

Z ∆ � K� Z ∆m�1 Ñ � � � Ñ Z ∆0 � Z.

By Lemma 2.25 the sequence above is F-split when regarded as a ZG-sequence.

Every permutation module Z ∆i and Z ∆ when regarded as a ZG-module is iso-

morphic to some `jPJZ ÒGHj where |Hj : N |   8. To see this, consider the case

of a homogeneous Q-set Ω � F zG, and regard Ω as a G-set via π. Then Ω is

isomorphic to π�1pF qzG. If |F |   8 then F � K{N where rN : Ks   8 and

K � π�1pF q. By the above F pdpZ ÒGHj q   n and so the assertion follows from

Lemma 2.31. �

Corollary 2.33. If G � H � K, where F cdH ¤ n and F cdK ¤ m, then

F cdG ¤ n�m.

PROOF. By Proposition 2.32 we can assume |K|   8 and we regard G as an

extension of K by H . Any finite extension of K by a finite subgroup of H is finite

and so it has F-cohomological dimension equal to 0. The result now follows by

Proposition 2.32. �

45



Proposition 2.32 is the relative analogue of Corollary 5.2 in [MP02] but in the

context of F-cohomology we are able to strengthen the result, as we shall see in

Theorem 2.35.

Since for virtually torsion-free groups the notion of F-cohomological dimension

coincides with the notion of virtual cohomological dimension it is conceivable that

taking finite extensions of groups of finite F-cohomological dimension does not

raise the dimension. There are examples of non-virtually torsion-free groups that

are extensions of two virtually torsion-free groups of finite virtual cohomological

dimension [Sch78], but nonetheless these admit finite-dimensional classifying

spaces for proper actions [BLN01].

In order to reduce the extension problem to extensions by groups of prime order we

need the following observation.

Lemma 2.34. Let P be the class of p-groups. When considering the standard

F-projective resolution P� �Z we can replace the G-set ∆ by ∆P, where ∆P ��
P¤G,PPPXFG{P .

PROOF. The result is an immediate consequence of i) and ii) of Proposition

2.14 [LN10]. �

Theorem 2.35. Let N �G�Q be a group extension with F cdN ¤ n. Moreover,

assume that for any subgroup H of G with F cdH ¤ n and any extension L of H

by a group of prime order has F cdL ¤ n. Then F cdG ¤ F cdH � F cdQ.

PROOF. Arguing as in Proposition 2.32 the problem can be reduced to exten-

sions by groups of prime power order using Lemma 2.34. Now, if N �G�P is

such an extension then the quotient group P is nilpotent of prime power order. For

any pn{|P | there exists by the correspondence theorem a normal subgroup S of G,

N ¤ S ¤ G such that S{N has order pn and the result follows by induction. �

Note that if N �G�Q is a group extension such that gdFN � n and |Q| �

k then gdFG ¤ n.k [Mis01]. It is unknown whether the finiteness of the F-

cohomological dimension is preserved under taking (finite) extensions. However,

this is the case for countable elementary amenable groups.

Proposition 2.36. Let N �G�Q be a group extension such that G is countable

elementary amenable, F cdN ¤ n and F cdQ ¤ m. Then F cdG ¤ n�m� 1.
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PROOF. The rational cohomological dimension of a group G cdQ is defined as

the QG-projective dimension of the trivial QG-module Q. If the trivial ZG-module

Z admits a resolution of length n made of permutation modules with F-stabilisers

then tensoring it with Q over Z we obtain that cdQG ¤ n. In particular, for every

group G, cdQG ¤ F cdG. Corollary 3.3 [Nuc00] implies that for any group

G, F cdG ¤ cdFG. Let hG be the Hirsch length of an elementary amenable

group G. The inequality hG ¤ cdQG holds by Lemma 2 in [Hil91]. Let hdRG

denote the homological dimension of G over RG. If G is any countable group G

and R is a commutative ring of coefficients, then the following are well-known

[Bie81, Nuc04]:

hdRG ¤ cdRG ¤ hdRG� 1,

hdFG ¤ cdFG ¤ hdFG� 1.

The class of elementary amenable groups is subgroup-closed and quotient-closed.

By Theorem 1 in [Hil91] hG � hN � hQ, and an immediate application of

Theorem 1 in [FN05] gives the result. �

Furthermore, Serre’s construction included in [DD89, V, 5.2] shows that, given a

finite extension N �G�Q with F cdN � n and |Q| � k, there exists an exact

ZG-resolution of Z made of permutation modules with stabilisers in F of length

n.k. However, it is unclear if this resolution is F-split and this suggests a more

general question.

Question 2.37. Suppose G is a group that admits a resolution of finite length of the

trivial ZG-module Z made of permutation modules with stabilisers in F. Does G

have finite F-cohomological dimension?

Note that Serre’s construction can be made in topology; ifN acts on a n-dimensional

contractible cell-complex with F-stabilisers and Q has order k then G acts on a

pn.kq-dimensional contractible cell-complex with F-stabilisers.

Remark 2.38. Arguing as in Corollary 2.29, every group admitting a resolution as

in the question above has finite Gorenstein cohomological dimension. It is unknown

if the converse holds.

Question 2.39. Can the theory of F-injective modules started in Chapter 1 be used

for proving a relative version of the Grothendieck spectral sequence? Could this

47



then be used to show a relative version of the Lyndon–Hochschild–Serre spectral

sequence that would solve the extension problem?

It is natural to ask what happens if the ring of integers is replaced with the field of

rationals as the coefficients ring.

The next result answer this and in some sense tells us that all these generalised theo-

ries end up, once evaluated in Q, with the classic notion of rational cohomological

dimension.

Proposition 2.40. For any group G we have F cdQG � cdQG.

PROOF. Arguing as in Lemma 2.28 we have that if F cdQG � n then G admits

a resolution of Q of length n made of permutation modules with F-stabilisers over

QG. Every permutation module with F-stabilisers over QG is QG-projective and

so cdQG ¤ n. On the other hand, suppose that cdQG � n. If F is a F-subgroup

of G then every module over QF is projective. From this it follows that any

QG-projective resolution of Q is F-split and so F cdQG ¤ n. �

Note that by Proposition 2.40 and [Tal11, 3.5] it follows that for any LH F-group G,

F cdQG � GcdQG � cdQG.

An F-resolution of a ZG-module M is a resolution made of permutation modules

with F-stabilisers. For a group G, cdMF
G denotes the Mackey cohomological

dimension of G [MPN06]. We close the chapter with two diagrams.

The first illustrates the implications that hold in full generality.

G P H1 F ks

��

gdFG   8
KS

��
F cdG   8

��

cdFG   8

��
D an F-resolution of Z of finite length

(0��

cdMF
G   8

hp

GcdG   8 cdQG   8
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In some sense all the implications in the diagram above are conjectured to be

reversible as shown in the diagram below.

G P H1 F
Kropholler�Mislin +3 gdFG   8

F cdG   8

Nucinkis

.6

GcdG   8

Bahlekeh�Dembegioti�Talelli

:B

cdQG   8

KS
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CHAPTER 3

pFq-cohomological conditions of finite type

A cohomological finiteness condition is a group-theoretical property that is satisfied

by any group admitting a finite KpG, 1q. Since every non-trivial F-group does not

admit a finite-dimensional KpG, 1q, being torsion-free is a cohomological finiteness

condition, but not a finiteness condition in the usual group-theoretical sense. On the

other hand, the property of belonging to LF is a classical but not a cohomological

finiteness condition. However there are finiteness conditions that agree, for example

being finitely-generated, being finitely presented, etc.

A generalisation of these properties brings us to the concepts of cohomological

conditions of finite type. More precisely, a group Γ is of type FPn if the trivial

Z Γ-module Z admits a resolution of finitely-generated projective Z Γ-modules up

to dimension n. If Γ is of type FPn for every n ¥ 0, then Γ is said to be of type

FP8. A group is of type Fn if it admits a KpG, 1q with finite n-skeleton; and

Γ is of type F8 if it is of type Fn for every n ¥ 0. For a group, being finitely-

generated is equivalent to being of type FP1. A group is finitely presented if and

only if it is of type F2. For n ¥ 2, a group is of type Fn if and only if it is

finitely presented and of type FPn. Bestvina and Brady showed the existence of

non-finitely presented groups of type FP2 [BB97]. Relative versions of these are

F-cohomological conditions of finite type. Informally, by this term we refer to the

requirement of having an F-split resolution or a partial resolution of Z made of

finitely-generated F-projective ZG-modules.

In the first section we introduce the notion of a ∆-flat module. We consider the

F-homological dimension and F-homological finiteness conditions for groups. After

proving some of the usual properties we show the following:

Theorem. Let M be a G-module of type F FP8. Then for any exact limit of

kG-modules limλPΛNλ the natural map

F Torkplim
λPΛ

Nλ,Mq Ñ lim
λPΛ

F TorkpNλ,Mq
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is an isomorphism for any k.

The homological finiteness length of a group G, denoted by φpGq, is the supremum

of them such thatG is of type FPm. In the second section we consider non-uniform

lattices on locally finite CATp0q polyhedral complexes. Our main result is a bound

on their homological finiteness lengths.

Theorem. If Γ is a non-uniform lattice on a locally finite CATp0q polyhedral

complex of dimension n, then φpΓq   n.

