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by Giovanni Gandini

The main objects of interest in this thesis are H;§-groups. These are groups that
act on finite-dimensional contractible CW-spaces with finite stabilisers. Important
examples of these are given by groups admitting a finite-dimensional classifying
space for proper actions EzG. A large part of the thesis is motivated by an old
conjecture of Kropholler and Mislin claiming that every H;§-group GG admits a
finite-dimensional model for E5G. The natural choice for studying algebraically
H;§-groups is §-cohomology. This is a form of group cohomology relative to
a G-set introduced by Nucinkis in 1999. In this theory there is a well-defined
notion of §-cohomological dimension and we study its behaviour under taking
group extensions. A conjecture of Nucinkis claims that every group G of finite
§-cohomological dimension admits a finite-dimensional model for EzG. Note that
it is unknown whether the class H; § is closed under taking extensions. It is also
unknown whether the class of groups admitting a finite-dimensional classifying
space for proper actions is closed under taking extensions.

In Chapter 3 we introduce and study the notion of §-homological dimension and
give an upper bound on the homological length of non-uniform lattices on locally
finite CAT(0) polyhedral complexes, giving an easier proof that generalises an
important result for arithmetic groups over function fields, due to Bux and Wortman.

The first Grigorchuk group & was introduced in 1980 and has been extensively
studied since due to its extraordinary properties. The class HE of hierarchically
decomposable groups was introduced by Kropholler in 1993. There are very few
known examples of groups that lie outside H§. We answer the question regarding
the HF-membership of & by showing that & lies outside HF.

In the final chapter we introduce a new class of groups &, and show that the
Kropholler-Mislin conjecture holds for a subclass of 4 and discuss its validity in
general.
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Introduction

Let GG be a group and let § be the class of finite groups. A G-CW-complex is proper
if all its cell stabilisers are in §. If a proper G-CW-complex X has the property
that for each §-subgroup K of G the fixed-point subcomplex XX is contractible,
then X is called a classifying space for proper actions of G' (or a model for EzG).
The interest in this object is twofold: from a geometric group theory perspective the
spaces (or small modifications of these) on which “interesting” groups act are often
classifying spaces for proper actions satisfying some finiteness condition. Outside
the vast world of group theory, the equivariant K-homology of the classifying
space for proper actions forms the left-hand side of the celebrated Baum-Connes
conjecture. This conjecture is an important step for Connes’ non-commutative

geometry programme.

Generalisations of constructions due to Milnor [MilS6] and Segal [Seg68] show
that every group GG admits a model for E3G. The Bredon geometric dimension of
G, denoted by gdg G, is the minimal dimension of a model for FzG. The Bredon
cohomological dimension cdz G plays a role analogous to that of the integral
cohomological dimension c¢d G in ordinary group cohomology and is an algebraic
counterpart of gdz G. In particular, cdg G is finite if and only if gdz G is finite
[Liic89]. However, both invariants are often very difficult to compute. Hence several
possible “easy” geometric and algebraic invariants that guarantee their finiteness

have been proposed by various authors [Gui08, BDT09, Nuc00].

On the geometric side, Kropholler introduced the class of Hj§-groups [Kro93|]. A
group belongs to H; § if there is a finite-dimensional contractible G-CW-complex
X with cell stabilisers in §. The following problem has been open for almost 20

years.

Conjecture 1 (Kropholler-Mislin, [Gui08, Mis01l]). Every H1§-group G admits a
finite-dimensional model for EzG.



A result proved independently by Bouc [Bou99] and Kropholler and Wall [KW11]]
implies that the augmented cellular chain complex C (X)) of any finite-dimensional
contractible proper G-CW-complex splits when restricted to the F-subgroups of
G. Nucinkis introduced a cohomology theory relative to a G-set A in order to
algebraically mimic the behaviour of H;F-groups [Nuc99]. This theory can be
regarded as a cohomology relative to a class of proper short exact sequences as in
IX & XII [MLY5] or as cohomology relative to the Z G-module Z A. It generalises
cohomology relative to a subgroup to cohomology relative to a family of subgroups.
When dealing with the family of §-subgroups, we will refer to this as §-cohomology.
In this setup there is a well-defined F-cohomological dimension § cd G [Nuc00].
It is an open question whether every group of finite §-cohomological dimension
lies in H1§. The converse holds by the result of Kropholler and Wall mentioned
above. Of course it is also unknown whether every group of finite §-cohomological
dimension admits a finite-dimensional model for E3G, and this is conjectured in
[NucO0]. It is well-known that for any group I', cdg I' < FedI' < cdzI' < gds T,
see for example [BLNO1].

Remaining on the algebraic side, it is important to mention that Bahlekeh, Dem-
begioti and Talelli conjecture in [BDT09] that every group of finite Gorenstein
cohomological dimension Ged G has finite Bredon geometric dimension. Most of
these conjectures have positive answers in two important cases. The length [(H)
of an §-subgroup H of G is the supremum over all n for which there is a chain
Hy < Hy < --- < H, = H. Firstly, by applications of a result of Liick [Liic00]
if G has a bound on the lengths of its §-subgroups then the finiteness of cdgz G is
equivalent to the finiteness of Ged G and § cd G. Secondly, if G is a countable
elementary amenable group then cdg G < o0, FcdG < 0 and cdg G < o are

equivalent by a theorem of Flores and Nucinkis [FN05].

We start this thesis by discussing the general theory of §-cohomology and by
introducing the notion of §-injective module. Next we show that the §-cohomology
can be calculated either with §F-injective resolutions in the second variable or with
$-projective resolutions in the first variable and therefore the F-cohomological
dimension is independent of the chosen resolution. Complete §-cohomology via
$-projective modules was defined in [Nuc99]]. We develop complete §-cohomology

via §-injective modules and prove some standard facts.



Let dim be a function from the class of all groups to N u {oo}. We say that
dim is subadditive if for every group extension N — G — () we have dim G <
dim N + dim Q. The good behaviour of §-cohomological dimension with respect
to several group operations is known [Nuc00] but its behaviour with respect to
taking group extensions remains unclear. In Chapter 2 we investigate the subad-
ditivity of §-cohomological dimension and we prove that it is subadditive if and
only if it is preserved under taking extensions by groups of prime order. Leary and
Nucinkis [LNO3]] build a group extension such that cdz N = §cd N = 2n and
cdz @ = Fcd@Q = 0butcdg G = 3n and § cd G = 2n. Under extra conditions the
behaviour of gd G under taking group extensions is known [Mis01, MP02, MP07].
It is still unknown whether there exists a group of infinite Bredon geometric dimen-
sion that is an extension of two groups of finite Bredon geometric dimension. On the
other hand it is known that the Gorenstein cohomological dimension is subadditive
[BDTO09]. The precise connections between the Gorenstein cohomological dimen-
sion and the §-cohomological and rational cohomological dimensions are unclear.
We show that Ged G < § cd G, but it is unknown whether the finiteness of Ged G
implies the finiteness of § cd G. If there exists a group G that has Ged G < w or
§cd G < oo but admits no finite-dimensional model for E5G, then by the theorem

of Liick, G cannot have a bound on the lengths of its F-subgroups.

In Chapter 3 we look at (§)-cohomological conditions of finite type. We introduce
the notion of §-homological dimension and we prove some standard results. An
interesting source of groups with no bound on the orders of their §-subgroups is
given by non-uniform lattices on locally finite CAT(0) polyhedral complexes; we

close the chapter by bounding their homological length.

Branch groups are certain subgroups of the full automorphism groups of spherically
homogeneous rooted trees. Several examples of finitely-generated periodic non-
elementary amenable groups with no bound on the lengths of their §-subgroups
lie in this class. Here we show that finitely-generated regular branch groups have
infinite rational cohomological dimension, which implies that the F-cohomological
dimension and the Bredon cohomological dimension are infinite as well. Let HF be
Kropholler’s class of hierarchically decomposable groups [Kro93|]. The class H§
is defined as the smallest class of groups containing the class § and which contains
a group G whenever there is an admissible action of G on a finite-dimensional

contractible cell complex for which all isotropy groups already belong to HF. An



important question in this area is to determine which branch groups belong to the
class HF. Until the recent work [ABJ™09], where groups with a strong global
fixed-point property are constructed, the only way to show that a group G does not
belong to HF was to find a subgroup of G isomorphic to Thompson’s group F. In
Chapter 4 we show that the first Grigorchuk group & is not contained in the class
HJS. Furthermore, & is a counterexample to a conjecture of Petrosyan [Pet07]] and

answers negatively a question of Jo-Nucinkis [JNOS].

We introduce a new class of groups 4 defined in terms of actions on trees and taking
extensions starting from the class of groups admitting a finite-dimensional EzG
with a bound on the orders of their §-subgroups. The final chapter is dedicated to
the study of the class of {I-groups. In particular we show that the Kropholler-Mislin

conjecture holds for a subclass of 1.

Notation. We use standard notation for classes of groups. A collection %) of
groups is a class of groups if it contains the trivial group and it is closed under
taking isomorphisms. We write J for the class consisting of the trivial group, § for
the class of finite groups, 2 for the class of abelian groups and Fr for the class of
free groups. For a class of groups X, LX denotes the class of locally X-groups, i.e.
G lies in LX if and only if every finitely-generated subgroup of G lies in X. Less

common group operations will be defined later in the thesis.



CHAPTER 1

$-Cohomology

We study cohomology of groups relative to a G-set A which first appeared in
[Nuc99]]. This theory can be regarded either as cohomology relative to a class of
proper short exact sequences as developed by Mac Lane in Chapter IX & XII in
[ML935] or as cohomology relative to a permutation (G-module k£ A. This theory
generalises cohomology relative to a subgroup to a family of subgroups. In the first
section we discuss the fundamental concepts. Next we introduce the notion of a A-
injective module which we use later in complete relative cohomology. We repeat two
constructions of complete cohomology groups in the context of relative cohomology
using A-injective modules. The first complete relative cohomology groups that we
construct, AE\‘D?GZG(—, N), are built similarly to Mislin’s completion via satellites
[Mis94]. The second construction follows Benson and Carlson’s approach [BC92]
and this leads to the groups A ];CZG(—, N).

We show that as for ordinary cohomology [Nuc98], these constructions are equiva-

lent.

Theorem. Let N be a kG-module, then there is a natural equivalence of functors

©" : AExt,(—, N) = ABC,q(—,N),Vn € Z.

1. Cohomology relative to a G-set

Let GG be a group, k a commutative ring of coefficients and A an arbitrary G-set.
We write kA for the free k-module on the set A. The abelian group kA can be
regarded as a kG-module by extending the G-action on A to a linear k-action of
G on k A. The kG-module k A is called the permutation module on the G-set A.
We write & for the tensor product over k, and if M and N are kG-modules, the
G-action on M ® N is defined as (m ® n)g := mg ® ng for g € G, m € M and
neN.



Definition 1.1. [Nuc99, 2.1] A short exact sequence A — B — C' of kG-modules
is called A-split if
AREA— BREA - CREKA

is a kG-split sequence.

A kG-module is A-projective if it is a direct summand of a module of the form
M ® k A for some kG-module M. It is easy to characterise A-projective kG-
modules in a slightly different manner. In fact, the next lemma clarifies the definition

of A-projectivity.
Lemma 1.2. For a kG-module P the following are equivalent:

(1) P is A-projective,
(2) the functor Homyg (P, —) is exact on A-split sequences,

(3) every A-split epimorphism o : N — P splits over kG.

PROOF. This can be proved analogously to the case of ordinary projective
modules. A proof for projective modules can be found in any homological algebra

book. O

The category of right kG-modules, denoted by 900, has enough A-projectives
since the obvious surjection M ® k A — M given by m ® § — m is A-split. To
see this, let M ® k A®k A — M ® k A given by m ® §1 ® do — m & 2 the split
is given by m® 4§ — m®J ® . Note that even if £k A and M are finitely-generated
kG-modules this construction does not provide a finitely-generated A-projective
mapping onto M via a A-split surjection. This issue is briefly discussed in Chapter
3.

While it was clear what was the appropriate definition of a A-projective module,
there is in the literature some uncertainty on the correct definition of a A-free
module. The functor — ® k A is the left adjoint of the functor Hom(k A, —), so
it is reasonable to define A-free modules as direct sums of modules of the form
M; ® kA, where M;’s are kG-modules. Moreover, with this definition there is a

relative version of the Eilenberg Swindle Lemma:

Lemma 1.3. [Nuc00, 4.1] If P is a A-projective then there exist a A-free module
F suchthat F ~ P@®F.



We want to have a theory that does not depend on the G-set A up to G-maps; more

precisely:

Lemma 1.4. [Nuc99, 2.5] Let A1 and Ay be two G-sets. If there exists a G-
map ¢ : A1 — Ao, then every As-split short exact sequence A— B — C of
kG-modules is A1-split.

Lemma 1.5. [Nuc99, 2.3] Let Ay and Ay be two G-sets. If there exists a G-map
¢ : A1 — Ao, then every A1-projective kG-module is As-projective.

Since the class of A-projective modules is closed under taking direct summands
and direct sums, it follows that the building blocks for the A-projectives are the
direct summands of modules of the form M Tg where H is a stabiliser of some
orbit representative for A. Moreover, by Lemmal|I.5]if M is any abelian group the

module M ® k A with action on the right side is A-projective.

Let M and N be two kG-modules. The cohomology functors relative to A of M
with coefficient in N are defined by

A Ext™(M, N) := H"(Homyc(Pn, N)),

that is the n-th right derived (relative) functor of Homy c(—, N) as [ML95, pg.
389]. A A-projective dimension is well-defined, and we say that a group G has
A-cohomological dimension over kG equal to n if k regarded as a kG-module with

trivial action has A-projective dimension over kG equal to n.

There is an obvious way to write the “standard A-projective resolution” of the
trivial kG-module k& [Nuc00]. Let P, = k(A?) and K,, = kerd,,_1, where the

maps d; : P;;1 — P; are defined as

di((s(]a(slv s 7(51) = Z (_1)k(501617 .- 'agkv s 751)
k=0

where 0, means Jj, is omitted.

The fact that any G-set A admits a decomposition as a disjoint union of sets of
cosets suggests that we can use this cohomology to have a theory relative to a family
of subgroups closed under conjugation. In this work we are mostly interested in the
family of §-subgroups. More concretely, let Ag be a set of orbit representatives for
A and let G be the stabiliser of § € Ag. Then we have:

A= |]sc= | ] G\G

5EAO 5EAO



Note that if one of the G is non-trivial, then Z A is not Z G-projective. To see
this is enough to recall that the module Z A admits the decomposition Z A =
@PsZ®zc;ZG and that by [CK96, Lemma 6.1] the module A ®z¢, ZG is
Z G-projective if and only if A is Z Gs-projective.

Lemma 1.6. [Nuc99, 6.1] For any pair A1, As of G-sets that satisfy the following

condition
(%) AP 2 e H<G, He§,

there exist G-maps: ¢ : A1 — Dgand p : DNy — Aq.

An example of a such G-setis ® = | |y ez 1\G, but Lemma .5 implies that
every G-set satisfying condition () generates the same cohomology theory. For
any such GG-set we replace the letter A with § to designate this case in cohomology.

The following clarifies the concept of A-split short exact sequence.

Lemma 1.7. [Nuc99, 2.6, 6.2] A short exact sequence of kG-modules A— B — C
is A-split if and only if it splits restricted to each stabiliser Gs. In particular,
Ar— B — C is §-split if and only if it splits restricted to each §-subgroup of G.

Concretely to compute group cohomology we replace kG-projective resolutions
used in (ordinary) cohomology of groups with §-split resolutions made of direct
summand of sums of induced modules from §-subgroups of GG. Note that any §-
split acyclic complex of kG-modules is k-split; and in particular every §-projective
resolution of k is k-split. Recently it was noticed that even if §-cohomology is
defined with respect to the family of §-subgroups it takes into consideration only

the finite PB-subgroups,. We write Bz for the class § N*B.

Theorem 1.8. [LN10]

o A short exact sequence of kG-modules is §-split if and only if it is Pz-split.
o A kG-module is §-projective if and only if it is Pg-projective.
o THY(G;—) = Pz H*(G; ).

Lemma [1.4] and Theorem show that if G has a bound on the order of its §-
subgroups, then when we build a G-set ® satisfying (*) we can just consider one

subgroup per conjugacy class of maximal ‘Bz-subgroups.



Lemma 1.9. Let A — B — C be a short exact sequence of Z-free Z. G-modules.

Suppose that the short exact sequence
Alp®Z/|IP|Z— B lpQ®Z/J/|P|Z—~C |pQZ/|P|Z

splits over 7 P for every Pz-subgroup P of G. Then A — B — C is §-split.

PROOE. It follows from [KW11, Lemma 3.4] and Theorem[I.8] O

Remark 1.10. In view of Chouinard’s Theorem [[Cho76] it is natural to ask if
$-cohomology can be reduced to a cohomological theory relative to the family & of
finite elementary abelian subgroups. This is not the case; to see this let P be a non-
elementary abelian PBz-group and let { H;} be the family of conjugacy classes of its
elementary abelian subgroups. The short exact sequence K — @®; Z H;\ P % Zis
E-split but does not split over Z P. Let o; € Z[ H;\ P] denote the sum of the cosets of
H;in P, thatiso; = > HipeH\P H;p. Since P/H, is a transitive P-set the only well-
defined Z P-map from Z to Z H;\ P is the map 1 — m,;o; where m; is a non-zero
integer. Any Z P-map ¢ : Z — @; Z H\P = 7Z H{\\P®Z H\P®- - -®Z H,\P is
defined by 1 — (myo1,...,myo0y,) for some choice of {my,ma,...,m,}. Since
mou(l) =30 my|P: Hyl = > mp™ # 1 (n; # 0 forall ¢’s), m does not
split over Z P.

Lemma 1.11 (Shapiro’s Lemma). Let H be a subgroup of G and N be a ZH -

module. Then
FH"(H;N) = §H"(G; Coind¥, N),
where §H*(G; —) := §Ext;o(Z, —).
PROOF. At first we recall that any §-projective resolution P of Z(G-modules can

be regarded as an §-projective resolution of Z H-modules. From the isomorphism

Homgzy (M, N) =~ Homyq(M, Homyzy (ZG, N)), it follows that

Homp (P, N) = Homg (P, Coind$ N)
which completes the proof. U
There is also a Shapiro’s Lemma for §-homology; this is presented in Chapter 3.

There are a few immediate consequences of Shapiro’s Lemma that we mention

explicitly:



Corollary 1.12. The group §H"(G; Coind{Ge}(A)) = 0 for every abelian group A

and for every n > 0.
Lemma 1.13. [f[G : H]| < o, then

SH*(H;ZH) =~ §H*(G;ZG).

PROOF. Since [G : H] < oo we have for any Z H-module M, Coind$ M =
M 1% [Bro82, Proposition 5.9, TIT]. O

Lemma 1.14 (Transfer Maps). Let M be a Z G-module and [G : H] < . Then

there exist the following maps
Feorly : FH*(H; M) — FH*(G; M),

Fresy : FHL(G; M) - FH,(H; M).

PROOF. Apply § H*(G; —) to the canonical injection M — Homy, ;(Z G, M).
From Shapiro’s Lemma for §-cohomology there is a map o* : FH*(G; M) —
SH*(H; M). Again, since [G : H] < oo we have Coind% M =~ M 1% and
we can apply § H*(G; —) to the canonical surjection Z G ®z g M — M to obtain
Feorly : FH*(H; M) — FH*(G; M).

