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UNIVERSITY OF SOUTHAMPTON  

ABSTRACT 

School of Electronics and Computer Science   

An Investigation into Adaptive Power Reduction Techniques for Neural 

Hardware 

By Sankalp Modi 

 

 

In light of the growing applicability of Artificial Neural Network (ANN) in the signal 

processing field [1] and the present thrust of the semiconductor industry towards low-

power SOCs for mobile devices [2], the power consumption of ANN hardware has 

become a very important implementation issue.  

 

Adaptability is a powerful and useful feature of neural networks. All current 

approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect 

to the power consumption of the network (i.e. power-reduction is not an objective of 

the adaptation/learning process). In the research work presented in this thesis, 

investigations on possible adaptive power reduction techniques have been carried out, 

which attempt to exploit the adaptability of neural networks in order to reduce the 

power consumption. Three separate approaches for such adaptive power reduction are 

proposed: adaptation of size, adaptation of network weights and adaptation of 

calculation precision. Initial case studies exhibit promising results with significant 

power reductions. 
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Chapter 1  

 

Introduction 

 

 

 

1.1 Artificial Neural Networks  
 

Artificial Neural Networks (ANN) are an attempt to model the information processing 

capabilities of biological nervous systems [3]. An ANN system consists of a number 

of artificial neurons and a huge number of interconnections among them. The neuron 

model generally used in ANN is a very abstract mathematical model of the actual bio-

chemical process within the neuron. The network is formed by connecting a number 

of these neurons using weighted connections. The ANN is then trained to perform a 

useful function by adjusting its weight using a learning algorithm. A wide variety of 

network architectures and learning algorithms are available in the literature [3, 4]. 

ANNs have been successfully applied to solve a wide variety of problems[1, 4]. A 

short overview of ANN and its application is presented in section 2.1.6.  

 

Apart from the well-established field of ANN, (which is also known as the ‘traditional 

ANN’1 ), currently there is a great research interest in the emerging new generation of 

neural networks [5], known as ‘Spiking Neural Networks’. Spiking Neural Networks 

(SNNs) are based on the recent biological experiments on electrical spikes observed 

in the brain [6]. SNN offers a novel and fundamentally different kind of information 

processing with temporal coding schemes, where the time of the signal is the 

                                                
1 For clarity and brevity, henceforth, ‘traditional ANN’ will be referred simply as ‘ANN’ (or ‘Non-
spiking ANN’).  
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information carrier [7]. These networks have received great attention in the last few 

years and it is a very active area of research at present. [8, 9]. (Section 2.3 provides 

more detail review on SNN).   

 

1.2 Neural Hardware 
 

The traditional implementation of ANN involves running simulations on a 

microprocessor. However, despite the tremendous growth in the computing power of 

general-purpose processors, it is generally insufficient for many real time ANN 

applications such as image processing, speech synthesis and analysis, pattern 

recognition and high energy physics [10-18].  

 

Moreover, actual biological neural systems consist of a very large number of neurons. 

(For instance, a human brain consists of approximately 1011 neurons with 1014 to 1015 

synaptic interconnections.)  In order to investigate even a fraction of these capabilities 

of biological brains, it is necessary to simulate very large networks; this may only be 

practical when accelerated with specialized hardware [10-18].  

 

Furthermore, the increasing use of ANN in embedded devices (e.g. low-cost dedicated 

devices for speech recognition in consumer products [19] and analogue neuromorphic 

devices like silicon retinas [20]) motivates the development of specialized neural 

network hardware. 

 

As a result, there has been considerable research interest in the hardware 

implementation of ANN. ANN hardware has undergone substantial development 

during last two decades and a plethora of ANN hardware implementations are 

available[10-18]. In addition, with promising research results in Spiking Neural 

Networks [5, 21], a new generation of VLSI-chips, known as pulsed VLSI[8], is 

emerging to exploit the potential of SNN. Pulsed VLSI is based on the idea of 

utilizing spike coding and temporal information processing and it has become a major 

research theme of several research groups[22]. Chapter 2 provides a short review of 

the ANN hardware.   
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1.3 Motivation  
 

1.3.1 Proliferation of Neural Networks in Signal Processing 

 

Some of the key features of ANN are non linear dynamics, self-organization and 

learning/adaptation capability, parallel and distributed processing and robust and fault 

tolerant yet hi-speed computation [3, 4]. With these features, ANN can provide very 

powerful means for solving many problems encountered in signal processing, 

especially in non-linear processing, adaptive signal processing and blind signal 

processing [1]. During the last two decades, ANNs have found wide applicability in 

many diverse aspects of signal processing. They have been successfully applied for 

filtering, parameter estimation, signal detection, pattern recognition, signal 

reconstruction, time series analysis, signal compression and signal transmission [1, 

23]. The signal involved includes audio, video, speech, image, communication, sonar, 

radar, medical and many others. (Refer to section 2.1.6.)  