1. F-homology and groups of type FFPn

Let G be a group and k a commutative ring of coefficients. Then G is of type FPn
over k if k admits a resolution of finitely-generated kG-projectives up to dimension

n. A group G is of type FP8 over k if G is of type FPn for every n. A group G is

of type FP if k admits a finite resolution of finitely-generated kG-projectives. This

is a particularly strong cohomological finiteness condition. Since every group of

type FP has finite cohomological dimension, we have that F-groups are not of type

FP, however they are of type FP8.

Clearly every group is of type FP0 and by writing explicitly the augmentation

ideal it easy to see that a group is finitely-generated if and only if it is of type FP1

[Bro82]. A finitely presented group is of type FP2, and the question of wheter

this implication was reversible was open until Brady and Bestivina built infinitely

presented groups of type FP2 in their famous paper [BB97]. Briefly, to a finite flag

complex L it is possible to associate a right angled Artin group GL. If L � H, then

there is a surjection to Z (given by mapping the generators to 1) and a short exact

sequence HL �GL � Z. They were able to determine the cohomology type of the

kernel HL by the homotopy type of the complex L.

One of the advantages of working with the type FP8 instead with the stronger

type FP is that it allows torsion in the group. Examples of groups of type FP8

include F-groups (not of type FP), finitely-generated free groups (by Stallings-

Swan Theorem they are of type FP), polycyclic groups and every finitely-generated

one-relator group. The next theorem is used often as a crucial tool for proving the

cohomological type of a group.

Theorem 3.1 ([Bie81], 1.3). For a group G the following are equivalent:
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 G is of type FPn;


 for any exact limit the natural map HipG, limM�q Ñ lim HipG,M�q is

an isomorphism for i   n and an epimorphism for i � n;


 HipG;�q is continuous for i   n and for any exact colimit, the natural

map colim HnpG;M�q Ñ HnpG; colimM�q is a monomorphism;


 HipG;�q is continuous at zero for i ¤ n.

Furthermore, it is enough to check the second condition on direct products.

A group G is of type F FPn if Z admits a resolution of finitely-generated F-

projectives up to dimension n. If G is of type F FPn for every n ¥ 0, then it

said to be of type F FP8 and G is of type F FP if Z admits a finite-dimensional

F-split resolution made of finitely-generated F-projective modules.

This section is partially motivated by the following question.

Question 3.2. Is there an analogous criterion for F-cohomology?

The answer is in general no. Since H0pG;�q � F H0pG;�q � HomZGpZ,�q, it

follows that F H0pG;�q is continuous at zero for every group G. But any group

with infinitely many conjugacy classes of PF-subgroups is not of type F FP0 by

[LN10]. Nonetheless, a stronger question posed in [Nuc99] remains open.

Question 3.3. Is a group G of type F FP8 if and only if F HnpG;�q is continuous

for all n ¥ 0?

Nucinkis proved that is G is a group of type F FP8 then F HnpG;�q is continuous

for all n ¥ 0 [Nuc99], and we will prove an similar result for the F-homology

groups.

There exist two more important results in the topic that are well worth mentioning

here.

Proposition 3.4. [LN10] A group G is of type F FP0 if and only if it has finitely

many conjugacy classes of PF-subgroups.

Proposition 3.5. [Nuc99, 6.3, 7.2] Every finitely-generated F-projective ZG-

module is of type FP8. Moreover, every ZG-module of type F FP8 is of type

FP8.
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Any finitely-generated F-projective module P is of the form P �
Àn

λ�1Qλ Ò
G
Gλ

where the Qλ are finitely-generated ZGλ-modules and the Gλ are F-subgroups of

G. In particular Qλ is a finitely-generated abelian group for every λ.

Definition 3.6. A kG-module M is ∆-flat if the functor � bkG M is exact on

∆-split sequences. That is, whenever

A
ι

� B
π
� C

is an exact ∆-split sequence of G-modules, then

AbkGM
ιb1M
� B bkGM

πb1M
� C bkGM

is an exact sequence of abelian groups.

Since �bkGM is a right exact functor, a G-module M is ∆-flat if for any ∆-split

monomorphism ι : A�B the morphism ι b 1M : A bkG M �B bkG M is a

monomorphism.

Following from [ML95, 9, XII] we define for any G-module M the relative homo-

logical functors with coefficients in A as

∆ Tor�pM,Aq :� H�pPbZG Aq

where P is a ∆-projective resolution ofM . Note that ∆ Tor0pM,Aq � Tor0pM,Aq

�M bZG A, this can be either shown directly or it follows from [ML95, Theorem

9.1 XII]. We write ∆ H�pG;Aq for ∆ Tor�pZ, Aq and when A � Z, we will simply

write ∆ H�pGq for ∆ Tor�pZ,Zq :� H�pPbZG Zq � H�pPGq.

The next result is an analogue to [Ben98, Corollary 3.6.7] and it is worth mentioning

that [Hoc56] has the same spirit.

Lemma 3.7. Let P be a ∆-projective and M any G-module. Then P b M is

∆-projective.

PROOF. By tensoring the ZG-split epimorphism φ : Z ∆bP �P with M we

obtain the ZG-split epimorphism pZ ∆bP q bM �P bM . Now the result is

obvious by the associativity of the tensor product. �

Corollary 3.8. If F cdG � n, then every ZG-module M has F-projective dimen-

sion at most n.
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Lemma 3.9. Let ∆0 be a set of orbit representatives for ∆, δ P ∆0 and N be any

ZG-module. Then N ÒGGδ is ∆-flat.

PROOF. Let A � B � C be a ∆-split short exact sequence. For anyG-module

M we have by the Frobenius reciprocity and the associativity of the tensor product

the isomorphismMbZGN ÒGGδ�MbZGZGbZGδN �MbZGδN . SinceAb

Z ∆ �BbZ ∆ �CbZ ∆ splits, by Lemma 1.17 we have thatAbZGδzG�Bb

ZGδzG�C b ZGδzG splits. Now tensoring this split short exact sequence with

N over ZG gives the following exact sequence

AbZGδ ZGbZG N �B bZGδ ZGbZG N �C bZGδ ZGbZG N.

That is, AbZGδ N �B bZGδ N �C bZGδ N . Hence, N ÒGGδ is ∆-flat. �

Lemma 3.10. A direct sum
À

iPI Fi of G-modules is ∆-flat if and only if each Fi

is ∆-flat. In particular the module Z ∆ is ∆-flat.

PROOF. This can be proved as [Rot09, 3.46, ii]. �

Corollary 3.11. For anyG-moduleN , the ∆-free module Z ∆bN is ∆-flat. More-

over every ∆-projective module is ∆-flat.

PROOF. It follows immediately by the associativity of the tensor product and

by Lemma 3.10. �

Theorem 3.12. Let A and B be two ZG-modules and let P�A and Q�B be

two ∆-projective resolutions of A and B respectively. Then

H�pPbZG Bq � H�pAbZG Qq.

PROOF. The proof is analogous to [Rot09, Theorem 6.32] and it relies only on

the ∆-flatness of the ∆-projective modules. �

Lemma 3.13. If M is the filtered colimit (for example the direct limit) of ∆-flat

modules, then M is ∆-flat.

PROOF. Let M � colimMλ. Since colimits commute with tensor products

over ZG [Bie81, pg. 8] we have colimMλ bZG � � colimpMλ bZG �q. Now

the result follows from the ∆-flatness of the Mλ and the fact that filtered colimits

are exact in ModZG [Kro, 7.4]. �
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Remark 3.14. Let A � B � C be an F-split short exact sequence with B and C

F-projective modules. Then A is obviously F-projective. If A and B are F-flats by

the long exact sequence in F-homology we have that C is also F-flat.

We define F hdG as the length of the shortest F-flat resolution of Z over ZG. Of

course by Corollary 3.11 we have F hdG ¤ F cdG for every group G.

Theorem 3.15. Let M be a G-module of type F FP8. Then for any exact limit of

kG-modules limλPΛNλ the natural map

F Torkplim
λPΛ

Nλ,Mq Ñ lim
λPΛ

F TorkpNλ,Mq

is an isomorphism for any k.

PROOF. Let P�M be a F-projective resolution of M of finite type and let

Ki � kerpPi Ñ Pi�1q and K0 be M . Clearly Ki is finitely-generated for every i

and for any exact limit we have the following projection:

πi : limNλ bZG Ki � limpNλ bZG Kiq.

By Proposition 3.5 Pi is of type FP8 for every i (it would be enough to have finite

presentability) and there is a natural isomorphism [Bie81, Theorem 1.3]

limNλ bZG Pi � limpNλ bZG Piq.

Now we will apply the 5-Lemma to the following commutative diagram

limNλ bZG Ki�1

πi�1
����

// limNλ bZG Pi // // limNλ bZG Ki

πi
����

limpNλ bZG Ki�1q // limpNλ bZG Piq // // limpNλ bZG Kiq

and conclude that πi is an isomorphism. By an application of [Bie81, Proposition

1.4] to the short exact sequence Ki�1 �Pi�1 �Ki, we have that Ki is finitely

presented. Now by dimension shifting for every i ¥ 2 we have F Torip�,Mq �

F Tor1p�,Ki�2q. This last isomorphism gives for every i ¥ 1 the following

commutative diagram:

F ToriplimNλ,Mq

φi
��

// // limNλ bZG Ki�1
// limNλ bZG Pi�1

lim F ToripNλ,Mq // // limpNλ bZG Ki�1q // limpNλ bZG Pi�1q.
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By the 5-Lemma it follows that the natural morphism φi is an isomorphism for

every i ¥ 0, and this concludes the proof. �

Lemma 3.16 (Shapiro’s Lemma for F-homology).