Analogously, we apply the functor § H*(G; —) to the canonical surjection Z G ®y
M — M and by Shapiro’s Lemma for §-homology we obtain «, : § H.(H; M) —
§H.(G; M). Again, since [G : H] < oo we have Coind§; M =~ M 1 and we
can apply § H..(G; —) to the canonical injection M ~— Homy, 7 (Z G, M) to obtain
Fres$ : THL(G; M) — FH.(H; M). a

2. Complete A-cohomology via A-injective modules

Since the augmented cellular complex of a n-dimension contractible G-CW-complex
with §-stabilisers gives rise to an §-projective resolution of the trivial module Z over
7. (G, the natural choice of objects to work in algebra are F-projective modules. In
fact, Nucinkis developed the general theory using A-projective modules. However,
even if there is no geometric counterpart we show in this section that the category
of right K-modules 9100 has enough A-injective modules. In order to state and
prove standard results in group cohomology via §-injectives we need several dual

results included in Chapters IX & XII [ML93] for relative injective objects in some

10



suitable category, and for this we avoid including the proofs that are completely

analogous to the ones for projectives.

Remark 1.15. Let N be a kG-module and let Hom (kA, N) be the kG-module
with the G-action defined as (©g)6 = [p(6g 1)]g, for ¢ € Homy(kA, N). For
every kG-module N we have a G-map N . Homy (kA, N) given by ¢(n) = ¢,
where ¢, (0) = n for every 6 € A. Moreover, ¢ is A-split, in fact the injection
(N N®EA - Homg(kA, N)® kA defined by cn(n®J) = ¢, ® 0 splits. The
splitting is given by ¢ ® § > ¢(J) ® 6. From now on we write Hom for the functor

Homy..

Definition 1.16. [ML95] Let .4 be an abelian category and let P be a class of
short exact sequences. A monomorphism ¢ : A— B € P, if there is an object
C € A and an epimorphism B — C such that A — B — C € P. Analogously, an
epimorphism p : B — C € P, if there is an object A € A and a monomorphism
A Bsuchthat A — B —» Ce P.

The class P is a proper class of short exact sequences if the following hold:

¢ P is closed under taking isomorphisms,

e A~ A®DB-—-»BeP,

eif A2 Band B+ Ce Py, then A LS C e P,

eitBLCandC % DeP.then B DeP.,

o if A >i Band B2 O are two monomorphisms such that A ﬁi C e Pp,
then A i> BeP,,

o if B —(b» Cand C % D are two epimorphisms such that B ﬂ(ﬁ D e P,
then C L De Pe.

Lemma 1.17. [Nuc99, 3.1] The set of A-split short exact sequences forms a proper

class of short exact sequences.

A kG-module I is called A-injective if for every A-split « : A— B and every
« : A — [ there exists § : B — I such that 5t = «. Since for any Z G-projective
P, the surjection Z A ®P — P splits any Z G-projective module is §-projective.
Analogously, any Z G-injective module is §-injective. We write Za (kG) for the
class of A-injectives kG-modules. From basic properties of the functor Hom, we
have that Za (kG) is closed under taking arbitrary direct product and finite direct

sums.
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Lemma 1.18. A kG-module I is A-injective if and only if the functor Homyg(—, I)

is exact on A-split short exact sequences.

PROOF. Let [ be a A-injective kG-module and A -~ B Cbea A-split short
exact sequence, by the left exactness of the contravariant functor Homyg(—, I)
we only need to prove that v : Homy (B, I) — Homyg(A, I) is an epimorphism.
Since ¢ is a A-split monomorphism and [ is a A-injective module, every a €

Homyg (A, I) factors through ¢.

Conversely, assume that Homyg(—, I) is exact on A-split short exact sequences
and let © : A— B be a A-split monomorphism. Since a, : Homyg(B,I) —
Homyg (A, I) is an epimorphism for every o € Homyg(A, ) there is a 3 €
Homyg (B, I) with a = a.(8) = 1. O

From Lemma|[I.4]the next result follows immediately.

Corollary 1.19. Let Ay and Ay be two G-sets. If there exists a G-map ¢ : A1 —

Ao, then every Aq-injective kG-module is Ao-injective.

Lemma 1.20. For any kG-module N, the kG-module Hom(kA, N) is A-injective.

In particular, the category Modc has enough A-injectives.

PROOF. Let A— B — C be a A-split short exact sequence. Since Homyg(—, V)
is a left exact functor, is additive and so preserves splitting, i.e. if A@ kA — B®
kA — C ® kA splits then Homyo(C ® kA, N) — Homyg(B ® kA, N) —
Homyg(A®KA, N) splits. By applying the natural isomorphism [ML95] Ex. 4 pg.
272 1 Hom (U, Hom(V, T)) = Homye(U ® V, T') to every term in the short ex-
act sequence we obtain Homy(C, Hom(k A, N)) — Homyg(B, Hom(k A, N))
— Homy,; (A, Hom(k A, N)). Hence by Lemmal[l.18Hom(k A, N) is A-injective.
In Remark we showed that the G-map N — Homy(kA, N) is A-split and

therefore the category 900, has enough A-injectives. U

Lemma 1.21. Let I be a kG-module. Then the following are equivalent:

(1) I is a direct summand of Hom(kA, N) for some kG-module N,
(2) Iis A-injective,
(3) every A-split monomorphism o : I — J splits.
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PROOF. The implication (2) = (3) is obvious, just take the identity map
o : I — I.For (3) = (1), by Remark[1.15]. : I — Hom(kA, I) is A-split, and so
splits by hypothesis, i.e. I @ L =~ Hom(kA, I) for some kG-module L. For the
remaining implication (1) = (2), if I is a direct summand of a module of the form
Hom(kA, J) then by Lemma([l.20]and the splitting injection, I — Hom(kA, J), I

is A-injective. U

Lemma 1.22. For any G-module L and any §-subgroup H of G, the kG-module
Coindg L is §-injective. For any G-set A and any § € A, Coind& L is A-

injective.

PROOF. We first show that Coind$ L is H\G-injective, that is the functor
Homygg(—, Coind% L) is exact on H-split short exact sequences. Consider an
H-split short exact sequence A — B — C of kG-modules. The short exact se-
quence A @iy kG — B Qg kG — C Qi kG kG-splits by definition. For any
kG-module M the functor Homyq(—, M) is exact on kG-split sequences. From
Homyg(—, Homg gy (kG, L)) = Homyg(— ®ry kG, L) [Bro82, Proposition 5.6
III] and the isomorphism — @y kG = — ig ®rkG it follows that Coindg L
is H\G-injective. Let ® = | [ 5 xez K\G. Each element in H\G has an §-
stabiliser and so there exists a G-map H\G — ®. Hence by Corollary
Coind$, L is F-injective.

The previous argument applies by replacing H with G5, and there is an obvious

G-map G/Gs — A. O

Let A be an abelian category. A complex C— Xy —» X7 — -+ > X, — ---
over an object C' in A is an allowable injective resolution of C' if it is an allowable
long exact sequence with X; allowable injective for every ¢. Now we state the

analogue of the Theorem [ML95, IX, 4.3] for injective complexes.

Theorem 1.23 (Comparison Theorem). Let £ be an allowable class of short exact
sequences in the abelian category A. If v : A — A’ is a morphism of A, € : A’ —
Y’ an allowable injective complex over A’ and € : A — Y an allowable resolution
of A, then there is a chain transformation f : Y — Y’ of morphisms of A with

€'y = fe. Moreover, any two such chain transformations are chain homotopic.

Since any two proper injective resolutions of an object A are chain homotopic by

the previous theorem, the cohomology groups are well-defined.
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Definition 1.24. Let P be a class of proper short exact sequences in an abelian
category A, and C'— I a proper injective resolution of an object C'. Then we define,
for an object A,

Ext(A, C) := H"(Hom (4, T)).

Let A be an abelian category with enough proper injectives, R be a selective
category and 7' : A — R be an additive covariant functor. Each object A €
A has a proper injective resolution € : A — Y. By Theorem [1.23] it follows
that R"(A) = H"(T(Y)) is independent of the choice of the resolution Y, and
R™(a) = H™(T(f)) : R"(A) —> R"(A’) makes each R™ a covariant functor from
Ato R. Hence R" is the n-th right derived functor of T [ML95], XII, pg. 389]. The
same holds for the right derived functors associated to a proper projective resolution
and a contravariant functor 7'. Hence, we have the following dimension shifting

corollaries.

1 2
Corollary 1.25. Let A S EL B L B2 o bea proper injective resolution
of an object A, and define L° = im(¢) and L™ = im(d") for n > 1. Then if T is

covariant, we have
(R"T)(A) = (R"T)(LY) = (R"'T)(L') = --- = (R'T)(L"7Y).
In particular,
Extfi!(C, A) = Extp(C, L%) = - - = Bxth(C, L"),

Corollary 1.26. Let--- — P, L P LR Py S Chea proper projective resolution
of an object C, and define Ky = ker(e) and K,, = ker(d,,) forn = 1. Then if T is

contravariant, we have
(R"IT)(C) = (R"T)(Kp) = (R"IT)(K}) ~ --- =~ (R'T)(K™1).
In particular, for the functors Exti, introduced in [Nuc99|| we have

Ext%™(C, A) = Ext}p(Ko, A) = -+ = Extp(K,_1, A).

Now we are able to compare Ext’ with Ext’s.

Theorem 1.27. Let A— E° — E' — ... be a proper injective resolution of an
object A and - -- — P, — Py — C be a proper projective resolution of an object

C. Then foralln =0

H"(Hom(P¢, A)) =~ H"(Hom(C, Ea)).
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Thus the two definitions Ext’s and Ext’, have the same value on (C, A).

PROOF. This is just a repetition of the ordinary case that can be found, for

example in [Rot79]. O

There is an obvious notion of proper injective dimension. Note that Lemma [T.21]

holds in the generality of proper injectivity.
Theorem 1.28. The following properties for an object J are equivalent:

(1) J is proper injective;

(2) for each proper monomorphismx : A— B, z* : Hom(B, J) — Hom(A, J)
is an epimorphism;

(3) every proper short exact sequence J — B — C splits;

(4) for every module C, Ext},(C, J) vanishes.

PROOF. This is analogous to [ML9S, III, 7.1]. O

Complete A-Cohomology via Satellites Using A-injectives. The purpose of
this subsection is to define the complete A-cohomology groups via satellites as
in [Nuc99]. In contrast to Nucinkis’ work, we use A-injective objects instead of

A-projective ones.

Notation. When considering cohomology relative to a G-set A as above we
denote Ext} (A4, C) by AIExt},(A, C). The A-injective dimension of a kG-
module M is the length of the shortest injective resolution of M. This is denoted
by Aidge M.

In order to establish an analogue of [ML95, XII, 7.3] we need to rewrite some
notation. Since we assume that the category .A has enough proper injective objects,
there is for each object C of A a proper monomorphism ¢ : C'— I with I proper

injective; this gives a proper short exact sequence
C x
EY . C—1—J,

We call it, with abuse of language, a short proper injective resolution of C. Note

that .J is not proper injective in general.

Regard each proper short exact sequence £ : C — B — A as a complex in A, say

in dimensions 1, 0 and —1. Then T'(E) : T(A) — T(B) — T(C) is a complex in
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R; its one dimensional homology H1(T'(F)) is the object of R which makes
H\(T(E)) & T(A) - T(B), R,

exact. Each morphism I" = (v, 8, «) : E — E’ of proper short exact sequences
in A gives a chain transformation 7'(T") : T(E’) — T(FE) and hence induces a
morphism

H(T) : H1(T(E")) - H{(T(E)), R,

which is characterized by pH1(T") = T'(«)u’. Moreover, H1 (") depends only on
v, E and E’ and not on « or 3. To see this, let g = (v, By, ) : E — E’ be any
other morphism (of proper short exact sequences) with - as the first component. In

the A-diagram

o T

C ¢ B A

Ol 550l s laao
~

' C o B x AI,

(B —Po)o =0,s0 38— [y = sz for some s. Also (o — ag)z = 2/ (8 — ) = 2'sz,
so z's = a — ayp, sz = § — [y. Hence s ia a homotopy I' = T'y. By the additivity
of T we have that T'(s) is a homotopy T(I') =~ T'(T'g) : T(E) — T(E'), so
Hy(T') = H1(T'y). Now there exists:

e to each object C of A a short injective resolution £,
e toeachy : C' — C’in Aamorphism 'V = (y,—,—) : B¢ — B,
e to each proper short exact sequence F in A a morphism A® = (1, —, ) :

EY > E.
Lemma 1.29. Given T : A — R contravariant additive and the data above,
S(C) = Hy(T(ES)) and S(v) = Hy(T") : S(C') — S(C)
define a contravariant additive functor S : A — R, while for p,
E* = uHy(AF) : S(C) — T(4)

defines a natural transformation which makes (S, E*, T') a P-connected con-
travariant pair such that S(C) — T(K) — T(J) is a left exact R-sequence when-

ever J is proper injective and C' ~— J — K is a proper short exact sequence.

PROOF. The proof is analogous to the proof of [ML95, XII, 7.3]. U
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Theorem 1.30. Let A be an abelian category with enough proper injectives. Then
the contravariant pair (T, E*, S) is left P-couniversal if and only if each proper

short exact A-sequence
C—J—»K

with J proper injective induces an exact R-sequence S(C)—T(K) — T(J).
Then S is a left satellite of T.

PROOF. The proof is analogous to the proof of [ML95, XII, 7.7]. U

Let C'— J — K be a proper short exact sequence with J proper injective. We
define

S(C) :=ker(T(K) — T(J)).

The functor S(C) is additive and from above it is independent of the choice of
the proper injective J. We call S the left satellite of T and we can define the
iterated (left) satellites as: SOT(C) = T(C), S~'T(C) = S(C) and S "T(C) =
S=Y(S=nH+IT(C)). If J is proper injective, then S~™"T'(J) = 0 for every n > 1
by construction (as J>—J — 0 is a proper short exact sequence and the basic

properties of the functor 7).

Lemma 1.31. If T is a contravariant half proper-exact functor (i.e. T(C) —
T(B) — T(A) is exact for every proper short exact sequence A— B — C)
and A has enough proper injectives, then for each proper short exact sequence

Ar— B —» C there is an associated long exact sequence

<> ST"T(C) - ST"T(B) —» S "T'(A) - S " T(C) - ---
= STIT(A) - T(C) - T(B) - T(A).

PROOF. Lemma [1.29| tells us that S(C) — S(B) — S(A) - T(C) —
T(B) — T(A) forms a complex. By iterating this argument we have that the

sequence is a chain complex. The exactness can be proved as in [CES6! II1, 3.1]. [

Definition 1.32. A P-connected sequence of contravariant functors is a sequence
of functors T* = {T", n € Z} : A — R, which assigns to each proper short exact

sequence A— B — (' of a 4 a complex

S TN A) S TC) T (B) - T (A) - T(C) - -
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We say that the nonpositive part T< = {T" n > 0} of a P-connected sequence
of contravariant functors is of proper cohomological type if for each proper short

exact sequence A — B — (' we have a long exact sequence

S TT(C0) > T™™(B) » T A) - T7"C) - .- - T°(A).

In order to prove the proper I-completion analogue of Mislin’s completion [Mis94]

we need the following result.

Proposition 1.33. Let T<C and U<° be the nonpositive parts of P-connected
sequences of additive contravariant functors, and let fO : T® — U be a natural
transformation. If. in addition, USC is of proper cohomological type and U~"(I) =

0 for all n = 0 and all proper injectives I, then:

(1) f° extends uniquely to f<0 : T<Y — U< and f<° factors uniquely
through the canonical transformation T<C — S<0T0,
(2) if TV is half P-exact and f° is an equivalence then the induced transfor-

mation SSOTY — U<V is an equivalence.

Before we can prove this proposition we need one more result.

Lemma 1.34. Let A be an abelian category with enough proper injectives. Then
the following are equivalent for a P-connected sequence of contravariant functors
(7%, B*}:

(1) for each proper short exact A-sequence K — I — J with I proper

injective, the sequence
T—TL(K) NN T—’n-i-l (J) — T—n-‘rl(I)

is exact for every n > 0;
(2) for each P-connected sequence of contravariant functors {V*, E,*} and
each natural transformation f° : VO — TO there exist a unique natural

transformation f* : V=" — T, extending f°.

PROOF. Suppose that we have (1). Let {V*, E'*} be a P-connected sequence
of contravariant functors and let f : V° — T° be a natural transformation. We
construct by recursion on n the necessary natural transformation f : V=" — T,
Without loss of generality we can assume that f* commutes with the connecting

homomorphism for 0 < i < n; now we apply point (1) of Theorem to
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show that (T™, E™, T,_1) is left P-couniversal, and so we can construct a unique
VT T with En " = g™,

Suppose now, that we have (2). From T° we construct the left satellite S*, and
we iterate the construction to obtain S™ : A — R from S™~! for every n. Since
the resulting P-connected sequence satisfies S™ (K ) — S"~1(J) — S 1(I), it is
couniversal and therefore it must coincide with the unique P-connected sequence

of contravariant functors {T*, E*} for the given TY. O

Now we are ready to reformulate [ML95, XII, 8.4].

Lemma 1.35. Let A be an abelian category with enough proper injectives. Then
each contravariant functor T is the 0-component for a P-connected sequence of
contravariant functors as in the previous lemma, where T'"" is the n-th iterated left

satellite STV,

PROOF OF PROPOSITION[I.33]l This is analogous of [Nuc98, 2.3]; T<0 satis-
fies (1) of Lemma and so there exists an unique transformation <% : U0 —
T<". The canonical transformation US? — S<0T0 can be deduced from Lemma
Applying Lemmato UY — T° without viewing V° as the 0-th compo-
nent of the P-connected sequence of satellites, gives us a unique transformation
§<01/0 _, <0

By Lemma it follows that S<0VY is of proper cohomological type. Since in
addition, SS°UY(I) = 0 for all proper injective I, we can apply the first part to

TY — UV and therefore S<°U° — T'<C is an equivalence. O

A P-connected sequence of contravariant functors 7% = {1, n € Z} is called
a proper contravariant (—oo, o0)-cohomological functor, if for each proper short
exact sequence A— B — C, we have a long exact sequence --- — T"(C) —

T"(B) — T"(A) — T"*1(C) — - - -. Following [Nuc99, 3.7] we define:

Definition 1.36. A proper contravariant (—o0, o0)-cohomological functor 7% =
{T™, n € Z} is called proper I-complete if T"(I) = 0 for all n and every proper
injective module /. A morphism V* — T™* of proper contravariant (—o0, o0)-
cohomological functors is called a proper I-completion of V* if T* is proper
I-complete and every morphism V* — W* into a proper contravariant /-complete

functor W* factors uniquely through V* — T*,
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Theorem 1.37. Every proper contravariant (—oo, o0)-cohomological functor T* =
{T™, n € Z} admits a unique proper I-completion 7* : T* — T*. This completion
is obtained as:
T™(A) = lim S~FT™ R (A4).
k=0
PROOF. We follow the proof of [Nuc98, 2.5]. For every n € Z we obtain a

proper contravariant (—o0, o0)-cohomological functor by defining

O RN
By (1) of Proposition the identity morphism 7" — 71" extends uniquely to a
canonical morphism, defined for all integers j < n, as ¢, : 79 — S9="T™. This
induces a unique morphism ¥ : T* — T*(n), where i}, = idy; for all j > n.
In the same fashion, we extend for all m > n, the identity on 7™ to a unique
tym 2 T*(ny — T*(m). Since for all integers m > n the morphisms ¢y, ,, are
uniquely determined, we have obtained a direct system {7*(n), ¢}, . }. Thus, we
can now define
T* = lim T*(n).

ko
n,mn

T* =limey : T* - T%,
—

For all m = n we have the equality ¢ = (7, which enables us to define

which satisfies the universal property of Definition [I.36] O
Lemmas 2.6 and 2.7 in [Nuc98] or Lemmas 3.9 and 3.10 in [Nuc99]] have proper
injective versions.