 

SNN have been applied for spatio-temporal pattern analysis and pattern recognition 

[24], clustering and segmentation [25, 26] and has began showing some encouraging 

results in signal processing applications, particularly in image and video processing 

[21, 27, 28] and robotic control [29, 30].  

 

1.3.2 The Low power Emphasis  

 

Implementations of neural networks are computationally intensive and consequently 

power-hungry [12]. In light of the growing applicability of ANN in the signal 

processing field and considering the present thrust of the semiconductor industry 

towards low-power SOCs for mobile devices [2], power consumption of the ANN 

hardware has become a very important implementation issue. There have been a 

number of research efforts directed towards low-power implementations of neural 

network [31-34].  

 

Some clarification about the term ‘Low-power’ would be appropriate here. Power is 

defined as the ‘rate of energy dissipation’. Some research of ‘Low-power’ 

implementation is concerned with the ‘peak-power’ dissipation due to the heating 
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problem and not with the total energy consumption. However, our work is associated 

with the ‘Low-power’ implementation that concerns the reduction of total 

power/energy consumption and is targeted for battery operated devices. We shall 

assume reduction in power consumption will result in reduction in energy 

consumption and vise-versa.  Henceforth, we will use the term Power and Energy 

interchangeably in our thesis.  

 

1.3.3 Motivation for Exploring Adaptive Techniques  

 

Neural networks possess some key characteristics which distinguish them from 

conventional computing on microprocessors, such as:  

 

• Adaptation, Learning and Self-organization capabilities 

• Fault tolerance and graceful degradation of performance in presence of noise 

through distributed processing and connectionist architecture 

• Non-linear dynamics  

 

Almost all the reported attempts [31-34] for low-power implementations of neural 

networks rely on general low-power techniques to build neural/synaptic units. They 

generally target the improvement of individual units. However, none of these efforts 

attempt to examine and utilize the above key system-level characteristics of neural 

networks. Adaptability is (arguably) the most powerful and useful feature of neural 

networks. All currently employed low-power techniques are ‘non-adaptive’ with 

respect to the power consumption of the network i.e. power-reduction is not an 

objective of the adaptation/learning process.  

 

In the research work presented in this thesis, investigations on possible adaptive 

power reduction techniques have been carried out, which exploit the above key 

characteristics of neural networks and adapt the network in order to reduce the power 

consumption.  
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1.3.3.1 Possible options 

 

To consider adaptive power reduction, it is necessary to deliberate different possible 

ways to dynamically affect the power consumption of the neural hardware. Figure 1.1 

presents the overview of such possible methods over different hardware platforms. 

 

Figure 1.1 Probable adaptive power reduction techniques over various neural hardware 

platforms
2
 

  

First, effects of these methods on various traditional (i.e. non-spiking) ANN hardware 

implementations are considered:  

 

Adaptation of size: 

 

We will refer the term ‘size’ to refer to the sum of the total number of connections and 

number of neurons. On a digital platform, disabling one synaptic connection will 

                                                
2 In Figure (1), the link with the ‘!’ indicates an ambiguous relation-ship and/or non-promising option.  
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generally eliminate one Multiply-and-Accumulate (MAC) operation, plus the 

associated fetch cycle and weight-update operation. Removal of one node (i.e. 

neuron) has an even more significant impact on power saving, as it will decrease the 

calculations associated with all the incoming and outgoing connections in addition to 

the calculation of the activation function within the neuron. The change in number of 

neuron nodes and number of inter-neuron connections directly affects the power 

consumption of ANN. The effect is very similar in an analogue implementation. 

Elimination of each connection will save one analogue multiplication and the 

electrical currents associated with it.  

 

Using the dynamic pruning approach [35], it is possible to dynamically scale the 

power consumption of ANN. This concept of ‘power-scalable’ ANN and its potential 

benefits are discussed in detail in Chapter 3.  

 

Adaptation of synaptic weights:  

 

For low-power analogue ANN hardware, the Class AB type implementations are 

particularly attractive options as they remove the necessity to maintain large bias 

current levels (leading to very low-power consumption). This allows the input signal 

magnitude to exceed the bias current thus improving the calculation precision. [31, 

36].  