F H�pH;Nq � F H�pG; IndGH Nq.

PROOF. This can be proved as Lemma 1.11. �

Lemma 3.17. Let T be a G-tree with edge set E �
�
iPI LizG and vertex set

V �
�
jPJ NjzG. Then there is a Mayer-Vietoris sequence:

� � � Ñ F HnpG,�q Ñ
à
jPJ

F HnpLj ,�q

Ñ
à
iPI

F HnpNi,�q Ñ F Hn�1pG,�q Ñ � � �

PROOF. From Bass-Serre theory there exists a short exact F-split sequence ε

associate with T of the form `iPI ZLizG�`jPJ ZNizG� Z. The result follows

from the long exact sequence in F-homology applied to ε. �

We state explicitly two immediate corollaries.

Corollary 3.18.


 LetG � H �LK. Then there is a Mayer-Vietoris sequence in F-homology;

� � � Ñ F HkpL;�q Ñ F HkpH;�q ` F HkpK;�q

Ñ F Hk�1pG;�q Ñ F Hk�1pL;�q Ñ � � �


 Let G � H�A, t. Then there is a Mayer-Vietoris sequence in F-homology;

� � � Ñ F HkpA;�q Ñ F HkpH;�q

Ñ F HkpG;�q Ñ F Hk�1pA;�q Ñ � � �

Corollary 3.19. The class of groups of finite F hd is closed under taking subgroups,

HNN-extensions and free products with amalgamation.

Proposition 3.20 ([Bie81], 1.4). Let A � B � C be a short exact sequence of

ZG-modules. Then the following hold.

(1) If A is of type FPn�1 and B is of type FPn, then C is of type FPn.

(2) If B is of type FPn�1 and C is of type FPn, then A is of type FPn�1.

(3) If A and C are of type FPn then B is also of type FPn.
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Remark 3.21. AG-module is of type F FP8 if and only if it admits an F-projective

resolution with finitely-generated F-syzygies (i.e. � � � Ñ P1 Ñ P0 �M such that

kerpPi Ñ Pi�1q is finitely-generated for every i ¥ 1). One implication is trivial,

and the other implication follows from part (3) of Proposition 3.20. Please note

that for a module of type F FPn we require finitely-generated F-syzygies up to

dimension n� 1; possibly it is not enough to have this condition up to dimension n.

We mention an immediate consequence of Remark 3.21 and Proposition 3.5.

Corollary 3.22. Let M be a ZG-module of type F FP8. Then every F-syzygy in

an F-projective resolution of M of finite type is of type FP8.

PROOF. Apply part (2) of Proposition 3.20.to an F-projective resolution of

finite type of M . �

Conjecture 2. [LN10] A group G is of type F FP8 if and only if it is of type FP8

and has finitely many conjugacy classes of PF-subgroups.

The sufficient condition follows from [Nuc99, Proposition 7.2] and [LN10]. By

Proposition 3.4, G is of type F FP0, i.e. there is P0 � Z such that P0 is a finitely-

generated F-projective (P0 can be chosen as
À

iPI ZPizG where I is a set of

representatives for the conjugacy classes of PF-subgroups). Now if Z is of type

FP8 and P0 is of type FP8, by Proposition 3.5 it follows that the kernel K0 of

the surjection P0 � Z is of type FP8 by part (2) of Proposition 3.20. In particular

K0 is finitely-generated but we cannot say that Z ∆bK0 is a finitely-generated

F-projective G-module. This banal observation suggests the next question.

Question 3.23. When is a ZG-module of type FP8 also of type F FP0?

We know almost exclusively trivial examples of modules of type F FP0; these

include finitely-generated F-projective modules, finitely-generated ZG-projective

modules (even if the group is not of type F FP0) and Z-free modules that are

finitely-generated as abelian groups.

Remark 3.24. Let G be a group with finitely many conjugacy classes of PF-

subgroups. By looking at the analogous condition in Bredon cohomology we might

be tempted to formulate the following question. Is a ZG-module M of type F FPn
if and only if M ÓP Ò

G is of type FPn for every PF-subgroup P ? By [Dyd82,
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Proposition 2.1] it follows that M ÓP Ò
G is of type FP0 (Proposition 3.4 implies it

is of type FP8) if and only if M ÓP is finitely-generated over ZP and this is the

case if and only if M is finitely-generated as an abelian group. Of course I∆ is in

general not finitely-generated as an abelian group and this approach is inconclusive.

Lemma 3.25. Let M be a finitely-generated ZG-module such that M ÓP is ZP -

projective for every PF-subgroup P of G. Then M is of type F FP0. In particular,

if BpG,Zq is finitely-generated then it is of type F FP0.

PROOF. We can take any finitely-generated ZG-projective module mapping

onto M . Since M ÓF is ZF -projective for every finite subgroup F of G, the

surjection will be F-split. �

Kropholler’s class of hierarchically decomposable groups HF. For a class

of groups X the closure operation H introduced in [Kro93] is defined as follows.

A group G belongs to H1X if there exists a finite-dimensional contractible G-CW-

complex X with cell stabilisers in X. The hierarchy of classes HαX for each ordinal

α is defined by transfinite recursion:


 H0X � X;


 if α is a successor ordinal then HαX � H1pHα�1Xq;


 if α is a limit ordinal then HαX �
�
β α HβX.

The operator H is defined by G belongs to HX if and only if G belongs to HαX for

some ordinal α. The class H F is often called the class of hierarchically decom-

posable groups. It is important to recall that classes of groups with a hierarchical

decomposition defined in terms of suitable actions on finite-dimensional complexes

appeared previously in the literature, see for examples [AS82, Ike84].

We are primarily interested in the case X � F, but it is worth mentioning that

recently Leary and Nucinkis considered the case X � PF.

Theorem 3.26. [LN10] Let PF be the class of groups of prime power order. The

following relations hold:


 F � H1 PF,


 H1 PF � H1 F,


 H PF � H F.
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So if we are interested in studying the class H F we can consider the class PF but

if we want to study the class H1 F we cannot restrict to the family PF since the

H1 F-group SLp8,Fpq is not contained in H1 PF [LN10]. Examples of groups that

lie in H1F are given by groups that admit finite-dimensional models for EF. By

applying the closure operation L to H F we obtain the class LH F. This last class is

very large; it contains all elementary amenable groups and all linear groups. There

exist groups not contained in LH F, for example Thompson’s group F and the first

Grigorchuk group G. It is an old, deep theorem of Kropholler that any torsion-free

H F-group of type FP8 has finite cohomological dimension. The group F is of

type FP8 by [BG84], therefore F R H F. By Theorem 4.12, G R H F and since

both groups are finitely-generated they are not contained in LH F. Until recently it

was unknown whether H3 F was distinct from H F. In 2010 a major step towards

understanding the hierarchy of H F was achieved.

Theorem 3.27. [JKL10]


 Hα F   Hα�1 F for every α ¤ ω1,


 LHω1 F � LH F,


 LHα F   LH F for every α   ω1.

A reminder.


 F FP8 ñ FP8 by Proposition 3.5.


 Torsion-free and FP8 ñ F FP8. A ZG-projective resolution of finite

type of Z is an F-projective resolution of Z, examples of these are limit

groups.


 F FP ô F FP8�F cd   8. It is an immediate consequence of the

Generalised Schanuel’s Lemma.


 F FP ÷ FP. Any non-trivial F-group has infinite cohomological dimen-

sion.


 F FP ÷ FP0. Examples in [LN03].


 FP ñ F FP. If a group G is of type FP then it is torsion-free. This

implies that F cdG � cdG   8 and since G is of type FP8 is of type

F FP8 as well.
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 F FP8 ÷ F FP. Thompson’s group F is a torsion-free FP8 group of

infinite cohomological dimension and so is a group of type F FP8 with

infinite F cd.


 If G P LHF and it is of type FP8 then G admits a finite-dimensional

model for EFG [KM98]. In particular, every LHF-group of type F FP8

is of type F FP.


 There exists a group G P H3F with finitely many conjugacy classes of

PF-subgroups and a ZG-module of type FP8 but not F-projective by

[KLN]. Let G be an LHF-group and M be a ZG-module of type FP8.

Does M have finite F-projective dimension?


 FP8 ÷ F FP8. For this, Thompson’s group V is of type F8 [Bro87]

and contains every F-group. Now by Proposition 3.4, V is not of type

F FP0.


 H ¤ G and G of type F FP8 ÷H of type F FP8. The free group on 2

generators contains the free group on countably many generators.

Since F ¤ T ¤ V and having finite F cd is a subgroup closed property we have

F cd V � 8. This leads to the following:

Question 3.28. Does there exist a group G such that F cdG   8 and of type FP8

but not of type F FP8? In [LN03] the authors give examples of groups of type

FP8 admitting a finite-dimensional classifying space for proper actions but not

of type FP0; nonetheless these groups have infinitely many conjugacy classes of

F-subgroups but have finitely many conjugacy classes of PF-groups and they are

of type F FP8. These are examples of groups of type F FP which are virtually

torsion-free but not torsion-free. Later we will show that the Houghton’s groups

give examples of groups of type FPn and with finite F cd but not of type F FP0 for

every n P N.