Lemma 1.38. Let T be a proper contravariant (—o0, o0)-cohomological functor
and ng € Z such that T™(I) = 0 for all proper injective I and all n = ng. Then
T"(A) : T"(A) > T (A) is an isomorphism for all n. > ny.

Lemma 1.39. [If f* : T* — V* is a morphism of proper contravariant (—o0, o0)-

cohomological functors where V'* is proper I-complete and if ™ : T" — V" is an

equivalence for all n = ng then the induced morphism T* — V*isan equivalence.

Cohomology relative to a G-set A has a proper /-completion defined as follows:
Y AM = coker(M — Hom(kA, M))

and inductively,

YAM = SAS M.
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Since the definition of the left satellite is independent of the choice of the proper

injectives, we define:
SLAI Extpo (M, N) = ker(ALExt}o(XaM, N) —» ALExt;o(Hom(kA, M), N))
and the proper Al-completion as:

AExty,g(M, N) = lim S™% ATExt!3F(M, N).

k=|n|

A Different Approach to Complete Relative Cohomology. In this subsec-
tion we present a A-relative version of Benson-Carlson’s approach to complete

cohomology via injectives that appears in [Nuc98].

Definition 1.40. Let Al Homyg (M, N) be the subgroup of Homy (M, N), con-
sisting of the homomorphisms in Homyg (M, N) factoring through a A-injective.

We denote
[M, N]a1 = Homyg(M, N)/ AlHomgg(M, N),

and by AI9M00, the category having as objects the kG-modules and whose

morphisms lay in [—, —]A1. Note that there is an obvious surjection
HomkG(Ma N) - [Mv N]AI
v — [¥] = ¥ + ATHomyg (M, N).

Lemma 1.41. Let N be a kG-module and A— B — C be a A-split short exact
sequence of kG-modules. Then every [¢p] € [A, N|a1 induces a unique [V] €
[C, XA N]| a1 In particular YA is a functor from Ta(kG) to itself.

PROOF. Take a representative ¢ of [¢] in Homyg (A, N). Since Hom(kA, N)
is a A-injective kG-module and 7 is a A-split monomorphism, there exists a map
¢ : B — Hom(kA, N) making the left hand square of the diagram below commute.
We define amap ¥ : C — XA N as ¥(c) = w¢(h) where o(b) = ¢ which makes
the right hand square commute (it is not unique, but this does not matter). Suppose

that there is another pair ¢’, ¥ making the diagram commute:

N — Hom(kA,N) Z—== TAN

4 )| K@TA@

T e

A € B C.
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We want to show that ¥ — U’ factors through Hom(kA, N) implies [¥] = [¥'].
We define the map © : C' — Hom(kA, N) by O(c) = (¢ —¢')(b), where o(b) = c.
Hence we obtain 700 = m(¢ — ¢') = (¥ — ¥')o, but o is surjective and so

m© = U — ¥, Therefore, [¥] = [7O + U] = [T'].

Suppose ¢ factors through a A-injective J, then YA J is A-injective since the short
exact sequence JJ — Hom(kA, J) - ¥aJ and since ¥* : C'— XaJ is a A-split

monomorphism, ¥ factors through the relative injective X J.

To show that A is a functor we can replace A — B — C' by N — Hom(kA, N) —
3 AN for some kG-module N, and verify the following:

i) YAN € AI9M00;: immediate by the definition.

ii) Let M,N € Alimobkg and gb € [M, N]AI- Then ZA¢ € [EAM, EAN]AI

follows from the way we have defined YA ¢.

iii) For ¢ € [M, N]|ar and p € [N, O]ar we have Xa¢ 0 ap = Ea(pp). We

consider the diagram:

M —— Hom(kA,M) T—s S M
¢ g DN
N < Hom(kA,N) — AN

P AIp ZAp

0 < Hom(kA,0) — ZA0
We prove that XA (pgp) — X a¢ o Xap factors through a A-injective. We define

U YAM - Hom(k A, O)

m  —  (Al(pg) — Alpo Al ¢)(m)

where mm = m for some m € Hom(k A, M). Suppose there is a morphism

m’ € Hom(k A, M) such that w(m’) = 0, then by the exactness of the first row
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there is an m € M with ¢v/n = m'. Hence,

(Al{pp) — Al ¢ o Al p)(un) = (Al pp)e
= (Al pg)e
= (Al pg)e
= o(pg)(m
= 0’

(m) — Al ¢ o Alpo u(1n)
(m) — (AL@)Tp(1m)

(m) = (0¢)p(m)

) = (a¢)p(m)

and so ¥ is an homomorphism.
iv) For every M € AI9Mod,c, Xa(1ar) = 15, . Replace in the previous diagram
the second row with a copy of the first row and erase the third one. The identities

on Hom(k A, M) and on ¥ A make the diagram commute. O

By Lemma|[I.41]there is a well-defined chain:
[M, N]ar — [SaM, EaN]ar — [EAM, SAN]ar — -

Definition 1.42. Let M, N € 9odxc. Then we define the 0-th relative injective

Benson-Carlson group as:

ABCy (M, N) = lim[Sh M, S N]ar

120

We would like to show that the above defines a proper contravariant (—o0, 00)-
cohomological functor which is proper I-complete. We begin with the classical

Schanuel’s Lemma.

Lemma 1.43. Let A -~ [ — C and A ~ J — D be short exact sequences in an
abelian category A. Suppose that there exist ¢ : [ — J and ) : J — I such that
Yo =71and ¢t = 1. Then J @ C = I @ D. Suppose that there is an unique map
¢ : I — J such that ¢7 = 1. Then there is a short exact sequence 1 — C @ J — D.

PROOF. The proof is analogous to the proof of Lemma 2.7 in [Nuc99]. (]

Corollary 1.44. Let A— I — C and A — J — D be proper short exact sequences
in A. If J and I are proper injectives then

JeC=IdD.

Furthermore, let M — J and M — 1 be two proper injective resolution of M and
let D™ and C™ be the n-th cokernels respectively. Then D" @ A -inj = C" @ A -inj.
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Lemma 1.45. The functor [—, N a1 is half exact.

PROOF. Let A - B = C'be a A-split exact sequence. We have to show that
[C,N]a1 5 [B, N]ar S [A, N]aq is exact at [B, N]ar.
From (*7*[¢] = [mtp] = [0] it follows that im 7* < ker:*. Now we show that
ker* € im7*. Let [¢] € ker ¢*, then ¢¢ factors through a A-injective I, and we

have
A .t o B

e

ICLN

where Sa = ¢¢. Since I is A-injective and ¢ is a A-split monomorphism, there

exists ¢ : B — I such that 1)t = «, and so [¢] = [¢ — S¢]. Since
o= BY] = (¢ — B)

= fa — B

= /804 - /Ba = 07
then ¢ — 1 € ker ¢, but Hom(—, ) is a left exact functor and so ¢ — 1 € im 7*,
hence [¢] = [¢ — fY] € im7*. O

Lemma 1.46 (Horseshoe Lemma for proper injectives). Every proper short exact
sequence A — B — C in an abelian category A with enough proper injectives can

be embedded in a commutative diagram

A € B

o

J G Joe>

P

SC ,,,,, > T s

b‘<—)Q

v
< <

in which all rows and columns are exact, the middle row splits and consists of
proper injectives. Moreover, the sequences A— I — S and C— L —V with 1

and L proper injective, may be given in advance.

PROOF. Since A has enough proper injectives we can suppose without loss of
generality that A — [ — S and C'— L — V with I and L proper injective are given.
Now let J = I @ L. Clearly the middle row splits and since A — B is a proper
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monomorphism there exists B — I @ L that makes the upper squares commute.

Let T be the coker of B — I ® L and we see that the lower squares commute. [

Corollary 1.47. Every A-split short exact sequence A — B — C gives rise to a
A-split sequence of the form XA A — XA B — XAC, where ¥z B := coker(B —
Hom(kA, A) @ Hom(kA, C)).

PROOF. By the Horseshoe Lemma we have the commutative diagram

A B C

Hom(kA, A) —— Hom(kA, A) @ Hom(kA,C) —— Hom(kA,C)

YAA SAB SAC.

By tensoring it by kA we obtain a diagram with the side columns and the first two

rows split, and so the bottom row splits as well. O

Lemma 1.48. Every A-split short exact sequence induces a long exact sequence
oo = [XAB,N|ar = [EaA, N]ar — [C,N]a1 = [B, N]a1r — [A, N]ar.
PROOF. By Lemmal|l.45|we have exactness at [B, N]a1. We first show exact-
ness at [X A B, N|ar. By Corollary we obtain a short exact sequence
YAA—XAB—3AC.
We apply Lemma I.45]to have
[XaA, N]ar—[2AB, N]ar —=[2aC, N]ar

which is exact at [X¥ A B, N|a1. Schanuel’s Lemma for proper injectives implies

that XA B ® A-inj = ¥ A B @ A-inj, and so

[XAB, N|a1 = [EAB ® A-inj, N|a1

I

[XAB @ A-inj, N]a1

114

[EAB; N]Ala
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and so we have exactness at XA B. Applying the Schanuel’s Lemma to

A € B C
A “—— Hom(kA,A) —= YA
we obtain a short exact sequence B — C' @ Hom(kA, A) - XA A.

Since [C ®Hom(kA, A), N|a1 = [C, N]ar by applying Lemma to the above

short exact sequence we have exactness at [C, N]ar.

To prove exactness at [X A A, N |ar we use a similar argument. We apply Schanuel’s

Lemma to

B “——> C@®Hom(kA,A) —= YA

| |

B = Hom(kA, B) YAB

in order to obtain C @ Hom(k A, A) — XA A@® Hom(k A, B) - XA B. Hence

[XAB,N]a1 & [EaAA@Hom(k A, B), N|]a1 — [C @ Hom(k A, A), N]a1

[XAB,NJa1 & [EaA, N]ar [C, N]a1

is exact at the middle by Lemma[[.45] O

Now we define for every n € Z, the n-th relative injective Benson-Carlson group:
~ N ~ 0
ABC(M,N) = ABCpq(M,EAN).

Even if XX N is not defined for n < 0, the definition is reasonable since in the
direct limit we omit only a finite number of initial terms. Since taking the direct
limit respects exactness, we take the direct limit for each column to conclude the

following.

Proposition 1.49. The relative injective Benson-Carlson groups A P:E?ZG(—, N)

defines a proper contravariant (—o0, o0)-cohomological functor.

Theorem 1.50. Let N be a kG-module. Then for all n € Z there is a natural

equivalence of functors

O" : AExt;(—, N) > ABCyg(—, N).
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PROOF. Letd : N — I* be a A-injective resolution of N such that for every
j = 13\N = coker(I’ — [F*1). From £} N I" — S N we have the

commutative diagram:

Homye (M, I") > Homyg(M,S4N) —> AIExt!(N, % 1N)

™ /
~

L*
M, I"|ar —— o [0, S N

By the surjectivity of § we can define the map 6" : AIExt'(N,XX 'N) —
[M, %% N]ar by mapping every a € AIExt!(N, XX 'N) to 7'(a) where a is
a o-preimage of a. Since [M,I"]a1 = 0 the map 0" is well-defined: choose

a’ # a such that 6(a’) = a then 6(a — a’) = 0 and so a — a’ = +*(a) for some

a € Homyg (M, I™) and 7'(a — ') = [*]n(a) = 0.
We show that 6™ is surjective as 7/, since (dimension shifting)
ATExt' (M, 5% 'N) =~ ATExt"(M, N)

we have for every n > 1 the surjection 6" : AIExt" (M, N) —|M, XX N|ar. Now

direct limits respect surjectivity, so we have for each integer n, the surjection:

lim ATExt" ™ (3K M, N) — lim [SA M, S5 *N]ar =t ABC" (M, N).

k=[n| k=|n|

From the short exact sequence
K (M) — Hom(k A, S M) — S M1 M
we have
C: ATE!EF(SA M, N) — ATEPSFHH (SR M, N)

im ¢ = ker(AIExt{F 1S5 M, N) — ATExt}H ! (Hom(kA, 5 M), N))
= STLATExtp M (S M, N)
= STV ATExt}F H(ZAM, N).

Hence,

lim AIExt) F(SAM,N) = lim S~ % ATExt] " (S M, N)

k=[n| k=|n|
~n+l
= AExt  (SaM,N)
= AExt (M, N).
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Hence, for every n € Z we have the surjection,
©" : AExt (M, N)— ABC" (M, N).

We are left to deal with the injectivity of ©™, so we start by considering & € ker ©™.
The element 2 can be represented by an element z € Al Ext"*k(EkAM , N) for
some k > |n| such that its image in [SK M, 55T N A is zero, i.e. it factors
through a A-injective. Using the A-injective resolution of N we can represent T
by a cocycle 2 : XK M — I"*#+1 which factors through ™" N. Thus we have

obtained
YKM = Hom(kA, XX M)
xl \ l¢

Jntk+l EZ""’CN

Since y is a representative of the image of Z under ©" in [XK M, E]X’”N | ar (that
is zero) it factors through a A-injective. The injection ZZH“ — I"MTRFIN §s A-
split, and so we can assume that y factors through Hom(k A, ZZM ) and the above
diagram commutes.

Now we examine at

SAM s phtlpy — T yhHN — yhly

U NP

EZ""kN C—s Jntk+l ——s ZZ—‘rk-‘rlN ( > Jntk+l

and we note that y factors through I**1A/, a A-injective. Now z represents
in AI ExtTA”rkH(EZHM, N), z is a coboundary since z = 7'0¥ = dWV, where

d: "tk — [Tkt Hence 67 = 0 and # = 0 in the direct limit. O
Theorem 1.51. Let M and N be kG-modules.

(1) If M or N has finite A-injective dimension then AE}?DZG(M7 N) =0,
foralln € Z.
—0
(2) ABxtyo (M, M) =0 < Aidye M < .

PROOF. It is analogous to [Nuc98, Theorem 3.7]. O
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Complete A-injective Resolutions.

Definition 1.52. Let M be a kG-module. Then a complete A-injective resolution of
M is a A-split exact sequence of A-injectives I = (I*, d), indexed by the integers
such that

(1) I coincides with a A-injective resolution of M in sufficiently high dimen-
sions,

(2) the chain complex Homyg (J, I*) is exact for any A-injective kG-module
J.

Lemma 1.53. Let M be a kG-module with a complete A-injective resolution
I=(I*d). Then:

(1) if I = (J*,6) is a A-injective resolution of M with J* = 0 for all i < 0,
and coinciding with 1 in sufficiently high dimensions, then there is a chain
map J — I unique up to homotopy;

(2) any two complete A-injective resolutions of a kG-module M are chain

homotopy equivalent.

PROOF. The proof of (1) is analogous to [Nuc98, Lemma 7.2 ]. Part (2) follows
from Theorem [1.23]and part (1). O

Note that the functor H*(Homyg(—, I)) is a proper (contravariant) complete
(—o0, 00)-cohomological functor.

Theorem 1.54. Let M be a kG-module with a complete A-injective resolution

I = (I*,d). Then for any kG-module N we have the equivalence
ABxto(N, M) = H*(Homyg(N, I*)).
PROOF. Suppose M — J is a A-injective resolution of the module M such

that I coincides with J in sufficiently high dimensions. Then by Lemma[[.53]there

1s a natural transformation
ALExtfo(—, M) —» H*(Homgg(—, I*)).

By Lemma|l.39|and by the uniqueness of the relative /-completion we have that

this natural transformation is a natural equivalence. U
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For any ring R, the functors E;t;(M ,N') and E/]x\t;(M , ') are naturally equivalent
if and only if silp R and spli R are finite [Nuc98]. It would be interesting to know
when A EX/tZG(M ,N)and A E;RZG(M , ') are naturally equivalent. If k has finite
self-injective dimension, Emmanouil answered an old open question by showing
that silp kG < o0 <= spli kG < oo [Emm10]. Maybe a similar result holds for

Assilp kG and A spli kG, where these invariants are defined in the obvious way.

Corollary 1.55. Let N be a kG-module with a complete A-injective resolution.
Then,

(1) for every A-injective module I in sufficiently high dimensions,
AlExto(I,N) =0,

(2) if Q is A-projective module,
A Exty(Q.N) = 0.

PROOF. Part (1) is immediate from Theorem [1.54] For part (2) let N — J be a
A-injective resolution of the module N and let C; = coker(J;—1 — J;). By Theo-
rem and dimension shifting, it follows A E\JX/tZG(A, N) = AExtlo(A,Cp )
for any kG-module A. When A is A-projective the functor Homy (A, —) is exact
on A-split sequences, hence A Extr(A,Cp_2) = 0 and so A E\b?tZG(A, N) =
0. O

Proposition 1.56. [KT91] Let G be a group and B(G,Z) be the 7 G-module of
bounded functions from G to 7. Then B(G, Z) satisfies the following

e B(G,Z) is a free Z F-module for each §-subgroup F of G,
o H%G;B(G,7Z)) #0.

Moreover, we consider:

e B(A,Z) for the set of bounded functions from A to Z,
e B(A k) = B(A,Z) ®y k for the k-algebra of functions from A to k

which takes only finitely many values.

As in [Nuc99] we define the G-action on B(A, k) as ¢9(6) = ¢(dg~'). The
module B(A,Z) is in general not free over Z F. To see this, first consider the
§-split surjection B(A,Z) — Z. This implies that Z A is a direct summand of
B(A,Z) ® Z A but Z A is not Z G-free in general.
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Lemma 1.57. [Nuc99, 5.6]
(1) B(A, k) is a free k-module,
(2) there is a k-split inclusion k — B(A, k) of kG-modules,
(3) the inclusion k— B(A, k) is A-split.

Lemma 1.58. Let I be a A-injective kG-module. Then for any k-free kG-module
L, the module Hom(L, I') is A-injective.

PROOF. Define the action of G on ¢ € Hom(B,C) by ¢9(a) = ¢(ag 1)g.
Then by [[CK96, 3.2] it follows that there is a natural isomorphism:
Homyg(A® B,C) ~ Homig (A, Hom(B, ()).

Since the functor — ® L is exact, and it takes split sequences to split sequences, the
result follows now by the A-injectivity of I. Again — ® — is always associative
and since k is commutative, — ® — is commutative and so (A ® kA) ® L =

(AR L)®kA. O
Lemma 1.59. Let [ be a A-injective kG-module. Then it is a direct summand of

I®B(A, k).

PROOF. By tensoring k — B(A, k) we have a G-monomorphism ¢ : [ — I ®
B(A, k). Then by (3) of Lemma and by Lemma|l.17|we have that k — B(A, k)
splits when restricted to each stabiliser GG, and so does ¢, hence ¢ is A-split. By

Lemma [I.21] we are done. O

We conclude the chapter with a result analogous to [Nuc99, 5.9].

Lemma 1.60 (A sufficient condition). Let L be a kG-module such that
Aidge(Hom(B(A, k), L)) < co.

Then L has a complete A-injective resolution which splits under Hom(B(A, k), —).

PROOF. We write B for B(A, k), B for the cokernel of the injection k — B, and
Cok" L for the r-th cokernel of a A-injective resolution of L. By Lemma|[I.58|the
module Hom(B, Cok" L) is A-injective for every r and since A idx(Hom(B, L)) <
o0, we may assume Hom (B, L) is A-injective by replacing L with a suitable coker-

nel. By part (2) of Lemma/[l.57| we have a surjective G-map,

7 : Hom(B, L) - L,
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that by 3 of Lemma and by Lemma we have that the inclusion k£ — B
splits for all finite subgroups of GG, which implies that 7 is A-split. Now we write
Hom'(B, L) for Hom(B, Hom(B, ..., Hom(B, L---))) i-times. By the above,
Hom(B, Hom’(B, L) is A-injective for every i > 0. Hence we have a A-injective
exact complex:
-+ — Hom(B,Hom‘(B, L)) — - -+ — Hom(B, Hom(B, L))
— Hom(B, L)~ L

that is A-split since the surjection to L is A-split.

Note that by Lemma [1.58] the module Hom(B, Hom®(B, L)) is A-injective for

every ¢ > 0, and we have that the short exact A-split sequence
Hom(B, Hom'™!(B, L)) — Hom(B, Hom(B, Hom'(B, L)))
— Hom(B, Hom*(B, L))
by 3 of Lemma splits. This clearly remains true even for a A-injective res-
olution of L. Splicing this together with a A-injective resolution J of L, we

have a complete A-injective resolution I of L; of course we are left to check that

Homyg (J, 1) is exact for every A-injective .J.

By Lemma it is sufficient to show that Hom(J ® B, I) = Hom(.J, Hom(B, I))
is exact, but by the above Hom (B, I splits and so Hom(.J, Hom(B, I)) is exact. [
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CHAPTER 2

$-cohomological dimension

In the context of cohomology relative to a G-set there is a well-defined notion
of §-cohomological dimension. One of the main reasons why this dimension is
important comes from the fact that every H;§-group has finite §-cohomological
dimension. Nucinkis introduced §-cohomology in order to find an appropiate
algebraic counterpart for the minimal dimension of a contractible G-CW-complex
with F-stabilisers. This question remains unsolved after 12 years; in fact, it is
also unknown if the finiteness of the §-cohomological dimension implies H;§-
membership. There is hope that studying the behaviour of the §-cohomological
dimension will shed some light on the question above. For a group G, §cd G
denotes its §-cohomological dimension. In this chapter we focus our attention on

its behaviour under forming group extensions and we prove:

Theorem. Let N — G — Q be a group extension with §cd N < n. Moreover,
assume that for any subgroup H of G with § cd H < n and any extension L of H
by a group of prime order has §cd L < n. Then Fcd G < Fed H + Fed Q.

We make a brief comment about the result. The behaviour of H;§-groups and
in particular the behaviour of the minimal dimension of a contractible G-CW-
complex with §-stabilisers is not completely understood with respect to taking
group extensions. There are several other algebraic dimensions defined for groups
for which finiteness is conjectured to imply membership of H; . It is important to
recall that for these dimensions the exact and good behaviour with respect of taking

group extensions is often well-known.

1. Basics, examples and motivation

We begin by recalling the main group invariant for discussion in this chapter. Let G

be a group and A a G-set.

33



Definition 2.1. [Nuc00] The A-cohomological dimension of G is defined as

ACdk G = Apdk’G k
:= inf{n | k admits an A -projective resolution of length n}

= sup{n| AH"(G; M) # 0, for some Z G-module M},

where A H*(G; —) := A Extj(k, —). The last equality can be shown analogously
to [Bro82, VIII, Lemma 2.1]. Since the augmented cellular chain complex of a
finite-dimensional contractible G-CW complex with §-stabilisers is an §-projective
resolution of Z over Z G, it is natural to work with Z as the ring of coefficients. We

write A c¢d G for A cdz G and § cd G when the G-set A has the property ().

The classifying space for proper actions. Let G be a group and X be a CW-
complex. The cell complex X is a G-CW-complex if G acts admissibly on X
by self-homeomorphisms. The action is admissible if the set-wise stabiliser of
each cell coincides with its point-wise stabiliser. A G-CW-complex is proper if
all its cell stabilisers are finite. If a proper G-CW-complex has the property that
for each F-subgroup K of G the fixed-point subcomplex XX is contractible, it is
called a classifying space for proper actions of G and it is denoted by FzG. A
classifying space for proper actions of GG can also be defined as a terminal object in
the homotopy category of proper G-CW-complexes. Note that, since G does not
act freely on X, usually it is not possible to recover G from X /G, contrary to what
happens on free G-CW-complexes and there is no notion of proper Eilenberg-Mac

Lane space for G.

Examples of models for FzG arise virtually everywhere in geometric group theory;
many natural spaces on which infinite groups act are classifying spaces for proper
actions. Forcing the action to be free leads to an infinite-dimensional space whenever
G has torsion, while for any §-group [ a point is a suitable EzF'. Of course, if
G is torsion-free, then any model for EG is a model for E3G. We will mention
here some examples; the interested reader is advised to consult [Liic05] for a more

explicit and wide survey on the topic.

Examples 2.2.

o If G = Dy, := Cy x Cy, then R with the usual D -action is a model for
E5G.
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e If GG is a countable L§-group, then G acts on a tree 7 with §-stabilisers
and 7 is a 1-dimensional model for E3G [Ser03].

¢ If G is a word-hyperbolic group, then the second barycentric subdivision
of the Rips complex R;(G) is a finite model for EzG for large enough d
[(MS02].

e The barycentric subdivision of the spline K, is a finite (2n—3)-dimensional
model for Ez Out(F),)[KV93, BVOI].

Remark 2.3. By generalisations of constructions in [Mil56, [Seg68] every group
G admits a model for ExG. It is interesting to study groups admitting classifying
spaces for proper actions satisfying some finiteness properties; the most popular
properties are being finite-dimensional, being of finite type and being cocompact.
Our work is mainly focused on the first property, and for a group G the minimal
dimension of a model for an E3G is called Bredon geometric dimension and is

denoted by gdz G.

The orbit category OzG has as objects the G-sets H\G where H is an §-subgroup
of G and the morphisms are the G-maps. An OzG-module is a contravariant functor
from Oz(G to the category of abelian groups. For any G-set X with §-stabilisers,
Z[?, X ] denotes the Z-free module on the set of G-maps from 7 to X. It turns out
that the free OzG-modules are precisely the modules of the form Z[?, X | where
X is a G-set with §-stabilisers, and their direct summands are the projective OzG-
modules. Moreover, in the category of OzG-modules there are enough projective
OzG-modules and there exists a well-defined notion of projective dimension. Let Z
be the OzG-module that sends every G-set to Z. Then the Bredon cohomological

dimension of GG, denoted by cdz G, is the projective dimension of Z.

A group G that admits a model for E5G of dimension n < o0 has finite Bredon
cohomological dimension, finite §-cohomological dimension, finite rational co-
homological dimension and the integral homology groups H;(G) with arbitrary
coefficients are torsion for ¢ > n [KM98||. There is another class of groups closely
related to the class of groups having a finite-dimensional classifying space for proper
actions, the class Hy§. This is the first “non-trivial” step for building up Kropholler’s
class H§. A group is an Hy §-group if it admits a contractible finite-dimensional G-
CW-complex with §-stabilisers. We introduce the notion of Kropholler dimension.

This is, for a group G, the minimal dimension of a contractible G-CW-complex
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with §-stabilisers. We denote the Kropholler dimension of a group G by K(G). Of
course G € H;§ if and only if R(G) < oo.

Clearly every group that has a finite-dimensional model for Fz is in Hy § and
a conjecture of Kropholler and Mislin claims that this implication is reversible.
If G € H; § then the augmented chain complex over Z is a resolution of finite
length of Z over Z G made of permutation modules with §-stabilisers. A result
proved independently by Bouc [Bou99| and Kropholler-Wall [KW11] implies that
this resolution is §-split. Hence, every H; §-group has finite §-cohomological
dimension and in particular § cd G < K(G). One of the main questions was how to
algebraically characterise groups that admit finite-dimensional classifying spaces for
proper actions. The problem was solved with Bredon cohomology. It turns out that
every group G of finite Bredon cohomological dimension has a finite-dimensional
E3G [Liic89]; more precisely for any group G we have gdz G < max{3,cdz G}. It
is important to recall that in [BLNO1] the authors show a family of counterexamples
for the proper Eilenberg-Ganea conjecture; i.e. they exhibit examples of groups
G such that gdz G = 3 and cdz G = 2. The Bredon cohomological dimension
is often problematic to compute, and it would be interesting to find alternative
algebraic invariants that guarantee its finiteness. With this in mind, our interest is to

understand groups of finite §-cohomological dimension.

Another interesting unsolved question asks if the §-cohomological dimension mir-

rors the Kropholler dimension.

Recently Leary and Nucinkis looked at groups admitting a classifying space with

stabilisers of prime power order Pz. They showed the following.

Lemma 2.4 ([LN10]). A group G admits a finite-dimensional Eq_G if and only if
every finite subgroup of G is of prime power order and G admits a finite dimensional
E;G.

The class of groups admitting a finite-dimensional Fg_ G is much smaller than the
class of groups admitting a finite-dimensional E£zG. It does not even contain the
class §. Does §-cohomology that is a cohomology theory relative to ‘B detect the

finiteness of a model for an EzG?

The Weyl-groups of a given group G are the groups W H := Ng(H)/H. When

looking at the classifying space for proper actions or at cohomological theories
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relative to the family of §-subgroups the Weyl-groups play a relevant role. Assume
that A is a G-set satisfying condition (*) and that H is a finite subgroup of G. It
is possible to show [Nuc00] that the fixed-point set A is a W H-set satisfying
condition (). This leads to the strong relation that exists between §-cohomology
and Bredon cohomology with respect to the family of finite subgroups. We assume
the reader to be familiar with the basic theory of Bredon cohomology. The inter-
ested reader can consult [Liic89, MV03]. Since we are exclusively interested in
group cohomology with respect to the family of finite subgroups we write “Bredon
cohomology” for “Bredon cohomology with respect to the family of §-subgroups”.
Evaluating an OzG-module at H\G gives a Z W H-module and the next result links

the Bredon cohomological dimension with the §-cohomological dimension.

Theorem 2.5. [Nuc00, 3.2] Consider an OzG-projective resolution P(—) of the
Bredon module 7. Evaluated at H\G for any finite subgroup H of G, it gives an
S$-projective resolution of Z over ZW H. In particular, we have for each finite

subgroup H of G, §cd WH < cdzG.

So we can picture a Bredon projective resolution of Z as a sequence of §-projective
resolutions over Z W H with various connecting homomorphisms, i.e. for every
G-map from G/H to G/K there is a morphism of complexes from P(K\G) to
P(H\G). An OzG-module is a free OzG-module if it is isomorphic to a direct sum
of OzG-modules of the form Z[—, H\G]. At this point it is natural to ask if in the
theorem above we can replace the OzG-module Z with any Z-free OzG-module.

On the other hand we have:
Lemma 2.6. [Nuc00, 4.3] §cd W H < §cd G for every §-subgroup H of G.

Remark 2.7. Since Leary and Nucinkis [LNO3|] showed the existence of groups G
with §cd G’ < ¢dz G < o0 itis not possible in general to glue the resolutions of the
Weyl-groups coming from the §-projective resolution of Z over Z G to construct an

OzG-projective resolution of Z of the same length.

Lemma 2.8. Let H be a subgroup of G, M be a kH-module and N be a kG-

module. Then:

o M Qi kG is kG-projective if and only if M is kH-projective;

37



PROOF. These hold in a more general context and proofs can be found in
[CK96, Lemma 6.1, 6.3]. |

If G has finite §-cohomological dimension than this can be calculated by evaluating

the §-cohomology groups in §-free modules.
Lemma 2.9. If§cd G < oo, then
FcdG =sup{n| FH"(G;F) #0, F §-free},

where a module is F-free if it is of the form Z. A QM for some Z G-module M.
PROOF. It is analogous to [Bro82, 2.3, VIII]. U

Note that in the lemma above we are unable to take F' as a permutation module
with §-stabilisers. However, Proposition tells us that if § cd G < oo then there
exists some G-set (2 with F-stabilisers and an m € N such that § H"(G; Z ) # 0.

In very low dimension everything is known by Dunwoody’s work on groups of

rational cohomological dimension equal to 1 [Dun79].

Lemma 2.10. [Nuc00, 2.8, 2.9]

e 5cdG =0ifandonly if G € 5,
e §cd G < 1ifand only if G acts on a tree with §-stabilisers.

Examples 2.11. Groups of §-cohomological dimension equal to 1 include virtually-
free groups and infinite countable L §-groups. Since the additive group of the

rational numbers is torsion-free, we have
FedQ =cdQ = 2,

where the second equality follows from Berstein’s Theorem and the fact that Q
is not free. Restricted wreath products of the form F'{ Z where F' is a §-group
are commonly called lamplighter groups. It is known that for a lamplighter group
G there exists a 2-dimensional model for E3G by [Liic00, Theorem 3.1]. We
will see later in Proposition [2.30] a simple proof that for torsion-free groups the
$-cohomological dimension agrees with the integral cohomological dimension. In
particular, a free abelian group of rank n has §-cohomological dimension equal to

n and the free abelian group of infinite countable rank has infinite §-cohomological
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dimension. This shows that the class of groups of finite §-cohomological dimension

is not L-closed.

Remark 2.12 (The augmentation module). Let /o = kere, where € : ZA — Z is
defined as (0)e = 1, hence, (D 5cp 160)€ = D 5ep M6

e §cdG < lifand only if I is an §-projective module. This is equivalent
to stating that the map /a ® Z A — I splits. Note also that ]n @ Z A =
Z A for some G-set A with F-stabilisers.

¢ The finiteness of the §-cohomological dimension does not this imply the
finiteness of the relative dimension rd G := pdy s Ia. Any countable
infinite periodic 2(-group G has infinite relative cohomological dimension
but the F-cohomological dimension of G is equal to 1 [Alo91, Corollary
7].

e For any group G, §cdG < rdG. Let rdG < n. Then by [Alo91
Theorem 3], there exists a n-dimensional acyclic G-CW-complex X such
that G acts with §-stabilisers on the 0-skeleton and freely in positive
dimension. The augmented cellular chain complex of X over Z gives the
desired upper bound. It is important to remark that even in this extreme
case we do not have an algebraic proof for §cd G < rd G.

e Let Ged G be the Gorenstein cohomological dimension of G [BDT09].
Then Ged G < rd G since the Z G-module Z A is Gorenstein projective
for any G-set A with §-stabilisers.

e Suppose Ged I' = n < c0. Consider the standard F-projective resolution
of Z. This is a Gorenstein projective resolution of Z. The (n — 1)th
kernel K,, where ¢ : K, — Z A" ! is Gorenstein projective. We ask
the following. Is K,, §-projective? Is §pd K,, < o0? We know that ¢
is §-split. Note that by [BDTO09]] every cofibrant module is Gorenstein
projective and by [DT10] the two concepts coincide over an LH§-group.
Does every cofibrant module over an LH§-group have finite §-projective

dimension?
Lemma 2.13 (Dimension shifting).

o THY(G; A) ~ FH" 1(G;Hom(Ia, A)), forn = 2.
o THY(G; A) = coker{FH(G; Hom(Z A, A)) — FH(G; Hom(Ia, A))},

forn = 1 where Hom(Ia, A)) is a Z G-module with the usual action.
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PROOF. It is analogous to VI, 12.1 in [HS97| or [Bro82, pg. 64]. Recall that
since the sequence Ia — Z A — 7 is Z-split, the functor Hom is exact and so we
have that coker{A — Hom(Z A, A)} =~ Hom(Ia, A). O

Proposition 2.14. Ler G be an infinite group with finitely many conjugacy classes
of *Pg-subgroups and M be any Z G-module. Consider a finitely-generated 7. G-
module 7. A such that A satisfies (*). Then (M ® ZA)¢ = 0. In particular,

(P)G = 0 for any finitely-generated §-projective module P.

PROOF. (M |p1%)¢ = 0 for every F-subgroup H by [Bro82, Ex.4 pg.71].
Hence,
(M ®ZA)Y := Homyz g(Z, M ® ZA) = Homyz g(Z, M ® (Dsea, Z G5\G))

x Hong(Z,®5er(M®ZG5\G)) x (—B Hong(Z,M®ZG5\G) =0,
5€A0

where the last equality follows from the basic fact that Homy (7, —) commutes

with products, but since A is finite, products and sums coincide. O

Theorem 2.15. [Nuc00, 2.7] The property of having “finite § cd” is closed under

taking subgroups, HNN-extensions and free products with amalgamation.
Lemma 2.16. Let N be a Z G-module, n € N and
Myr— My — -+ —> My — My— M_4
be an §-split exact sequence of 7 G-modules. Assume § Ext%G(N , M;) = 0 for
0 < i < n. Then FExt) (N, M_1) = 0.
PROOF. It can be proved by induction similarly to [DKLT02, Lemma 7.3]. If

n = 0 then My = M 1 and the statement is trivial.
Let M;L_l = coker(M,, — M, _1) then we have two exact F-split sequences:

(1) My — My1 = My_y,

) My, =My g — - — My—M .
From the long exact sequence in §-cohomology that arise from (1) we have:

o FExt™ YN, Mp_y) — FExt" Y(N, M, |) > FExt"(N, M,) — ---

where § Ext" (N, M,,_;) and § Ext"(N, M,,) are zero by assumption and so
the group § Ext™ (N, MT’FI) is zero as well. Now by the induction hypothesis
applied to (2) we can conclude %’Ext%G(N, M_1) =0. O
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Corollary 2.17. Ifn € N and
Mn>—>Mn,1 —> - —>M0—»Z
is an §-split resolution of the trivial 7. G-module Z, then there exists 0 < 1 < n

such that § H (G; M;) # 0.

PROOF. Arguing by contradiction, we suppose that § H*(G; M;) = 0 for all
0 < i < n. By the lemma above follows § H°(G; M_;) = 0 but FH(G; M_;) =~
Hong(Z, Z) # 0. [

The next proposition is the relative version of [DKLT02, Proposition 7.7].
Proposition 2.18. Let G be a group such that either the functors H*(G; Z A) = 0
or §H*(G;Z A) = 0 for every G-set A with §-stabilisers. Then §cd G = o0.
PROOF. It follows straight from [DKLT02! Corollary 7.6] that if n € N and
My—My_1—---My—>7Z

is an exact sequence of Z GG-modules then there exists an 0 < ¢ < n such that
HY(G; M;) # 0. Analogously to Corollary it follows that § H'(G; M;) # 0.
Suppose § cd G = m. Then by Lemma[2.28|there is an §-split resolution of Z of
length m made of permutation modules with §-stabilisers, and Corollary gives

a contradiction. O
As an immediate corollary we obtain a well-known result.
Corollary 2.19. Let G be a non-trivial group such that H*(G; F) = 0 for every
Z G-free module F. Then cd G = o0.

PROOF. We can assume G to be torsion-free and apply Proposition (]
It is important to remember that if G is infinite and H*(G; P) = 0 for every

Z G-projective module P then Ged G = 0.

Examples of groups with cohomology groups vanishing on all projective modules
are given by the free abelian group of infinite countable rank, Thompson’s group F

and GL(n, F') where F is a subfield of the algebraic closure of Q [CK97, 5.3].
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Proposition 2.20. [Nuc00, 2.5] Suppose

G =lim G,
AEA

where A is countable. Then §cd G < 1 +sup{Fcd Gy |\ € A}.

We state explicitly a few consequences of the proposition above.