Let n be a non-negative integer; a group G satisfies condition bpnq if every ZG-

module M , which is ZF -projective for each F-subgroup F of G, has projective

dimension at most n. G satisfies condition Bpnq if, for each F-subgroup F of G,

the Weyl-group WF satisfies condition bpnq.

Theorem 3.29. [Lüc00] Let G be a group and let |ΛpGq| be the G-simplicial

complex determined by the poset of non-trivial F-subgroups ΛpGq. Suppose
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dim |ΛpGq|   8 and suppose that G satisfies condition Bpnq for some non-

negative integer n. ThenG admits a model forEFG of dimension at mostmaxt3, nu

�λpn� 1q.

The next result, due to Kropholler, shows how cohomological conditions of finite

type can give strong information about the group structure. This result is the key

ingredient in the proof of the next Proposition and in Theorem 4.12.

Theorem 3.30 (Proposition, [Kro93]). Every group of finite rational cohomologi-

cal dimension and of type FP8 has a bound on the orders of its F-subgroups.

Furthermore, Kropholler in [Kro93] shows that every HF-group of type FP8 has a

bound on the orders of its F-subgroups.

Proposition 3.31. Let G be a group with finite F-cohomological dimension and of

type FP8. Then G admits a finite-dimensional model for EFG.

PROOF. Let F cdG � n. Then cdQG ¤ n. Since G is of type FP8 we can

apply Proposition 3.30 to conclude that G has a bound on the orders of F-subgroups.

In particular dim |ΛpGq|   8. By Theorem 4.4 in [Nuc00] G satisfies Bpnq. Now

the result follows from Theorem 3.29. The final step can be achieved also with

[Nuc00, Corollary 4.5]. �

Corollary 3.32. Every group of type F FP has a finite-dimensional model for the

classifying space for proper actions.

PROOF. By the above remark and Theorem 7.2 in [Nuc99] G is of type FP8

and we can apply Proposition 3.31. �

Question 3.33. Is every group of type VF (VFP) of type F FP8 and so of type

F FP?

By [Bro82, IX, 13.2] every group of type VF has only finitely many conjugacy

classes of subgroups of prime power order (and so is of type F FP0). By a result

of Serre [Ser71] any group G of type VF has a finite-dimensional EFG (and so

F cdG   8). Moreover, groups of type VF are finitely presented and of type FP8.

There exist groups that act properly and cocompactly by isometries on CATp0q-

spaces that are not virtually torsion-free [BH99, Example 7.10, III.Γ]; these have a

finite model for EF and so groups of type F FP are not necessarily of type VF.
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In Question 3.28 we recalled that there exist groups of type F FP with no model

for EFG having finite 0-skeleton [LN03]. In other words the strongest relative

finiteness condition cannot guarantee any condition of finite type for EFG.

Lemma 3.34. Every module M of type F FPn is of type FPn.

PROOF. Choose an F-projective resolution with the first n-terms finitely-generated

� � � Ñ Pn�1 Ñ Pn Ñ � � � Ñ P0 �M . By Proposition 3.5, Pi is of type FP8 for

i ¤ n. Let Ki be the kernel of Pi Ñ Pi�1. Since Kn�1 is a quotient of Pn, it is of

type FP0. Apply part (1) of Proposition 3.20 to conclude that Kn�2 is of type FP1.

Iterate this process to obtain M of type FPn. �

Remark 3.35. LetG be a group of type F FPn,M a finitely-generated ZG-module.

Then F HkpG;Mq and F HkpG;Mq are finitely-generated ZG-modules for 0 ¤

k ¤ n. If P� Z is an F-projective resolution of Z of finite type, then M bZG P

and HomZGpP,Mq are finitely-generated ZG-modules and the claim is obvious.

Proposition 3.36. Let G be a group of type F FPn (F FP). If H is a subgroup of

G of finite index then it is of type F FPn (F FP).

PROOF. Let P be an F-resolution of Z over ZG with Pi finitely-generated

for i ¤ n. Restriction to H gives an F-resolution of Z over ZH (by Lemma

1.17 and the Mackey decomposition [Bro82, III, 5.6]) that is of finite type since

rG : Hs   8. The second part follows from the fact that restriction to H is an

exact functor. �

Houghton’s groups. The length lpHq of an F-subgroup H of a group G is the

supremum over all n for which there is a chain H0   H1   � � �   Hn � H . It

is easy to construct a group with no bound on the length of its F-subgroups that

has finite rational cohomological dimension. By [Ser03] every countable infinite

LF-group has rational cohomological dimension equal to one. Taking finitely many

HNN-extensions, free products with amalgamation or extensions by groups of

finite cohomological dimension we obtain examples of groups with finite rational

cohomological dimension that have no bound on the order of their F-subgroups.

Given a group it is often very difficult to establish its rational cohomological

dimension. In this section we give examples of groups for which it is possible

to determine the exact rational cohomological dimension. This can be achieved
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because they satisfy some strong cohomological finiteness conditions. Houghton’s

groups are examples of groups with no bound on the lengths of their F-subgroups.

Here we determine their Bredon cohomological dimension.

Let n be a positive integer and S � N� t1, . . . , nu. Houghton’s group Hn is the

group of permutations σ of S satisfying the following condition: there is an n-tuple

pm1, . . . ,mnq P Zn such that for each i P t1, . . . , nu, px, iqσ � px�mi, iq for all

sufficiently large x P N [Bro87]. Brown proves the following:

Theorem 3.37. [Bro87, 5.1] The group Hn is of type FPn�1 but not of type FPn.

If n is at least 2 then Hn is finitely presented.

Proposition 3.38. [LN01] Suppose that G is a group with cdQG � n   8 and G

is of type FPn over Z. Then there is a bound on the orders of the F-subgroups of G.

Proposition 3.39. For every n ¥ 1, cdQ Hn � F cd Hn � cdF Hn � n.

PROOF. The group Hn is isomorphic to an extension of the infinite finitary

symmetric group (on a countable set) Θ by Zn�1. The group Θ is countable

(Exercise 8.1.3 in [DM96]). Moreover it lies in LF and so F cd Θ � 1. The

spectral sequence of Proposition 2.4 in [Nuc00] gives the bound F cd Hn ¤ n.

Analogously by [Lüc05], cdF Hn ¤ n. Every F-group embeds in Hn and by

Theorem 3.37, Hn is of type FPn�1 but not of type FPn. We apply Proposition 5.5

to conclude that F cd Hn and cdF Hn cannot be strictly smaller than n, and so we

have cdQ Hn � F cd Hn � cdF Hn � n. �

Examples 3.40. [Bie81, 2.14] Write Hn �
�n

i�1xhi, kiy, the n-direct power of

free groups of rank 2. Let F8 � xxiyiPZ be the free group of infinite countable rank

and Qd be the additive subgroup of all rational numbers with denominator a power

of the integer d greater than 1. Let Hn act on F8 as xhij � xkij � xj�1 for all i, j.

Let Hn act on Qd as qhi � qki � dq for all i, q. Form the semidirect products:

An � F8 �Hn and Bn � Qd �Hn. The groups An and Bn are of type FPn but

not of type FPn�1. Since An and Bn are torsion-free they are of type F FPn but

not of type F FPn�1.

2. Finiteness properties and CAT(0) polyhedral complexes

The notion of a lattice in a locally compact group arises naturally in modern

mathematics and has its roots in the study of Lie groups. A semisimple algebraic

63



group over a local field can be realised as a group of automorphisms of its Bruhat–

Tits building, and their lattices, called arithmetic lattices have been studied since

the early 1970’s. Other examples are given by tree lattices, which were introduced

in the beginning of the 90’s by Bass and Lubotzky. Tree lattices are lattices in the

isometry group of a locally finite tree [BL01]. More recently, lattices in isometry

groups of higher dimensional locally finite cell complexes have appeared in the

literature [Tho07, FT11].

The homological finiteness length φpGq of a group G is a generalisation of the

concepts of finite generability and finite presentability. More precisely:

The homological finiteness length of Γ is defined as

φpΓq � suptm|Γ is of type FPm}.

It is worth mentioning that Abels and Tiemeyer generalise the above finiteness

conditions for discrete groups to compactness properties of locally compact groups

[AT97].

We begin by recalling the terminology and in doing so we follow closely [Tho07]

and [FT11]. Let Xn be Sn, Rn or Hn with Riemannian metrics of constant curva-

ture 1, 0 and �1 respectively. A finite-dimensional CW-complex X is a polyhedral

complex if it satisfies the following:


 each open cell of dimension n is isometric to the interior of a compact

convex polyhedron in Xn;


 for each cell σ of X , the restriction of the attaching map to each open

σ-face of codimension one is an isometry onto an open cell of X .

Let AutpXq be the full group of cellular isometries ofX . A subgroupH ¤ AutpXq

acts admissibly on X if the set-wise stabiliser of each cell coincides with its point-

wise stabiliser.

Remark 3.41. Every subgroup G ¤ AutpXq acts admissibly on the barycentric

subdivision of X . Furthermore, if G acts admissibly on a CATp0q polyhedral

complex, then the fixed-point set XG forms a subcomplex of X .

A subgroup Γ of a locally compact topological group G with left-invariant Haar

measure µ is a lattice if:


 Γ is discrete, and
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 µpΓzGq   8.