Corollary 2.21.

e A countable L§-group has §-cohomological dimension at most 1.

e Letl = Hy < Hy < --- be a series of normal subgroups of G such that
§cdG/H; < kforalli> 0. Then§cdG/|JH; <1+k.

e If G is countable and locally of §cd < k, then §cd G < 1 + k.

Proposition 2.22. Let A be a countable A-group. Then §cd A < ro(A) + 1, where

ro(A) denotes the torsion-free rank of A.

PROOF. Since G € 2 there exists T — A — A/T where T is the torsion
subgroup of A, A/T is a torsion-free quotient and Fcd(T/A) = cd(T/A) =
ro(T/A) = r9(A). Since T € LF, then Fcd(T") < 1. The result follows from the

spectral sequence in [Nuc00]. |

2. Group extensions

Suppose N — G — (@ is a group extension. In the context of ordinary cohomology
it is an immediate consequence of the Lyndon-Hochschild-Serre spectral sequence
that the property of having finite cohomological dimension is extension closed.
Furthermore, if cd N = n and cd@) = m then cd G < n + m. This property

suggests the following question.

Question 2.23. Let N — G — () be a group extension, with Fcd N = s and
FcdQ =r.IsFcdG < r + s?

Remark 2.24. When @ is a torsion-free group, the above question has a positive

answer by Proposition 2.4 [Nuc00].

In [Nuc00] it is shown that the class of groups of finite §-cohomological dimen-
sion is closed under taking extensions by groups of finite integral cohomological

dimension.
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We begin by recalling some results needed in the proof of the main theorem,
Theorem 2.33]

Lemma 2.25. [Nuc00, 2.2] Let N — G 5 Q be a group extension and let $) be a
family of groups satisfying the following condition: if H is a subgroup of G and
H € $, then m(H) € $. Then every $-split short exact sequence of 7. Q-modules is

9-split when regarded as a sequence of 7 G-modules.

For a Z H-module M, we use the standard notation M 15:=Z G ®z i M.

Lemma 2.26. [Nuc99, 8.2] Let H be a subgroup of G and let A— B — C' be an
$-split short exact sequence of kH-modules. Then the sequence A Tg — B Tg

— C' T% is an §-split sequence of kG-modules.

Any Z G-module M induced up from an §-subgroup H of G is §-projective (Corol-
lary 2.4, [Nuc99l])). This is not true for arbitrary subgroups H, but holds if M is

induced up from an §-projective Z H-module.

Lemma 2.27. Let H be a subgroup of G and P be an §-projective Z.H -module.
Then P 1 g is an §-projective 7Z.G-module.

PROOF. If A = | [5cn, G5\G is a G-set that satisfies condition (x) then A has
an H-orbit decomposition of the form | |sen ([ eq, (H N GI\H), where Qs is a
set of representatives of the double cosets GsgH. Clearly A regarded as an H-set
satisfies condition (x). Let M be an F-projective Z H-module. Then by definition
M is a direct summand of N ® Z A for some Z H-module N. Since induction is an
exact functor, M Tf] is a direct summand of (N ® Z A) Tg. The statement follows
by the Frobenius Reciprocity (N ® Z A) T%; N Tfl ®7Z A (Exercise 2(a), 5, III
[Bro82). O

Lemma 2.28. Suppose G is a group of finite §-cohomological dimension equal
to n. Then there is an §-projective resolution of 7. of length n made of permutation

modules with §-stabilisers.
PROOF. Since Fcd G = n, the general relative Schanuel’s Lemma implies

that the kernel K, of the standard §-projective resolution is §-projective and so

Z(A") — K, splits, i.e. K, @ P = Z(A™). Let Z A be a module isomorphic to a
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direct sum of countably many copies of Z(A™). Then K,, ® Z A ~ ZA and we

have the required resolution:

ZA—Z(A"YWOZLA - - 5 ZAT. O

Note that in the proof above the relative Eilenberg swindle produces a permutation
module; this does not hold for general §-projective modules. For further discussion

consult Section 4, [Nuc00].

Corollary 2.29. For any group G, Ged G < §cdG.

PROOF. Every permutation Z GG-module with §-stabilisers is a Gorenstein pro-
jective Z G-module by Lemma 2.21 [ABS09]]. The result now follows from Lemma
2.28] O

Martinez-Pérez and Nucinkis prove using Mackey functors that for every virtually
torsion-free group G the equality ved G = § cd G holds [MPNO06]]. We give a proof

of a weaker result, sufficient for our purpose, using an elementary method.

Proposition 2.30. Let G be torsion-free. Then G has finite §-cohomological di-
mension equal to n if and only if G has finite cohomological dimension equal

ton.

PROOF. If cd G = n, then by Proposition 2.6 VIII in [Bro82] there is a ZG-
free resolution F of Z of length n. Since G is a torsion-free group, any ZG-free
module is §-projective and any acyclic Z-split ZG-complex is §-split. This shows

that F) is an §-projective resolution of Z of length n.
Now we consider the standard Z G-free resolution of Z:
= Fy >y 9> > Fy—> 4,

where F; = Z(G**!). By the above this is an -split sequence. By the relative
general Schanuel’s lemma applied to K, — F,_1 — Fj,_9 — -+ = Fy - Z it
follows that K, is §-projective. In particular K, is a direct summand of F}, and so

it is Z G-projective. (]

Lemma 2.31 (Dimension shifting). Let N, — N,,_1 — -+ — Ng— L be an
$-split exact sequence of 7. G-modules such that §pd N; < n forall 0 < i < m.
Then Fpd L < m + n.
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PROOF. We argue by induction on m. If m = 0 then Ng = L and §pd L < n.
Let £k > 1 and assume that the statement holds for m < k — 1. Consider the
$-split short exact sequence Ny - Ni_1—im¢. By the induction hypothesis,
Spd(im¢) < n + 1. We have an F-split resolution of L, im¢t»— Ny_o — -++ —
Ny — L of length k£ — 1 made of modules of §-projective dimension at most n+1

and by the induction hypothesis we obtain §pd L < (k—1)+(n+1) = k+n. O

Proposition 2.32. Let N — G 5 Q be a group extension with §cdQ < m.
Moreover, assume that any finite extension H of N has §cd H < n. Then Fcd G <

n—+ m.

PROOF. For any finite extension H of NV, let
Po—Pyq— o> Ph—>7Z

be a §-projective resolution of Z over ZH. By Lemma and Lemma |2.26| the
resolution
Po 1 = Paa 17— = R 15 = 215

is an §-projective resolution of Z 1 f] over ZG.

Now, Lemma|[2.28|implies that there is an §-projective resolution of Z over Z() of
the form
ZA=Kr—7ZNAyp_1— - —LNAy—>7.

By Lemma [2.25] the sequence above is §-split when regarded as a ZG-sequence.
Every permutation module Z A; and Z A when regarded as a Z G-module is iso-
morphic to some @je;Z ng where |H; : N| < oo. To see this, consider the case
of a homogeneous @-set @ = F\G, and regard 2 as a G-set via . Then (2 is
isomorphic to 771 (F)\G. If |F| < oo then F = K/N where [N : K| < o and
K =~ 7~ !(F). By the above g pd(Z ng) < n and so the assertion follows from
Lemma 2311 O

Corollary 2.33. If G = H x K, where §cdH < nand §cd K < m, then
FcdG <n+m.

PROOF. By Proposition we can assume |K| < oo and we regard G as an
extension of K by H. Any finite extension of K by a finite subgroup of H is finite

and so it has §-cohomological dimension equal to 0. The result now follows by
Proposition [2.32] O
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Proposition is the relative analogue of Corollary 5.2 in [MP02] but in the
context of §-cohomology we are able to strengthen the result, as we shall see in

Theorem [2.35]

Since for virtually torsion-free groups the notion of §-cohomological dimension
coincides with the notion of virtual cohomological dimension it is conceivable that
taking finite extensions of groups of finite §-cohomological dimension does not
raise the dimension. There are examples of non-virtually torsion-free groups that
are extensions of two virtually torsion-free groups of finite virtual cohomological
dimension [Sch78], but nonetheless these admit finite-dimensional classifying

spaces for proper actions [BLNO1]].

In order to reduce the extension problem to extensions by groups of prime order we

need the following observation.

Lemma 2.34. Let B be the class of p-groups. When considering the standard
§-projective resolution Py — Z we can replace the G-set A by Aq, where Az =

|—|P<G'7 PePnF G/P

PROOF. The result is an immediate consequence of i) and ii) of Proposition
2.14 [LN10]. O

Theorem 2.35. Let N — G — Q) be a group extension with § cd N < n. Moreover,
assume that for any subgroup H of G with § cd H < n and any extension L of H
by a group of prime order has Fcd L < n. Then §cd G < Fed H + Fed Q.

PROOF. Arguing as in Proposition [2.32]the problem can be reduced to exten-
sions by groups of prime power order using Lemma[2.34] Now, if N »— G — P is
such an extension then the quotient group P is nilpotent of prime power order. For
any p" /| P| there exists by the correspondence theorem a normal subgroup S of G,

N < S < G such that S/N has order p™ and the result follows by induction.  [J

Note that if N — G'— () is a group extension such that gdz N = n and |Q| =
k then gdz G < n.k [MisO1]. It is unknown whether the finiteness of the §-
cohomological dimension is preserved under taking (finite) extensions. However,

this is the case for countable elementary amenable groups.

Proposition 2.36. Let N — G — Q be a group extension such that G is countable
elementary amenable, §cd N < nand§cdQ <m. ThenFcdG <n+m+ 1.
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PROOF. The rational cohomological dimension of a group G cdg is defined as
the QG-projective dimension of the trivial QG-module Q. If the trivial Z G-module
7 admits a resolution of length n made of permutation modules with §-stabilisers
then tensoring it with QQ over Z we obtain that cdg G < n. In particular, for every
group G, cdg G < §FcdG. Corollary 3.3 [Nuc00] implies that for any group
G, §cdG < cdzG. Let hG be the Hirsch length of an elementary amenable
group G. The inequality h G < cdg G holds by Lemma 2 in [Hil91]. Let hdr G
denote the homological dimension of G over RG. If G is any countable group G
and R is a commutative ring of coefficients, then the following are well-known
[Bie81, Nuc04]:

hdrG < cdprG <hdrG +1,

hdgG < CdgG < hdgG-ﬁ- 1.

The class of elementary amenable groups is subgroup-closed and quotient-closed.
By Theorem 1 in [Hil91] hG = h N + h (@, and an immediate application of
Theorem 1 in [FNOS5] gives the result. U

Furthermore, Serre’s construction included in [DD89, V, 5.2] shows that, given a
finite extension N — G — @ with §cd N = n and |Q| = k, there exists an exact
7 G-resolution of Z made of permutation modules with stabilisers in § of length
n.k. However, it is unclear if this resolution is §-split and this suggests a more

general question.

Question 2.37. Suppose G is a group that admits a resolution of finite length of the
trivial Z G-module Z made of permutation modules with stabilisers in §§. Does G

have finite §-cohomological dimension?

Note that Serre’s construction can be made in topology; if N acts on a n-dimensional
contractible cell-complex with §-stabilisers and () has order k then G acts on a

(n.k)-dimensional contractible cell-complex with F-stabilisers.

Remark 2.38. Arguing as in Corollary [2.29] every group admitting a resolution as
in the question above has finite Gorenstein cohomological dimension. It is unknown

if the converse holds.

Question 2.39. Can the theory of §-injective modules started in Chapter 1 be used

for proving a relative version of the Grothendieck spectral sequence? Could this
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then be used to show a relative version of the Lyndon—Hochschild—Serre spectral

sequence that would solve the extension problem?

It is natural to ask what happens if the ring of integers is replaced with the field of

rationals as the coefficients ring.

The next result answer this and in some sense tells us that all these generalised theo-
ries end up, once evaluated in Q, with the classic notion of rational cohomological

dimension.

Proposition 2.40. For any group G we have § cdg G = cdg G.

PROOF. Arguing as in Lemma[2.28 we have that if § cdg G = n then G admits
a resolution of Q of length » made of permutation modules with §-stabilisers over
QG. Every permutation module with §-stabilisers over QG is QG-projective and
so cdg G' < n. On the other hand, suppose that cdg G = n. If F'is a §-subgroup
of GG then every module over QF is projective. From this it follows that any

QG-projective resolution of Q is §-split and so §cdg G < n. O

Note that by Proposition [2.40]and [Tallll 3.5] it follows that for any LH F-group G,
Scdg G = Gedg G = cdg G.
An §-resolution of a Z G-module M is a resolution made of permutation modules

with F-stabilisers. For a group G, cdgn, G denotes the Mackey cohomological
dimension of G [MPNO06]]. We close the chapter with two diagrams.

The first illustrates the implications that hold in full generality.

Gem § gdzG < o0

$ecdG < cdzG <
3 an §-resolution of Z of finite length Cdgﬁs G <
Ged G < 0 cdg G <



In some sense all the implications in the diagram above are conjectured to be

reversible as shown in the diagram below.

Kropholler— Mislin
GeHm ¥ gdzG < o0

Nucinkis

FedG <

Bahlekeh—Dembegioti—T alelli

GedG < cdg G < ©
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CHAPTER 3

(§)-cohomological conditions of finite type

A cohomological finiteness condition is a group-theoretical property that is satisfied
by any group admitting a finite & (G, 1). Since every non-trivial F-group does not
admit a finite-dimensional K (G, 1), being torsion-free is a conomological finiteness
condition, but not a finiteness condition in the usual group-theoretical sense. On the
other hand, the property of belonging to L is a classical but not a cohomological
finiteness condition. However there are finiteness conditions that agree, for example

being finitely-generated, being finitely presented, etc.

A generalisation of these properties brings us to the concepts of cohomological
conditions of finite type. More precisely, a group I' is of type FP,, if the trivial
ZT'-module Z admits a resolution of finitely-generated projective Z I'-modules up
to dimension n. If I is of type FP,, for every n = 0, then I' is said to be of type
FPy. A group is of type F,, if it admits a K (G, 1) with finite n-skeleton; and
I" is of type Fy, if it is of type F,, for every n = 0. For a group, being finitely-
generated is equivalent to being of type FP;. A group is finitely presented if and
only if it is of type Fy. For n > 2, a group is of type F,, if and only if it is
finitely presented and of type FP,,. Bestvina and Brady showed the existence of
non-finitely presented groups of type FPo [BB97|]. Relative versions of these are
§-cohomological conditions of finite type. Informally, by this term we refer to the
requirement of having an §-split resolution or a partial resolution of Z made of

finitely-generated §-projective Z G-modules.

In the first section we introduce the notion of a A-flat module. We consider the
$-homological dimension and §-homological finiteness conditions for groups. After

proving some of the usual properties we show the following:

Theorem. Let M be a G-module of type §¥FPy. Then for any exact limit of

kG-modules limyep Ny the natural map

T lim Ny, M li T Ny, M
5 Ofk(;éﬂ A )*;g&% ory (N, M)
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is an isomorphism for any k.

The homological finiteness length of a group G, denoted by ¢(G), is the supremum
of the m such that G is of type FP,,,. In the second section we consider non-uniform
lattices on locally finite CAT(0) polyhedral complexes. Our main result is a bound

on their homological finiteness lengths.

Theorem. If ' is a non-uniform lattice on a locally finite CAT(0) polyhedral

complex of dimension n, then ¢(I') < n.

1. §-homology and groups of type SFP,,

Let G be a group and k& a commutative ring of coefficients. Then G is of type FP,
over k if k admits a resolution of finitely-generated kG-projectives up to dimension
n. A group G is of type FP, over k if G is of type FP,, for every n. A group G is
of type FP if k admits a finite resolution of finitely-generated kG-projectives. This
is a particularly strong cohomological finiteness condition. Since every group of
type FP has finite cohomological dimension, we have that §-groups are not of type

FP, however they are of type FP.

Clearly every group is of type FP( and by writing explicitly the augmentation
ideal it easy to see that a group is finitely-generated if and only if it is of type FP;
[Bro82]. A finitely presented group is of type FP3, and the question of wheter
this implication was reversible was open until Brady and Bestivina built infinitely
presented groups of type FP5 in their famous paper [BB97|. Briefly, to a finite flag
complex L it is possible to associate a right angled Artin group G;,. If L # (¥, then
there is a surjection to Z (given by mapping the generators to 1) and a short exact
sequence Hy, — G, — 7Z. They were able to determine the cohomology type of the

kernel Hy, by the homotopy type of the complex L.

One of the advantages of working with the type FP,, instead with the stronger
type FP is that it allows torsion in the group. Examples of groups of type FP,
include §-groups (not of type FP), finitely-generated free groups (by Stallings-
Swan Theorem they are of type F'P), polycyclic groups and every finitely-generated
one-relator group. The next theorem is used often as a crucial tool for proving the

cohomological type of a group.

Theorem 3.1 ([Bie81l], 1.3). For a group G the following are equivalent:
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e Gisoftype FP,;

e for any exact limit the natural map H;(G,lim M) — lim H;(G, M) is
an isomorphism for i < n and an epimorphism for i = n;

. Hi(G ; —) is continuous for i < n and for any exact colimit, the natural
map colim H"(G; M) — H"(G; colim M) is a monomorphism;

o HY(G; —) is continuous at zero for i < n.

Furthermore, it is enough to check the second condition on direct products.

A group G is of type §FP,, if Z admits a resolution of finitely-generated §-
projectives up to dimension n. If G is of type § FP,, for every n > 0, then it
said to be of type § FPy and G is of type § FP if Z admits a finite-dimensional

$-split resolution made of finitely-generated §-projective modules.

This section is partially motivated by the following question.

Question 3.2. Is there an analogous criterion for §-cohomology?

The answer is in general no. Since H(G; —) =~ §H°(G; —) =~ Homy, ¢(Z, —), it
follows that § H(G; —) is continuous at zero for every group G. But any group
with infinitely many conjugacy classes of ‘Bz-subgroups is not of type § FP¢ by

[LN10]. Nonetheless, a stronger question posed in [Nuc99] remains open.

Question 3.3. Is a group G of type § FP, if and only if § H"(G; —) is continuous

forall n > 0?

Nucinkis proved that is G is a group of type § FP, then § H"(G; —) is continuous
for all n = 0 [Nuc99], and we will prove an similar result for the §-homology

groups.

There exist two more important results in the topic that are well worth mentioning

here.

Proposition 3.4. [LN10] A group G is of type § FPy if and only if it has finitely

many conjugacy classes of *Bz-subgroups.

Proposition 3.5. [Nuc99, 6.3, 7.2] Every finitely-generated §-projective 7. G-
module is of type FPy,. Moreover, every 7 G-module of type §FPy is of type
FP.
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Any finitely-generated §-projective module P is of the form P = @Y_, Q2 TgA
where the () are finitely-generated Z GG y-modules and the GG, are §-subgroups of

G. In particular Q) is a finitely-generated abelian group for every A.

Definition 3.6. A kG-module M is A-flat if the functor — ®pc M is exact on

A-split sequences. That is, whenever
A~ BSC
is an exact A-split sequence of G-modules, then

1 X1
A M5 Bowe M ™S C@pe M

is an exact sequence of abelian groups.

Since — @i M is a right exact functor, a G-module M is A-flat if for any A-split
monomorphism ¢ : A»— B the morphism ¢ ® 1y : A Qg M — B Qg M is a

monomorphism.

Following from [ML95, 9, XII] we define for any G-module M the relative homo-

logical functors with coefficients in A as
ATory(M,A) :=Hy(P®z¢ A)

where P is a A-projective resolution of M. Note that A Torg(M, A) = Tory(M, A)
~ M ®y ¢ A, this can be either shown directly or it follows from [ML95, Theorem
9.1 XII]. We write A H, (G; A) for A Tor,(Z, A) and when A = Z, we will simply
write A H, (G) for A Tory(Z,Z) := Hy(P @z Z) = H,(P%).

The next result is an analogue to [Ben98, Corollary 3.6.7] and it is worth mentioning

that [HocS6]] has the same spirit.
Lemma 3.7. Let P be a A-projective and M any G-module. Then P ® M is

A-projective.

PROOF. By tensoring the Z G-split epimorphism ¢ : Z A ® P — P with M we
obtain the Z G-split epimorphism (Z A®P) ® M — P ® M. Now the result is

obvious by the associativity of the tensor product. U

Corollary 3.8. If §cd G = n, then every Z G-module M has §-projective dimen-

sion at most n.

53



Lemma 3.9. Let Ag be a set of orbit representatives for A, § € Ag and N be any
7 G-module. Then N Tgé is A-flat.

PROOF. Let A — B — C be a A-split short exact sequence. For any G-module
M we have by the Frobenius reciprocity and the associativity of the tensor product
the isomorphism M ®z o N Tg§z M®767ZG®za; N = M®gza; N. Since A®
Z A — BQZ A — CQZ A splits, by Lemmal[l.17|we have that AQZ G5\G — B®
7Z.Gs\G — C ® Z G5\G splits. Now tensoring this split short exact sequence with

N over Z G gives the following exact sequence

AR7as .G Qz6 N —B®zg; ZG®za N~ CQras ZG ®za N.
Thatis, A®zq; N — B®zag; N C Qzg, N. Hence, N T% is A-flat. O
Lemma 3.10. A direct sum @,.; F; of G-modules is A-flat if and only if each F;

is A-flat. In particular the module 7. A\ is A-flat.

PROOF. This can be proved as [Rot09, 3.46, ii]. O

Corollary 3.11. For any G-module N, the A-free module 7. A QN is A-flat. More-

over every A-projective module is A-flat.

PROOF. It follows immediately by the associativity of the tensor product and
by Lemma [3.10) (]

Theorem 3.12. Let A and B be two Z G-modules and let P — A and Q — B be

two A-projective resolutions of A and B respectively. Then

H:(P®zc B) 2 Hy(A®zc Q).

PROOF. The proof is analogous to [Rot09, Theorem 6.32] and it relies only on
the A-flatness of the A-projective modules. O

Lemma 3.13. If M is the filtered colimit (for example the direct limit) of A-flat
modules, then M is A-flat.

PROOF. Let M = colim M). Since colimits commute with tensor products
over Z G [Bie81, pg. 8] we have colim M) ®z g — = colim(M) ®za —). Now
the result follows from the A-flatness of the M, and the fact that filtered colimits
are exact in 91007 ¢ [Kro, 7.4]. U
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Remark 3.14. Let A — B — C be an §-split short exact sequence with B and C
§-projective modules. Then A is obviously §-projective. If A and B are §-flats by

the long exact sequence in §-homology we have that C' is also §-flat.

We define § hd G as the length of the shortest F-flat resolution of Z over Z G. Of
course by Corollary we have § hd G < § cd G for every group G.

Theorem 3.15. Let M be a G-module of type § ¥FPy. Then for any exact limit of

kG-modules limyep Ny the natural map
Tory (lim Ny, M li Tory(Ny, M
§ Tory,(lim Ny, M) — lim § Tory (Ny, M)

is an isomorphism for any k.

PROOF. Let P — M be a §-projective resolution of M of finite type and let
K; = ker(P; — P;_1) and Ky be M. Clearly K; is finitely-generated for every 4

and for any exact limit we have the following projection:
7 im Ny ®z ¢ K; — im(Ny @z q K;).

By Proposition 3.5| F; is of type FP, for every i (it would be enough to have finite

presentability) and there is a natural isomorphism [Bie81, Theorem 1.3]
lim N) ®@z¢ P; = lim(N\ @z ¢ P).
Now we will apply the 5-Lemma to the following commutative diagram
Im Ny @z Ki-1 — 1im N\ Qzqg P, —— lim N\ ®zq K;
- -
Im(N) @z Ki—1) — Im(N\®z¢ ) — lim(N) ®z¢ K;)

and conclude that 7; is an isomorphism. By an application of [Bie81, Proposition
1.4] to the short exact sequence K; 1 — P;_1 — K;, we have that K is finitely
presented. Now by dimension shifting for every ¢ > 2 we have § Tor;(—, M) =
§ Tori1(—, K;_2). This last isomorphism gives for every i > 1 the following

commutative diagram:

§ Tor;(lim Ny, M) >—— lim Ny ®z ¢ Ki-1 — lim N\ ®z¢ Pi—1

|+

limgTOI‘i(N)\,M)>—> hm(N)\ ®ZG Ki—l) I lim(N)\ ®ZG Pz'_l).
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By the 5-Lemma it follows that the natural morphism ¢; is an isomorphism for
every 7 = 0, and this concludes the proof. U
Lemma 3.16 (Shapiro’s Lemma for §-homology).

SH.(H;N) = FH.(G;Ind§ N).

PROOF. This can be proved as Lemmal[I.T1] O

Lemma 3.17. Let T be a G-tree with edge set E = | |..; L;\G and vertex set

el

V' = l;c;s Nj\G. Then there is a Mayer-Vietoris sequence:

= FHe(G, —) > D FHa(Lj, —)

jeJ
1€l
PrROOF. From Bass-Serre theory there exists a short exact §-split sequence e

associate with 7" of the form @;e; Z L;\G — @je s Z N;\G — Z. The result follows

from the long exact sequence in §-homology applied to e. (]
We state explicitly two immediate corollaries.
Corollary 3.18.
o Let G = H =1 K. Then there is a Mayer-Vietoris sequence in §-homology;
= FHE(L; —) - FHR(H; —) @ FHR(K; —)
= §He 1(G; =) > FHp 1 (L; =) — -+
o Let G = Hx 4 4. Then there is a Mayer-Vietoris sequence in §-homology;
-+ = §Hp(A;—) - FHe(H; —)
— §H(G;—) > FHe-1(A;—) — -+

Corollary 3.19. The class of groups of finite § hd is closed under taking subgroups,

HNN-extensions and free products with amalgamation.

Proposition 3.20 ([Bie81l], 1.4). Let A — B — C be a short exact sequence of
7 G-modules. Then the following hold.

(1) If A is of type FP,,_1 and B is of type ¥FP,,, then C is of type FP,,.
(2) If B is of type FP,,_1 and C is of type FPy, then A is of type FP,, ;.
(3) If A and C are of type FP,, then B is also of type FP,,.
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Remark 3.21. A G-module is of type § FP if and only if it admits an §-projective
resolution with finitely-generated §-syzygies (i.e. - - - — P; — Py — M such that
ker(P; — P;_1) is finitely-generated for every ¢ > 1). One implication is trivial,
and the other implication follows from part (3) of Proposition [3.20] Please note
that for a module of type § FP,, we require finitely-generated §-syzygies up to

dimension n + 1; possibly it is not enough to have this condition up to dimension 7.

We mention an immediate consequence of Remark [3.21] and Proposition [3.5]

Corollary 3.22. Let M be a Z G-module of type FFPy. Then every §-syzygy in
an §-projective resolution of M of finite type is of type FP .

PROOF. Apply part (2) of Proposition [3.20[to an F-projective resolution of
finite type of M. U

Conjecture 2. [LN10] A group G is of type §FPy if and only if it is of type FP,
and has finitely many conjugacy classes of ‘B g-subgroups.

The sufficient condition follows from [Nuc99, Proposition 7.2] and [LN10j]. By
Proposition G is of type § FPy, i.e. there is Py — Z such that P, is a finitely-
generated §-projective (Py can be chosen as @, ; Z P;\G where I is a set of
representatives for the conjugacy classes of Pz-subgroups). Now if Z is of type
FP and F is of type FP,, by Proposition it follows that the kernel K of
the surjection Py — Z is of type FP, by part (2) of Proposition[3.20] In particular
K is finitely-generated but we cannot say that Z A ®Kj is a finitely-generated

§-projective G-module. This banal observation suggests the next question.

Question 3.23. When is a Z G-module of type FP, also of type § FPg?

We know almost exclusively trivial examples of modules of type § FPg; these
include finitely-generated §-projective modules, finitely-generated Z G-projective
modules (even if the group is not of type § FPy) and Z-free modules that are

finitely-generated as abelian groups.

Remark 3.24. Let G be a group with finitely many conjugacy classes of ‘P3z-
subgroups. By looking at the analogous condition in Bredon cohomology we might
be tempted to formulate the following question. Is a Z G-module M of type § FP,,
if and only if M |p1% is of type FP,, for every ‘Bz-subgroup P? By [Dyd82,

57



Proposition 2.1] it follows that M | p1€ is of type FPg (Propositionimplies it
is of type FP,) if and only if M | p is finitely-generated over Z P and this is the
case if and only if M is finitely-generated as an abelian group. Of course /A is in

general not finitely-generated as an abelian group and this approach is inconclusive.

Lemma 3.25. Let M be a finitely-generated 7. G-module such that M | p is 7 P-
projective for every Bz-subgroup P of G. Then M is of type § FPq. In particular,
if B(G, Z) is finitely-generated then it is of type § FPy.

PROOF. We can take any finitely-generated Z GG-projective module mapping
onto M. Since M |r is Z F-projective for every finite subgroup F' of G, the
surjection will be F-split. (]

Kropholler’s class of hierarchically decomposable groups H§. For a class
of groups X the closure operation H introduced in [Kro93|| is defined as follows.
A group G belongs to H; X if there exists a finite-dimensional contractible G-CW-
complex X with cell stabilisers in X. The hierarchy of classes H,X for each ordinal

« is defined by transfinite recursion:

[ Ho:{ =X
e if v is a successor ordinal then H,X = Hy (Ho—1X);

e if «vis a limit ordinal then H, X = U5<a HpX.

The operator H is defined by G belongs to HX if and only if GG belongs to H, X for
some ordinal «.. The class H§ is often called the class of hierarchically decom-
posable groups. It is important to recall that classes of groups with a hierarchical
decomposition defined in terms of suitable actions on finite-dimensional complexes

appeared previously in the literature, see for examples [AS82, Tke84].

We are primarily interested in the case X = §, but it is worth mentioning that

recently Leary and Nucinkis considered the case X = By

Theorem 3.26. [LN10] Let ‘B be the class of groups of prime power order. The

following relations hold:

e § < HI B
e H Pz & HI T,
e HP: =HY.
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So if we are interested in studying the class H§ we can consider the class Pz but
if we want to study the class H; § we cannot restrict to the family B since the
H; §-group SL(o0,F,) is not contained in H; Pz [LN10]. Examples of groups that
lie in H1§ are given by groups that admit finite-dimensional models for Fz. By
applying the closure operation L to H § we obtain the class LH §. This last class is
very large; it contains all elementary amenable groups and all linear groups. There
exist groups not contained in LH §, for example Thompson’s group F and the first
Grigorchuk group &. It is an old, deep theorem of Kropholler that any torsion-free
H §-group of type FP, has finite cohomological dimension. The group F is of
type FP, by [BG84], therefore F' ¢ H . By Theorem ® ¢ HF and since
both groups are finitely-generated they are not contained in LH §§. Until recently it
was unknown whether H3 § was distinct from H§. In 2010 a major step towards

understanding the hierarchy of H § was achieved.

Theorem 3.27. [JKL10]

e Hy,§ < Hyt1 S forevery a < wy,
* LH,, § = LHY,

e LH, § < LHJ for every a < wy.

A reminder.

o FFP, = FPy by Proposition[3.5

¢ Torsion-free and FP,, = §FFPy. A Z G-projective resolution of finite
type of Z is an §-projective resolution of Z, examples of these are limit
groups.

e §FP < FFPy, +3cd < oo. It is an immediate consequence of the
Generalised Schanuel’s Lemma.

e §FP = FP. Any non-trivial §-group has infinite cohomological dimen-
sion.

e §FP = FP,. Examples in [LNO3].

e FP = FFP. If a group G is of type FP then it is torsion-free. This
implies that §cd G = c¢d G < o0 and since G is of type FP, is of type
S FP as well.
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o §FP, = §FP. Thompson’s group F is a torsion-free FP,, group of
infinite cohomological dimension and so is a group of type § FP, with
infinite § cd.

o If G € LHF and it is of type FPy, then G admits a finite-dimensional
model for EzG [KM98]|. In particular, every LH§-group of type § FP
is of type § FP.

e There exists a group G € H;§ with finitely many conjugacy classes of
‘Bz-subgroups and a Z G-module of type FP but not §-projective by
[KLN]. Let G be an LH§-group and M be a Z G-module of type FP;.
Does M have finite §-projective dimension?

e FP,, = §FPy. For this, Thompson’s group V is of type Fy, [Bro87]
and contains every §-group. Now by Proposition V is not of type
S FPy.

e H < GandG of type §FPy = H of type § FP. The free group on 2

generators contains the free group on countably many generators.

Since F < T < V and having finite § cd is a subgroup closed property we have
$cdV = oo. This leads to the following:

Question 3.28. Does there exist a group G such that §cd G < oo and of type FP,
but not of type § FPy? In [LNO3] the authors give examples of groups of type
FP., admitting a finite-dimensional classifying space for proper actions but not
of type F'P,; nonetheless these groups have infinitely many conjugacy classes of
§-subgroups but have finitely many conjugacy classes of ‘Bz-groups and they are
of type § FPy. These are examples of groups of type § FP which are virtually
torsion-free but not torsion-free. Later we will show that the Houghton’s groups
give examples of groups of type FP,, and with finite § cd but not of type § FPq for

every n € N.

Let n be a non-negative integer; a group G satisfies condition b(n) if every Z G-
module M, which is Z F-projective for each §-subgroup F' of G, has projective
dimension at most n. G satisfies condition B(n) if, for each F-subgroup F of G,

the Weyl-group W F satisfies condition b(n).

Theorem 3.29. [Liic00] Ler G be a group and let |A(G)| be the G-simplicial
complex determined by the poset of non-trivial F-subgroups A(G). Suppose
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dim |A(G)| < oo and suppose that G satisfies condition B(n) for some non-
negative integer n. Then G admits a model for EzG of dimension at most max{3,n}

+A(n +1).

The next result, due to Kropholler, shows how cohomological conditions of finite
type can give strong information about the group structure. This result is the key

ingredient in the proof of the next Proposition and in Theorem .12

Theorem 3.30 (Proposition, [Kro93l). Every group of finite rational cohomologi-

cal dimension and of type FP o, has a bound on the orders of its §-subgroups.

Furthermore, Kropholler in [Kro93] shows that every H§-group of type FP, has a

bound on the orders of its §-subgroups.

Proposition 3.31. Let G be a group with finite §-cohomological dimension and of
type FP . Then G admits a finite-dimensional model for E3G.

PROOF. Let §cd G = n. Then cdg G < n. Since G is of type FP, we can
apply Proposition to conclude that GG has a bound on the orders of F-subgroups.
In particular dim |[A(G)| < oc. By Theorem 4.4 in [Nuc00] G satisfies B(n). Now
the result follows from Theorem [3.29] The final step can be achieved also with
[Nuc00, Corollary 4.5]. |

Corollary 3.32. Every group of type § FP has a finite-dimensional model for the

classifying space for proper actions.

PROOF. By the above remark and Theorem 7.2 in [Nuc99]] G is of type FP,
and we can apply Proposition [3.31 (]

Question 3.33. Is every group of type VF (VFP) of type § FP4 and so of type
SFP?

By [Bro82, IX, 13.2] every group of type VF has only finitely many conjugacy
classes of subgroups of prime power order (and so is of type § FPg). By a result
of Serre [Ser71] any group G of type VF has a finite-dimensional FzG' (and so
§ cd G < a0). Moreover, groups of type VF are finitely presented and of type FP .
There exist groups that act properly and cocompactly by isometries on CAT(0)-
spaces that are not virtually torsion-free [BH99, Example 7.10, IIL.I']; these have a
finite model for E'g and so groups of type § F'P are not necessarily of type VF'.
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In Question we recalled that there exist groups of type § FP with no model
for E3G having finite O-skeleton [LNO3]. In other words the strongest relative

finiteness condition cannot guarantee any condition of finite type for E5G.

Lemma 3.34. Every module M of type § FP,, is of type FP,,.

PROOF. Choose an §-projective resolution with the first n-terms finitely-generated
-— Py41 — P, —> -+ — Py— M. By Proposition[3.5] P; is of type FP, for
1 < n. Let K; be the kernel of P; — P;_;. Since K,,_; is a quotient of P,, it is of
type FPq. Apply part (1) of Proposition to conclude that K,,_» is of type F'P;.
Iterate this process to obtain M of type FP,,. U

Remark 3.35. Let G be a group of type § FP,,, M a finitely-generated Z G-module.
Then § Hy(G; M) and §H*(G; M) are finitely-generated Z G-modules for 0 <
k < n.If P — Z is an §-projective resolution of Z of finite type, then M ®z g P

and Homy, (P, M) are finitely-generated Z G-modules and the claim is obvious.

Proposition 3.36. Let G be a group of type $¥P,, (§F¥P). If H is a subgroup of
G of finite index then it is of type §FP,, (§FP).

PROOF. Let P be an §-resolution of Z over Z G with P; finitely-generated
for ¢ < n. Restriction to H gives an §-resolution of Z over Z H (by Lemma
and the Mackey decomposition [Bro82, III, 5.6]) that is of finite type since
|G : H] < oo. The second part follows from the fact that restriction to H is an

exact functor. O

Houghton’s groups. The length [(H) of an F-subgroup H of a group G is the
supremum over all n for which there is a chain Hy < H; < --- < H, = H. It
is easy to construct a group with no bound on the length of its §-subgroups that
has finite rational cohomological dimension. By [Ser03] every countable infinite
L§-group has rational cohomological dimension equal to one. Taking finitely many
HNN-extensions, free products with amalgamation or extensions by groups of
finite cohomological dimension we obtain examples of groups with finite rational

cohomological dimension that have no bound on the order of their §-subgroups.

Given a group it is often very difficult to establish its rational cohomological
dimension. In this section we give examples of groups for which it is possible

to determine the exact rational cohomological dimension. This can be achieved
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because they satisfy some strong cohomological finiteness conditions. Houghton’s
groups are examples of groups with no bound on the lengths of their §-subgroups.

Here we determine their Bredon cohomological dimension.

Let n be a positive integer and S = N x {1,...,n}. Houghton’s group $),, is the
group of permutations o of S satisfying the following condition: there is an n-tuple
(m,...,my) € Z" such that for each i € {1, ...,n}, (z,i)0 = (x + m;, i) for all

sufficiently large « € N [Bro87|]. Brown proves the following:

Theorem 3.37. [Bro87, 5.1] The group 9, is of type FP,,_1 but not of type FP,,.
If n is at least 2 then $,, is finitely presented.

Proposition 3.38. [LNO1] Suppose that G is a group with cdg G = n < o0 and G
is of type FP,, over Z. Then there is a bound on the orders of the §-subgroups of G.

Proposition 3.39. For everyn = 1, cdg $, = §cd 9, = cdz H, = n.