Moreover, AutpXq is locally compact whenever X is locally finite and so it makes

sense to talk about lattices on locally finite CATp0q polyhedral complexes. A lattice

Γ is said to be uniform if Γ zAutpXq is compact. Let G be a locally compact group

with left-invariant Haar measure µ. Let Γ be a discrete subgroup of G and ∆ be a

G-set with compact and open stabilisers. The ∆-covolume, denoted by VolpΓ zz∆q,

is defined to be
°
δPΓ z∆

1
|Γδ |

¤ 8.

Lemma 3.42. [BL01, Chapter 1] Let X be a locally finite CATp0q polyhedral

complex with vertex set V pXq. If Γ is a subgroup of G � AutpXq, then:


 Γ is discrete if and only if the stabiliser Γx is finite for each x P V pXq;


 µpΓ zGq   8 if and only if VolpΓ zzXq   8. Moreover, the Haar

measure µ can be normalised in such a way that for every discrete Γ ¤ G,

µpΓ zGq � VolpΓ zzX).

Definition 3.43. The cohomological dimension of Γ over a ring R is defined by

cdR Γ � inftn | R admits an RΓ -projective resolution of length nu

� suptn | Hn
RΓpΓ;Mq � 0, for someRΓ -module Mu.

Theorem 3.44 (Proposition 1, [LN01]). Let G be a group with cdQpGq � n   8

and suppose that G is of type FPn over Z. Then there is a bound on the orders of

the F-subgroups of G.

Theorem 3.45. If Γ is a non-uniform lattice on a locally finite CATp0q polyhedral

complex of dimension n, then φpΓq   n.

PROOF. Let Γ be a non-uniform lattice on a locally finite CATp0q polyhedral

complex X of dimension n. By Lemma 3.42, µpΓ zAutpXqq �
°
σPΓ zX

1
|Γσ̃ |

,

where σ � rσ̃s. Since Γ is non-uniform, the set Γ zX is infinite and so for any m

there is some σ P Γ zX such that 1
|Γσ̃ |

  1
m . Therefore, there is no bound on the

orders of the stabilisers (which are finite), and so there is no bound on the orders of

the finite subgroups of Γ.

In view of Theorem 3.44, it only remains to argue that the rational cohomological

dimension of Γ is at most n. Since every CATp0q space is contractible [BH99],

Γ acts on an n-dimensional contractible CW-complex with finite stabilisers. The
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augmented cellular chain complex of X is an exact sequence of the form:à
inPIn

ZrΓin zΓs�
à

in�1PIn�1

ZrΓin�1 zΓs Ñ � � � Ñ
à
i0PI0

ZrΓi0 zΓs� Z,

where Γij are finite subgroups of Γ for every 0 ¤ j ¤ n. Since Q is flat over Z and

Q b ZrHzΓs � QrHzΓs for any H ¤ Γ, tensoring this sequence with Q over Z
leads to the exact sequence:à

inPIn

QrΓin zΓs�
à

in�1PIn�1

QrΓin�1 zΓs Ñ � � � Ñ
à
i0PI0

QrΓi0 zΓs� Q.

Now,
À

ijPIj
QrΓij zΓs is a Q Γ-projective module for every 0 ¤ j ¤ n, and so

cdQ Γ ¤ n.

Hence, by Theorem 3.44, Γ is not of type FPn. �

Remark 3.46. Note that if an F-group acts on a locally finite CATp0q polyhedral

complex, then it is contained in the stabiliser of some cell. Now, let F be a

finite subgroup of a non-uniform lattice Γ acting admissibly on a locally finite

CATp0q polyhedral complex X . Since F acts admissibly on X , XF is contractible

[BH99, BLN01]. In particular, X is a model for E Γ.

There are not many results that hold for all non-uniform lattices on CATp0q polyhe-

dral complexes. As a first immediate application we obtain a classical result.

Corollary 3.47. If X is a tree, then every non-uniform lattice in AutpXq is not

finitely-generated. More generally, a non-uniform lattice on a product of n trees is

not of type FPn.

Corollary 3.48. Every non-uniform lattice on a locally finite 2-dimensional CATp0q

polyhedral complex is not finitely presented.

Before the last corollary, we need to recall some more standard nomenclature.

Let K be a global function field, and S be a finite non-empty set of pairwise

inequivalent valuations on K. Let OS ¤ K be the ring of S-integers. Denote

a reductive K-group by G. Given a valuation v of K, Kv is the completion of

K with respect to v. If L{K is a field extension, the L-rank of G, rankLG, is

the dimension of a maximal L-split torus of G. The K-group G is L-isotropic if

rankLG � 0. As in [BW07], to any K-group G, there is associated a non-negative

integer kpG, Sq �
°
vPS rankKv G. We are now ready to state and reprove the

Theorem of Bux and Wortman.
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Corollary 3.49 (Theorem 1.2, [BW07]). Let H be a connected non-commutative

absolutely almost simple K-isotropic K-group. Then φpHpOSqq ¤ kpH, Sq � 1.

PROOF. Let H be a connected non-commutative absolutely almost simple

K-isotropic K-group. Let H be
±
vPS HpKvq. There is a kpH, Sq-dimensional

Euclidean building X associated to H . The space X is a locally finite CATp0q

polyhedral complex. The arithmetic group HpOSq becomes a lattice of H via the

diagonal embedding. H is K-isotropic if and only if HpOSq is non-uniform by

[Har69]. An application of Theorem 3.45 completes the proof. �

Remark 3.50. Theorem 3.45 gives the upper bound on the homological finiteness

length of arithmetic groups over function fields; a historical overview can be found

in [BW07]. In a recent remarkable paper [BGW11] Bux, Gramlich and Witzel

showed that φpHpOSqq � kpH, Sq � 1. Calculating the homological finiteness

length of non-uniform lattices on CATp0q polyhedral complexes is an ambitious

open problem. We conclude by mentioning that Thomas and Wortman exhibit

examples of non-finitely-generated non-uniform lattices on regular right-angled

buildings [TW11]. This shows that the upper bound of Theorem 3.45 is not sharp

and in particular, that the Theorem of Bux, Gramlich and Witzel does not hold for

all non-uniform lattices on locally finite CATp0q polyhedral complexes.

Theorem 3.51. Let H be a connected non-commutative absolutely almost simpleK-

isotropic K-group. Then gdFpHpOSqq � KpHpOSqq � cdQ HpOSq � kpH, Sq.

PROOF. Let H be
±
vPS HpKvq. There is a kpH, Sq-dimensional Euclidean

buildingX associated toH . By Remark 3.46 we obtain the inequality gdFpHpOSqq

¤ kpH, Sq. By [BGW11] φpHpOSqq � kpH, Sq � 1, and if cdQ HpOSq  

kpH, Sq an application of Proposition 1 in [LN01] gives that HpOSq has a bound

on the orders of its F-subgroups, a contradiction. Therefore gdFpHpOSqq �

KpHpOSqq � kpH, Sq. �

Remark 3.52. Since the groups in Corollary 3.49 have no bound on the orders of

their F-subgroups they are not of type F FP0.
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CHAPTER 4

Branch groups, rational cohomological dimension and HF

A rooted tree T is spherically homogeneous if the valencies of the vertexes at a

fixed level are finite and equal. First examples of such trees are given by n-ary

regular rooted trees. Roughly speaking, a branch group is a subgroup of the full

automorphism group of an infinite spherically homogeneous rooted tree T satisfying

a number of conditions. This definition was introduced by Grigorchuk in 1997. It

turns out that the class of branch groups is a very fruitful class of counterexamples

in group theory. In 1980 Grigorchuk gave an example of a Burnside group G

and in 1984 he showed that G had intermediate growth answering a question of

Milnor [Gri80, Gri84]. Grigorchuck’s group G was first realised as a group of

Lebesgue-measure-preserving transformations on the unit interval. Later it was

noticed that G can be realised as a subgroup of the automorphism group of a binary

tree, and in modern terminology G lies in the class of branch groups.

Until the recent work [ABJ�09], where groups with a strong global fixed-point

property are constructed, the only way to show that a group G did not belong to HF

was to find a subgroup of G isomorphic to Thompson’s group F. We show that the

first Grigorchuk group G has jump rational cohomology of height 1 and has infinite

rational cohomological dimension. This is the first example of such a group and

these properties imply the main result of the chapter.

Theorem. The first Grigorchuk group G is not in HF.

1. The rational cohomological dimension of some branch groups

In Remark 4.7 we will give a possible definition of a branch group, a geometric

and an alternative algebraic definition of a branch group; can be found in [BGŠ03].

For now we prefer to give an explicit description of the first Grigorchuk group G.

Let T be the binary rooted tree and let a � pp1, 2qq be the automorphism of T that

permutes rigidly the two subtrees below the root. The group G will be the group
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generated by the automorphisms a, b, c and d where the last three automorphisms

are defined recursively as follows: b � pa, cq, c � pa, dq, and d � p1, bq. Each

generator admits a labeling on T as shown below:
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Fig.1. The automorphism b.
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Fig.2. The automorphism c.
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Fig.3. The automorphism d.
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By Theorem 3.29, every group of finite F-cohomological dimension which has a

bound on the lengths of its F-subgroups admits a finite-dimensional classifying

space for proper actions.

In this section we calculate the rational cohomological dimension of some finitely-

generated periodic groups with no such bound. Moreover, we look into the problem

of determining which branch groups lie in the class HF. In the next section we give

a purely algebraic criterion, from which it follows that the first Grigorchuk group G

is not contained in HF.

Usually if one wants to prove that a group G has finite cdQG either one finds a suit-

able finite-dimensional G-space or decomposes the group G in order to control its

rational cohomological dimension. On the other hand one usually proves that G has

infinite cdQG in the following way. Since having finite cdQG is a subgroup-closed

property it is enough to find an infinite chain of subgroups of strictly increasing

rational cohomological dimension. For the groups we consider in this section there

is no such chain, although we are able to establish their dimension because there

is a chain of groups of strictly increasing cohomological dimension that uniformly

embeds in them.

A group G is R-torsion-free if the order of every finite subgroup of G is invertible

in the ring R.

Theorem 4.1. [DD89, V, 5.3] Let G be a group and let H be a subgroup of G of

finite index. If G is R-torsion-free, then cdRH � cdRG.

Definition 4.2. [Sau06, 1.1] LetH andK be countable groups. A map φ : H Ñ K

is called a uniform embedding if for every sequence of pairs pαi, βiq P H �H one

has:

α�1
i βi Ñ8 in H ðñ φpαiq

�1φpβiq Ñ 8 in K,

where Ñ8 means eventually leaving every finite subset.

Note that this embedding is not necessarily a group homomorphism. Sauer proved

the following remarkable result.

Theorem 4.3. [Sau06, 1.2] Let G and H be countable groups and let R be a

commutative ring. If cdRH   8 and H uniformly embeds in G, then cdRH ¤

cdRG.
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Two groups H and G are said to be commensurable if there exist H1 ¤ H , G1 ¤ G

such that rH : H1s   8, rG : G1s   8 and H1 � G1. A group G is multilateral

if it is infinite and commensurable to some proper direct power of itself.

Theorem 4.4. Let G be a finitely-generated multilateral group. Then cdQG � 8.

PROOF. If A and B are two commensurable groups then by Theorem 4.1 it

follows that cdQA � cdQB. Let G be a finitely-generated infinite group commen-

surable with Gk for some k ¡ 1. First we show that G is commensurable to Gk
n

for any n ¥ 1. We proceed by induction on n. The base case n � 1 is obvious.

Now Gk
n�1

� pGk
n
qk; by the induction hypothesis G is commensurable to Gk

n

and so Gk is commensurable to pGk
n
qk. Since G is commensurable to Gk and

commensurability is transitive, we obtain that G is commensurable to Gk
n�1

. By

[DlH00, Exercise IV.A.12] there is an isometric embedding Z ãÑ G, from which

it follows that there is an isometric embedding Zkn ãÑ Gk
n

. An application of

Theorem 4.3 gives kn � cdQ Zkn ¤ cdQG
kn � cdQG. Since the last inequality

holds for every non-negative integer n we have cdQG � 8. �

The converse of the theorem above does not hold. In fact the finitely-generated

H2 F-group of infinite cohomological dimension Z oZ is not commensurable to any

of its proper direct powers.

Tyrer Jones in [Jon74] constructs a finitely-generated non-trivial group G isomor-

phic to its own square; as an immediate application of Theorem 4.4 we obtain that

cdQG � 8.

Remark 4.5. If G is a finitely-generated multilateral group, then the proof of

Theorem 3 [Smi07] extends verbatim by replacing Gn with Gk
n

to conclude that

asdimG � 8. For many groups the finiteness of the asymptotic dimension agrees

with the finiteness of the rational cohomological dimension. However, Sapir in

[Sap11] constructed a 4-dimensional closed aspherical manifold M such that the

fundamental group π1pMq coarsely contains an expander, and so π1pMq has infinite

asymptotic dimension but finite cohomological dimension.

Note that if G is a finitely-generated infinite group such that Gn ãÑ G with n ¡ 1,

then arguing as in Theorem 4.4 we obtain that G has infinite rational cohomological

dimension. Of course if G is not periodic this shows that it contains a free abelian
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group of infinite countable rank. For example, it is well-known that for Thompson’s

group F we have the embedding F� F ãÑ F.

Corollary 4.6. Every finitely-generated regular branch group has infinite rational

cohomological dimension.

PROOF. For the precise definition of a regular branch group the reader is

referred to [BGŠ03]. Let T be an m-ary regular rooted tree and G a finitely-

generated regular branch group acting on T . By definition, if G is branching over

K then rG : Ks   8 and rψpKq : Kms   8, where ψ is the embedding of the

stabiliser of the first level in the direct product Gm. Since ψpKq � K we have

that K is commensurable with Km. The group K is finitely-generated and so

an application of Theorem 4.4 gives cdQK � 8. The finiteness of the rational

cohomological dimension is preserved under taking subgroups and so we have

cdQG � 8. �

Since the Gupta-Sidki group Γ is a finitely-generated regular branch group [BGŠ03]

we obtain as an application of Corollary 4.6 that cdQ Γ � 8. Note that since Γ

is a p-group with no bound on the orders of its elements it has no bound on the

lengths of its F-subgroups. The hypothesis of finite generation in the corollary

above is crucial since the LF-group Autf pT q by Proposition 1.22 [BGŠ03] is a

regular branch group.

Remark 4.7. We have proved Corollary 4.6 in the context of regular branch groups

for convenience only. In fact it was pointed out to the author by Laurent Bartholdi,

that also holds for the more general branch groups defined as follows.

A group G is branch if it admits a branch structure, i.e. there exists a sequence

of groups tGiuiPN, a sequence of positive integers tniuiPN and a sequence of

homomorphisms tφiuiPN such that G � G0, and for each i,

(1) φi : Gi Ñ Gi�1 o Σni has finite kernel and finite cokernel, where Σni

denotes the symmetric group on ni-letters,

(2) the image of each φi acts transitively on Σni , and the stabiliser of any

j P 1, . . . , ni maps onto Gi�1.

The structure is non-trivial if all ni ¥ 2, and the φi are injective. It is possible

to see that a branch group as above is a branch group in the geometric sense of
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[BGŠ03]. Now, let G be a finitely-generated infinite group that admits a sequence

of groups tGiuiPN and a sequence of integers tniuiPN, such that G � G0 and for

each i, Gi is commensurable with Gnii�1. Arguing as in Theorem 4.4 it is easy to see

that, if all ni ¥ 2, the rational cohomological dimension of G is infinite. Arguing as

in Corollary 4.6 we deduce that every finitely-generated branch group has infinite

rational cohomological dimension.

2. G R HF

A group G is said to have jump cohomology of height n over R if there exists an

integer n ¥ 0 such that any subgroup H of finite cohomological dimension over R

has cdRpHq ¤ n.

Theorem 4.8. [Pet07, 3.2] Let G be an R-torsion-free HF-group with jump coho-

mology of height n over R. Then cdRG ¤ n. In particular, any HF-group G has

jump rational cohomology of height n if and only if cdQG ¤ n.

Lemma 4.9. Let G be a countable group with cdQG   8. Then there exists a

finitely-generated subgroup H of G such that

cdQH ¤ cdQG ¤ cdQH � 1.

Moreover, if F cdG   8 then there exists a finitely-generated subgroup K such

that

F cdK ¤ F cdG ¤ F cdK � 1.

PROOF. The statement for the rational cohomological dimension follows from

Theorem 4.3 in [Bie81] and for the F-cohomological dimension it follows from

Proposition 2.5 in [Nuc00]. �

We say that a group G is strongly multilateral if it is multilateral and every finitely-

generated subgroup of G is commensurable to some direct power of G.

Theorem 4.10. Every finitely-generated strongly multilateral group has jump ra-

tional cohomology of height 1.

PROOF. Let G be a finitely-generated strongly multilateral group. Then by

Theorem 4.4 G has infinite rational cohomological dimension. Suppose H is a

finitely-generated infinite subgroup of G, then by hypothesis H is commensurable
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with some direct power of G and so by Theorem 4.1 cdQH � 8. Suppose now

that H is an infinitely-generated subgroup of G of finite rational cohomological

dimension. By Lemma 4.9 there exists K ¤ H such that K is finitely-generated

and cdQK ¤ cdQH ¤ cdQK � 1. By the above K cannot be infinite and so

cdQH � 1. �

Corollary 4.11. If G is a finitely-generated strongly multilateral group, then G is

not in HF.

PROOF. The group G has jump rational cohomology of height 1 but infinite

rational cohomological dimension and so by Theorem 4.8 G R HF. �

The first Grigorchuk group G is an infinite periodic finitely-generated amenable

group [Gri80]. G can be obtained as a subgroup of the automorphism group of the

rooted binary tree. Since G has infinite LF-subgroups [Roz98], it has no bound

on the lengths of its F-subgroups. For the definition and further details the reader

should consult [BGŠ03] or [DlH00].

Theorem 4.12. The first Grigorchuk group G has jump rational cohomology of

height 1, and has infinite rational cohomological dimension. Hence G is not in HF.

PROOF. By VIII.14 and .15 [DlH00] G is commensurable with its square,

infinite and finitely-generated. Any finitely-generated infinite subgroup of G is

commensurable with G [GW03] and so by Corollary 4.11 G R HF. �

Other consequences.

Remark 4.13. Theorem 4.12 has two futher consequences.

Conjecture [Pet07]. For every group G without R-torsion the following are equiva-

lent.


 G has jump cohomology of height n over R.


 G has periodic cohomology over R starting in dimension n� 1.


 cdRG ¤ n.

Obviously from Theorem 4.12 it follows that G is a counterexample to the above

conjecture.

Jo-Nucinkis in [JN08] ask the following.

Question. Let G be a group such that every proper subgroup H of G of finite
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Bredon cohomological dimension satisfies cdFH ¤ n for some positive integer n.