PROOF. The group $,, is isomorphic to an extension of the infinite finitary
symmetric group (on a countable set) © by Z"!. The group © is countable
(Exercise 8.1.3 in [DM96]]). Moreover it lies in L§ and so §cd® = 1. The
spectral sequence of Proposition 2.4 in [Nuc00] gives the bound §cd $,, < n.
Analogously by [Liic0S], cdz $,, < n. Every §-group embeds in §),, and by
Theorem 9y, is of type FP,,_; but not of type FP,,. We apply Proposition[5.5]
to conclude that § cd ), and cdz $),, cannot be strictly smaller than n, and so we

have cdg $, = §cd 9, = cdz H, = n. O

Examples 3.40. [Bie81, 2.14] Write H,, = X_,<{h;, k;), the n-direct power of
free groups of rank 2. Let Fy, = (x; ;7 be the free group of infinite countable rank
and Qg be the additive subgroup of all rational numbers with denominator a power
of the integer d greater than 1. Let H,, act on F,, as x;“ = xfl = x4 forall i, j.
Let H, act on Qg as ¢" = ¢* = dq for all i, q. Form the semidirect products:
A, = Fy x Hy and B,, = Qg4 x H,. The groups A,, and B,, are of type FP,, but
not of type FP,,_1. Since A,, and B,, are torsion-free they are of type § FP,, but

not of type § FP,,41.

2. Finiteness properties and CAT(0) polyhedral complexes

The notion of a lattice in a locally compact group arises naturally in modern

mathematics and has its roots in the study of Lie groups. A semisimple algebraic
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group over a local field can be realised as a group of automorphisms of its Bruhat—
Tits building, and their lattices, called arithmetic lattices have been studied since
the early 1970’s. Other examples are given by tree lattices, which were introduced
in the beginning of the 90’s by Bass and Lubotzky. Tree lattices are lattices in the
isometry group of a locally finite tree [BLO1]]. More recently, lattices in isometry
groups of higher dimensional locally finite cell complexes have appeared in the
literature [[Tho07, [FT11].

The homological finiteness length ¢(G) of a group G is a generalisation of the

concepts of finite generability and finite presentability. More precisely:
The homological finiteness length of T" is defined as
o(I') = sup{m/| T is of type FP,,}.

It is worth mentioning that Abels and Tiemeyer generalise the above finiteness
conditions for discrete groups to compactness properties of locally compact groups
[AT97].

We begin by recalling the terminology and in doing so we follow closely [[Tho07]]
and [FT11]. Let X" be S™, R™ or H" with Riemannian metrics of constant curva-
ture 1, 0 and —1 respectively. A finite-dimensional CW-complex X is a polyhedral

complex if it satisfies the following:

¢ cach open cell of dimension 7 is isometric to the interior of a compact
convex polyhedron in X";
¢ for each cell o of X, the restriction of the attaching map to each open

o-face of codimension one is an isometry onto an open cell of X.

Let Aut(X) be the full group of cellular isometries of X. A subgroup H < Aut(X)
acts admissibly on X if the set-wise stabiliser of each cell coincides with its point-

wise stabiliser.

Remark 3.41. Every subgroup G < Aut(X) acts admissibly on the barycentric
subdivision of X. Furthermore, if G acts admissibly on a CAT(0) polyhedral

complex, then the fixed-point set X< forms a subcomplex of X

A subgroup I' of a locally compact topological group G with left-invariant Haar

measure (4 is a lattice if:

e ['is discrete, and
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e u(ING) < .

Moreover, Aut(X) is locally compact whenever X is locally finite and so it makes
sense to talk about lattices on locally finite CAT(0) polyhedral complexes. A lattice
I" is said to be uniform if I'\ Aut(X) is compact. Let G be a locally compact group
with left-invariant Haar measure u. Let I" be a discrete subgroup of G and A be a
G-set with compact and open stabilisers. The A-covolume, denoted by Vol(I'\\A),

is defined to be > 5er\ A ﬁ < .

Lemma 3.42. [BLO1, Chapter 1] Let X be a locally finite CAT(0) polyhedral
complex with vertex set V(X). If T is a subgroup of G = Aut(X), then:

o ' is discrete if and only if the stabiliser I, is finite for each x € V(X);
e u(I'\G) < o if and only if Vol(I'\\X) < oo. Moreover, the Haar
measure (i can be normalised in such a way that for every discrete I' < G,

U(T\G) = Vol(I\\X),
Definition 3.43. The cohomological dimension of I" over a ring R is defined by

cdr ' = inf{n| R admits an R -projective resolution of length n}

= sup{n| Hir(I'; M) # 0, for some RI"-module M}.

Theorem 3.44 (Proposition 1, [LNO1]). Let G be a group with cdg(G) = n < o
and suppose that G is of type FP,, over Z.. Then there is a bound on the orders of
the §-subgroups of G.

Theorem 3.45. If T is a non-uniform lattice on a locally finite CAT(0) polyhedral

complex of dimension n, then ¢(I') < n.

PROOF. Let I' be a non-uniform lattice on a locally finite CAT(0) polyhedral
complex X of dimension n. By Lemma p(C\AU(X)) = Xoer\x ﬁ,
where o = [&]. Since I" is non-uniform, the set I'\ X is infinite and so for any m
there is some o € I'\ X such that ﬁ < % Therefore, there is no bound on the
orders of the stabilisers (which are finite), and so there is no bound on the orders of

the finite subgroups of I'.

In view of Theorem [3.44] it only remains to argue that the rational cohomological
dimension of I is at most n. Since every CAT(0) space is contractible [BH99]],

I" acts on an n-dimensional contractible CW-complex with finite stabilisers. The
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augmented cellular chain complex of X is an exact sequence of the form:
® ZIli, \Tl— @D Z[li ,\T] - > D Z[T\T] > Z,
in€ly in_1€lp_1 io€lo
where I';; are finite subgroups of I for every 0 < j < n. Since Q is flat over Z and
Q@®Z[H\I'] = Q[H\I'] for any H < T, tensoring this sequence with Q over Z
leads to the exact sequence:
@ Qi \IT— @ Q[ \[—-— P Q[ \T—Q
in€ly in—1€ln_1 i0€lp
Now, @ije I Q[I';; \I'] is a Q I'-projective module for every 0 < j < n, and so
cdoI' < n.

Hence, by Theorem [3.44] I" is not of type FP,,. (]

Remark 3.46. Note that if an F-group acts on a locally finite CAT(0) polyhedral
complex, then it is contained in the stabiliser of some cell. Now, let F' be a
finite subgroup of a non-uniform lattice I" acting admissibly on a locally finite
CAT(0) polyhedral complex X. Since F' acts admissibly on X, X" is contractible
[BH99, BLNO1]. In particular, X is a model for E'T'.

There are not many results that hold for all non-uniform lattices on CAT(0) polyhe-

dral complexes. As a first immediate application we obtain a classical result.

Corollary 3.47. If X is a tree, then every non-uniform lattice in Aut(X) is not
finitely-generated. More generally, a non-uniform lattice on a product of n trees is

not of type FP,,.

Corollary 3.48. Every non-uniform lattice on a locally finite 2-dimensional CAT(0)

polyhedral complex is not finitely presented.

Before the last corollary, we need to recall some more standard nomenclature.
Let K be a global function field, and S be a finite non-empty set of pairwise
inequivalent valuations on K. Let Og < K be the ring of S-integers. Denote
a reductive K-group by G. Given a valuation v of K, K, is the completion of
K with respect to v. If L/K is a field extension, the L-rank of G, ranky G, is
the dimension of a maximal L-split torus of G. The K-group G is L-isotropic if
rank; G # 0. As in [BWO07], to any K -group G, there is associated a non-negative
integer k£(G,S) = >, grankg, G. We are now ready to state and reprove the

Theorem of Bux and Wortman.
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Corollary 3.49 (Theorem 1.2, [BWO7]]). Let H be a connected non-commutative
absolutely almost simple K -isotropic K-group. Then p(H(Og)) < k(H,S) — 1.

PROOF. Let H be a connected non-commutative absolutely almost simple
K-isotropic K-group. Let H be [ [,.q H(K,). There is a k(H, S)-dimensional
Euclidean building X associated to H. The space X is a locally finite CAT(0)
polyhedral complex. The arithmetic group H(Og) becomes a lattice of H via the
diagonal embedding. H is K-isotropic if and only if H(Og) is non-uniform by
[Har69]. An application of Theorem [3.45|completes the proof. 0

Remark 3.50. Theorem gives the upper bound on the homological finiteness
length of arithmetic groups over function fields; a historical overview can be found
in [BWO07]. In a recent remarkable paper [BGW11] Bux, Gramlich and Witzel
showed that (H(Og)) = k(H, S) — 1. Calculating the homological finiteness
length of non-uniform lattices on CAT(0) polyhedral complexes is an ambitious
open problem. We conclude by mentioning that Thomas and Wortman exhibit
examples of non-finitely-generated non-uniform lattices on regular right-angled
buildings [TW11]]. This shows that the upper bound of Theorem [3.45|is not sharp
and in particular, that the Theorem of Bux, Gramlich and Witzel does not hold for

all non-uniform lattices on locally finite CAT(0) polyhedral complexes.

Theorem 3.51. Let H be a connected non-commutative absolutely almost simple K -

isotropic K-group. Then gdz(H(Og)) = RA(H(Os)) = cdg H(Os) = k(H, S).

PROOF. Let H be [ [,.q H(K,). There is a k(H, S)-dimensional Euclidean
building X associated to H. By Remark [3.46|we obtain the inequality gdgz(H(Os))
< k(H,S). By [BGWI1I] ¢(H(Og)) = k(H,S) — 1, and if cdg H(Og) <
k(H, S) an application of Proposition 1 in [LNO1]] gives that H(Og) has a bound
on the orders of its §-subgroups, a contradiction. Therefore gdz(H(Og)) =
R(H(Og)) = k(H, S). O

Remark 3.52. Since the groups in Corollary have no bound on the orders of
their §-subgroups they are not of type § FPy.
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CHAPTER 4

Branch groups, rational cohomological dimension and HF

A rooted tree 7 is spherically homogeneous if the valencies of the vertexes at a
fixed level are finite and equal. First examples of such trees are given by n-ary
regular rooted trees. Roughly speaking, a branch group is a subgroup of the full
automorphism group of an infinite spherically homogeneous rooted tree 7 satisfying
a number of conditions. This definition was introduced by Grigorchuk in 1997. It
turns out that the class of branch groups is a very fruitful class of counterexamples
in group theory. In 1980 Grigorchuk gave an example of a Burnside group &
and in 1984 he showed that & had intermediate growth answering a question of
Milnor [Gri80, (Gri84]. Grigorchuck’s group & was first realised as a group of
Lebesgue-measure-preserving transformations on the unit interval. Later it was
noticed that & can be realised as a subgroup of the automorphism group of a binary

tree, and in modern terminology & lies in the class of branch groups.

Until the recent work [ABJT09], where groups with a strong global fixed-point
property are constructed, the only way to show that a group G did not belong to HF
was to find a subgroup of G isomorphic to Thompson’s group F. We show that the
first Grigorchuk group & has jump rational cohomology of height 1 and has infinite
rational cohomological dimension. This is the first example of such a group and

these properties imply the main result of the chapter.

Theorem. The first Grigorchuk group & is not in Hg.

1. The rational cohomological dimension of some branch groups

In Remark [4.7) we will give a possible definition of a branch group, a geometric
and an alternative algebraic definition of a branch group; can be found in [BGS03].
For now we prefer to give an explicit description of the first Grigorchuk group &.
Let 7 be the binary rooted tree and let a = ((1, 2)) be the automorphism of 7 that
permutes rigidly the two subtrees below the root. The group & will be the group
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generated by the automorphisms a, b, ¢ and d where the last three automorphisms
are defined recursively as follows: b = (a,c), ¢ = (a,d), and d = (1,b). Each

generator admits a labeling on 7 as shown below:

Fig.1. The automorphism b.

Fig.2. The automorphism c.

Fig.3. The automorphism d.
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By Theorem [3.29] every group of finite §-cohomological dimension which has a
bound on the lengths of its §-subgroups admits a finite-dimensional classifying

space for proper actions.

In this section we calculate the rational cohomological dimension of some finitely-
generated periodic groups with no such bound. Moreover, we look into the problem
of determining which branch groups lie in the class H§. In the next section we give
a purely algebraic criterion, from which it follows that the first Grigorchuk group &

is not contained in HF.

Usually if one wants to prove that a group G has finite cdg G either one finds a suit-
able finite-dimensional GG-space or decomposes the group G in order to control its
rational cohomological dimension. On the other hand one usually proves that G has
infinite cdg G in the following way. Since having finite cdg G is a subgroup-closed
property it is enough to find an infinite chain of subgroups of strictly increasing
rational cohomological dimension. For the groups we consider in this section there
is no such chain, although we are able to establish their dimension because there
is a chain of groups of strictly increasing cohomological dimension that uniformly

embeds in them.

A group G is R-torsion-free if the order of every finite subgroup of G is invertible

in the ring R.

Theorem 4.1. [DD89, V, 5.3] Let G be a group and let H be a subgroup of G of
finite index. If G is R-torsion-free, then cdgr H = cdp G.

Definition 4.2. [Sau06!. 1.1] Let H and K be countable groups. Amap ¢ : H —» K
is called a uniform embedding if for every sequence of pairs («, 5;) € H x H one

has:
a7l > win H &= ¢(a;) '¢(B) » win K,
where — oo means eventually leaving every finite subset.
Note that this embedding is not necessarily a group homomorphism. Sauer proved
the following remarkable result.

Theorem 4.3. [Sau06, 1.2] Let G and H be countable groups and let R be a
commutative ring. If cdgr H < o0 and H uniformly embeds in G, then cdp H <
cd R G.
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Two groups H and G are said to be commensurable if there exist Hy < H,G1 £ G
such that [H : Hi| < o, [G : G1] < w and H; = G;. A group G is multilateral

if it is infinite and commensurable to some proper direct power of itself.

Theorem 4.4. Let G be a finitely-generated multilateral group. Then cdg G = 0.

PROOF. If A and B are two commensurable groups then by Theorem [4.1] it
follows that cdg A = cdg B. Let G be a finitely-generated infinite group commen-
surable with G* for some k > 1. First we show that G is commensurable to G*"
for any n = 1. We proceed by induction on n. The base case n = 1 is obvious.
Now G*"*' ~ (G*™)¥; by the induction hypothesis G is commensurable to GF"
and so G* is commensurable to (G*")*. Since G is commensurable to G* and
commensurability is transitive, we obtain that GG is commensurable to GF' By
[DIHO00, Exercise IV.A.12] there is an isometric embedding Z <— G, from which
it follows that there is an isometric embedding Z*" < G*". An application of
Theorem gives k" = cdg ZF" < e¢dg G*" = cdg G. Since the last inequality

holds for every non-negative integer n we have cdg G = 0. O

The converse of the theorem above does not hold. In fact the finitely-generated
Hjy §-group of infinite cohomological dimension Z Z is not commensurable to any

of its proper direct powers.

Tyrer Jones in [Jon74]] constructs a finitely-generated non-trivial group G isomor-
phic to its own square; as an immediate application of Theorem 4.4 we obtain that

CdQG = 00.

Remark 4.5. If GG is a finitely-generated multilateral group, then the proof of
Theorem 3 [Smi07]] extends verbatim by replacing G with G*" to conclude that
asdim G = oo. For many groups the finiteness of the asymptotic dimension agrees
with the finiteness of the rational cohomological dimension. However, Sapir in
[Sap11] constructed a 4-dimensional closed aspherical manifold M such that the
fundamental group 7 (M) coarsely contains an expander, and so 71 (M) has infinite

asymptotic dimension but finite cohomological dimension.

Note that if G is a finitely-generated infinite group such that G" — G withn > 1,
then arguing as in Theorem 4.4] we obtain that G has infinite rational cohomological

dimension. Of course if G is not periodic this shows that it contains a free abelian
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group of infinite countable rank. For example, it is well-known that for Thompson’s

group F we have the embedding F x F — F.

Corollary 4.6. Every finitely-generated regular branch group has infinite rational

cohomological dimension.

PROOF. For the precise definition of a regular branch group the reader is
referred to [BGS03]. Let 7 be an m-ary regular rooted tree and G a finitely-
generated regular branch group acting on 7. By definition, if GG is branching over
K then [G : K] < wand [¢(K) : K™] < oo, where 1 is the embedding of the
stabiliser of the first level in the direct product G™. Since ¥(K) = K we have
that K is commensurable with K. The group K is finitely-generated and so
an application of Theorem gives cdg K = o0. The finiteness of the rational
cohomological dimension is preserved under taking subgroups and so we have

CdQGZOO. |

Since the Gupta-Sidki group Tisa finitely-generated regular branch group [BGS03]
we obtain as an application of Corollary that cdg T = oo. Note that since T
is a p-group with no bound on the orders of its elements it has no bound on the
lengths of its §-subgroups. The hypothesis of finite generation in the corollary
above is crucial since the LF-group Aut(7) by Proposition 1.22 [BGS03] is a

regular branch group.

Remark 4.7. We have proved Corollary 4.6in the context of regular branch groups
for convenience only. In fact it was pointed out to the author by Laurent Bartholdi,

that also holds for the more general branch groups defined as follows.

A group G is branch if it admits a branch structure, i.e. there exists a sequence
of groups {G,}ien, a sequence of positive integers {n;};eny and a sequence of

homomorphisms {¢; };en such that G = Gy, and for each ¢,

(1) ¢; : G5 — G110 Xy, has finite kernel and finite cokernel, where X,
denotes the symmetric group on n;-letters,
(2) the image of each ¢; acts transitively on ¥,,,, and the stabiliser of any

jel,...,n; maps onto G;y1.

The structure is non-trivial if all n; = 2, and the ¢; are injective. It is possible

to see that a branch group as above is a branch group in the geometric sense of
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[BGS03]. Now, let G be a finitely-generated infinite group that admits a sequence
of groups {G;}ien and a sequence of integers {n;};en, such that G =~ G and for
each i, G; is commensurable with G?jrl. Arguing as in Theoremit is easy to see
that, if all n; > 2, the rational cohomological dimension of G is infinite. Arguing as
in Corollary ff.6] we deduce that every finitely-generated branch group has infinite

rational cohomological dimension.

2. ¢ HS

A group G is said to have jump cohomology of height n over R if there exists an
integer n = 0 such that any subgroup H of finite cohomological dimension over R

has cdr(H) < n.

Theorem 4.8. [Pet07, 3.2] Let G be an R-torsion-free HF-group with jump coho-
mology of height n over R. Then cdr G < n. In particular, any H§-group G has
Jump rational cohomology of height n if and only if cdg G < n.

Lemma 4.9. Let G be a countable group with cdg G < . Then there exists a

finitely-generated subgroup H of G such that
CdQH < CdQG < CdQH-l— 1.
Moreover, if §cd G < oo then there exists a finitely-generated subgroup K such

that
FedK £3cdG <FedK +1.

PROOF. The statement for the rational cohomological dimension follows from
Theorem 4.3 in [Bie81]] and for the §-cohomological dimension it follows from
Proposition 2.5 in [Nuc00]. U

We say that a group G is strongly multilateral if it is multilateral and every finitely-
generated subgroup of G is commensurable to some direct power of G.
Theorem 4.10. Every finitely-generated strongly multilateral group has jump ra-

tional cohomology of height 1.

PROOF. Let G be a finitely-generated strongly multilateral group. Then by
Theorem G has infinite rational cohomological dimension. Suppose H is a
finitely-generated infinite subgroup of G, then by hypothesis H is commensurable
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with some direct power of G and so by Theorem cdg H = c0. Suppose now
that H is an infinitely-generated subgroup of GG of finite rational cohomological
dimension. By Lemma 4.9 there exists X' < H such that K is finitely-generated
and cdg K < cdg H < cdg K + 1. By the above K cannot be infinite and so
cdg H = 1. (]

Corollary 4.11. If G is a finitely-generated strongly multilateral group, then G is

not in HS.

PROOF. The group G has jump rational cohomology of height 1 but infinite
rational cohomological dimension and so by Theorem[.8|G ¢ HF. U

The first Grigorchuk group & is an infinite periodic finitely-generated amenable
group [Gri80]. & can be obtained as a subgroup of the automorphism group of the
rooted binary tree. Since & has infinite L§-subgroups [[Roz98], it has no bound
on the lengths of its §-subgroups. For the definition and further details the reader
should consult [BGS03] or [DIH00].

Theorem 4.12. The first Grigorchuk group & has jump rational cohomology of

height 1, and has infinite rational cohomological dimension. Hence & is not in Hg.

PROOF. By VIIL.14 and .15 [DIH00] & is commensurable with its square,
infinite and finitely-generated. Any finitely-generated infinite subgroup of & is
commensurable with & [GWO03] and so by Corollary 6 ¢ HY. U

Other consequences.

Remark 4.13. Theorem has two futher consequences.
Conjecture [Pet07]]. For every group G without R-torsion the following are equiva-

lent.

¢ ( has jump cohomology of height n over R.
¢ ( has periodic cohomology over R starting in dimension n + 1.

e cdpG < n.

Obviously from Theorem it follows that & is a counterexample to the above

conjecture.

Jo-Nucinkis in [JNO8] ask the following.
Question. Let G be a group such that every proper subgroup H of G of finite
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Bredon cohomological dimension satisfies cdg /' < n for some positive integer n.

Is CdSG < o0?

Since a group G has rational cohomological dimension equal to 1 if and only if it
has Bredon cohomological dimension equal to 1 [Dun79], Theorem shows

that & provides a negative answer to their question.

Given Theorem 4.12] it is easy to see that for any n > 1, the group & x Z" ! has
infinite rational cohomological dimension and jump rational cohomology of height

n.

The question of Jo-Nucinkis is a “proper actions version” of an older question of
Mislin-Talelli that asks whether there exists a torsion-free group with jump integral
cohomology but infinite cohomological dimension. Note that every virtually torsion-
free branch group G contains a free abelian group of infinite countable rank. To see
this take a ray and an edge per level just hanging off it. Then there is a non-trivial
element of infinite order a,, hanging off each edge since the rigid stabiliser of the
nth-level Rstt(n) has finite index in G and G is spherically transitive. These
elements generate distinct infinite cyclic subgroups of GG that obviously commute
since they act on distinct subtrees and so they generate Py Z. This implies that
G has infinite rational cohomological dimension and does not have jump rational
cohomology. Moreover, no torsion-free subgroup of finite index in G can answer
Mislin-Talelli question. A more detailed study of the subgroup lattices of virtually
torsion-free branch groups would be very interesting. In fact it is unknown whether

there exists a torsion-free group G' € HF \H3 5.

Question 4.14. Does every finitely-generated periodic regular branch group have a

finitely-generated strongly multilateral subgroup?

Remark 4.15. Note that if G is an HF-group, then Ged G < oo implies that
cdg G < o0. This can be shown in the following way. First we recall that spli( RG)
is the supremum of the projective lengths of the injective RG-modules. The invariant
k(RG) is the supremum of the projective dimensions of the RG-modules that
have finite RF'-projective dimension for all §-subgroups of G. For any group G,
Ged G < oo if and only if spli(ZG) < o by Remark 2.10 in [ABS09]. Assume
now that GG is an H§-group of finite Gorenstein cohomological dimension. By

Theorem C in [CK98] spli(QG) = x(QG). By [GG87] spli(QG) < spli(ZG); in
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particular if spli(QG) < oo then k(QG) < oo. Since Q is QF'-projective for every
§-subgroup F' of G’ we have cdg G < 0.

It is known from recent work of Dembegioti and Talelli [DT10] that the notions of
a Gorenstein projective module and a cofibrant module coincide over H§-groups.
We suspect that the Gorenstein projective modules over an HF-group G are exactly
direct summands of Z G-modules obtained as extensions of permutation modules
with §-stabilisers. If this holds then the inequality cdg G < Ged G would be

immediate.

It would be very interesting to compute the Gorenstein cohomological dimension of
&. In fact, & could be a counterexample to the conjecture of Bahlekeh, Dembegioti
and Talelli.

Corollary 4.16. & does not contain a group of finite §-cohomological dimension

for which the extension property fails to be subadditive.

PROOF. & is just infinite and by Theorem every normal subgroup N of
® has infinite rational cohomological dimension, so §cd N = o0. Assume L
is a subgroup of & such that H — L — @, with §cd H = n,
n < §cd L < oo. Then, by Theorem @4.12]it follows that & has jump rational

Q| < oo and

cohomology of height 1 and L is not finitely-generated. From Lemma cdg L <
1. By Dunwoody’s theorem [Dun79] cdg L < 1 if and only if L acts on a tree T’
with §-stabilisers. We can assume |L| = oo and the tree 7" is a one dimensional
model for FgL, so cdg L = §ecd L = cdz L = gdgz L = 1 and the result follows
from Theorem F.11 O
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CHAPTER 5

Some H;§-groups with unbounded torsion

Let U be the smallest class of groups containing all groups of finite §-cohomological
dimension with a bound on the orders of their §-subgroups closed under taking ex-
tensions and fundamental groups of graphs of groups. This class contains all groups
of finite virtual cohomological dimension, Gromov hyperbolic groups, Burnside
groups of large odd exponent, more generally all groups of finite Bredon cohomo-
logical dimension with a bound on the order of their §-subgroups, all countable
L§-groups, lamplighter groups, Houghton’s groups, every countable infinite free
product of §-groups, Dunwoody’s inaccessible group [Dun93], countable elemen-

tary amenable groups and many others.

We first show that the class &/ admits a natural hierarchical decomposition and
establish some of its basic properties. Then, we prove that the Kropholler-Mislin

conjecture holds for {7, , a subclass of U.

wo?

Theorem. Every M §-group contained in the class U, admits a finite-dimensional

classifying space for proper actions.

1. The class il and its hierarchy

Let X be any class of groups, define the group operation F; as F1 X consists of
those groups which are isomorphic to a fundamental group of graph of X-groups.
Note that if X € ) then X € 7, X S F19). Let ®B be the class of groups of finite
$-cohomological dimension with a bound on the orders of their §-subgroups. For

each ordinal o we define the class 4, inductively

o Uy =3,
o i, = (F1 Uy_1) DB if ais a successor ordinal,

o 3, = Uﬂ<a U5 if o is a limit ordinal.

The class 4 is defined as U = |~ Ua-
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Lemma 5.1. The class Y coincides with the class U.

PROOF. Clearly 4 < U and U is closed under taking fundamental groups of
graphs of groups. In order to show U/ < 4 we need only to verify that the class &l
is extension closed. By Bass-Serre theory it follows that if G/N acts on a tree T,
then GG has an action on 7" such that IV fixes every vertex of T". Hence, if X and )
are two classes of groups then X (¥, 2)) € F1(XQ)).We argue by induction on 3 to
show U, 4z S Uyyg. If = 1then Uy Ly = Uy B S (FUy) B = Ups1.

e Suppose [ is a successor ordinal, 3 = v + 1.

Ua s = Ua((F14L) B)
S (Ua(Fi L)) B (by universality, [Rob72, pg. 21)
< (F1(ta tl,)) B (by the above)
S (F1(tlaty)) B (by induction)
= Uatp

e Suppose (3 be a limit ordinal, then Uz =, _ 5 4L,.

o thg = Lo (| 4s)

v<B

:Uﬂauy

r<B
c U Haary (by induction)
v<pB
= L(OH-B . D
Proposition 5.2. The class 3 is closed under taking free products with amalgama-

tion, HNN-extensions, countable directed unions, extensions.

PROOF. It is obvious that il is closed under taking free products with amalga-
mation and HNN-extensions. If GG is a countable directed union of -groups then
G acts on a tree with stabilisers conjugate to groups in the directed system and so
G € U. The class U coincide with the class ¢/ that is closed under taking extensions

by definition.

For any class of groups X we write G € sX if G < K € X. Note that SF; X € F,8X;
in fact if G € sF:X, GG is a subgroup of a group K that acts on a tree 17" with

stabilisers in X and so T is a G-tree with stabilisers that are subgroups of the
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stabilisers of the K-tree T. Clearly if a class X is s-closed then sF; X € Fi X,
and note that the class B is s-closed. Arguing as in Lemma we have that
Sy c (]

Let ¥ B be the smallest class of groups containing the class 8 and which contains a
group G whenever G can be realised as the fundamental group of a graph of groups
already in ¥ B. The class F § was considered by Richard John Platten in his PhD
thesis, however F ‘B and F § differ. For example, any non-trivial group of finite
cohomological dimension with Serre’s property FA does not belong to F § but lies

in ‘B.

Lemma 5.3. The class il is contained in HF, the class ¥ ‘B is properly contained

in 3 and L is not closed under taking quotients.

PROOF. By definition B < H; §, H§ is obviously closed under taking groups
acting on trees with stabilisers in H§ and is extension closed by [Kro93, 2.3]. In

particular 4 € HF.

Let H be a non-trivial §-group and let P be Pride’s group of cohomological dimen-
sion equal to two with Serre’s property FA [Pri83]. Clearly the group G = H ! P
has no bound on the orders of its F-subgroups and it lies in Uy \ ;. By [CK11]]
G has Serre’s property FA, and does not lie in 8 and so G ¢ F,‘B. Note that
cdg G < 3.

The first Grigorchuk group is a 3-generated group but by Theorem .12 it is not an
H §-group, therefore it is not a LI-group and 4 is not closed under taking quotients.
O

2. tl-groups of finite F-cohomological dimension

Lemma 5.4. Let T be a G-tree with edge set E = | |..; L;\G and vertex set

iel
V=] e N;\G. Then there is a Mayer-Vietoris sequence:
N H%(G, -) - @H%(Nj,resmj -)
jeJ

— @ Hy(Li, resy,, =) — HETHG, —) - -

1€l
PROOF. By Corollary 3.4 in [KMPNOS]|| the augmented Bredon cell complex
Z[_7 E] — Z[_7 V] 7L
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is a short exact sequence of OG-modules. Now applying the long exact sequence in
Bredon cohomology we obtain
- Bxti(Z, -) - @ Ext(Z[-, N)\G], )
jeJ
— @EXt%(Z[—, L\G],—) — EXt7§+1(Z, —) >
i€l
We show that Exty . (Z[—, H\G], —) = Ext 4(Z, —).
By [Sym05, Lemma 2.7] we have Z[—, H\G] = indj,, Z. From the adjoint iso-
morphism it follows that induction with Iz is a left adjoint to restriction with
Iy
morg ¢ (indy, Z, —) = morg y(Z,resr, —)

and the result now follows. O

We recall that a less direct proof of the lemma above, involving a spectral sequence
appeared in [FD11, Corollary 4.7].

Corollary 5.5. Let T be a G-tree with edge set E = | |,.; L;\G and vertex set

i€l
V=1] e V. \G. If there is a non-negative integer n such that cdg L; < n and

cdg N; < nforalli, then cdg G < n + 1.
PROOF. It is an immediate consequence of Lemma [5.4] O

Define Fg the group operation as Fg X consists of those groups which are isomorphic
to a fundamental group of graph of X-groups such that there is a finite bound B on
the differences between the § cd and cdz over all the vertex and edge groups. For

each ordinal o we define the class {1, inductively

o U5=1T
o X = (Fgi_;)Bif a < wy,

o 5 =gy, Y5 if @ = wo.

Theorem 5.6. Let G be a W}, -group of finite §-cohomological dimension. Then
G has finite Bredon cohomological dimension. In particular, every Hy §-group

contained in the class il:,o has finite Bredon cohomological dimension.

PROOF. Suppose G € I}, and § cd G = n. If a is a successor ordinal, then G
is an extension N — G — @ with N € Fg {},_; and ) € B. By Corollarywe
have that cdgz N < n+B+1. Since ) has a bound d on the orders of its F-subgroups

80



we can apply [Liic00, Theorem 3.1] to conclude that cdz G < (n+B+1)d+cdz Q.

Hence, since cdgz () < o0 we have cdz G < 0.

Let R be the class of groups of finite §-cohomological dimension. If o = wy then
G € U R = (Upewy 43) 0 R = Upy, (U5 nR). By the above for 3 < wo,
every group in 115 MR has finite Bredon cohomological dimension, and so does
G. O

Proposition 5.7. Suppose that there exists a function p : N — N such that gdz G' <
p(R(Q)) for every group G of finite Bredon cohomological dimension. Then the
Kropholler-Mislin conjecture holds inside .

PROOF. This can be proved as in Theorem[5.6] Notice that the bound does not

have to be universal. O

Remark 5.8. Note that if there is a countable (periodic) H; §-group that does
not belong in 4 then there is a finitely-generated (periodic) H; §-group with no
bound on the orders of its §-subgroups. To see this, suppose that G is a countable
(periodic) H; §-group that does not belong to L. Then ( is the directed union of its
finitely-generated (periodic) subgroups that are Hy §-groups. The group G acts on
a tree with stabilisers conjugate to groups in the directed union. If every stabiliser

were in 4 so would G, giving a contradiction.

Proposition 5.9. Examples of U-groups:

(1) free groups Fr < Ay, countable LFr-groups belong to i,

(2) free Burnside groups of large odd exponent B(m,n) € 4 \ Lo, in partic-
ular Petrosyan’s class N (Pg) # 4,

(3) Us contains all countable A-groups, and 34 contains all countable elemen-
tary amenable groups,

(4) Gromov hyperbolic groups, more generally every group G admitting a
finite model for EzG,

(5) let {F;}ier be an infinite countable ordered family of finite subgroups such
that |F;| < |Fiq1l|. If G = skier Fi, then G € U \ 14,

(6) for every n, the Houghton's groups $),, € s\ 1,

(7) Dunwoody’s inaccessible group ® € 3 [Dun93|.

Note that every group mentioned above lies in L7, .
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PROOF. By the Stallings-Swan theorem every free group has integral coho-
mological dimension equal to 1 and so the assertion is obvious. If G € LFr, then

cd G < 2, therefore G € $B.

It is known by [Adi79] that B(m,n) are infinite for large enough exponent and
that they have a bound on the orders of their §-subgroups. By [Iva91] they admit
an action on a contractible 2-dimensional CW-complex with cyclic stabilisers
and so they are contained in B\J and so in ; \Uy. If G € N (Pg), then
either it contains a free subgroup on two generators or it is countable elementary
amenable [Pet09, Theorem 3.9]. A finitely-generated infinite periodic group cannot
be elementary amenable, therefore free Burnside groups of large odd exponent are

not contained in A"°“!!(Pg) but they belong to B.

Every finitely-generated 2-group lies in 28 and so every countable 2-group G can
be realised as group acting on a tree with finitely-generated 2(-stabilisers and so
G € Yy. For example, the free abelian group of infinite countable rank lies in
s\ U;. Clearly B contains all F-groups and i is closed under taking countable
directed unions and so it contains all countable L §-groups. By Proposition His
closed under taking extensions and so it contains all countable elementary amenable

groups.

Note that since every §-subgroup of a group G fixes a point of EzG, it is contained
in a O-cell stabiliser. Therefore, if G admits a finite model for EzG, then it has
finitely many conjugacy classes of §-subgroups and therefore G has a bound on the
orders of its §-subgroups. Gromov hyperbolic groups admit a finite model for E5

by [MS02].

Let G = %1 F; as above. Then G has no bound on the orders of its §-subgroups but
it is realised as the fundamental group of a graph of F-groups, and so G € Ly \ ;.

The group 9, is isomorphic to an extension of the infinite countable finitary symmet-
ric group © by Z" . The group © is countable [DM96, Exercise 8.1.3], moreover

itliesin L § and so © € F; Yy and 9, € Us.

The group ® is the fundamental group of a graph X of groups. Every edge group
is finite and the only non-finite vertex group is isomorphic to a free product with
amalgamation @y, * g, H. Where (),, is the fundamental group of an infinite graph of
groups with all finite edge and vertex groups, H,, is an infinite countable L §-group

(H, € U\ $41) and H is isomorphic to a semidirect product of the infinite finitary
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symmetric group on a countable set by an infinite cyclic group (H € s\ i4).
From the construction it is clear that ® € {3 and cdg ® < 4. Note that © has no
bound on the orders of its §-subgroups by construction or by Linnell’s theorem on

inaccessible groups [Lin83|. O

Let G and G denote the finitely-generated groups constructed respectively in [DJ98]
and [DJ99]. These have the following remarkable decomposition properties: G =
AsxyGand G = G x5 G.

Proposition 5.10. The group G has finite §-cohomological dimension. It has a

bound on the orders of its §-subgroups and so it belongs to *B.

PROOF. In [Dunll] it is shown that the group G can be realised as the fun-
damental group of a graph of groups Y with two orbits of vertices VY and two
orbits of edges E'Y. Each §-subgroup of G must lie in one of the conjugates of
the A factors. Since A = {a,b|b® = 1,a 'ba = b 1) every F-subgroup has order
bounded by 3. Moreover, since G is the fundamental group of a graph of groups
with all virtually cyclic stabilisers, the Mayer-Vietoris sequence for §-cohomology
gives that §cd G < 0. Hence G € B and G has finite Bredon cohomological

dimension. O

This is in contrast with finitely-generated infinite groups of the form G = A x G
(with A non-finite) by an argument similar to Theorem 4.4 We see that these groups

must have infinite rational cohomological dimension.
Question 5.11. Are there countable H; §-groups not contained in the class $4?

Arithmetic groups over global function fields are countable H; §-groups and we

expect to be a suitable source for answering positively the question above.

Proposition 5.12. Let T be a G-tree with edge set E = | |,
V = Ljes N)\G. Then § cd(G) < sup{Fcd L;,Fed N; withie I, je J} + 1.

L\G and vertex set

PRrROOF. This is an immediate consequence of the Mayer-Vietoris sequence in

$-cohomology associated to the short exact §-split sequence: Z E— ZV —» Z. [

Corollary 5.13. If Nucinkis’ conjecture holds, then there exists a function ¢ : N —
N such that gdz G < ¢(§ cd(Q)) for every group G of finite §-cohomological

dimension.
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PROOF. Assume by contradiction that there is no such function. Then there
exists some n > 1 and a family of group {G};en such that § cd G; < n for every 4
and gdg G; — oo for i — 0.

The group G' = ey G has Fed G < n+ 1 but gdg G = oo giving a contradiction.
The inequality §cd G < n + 1 follows from Proposition[5.12] Since G contains
subgroups of arbitrarily large Bredon geometric dimension we have gdz G =
0. (]

Theorem 5.14. Let T' be a G-tree with edge set E = | |,.;
V = |ljes Nj\G. Then &(G) < sup{K(Li)ier, R(Nj)jes} + 1. In particular
G € H; § if and only if there is a bound on the Kropholler dimensions of the edge

L\G and vertex set

and vertex groups.

PROOF. Replace the edge and vertex groups with suitable H; §-spaces of mini-

mal dimension and proceed as in [Liic03] to obtain an H; §-space for G. O

Corollary 5.15. If Kropholler-Mislin conjecture holds, then there exists a function
v : N = Nsuch that gdz G < v(R(G)) for every vy §-group G.

PROOF. It follows from Theorem [5.14] and it can be proved as in Corollary

512 O
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