Is cdFG   8?

Since a group G has rational cohomological dimension equal to 1 if and only if it

has Bredon cohomological dimension equal to 1 [Dun79], Theorem 4.12 shows

that G provides a negative answer to their question.

Given Theorem 4.12, it is easy to see that for any n ¥ 1, the group G� Zn�1 has

infinite rational cohomological dimension and jump rational cohomology of height

n.

The question of Jo-Nucinkis is a “proper actions version” of an older question of

Mislin-Talelli that asks whether there exists a torsion-free group with jump integral

cohomology but infinite cohomological dimension. Note that every virtually torsion-

free branch group G contains a free abelian group of infinite countable rank. To see

this take a ray and an edge per level just hanging off it. Then there is a non-trivial

element of infinite order an hanging off each edge since the rigid stabiliser of the

nth-level RsttGpnq has finite index in G and G is spherically transitive. These

elements generate distinct infinite cyclic subgroups of G that obviously commute

since they act on distinct subtrees and so they generate
À

N Z. This implies that

G has infinite rational cohomological dimension and does not have jump rational

cohomology. Moreover, no torsion-free subgroup of finite index in G can answer

Mislin-Talelli question. A more detailed study of the subgroup lattices of virtually

torsion-free branch groups would be very interesting. In fact it is unknown whether

there exists a torsion-free group G P H F zH3 F.

Question 4.14. Does every finitely-generated periodic regular branch group have a

finitely-generated strongly multilateral subgroup?

Remark 4.15. Note that if G is an HF-group, then GcdG   8 implies that

cdQG   8. This can be shown in the following way. First we recall that splipRGq

is the supremum of the projective lengths of the injectiveRG-modules. The invariant

κpRGq is the supremum of the projective dimensions of the RG-modules that

have finite RF -projective dimension for all F-subgroups of G. For any group G,

GcdG   8 if and only if splipZGq   8 by Remark 2.10 in [ABS09]. Assume

now that G is an HF-group of finite Gorenstein cohomological dimension. By

Theorem C in [CK98] splipQGq � κpQGq. By [GG87] splipQGq ¤ splipZGq; in
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particular if splipQGq   8 then κpQGq   8. Since Q is QF -projective for every

F-subgroup F of G we have cdQG   8.

It is known from recent work of Dembegioti and Talelli [DT10] that the notions of

a Gorenstein projective module and a cofibrant module coincide over HF-groups.

We suspect that the Gorenstein projective modules over an HF-group G are exactly

direct summands of ZG-modules obtained as extensions of permutation modules

with F-stabilisers. If this holds then the inequality cdQG ¤ GcdG would be

immediate.

It would be very interesting to compute the Gorenstein cohomological dimension of

G. In fact, G could be a counterexample to the conjecture of Bahlekeh, Dembegioti

and Talelli.

Corollary 4.16. G does not contain a group of finite F-cohomological dimension

for which the extension property fails to be subadditive.

PROOF. G is just infinite and by Theorem 4.1 every normal subgroup N of

G has infinite rational cohomological dimension, so F cdN � 8. Assume L

is a subgroup of G such that H ãÑ L�Q, with F cdH � n, |Q|   8 and

n   F cdL   8. Then, by Theorem 4.12 it follows that G has jump rational

cohomology of height 1 and L is not finitely-generated. From Lemma 4.9 cdQ L ¤

1. By Dunwoody’s theorem [Dun79] cdQ L ¤ 1 if and only if L acts on a tree T

with F-stabilisers. We can assume |L| � 8 and the tree T is a one dimensional

model for EFL, so cdQ L � F cdL � cdF L � gdF L � 1 and the result follows

from Theorem 4.1. �
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CHAPTER 5

Some H1F-groups with unbounded torsion

Let U be the smallest class of groups containing all groups of finite F-cohomological

dimension with a bound on the orders of their F-subgroups closed under taking ex-

tensions and fundamental groups of graphs of groups. This class contains all groups

of finite virtual cohomological dimension, Gromov hyperbolic groups, Burnside

groups of large odd exponent, more generally all groups of finite Bredon cohomo-

logical dimension with a bound on the order of their F-subgroups, all countable

LF-groups, lamplighter groups, Houghton’s groups, every countable infinite free

product of F-groups, Dunwoody’s inaccessible group [Dun93], countable elemen-

tary amenable groups and many others.

We first show that the class U admits a natural hierarchical decomposition and

establish some of its basic properties. Then, we prove that the Kropholler-Mislin

conjecture holds for U�ω0
, a subclass of U .

Theorem. Every H1 F-group contained in the class U�ω0
admits a finite-dimensional

classifying space for proper actions.

1. The class U and its hierarchy

Let X be any class of groups, define the group operation F1 as F1X consists of

those groups which are isomorphic to a fundamental group of graph of X-groups.

Note that if X � Y then X � F1X � F1Y. Let B be the class of groups of finite

F-cohomological dimension with a bound on the orders of their F-subgroups. For

each ordinal α we define the class Uα inductively


 U0 � J,


 Uα � pF1 Uα�1qB if α is a successor ordinal,


 Uα �
�
β α Uβ if α is a limit ordinal.

The class U is defined as U �
�
α¥0 Uα.
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Lemma 5.1. The class U coincides with the class U .

PROOF. Clearly U � U and U is closed under taking fundamental groups of

graphs of groups. In order to show U � U we need only to verify that the class U

is extension closed. By Bass-Serre theory it follows that if G{N acts on a tree T ,

then G has an action on T such that N fixes every vertex of T . Hence, if X and Y

are two classes of groups then XpF1 Yq � F1pX Yq.We argue by induction on β to

show Uα Uβ � Uα�β . If β � 1 then Uα U1 � Uα B � pF UαqB � Uα�1.


 Suppose β is a successor ordinal, β � γ � 1.

Uα Uβ � UαppF1 UγqBq

� pUαpF1 UγqqB (by universality, [Rob72, pg. 2])

� pF1pUα UγqqB (by the above)

� pF1pUα�γqqB (by induction)

� Uα�β .


 Suppose β be a limit ordinal, then Uβ �
�
γ β Uγ .

Uα Uβ � Uαp
¤
γ β

Uγq

�
¤
γ β

Uα Uγ

�
¤
γ β

Uα�γ (by induction)

� Uα�β . �

Proposition 5.2. The class U is closed under taking free products with amalgama-

tion, HNN-extensions, countable directed unions, extensions.

PROOF. It is obvious that U is closed under taking free products with amalga-

mation and HNN-extensions. If G is a countable directed union of U-groups then

G acts on a tree with stabilisers conjugate to groups in the directed system and so

G P U. The class U coincide with the class U that is closed under taking extensions

by definition.

For any class of groups X we writeG P SX ifG ¤ K P X. Note that SF1X � F1SX;

in fact if G P SF1X, G is a subgroup of a group K that acts on a tree T with

stabilisers in X and so T is a G-tree with stabilisers that are subgroups of the
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stabilisers of the K-tree T . Clearly if a class X is S-closed then SF1X � F1X,

and note that the class B is S-closed. Arguing as in Lemma 5.1 we have that

S U � U. �

Let F B be the smallest class of groups containing the class B and which contains a

group G whenever G can be realised as the fundamental group of a graph of groups

already in F B. The class F F was considered by Richard John Platten in his PhD

thesis, however F B and F F differ. For example, any non-trivial group of finite

cohomological dimension with Serre’s property FA does not belong to F F but lies

in B.

Lemma 5.3. The class U is contained in H F, the class F B is properly contained

in U and U is not closed under taking quotients.

PROOF. By definition B � H1 F, H F is obviously closed under taking groups

acting on trees with stabilisers in H F and is extension closed by [Kro93, 2.3]. In

particular U � H F.

Let H be a non-trivial F-group and let P be Pride’s group of cohomological dimen-

sion equal to two with Serre’s property FA [Pri83]. Clearly the group G � H o P
has no bound on the orders of its F-subgroups and it lies in U2 zU1. By [CK11]

G has Serre’s property FA, and does not lie in B and so G R F1 B. Note that

cdQG ¤ 3.

The first Grigorchuk group is a 3-generated group but by Theorem 4.12 it is not an

H F-group, therefore it is not a U-group and U is not closed under taking quotients.

�

2. U-groups of finite F-cohomological dimension

Lemma 5.4. Let T be a G-tree with edge set E �
�
iPI LizG and vertex set

V �
�
jPJ NjzG. Then there is a Mayer-Vietoris sequence:

� � � Ñ Hn
FpG,�q Ñ

à
jPJ

Hn
FpNj , resINj �q

Ñ
à
iPI

Hn
FpLi, resILj �q Ñ Hn�1

F pG,�q Ñ � � �

PROOF. By Corollary 3.4 in [KMPN08] the augmented Bredon cell complex

Zr�, Es� Zr�, V s� Z
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is a short exact sequence of OG-modules. Now applying the long exact sequence in

Bredon cohomology we obtain

� � � Ñ ExtnFpZ,�q Ñ
à
jPJ

ExtnFpZr�, NjzGs,�q

Ñ
à
iPI

ExtnFpZr�, LizGs,�q Ñ Extn�1
F pZ,�q Ñ � � �

We show that ExtnF,GpZr�, HzGs,�q � ExtnF,HpZ,�q.

By [Sym05, Lemma 2.7] we have Zr�, HzGs � indIH Z. From the adjoint iso-

morphism it follows that induction with IH is a left adjoint to restriction with

IH :

morF,GpindIH Z,�q � morF,HpZ, resIH �q

and the result now follows. �

We recall that a less direct proof of the lemma above, involving a spectral sequence

appeared in [FD11, Corollary 4.7].

Corollary 5.5. Let T be a G-tree with edge set E �
�
iPI LizG and vertex set

V �
�
jPJ NjzG. If there is a non-negative integer n such that cdF Li ¤ n and

cdFNi ¤ n for all i, then cdFG ¤ n� 1.

PROOF. It is an immediate consequence of Lemma 5.4. �

Define FB the group operation as FBX consists of those groups which are isomorphic

to a fundamental group of graph of X-groups such that there is a finite bound B on

the differences between the F cd and cdF over all the vertex and edge groups. For

each ordinal α we define the class U�α inductively


 U�0 � I


 U�α � pFB U�α�1qB if α   ω0,


 U�α �
�
β ω0

U�β if α � ω0.

Theorem 5.6. Let G be a U�ω0
-group of finite F-cohomological dimension. Then

G has finite Bredon cohomological dimension. In particular, every H1 F-group

contained in the class U�ω0
has finite Bredon cohomological dimension.

PROOF. Suppose G P U�α and F cdG � n. If α is a successor ordinal, then G

is an extension N �G�Q with N P FB U�α�1 and Q P B. By Corollary 5.5 we

have that cdFN ¤ n�B�1. SinceQ has a bound d on the orders of its F-subgroups
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we can apply [Lüc00, Theorem 3.1] to conclude that cdFG ¤ pn�B�1qd�cdFQ.

Hence, since cdFQ   8 we have cdFG   8.

Let R be the class of groups of finite F-cohomological dimension. If α � ω0 then

G P U�ω0
XR � p

�
β ω0

U�βq XR �
�
β ω0

pU�β XRq. By the above for β   ω0,

every group in U�β XR has finite Bredon cohomological dimension, and so does

G. �

Proposition 5.7. Suppose that there exists a function ρ : N Ñ N such that gdFG ¤

ρpKpGqq for every group G of finite Bredon cohomological dimension. Then the

Kropholler-Mislin conjecture holds inside Uω0 .

PROOF. This can be proved as in Theorem 5.6. Notice that the bound does not

have to be universal. �

Remark 5.8. Note that if there is a countable (periodic) H1 F-group that does

not belong in U then there is a finitely-generated (periodic) H1 F-group with no

bound on the orders of its F-subgroups. To see this, suppose that G is a countable

(periodic) H1 F-group that does not belong to U. Then G is the directed union of its

finitely-generated (periodic) subgroups that are H1 F-groups. The group G acts on

a tree with stabilisers conjugate to groups in the directed union. If every stabiliser

were in U so would G, giving a contradiction.

Proposition 5.9. Examples of U-groups:

(1) free groups Fr � U1, countable LFr-groups belong to U1,

(2) free Burnside groups of large odd exponent Bpm,nq P U1 zU0, in partic-

ular Petrosyan’s class N cellpP6q � U,

(3) U2 contains all countable A-groups, and U contains all countable elemen-

tary amenable groups,

(4) Gromov hyperbolic groups, more generally every group G admitting a

finite model for EFG,

(5) let tFiuiPI be an infinite countable ordered family of finite subgroups such

that |Fi|   |Fi�1|. If G � �iPI Fi, then G P U2 zU1,

(6) for every n, the Houghton’s groups Hn P U2 zU1,

(7) Dunwoody’s inaccessible group D P U3 [Dun93].

Note that every group mentioned above lies in U�ω0
.
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PROOF. By the Stallings-Swan theorem every free group has integral coho-

mological dimension equal to 1 and so the assertion is obvious. If G P LFr, then

cdG ¤ 2, therefore G P B.

It is known by [Adi79] that Bpm,nq are infinite for large enough exponent and

that they have a bound on the orders of their F-subgroups. By [Iva91] they admit

an action on a contractible 2-dimensional CW-complex with cyclic stabilisers

and so they are contained in B zI and so in U1 zU0. If G P N cellpP6q, then

either it contains a free subgroup on two generators or it is countable elementary

amenable [Pet09, Theorem 3.9]. A finitely-generated infinite periodic group cannot

be elementary amenable, therefore free Burnside groups of large odd exponent are

not contained in N cellpP6q but they belong to B.

Every finitely-generated A-group lies in B and so every countable A-group G can

be realised as group acting on a tree with finitely-generated A-stabilisers and so

G P U2. For example, the free abelian group of infinite countable rank lies in

U2 zU1. Clearly B contains all F-groups and U is closed under taking countable

directed unions and so it contains all countable L F-groups. By Proposition 5.2, U is

closed under taking extensions and so it contains all countable elementary amenable

groups.

Note that since every F-subgroup of a group G fixes a point of EFG, it is contained

in a 0-cell stabiliser. Therefore, if G admits a finite model for EFG, then it has

finitely many conjugacy classes of F-subgroups and therefore G has a bound on the

orders of its F-subgroups. Gromov hyperbolic groups admit a finite model for EF

by [MS02].

LetG � �iPI Fi as above. ThenG has no bound on the orders of its F-subgroups but

it is realised as the fundamental group of a graph of F-groups, and so G P U2 zU1.

The group Hn is isomorphic to an extension of the infinite countable finitary symmet-

ric group Θ by Zn�1. The group Θ is countable [DM96, Exercise 8.1.3], moreover

it lies in L F and so Θ P F1 U1 and Hn P U2.

The group D is the fundamental group of a graph X of groups. Every edge group

is finite and the only non-finite vertex group is isomorphic to a free product with

amalgamationQn�HωH . WhereQn is the fundamental group of an infinite graph of

groups with all finite edge and vertex groups, Hω is an infinite countable L F-group

(Hω P U2 zU1) and H is isomorphic to a semidirect product of the infinite finitary
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symmetric group on a countable set by an infinite cyclic group (H P U2 zU1).

From the construction it is clear that D P U3 and cdQ D ¤ 4. Note that D has no

bound on the orders of its F-subgroups by construction or by Linnell’s theorem on

inaccessible groups [Lin83]. �

LetG andG denote the finitely-generated groups constructed respectively in [DJ98]

and [DJ99]. These have the following remarkable decomposition properties: G �

A �Z G and G � G �Z G.

Proposition 5.10. The group G has finite F-cohomological dimension. It has a

bound on the orders of its F-subgroups and so it belongs to B.

PROOF. In [Dun11] it is shown that the group G can be realised as the fun-

damental group of a graph of groups Y with two orbits of vertices V Y and two

orbits of edges EY . Each F-subgroup of G must lie in one of the conjugates of

the A factors. Since A � xa, b | b3 � 1, a�1ba � b�1y every F-subgroup has order

bounded by 3. Moreover, since G is the fundamental group of a graph of groups

with all virtually cyclic stabilisers, the Mayer-Vietoris sequence for F-cohomology

gives that F cdG   8. Hence G P B and G has finite Bredon cohomological

dimension. �

This is in contrast with finitely-generated infinite groups of the form G � A�G

(withA non-finite) by an argument similar to Theorem 4.4. We see that these groups

must have infinite rational cohomological dimension.

Question 5.11. Are there countable H1 F-groups not contained in the class U?

Arithmetic groups over global function fields are countable H1 F-groups and we

expect to be a suitable source for answering positively the question above.

Proposition 5.12. Let T be a G-tree with edge set E �
�
iPI LizG and vertex set

V �
�
jPJ NjzG. Then F cdpGq ¤ suptF cdLi,F cdNj with i P I, j P Ju � 1.

PROOF. This is an immediate consequence of the Mayer-Vietoris sequence in

F-cohomology associated to the short exact F-split sequence: ZE� ZV � Z. �

Corollary 5.13. If Nucinkis’ conjecture holds, then there exists a function φ : N Ñ

N such that gdFG ¤ φpF cdpGqq for every group G of finite F-cohomological

dimension.
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PROOF. Assume by contradiction that there is no such function. Then there

exists some n ¡ 1 and a family of group tGuiPN such that F cdGi ¤ n for every i

and gdFGi Ñ8 for iÑ8.

The group G � �iPNGi has F cdG ¤ n�1 but gdFG � 8 giving a contradiction.

The inequality F cdG ¤ n � 1 follows from Proposition 5.12. Since G contains

subgroups of arbitrarily large Bredon geometric dimension we have gdFG �

8. �

Theorem 5.14. Let T be a G-tree with edge set E �
�
iPI LizG and vertex set

V �
�
jPJ NjzG. Then KpGq ¤ suptKpLiqiPI ,KpNjqjPJu � 1. In particular

G P H1 F if and only if there is a bound on the Kropholler dimensions of the edge

and vertex groups.

PROOF. Replace the edge and vertex groups with suitable H1 F-spaces of mini-

mal dimension and proceed as in [Lüc05] to obtain an H1 F-space for G. �

Corollary 5.15. If Kropholler-Mislin conjecture holds, then there exists a function

γ : N Ñ N such that gdFG ¤ γpKpGqq for every H1 F-group G.

PROOF. It follows from Theorem 5.14 and it can be proved as in Corollary

5.12. �

84



Bibliography

[ABJ�09] Goulnara Arzhantseva, Martin R. Bridson, Tadeusz Januszkiewicz, Ian J. Leary, Ashot
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