 

The power consumption of such class AB circuits depends heavily on the values of 

signals (currents/voltage), which in turn depend on the values and distribution of 

weights of synaptic connections. Since the weights are determined by the applied 

learning process, the learning process is very likely to affect the power consumption 

considerably. This gives rise to the possibility of employing ‘power-aware’ learning 

for neural networks, where the ANN not only tunes the network to obtain minimum 

error, but also adaptively learns to reduce its power consumption. Chapter 4 provides 

more details on the approach of power-aware learning.  

 

Synaptic weight values can also affect the power consumption on the digital platform. 

However, the relationship between individual weights, overall weight distribution and 

power consumption can be extremely complex and it is unclear how we can influence 
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the learning process to reduce power. Our initial experiments in this direction have 

yielded discouraging results. In comparison, variation in size or word-length looks 

much more promising for the digital systems and hence the weight adaptation 

approach was not investigated in our research for the digital platform.  

 

Adaptation of calculation precision: 

 

For digital systems, the precision of calculations are determined by the implemented 

word-length (a.k.a. bit-width) of the arithmetic units and storage elements. The word-

length significantly effects both the area and the power consumption of the digital 

systems [37]. Dynamic word-length variation without increasing the power overhead 

is generally difficult to implement in hardware. However, recent publications [38-40, 

41 , 42] show promising results in that direction. In Chapter 6, we will explore the 

possibilities of dynamic-word length variation in ANN where the word-length of 

different synaptic calculations will be adapted to reduce power consumption. 

 

In the analogue hardware, reducing supply voltage and current can reduce power. This 

generally leads to a smaller dynamic range of signals (current /voltage) and reduced 

calculation precision. Hence there exists a trade-off between power and precision. 

However, it is not clear to us how we can exploit this trade-off in actual hardware 

because dynamically adapting supply voltage for each node/synapse does not seem 

very feasible due to the involved implementation issues; hence this approach does not 

seem practically attractive.  

 

Approaches for Spiking Neural Networks: 

 

In SNN hardware systems, all the activities are triggered by spikes. By reducing the 

total number of spikes generated, we can potentially reduce the dynamic power 

consumption significantly.  

 

The number of spikes generated can be heavily influenced by many factors including 

size, connectivity patterns, weights and calculation precision. It should be possible to 

influence the power consumption by all three methods presented in the previous 

section for both analogue and digital SNN. Like the analogue ANN, adapting 
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calculation precision may not be practical in the analogue SNN. However, unlike the 

digital ANN, weight distribution and learning process can heavily affect the spike 

generation and thereby affecting the power consumption of the digital SNN.  

 

However, there are number of difficulties involved in applying them to SNN. Unlike 

the well-formulated theories of ANN, the learning/adaptation theories for SNN are in 

their infancy. We have used ‘pruning’ and ‘supervised learning’ to employ ‘power-

scaling’ and ‘power-aware learning’ in ANN. These methods are not directly 

applicable to SNN. Researchers have not yet investigated the effects of pruning and 

signal resolution requirement in SNN. Research on the supervised learning for SNN is 

limited [43-46]. This provides a wide scope of further research in this area. Chapter 7 

presents our work on a SystemC Simulation framework for SNN which is capable of 

fast simulation with various levels of abstraction. SystemC is suitable for co-

simulation of both hardware and software and using an HDL like SystemC ensures its 

easy integration in the IC design flow. It provides a good platform suitable for 

evaluating our techniques for further research. Chapter 7 also discusses the various 

possibilities of applying adaptive power reduction techniques in SNN.  

 

Some remarks on these suggested approaches:  

 

(1) These approaches work on the system-level and none of the approaches should 

prevent the use of other circuit level low-power techniques [31-34] suggested by other 

researchers. The low-level techniques can be implemented in conjunction with the 

approaches proposed in this thesis and as such this work is proposed as a supplement 

to other low-power techniques rather than a replacement. 

 

(2) Although the power consumption is difficult to estimate and time-consuming to 

simulate, it is relatively easy to measure during runtime. All our proposed approaches 

aim to utilize the actual power measurement during run-time, which requires little 

overhead. 
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1.4 Thesis Outline  
 

In this thesis, different chapter presents separate research aspects of adaptive power 

reduction techniques identified in section 1.3.3.1. The organization of this thesis is as 

follows: 

 

Chapter 1 provides introduction to neural hardware and its applications and discusses 

the motivation for exploring adaptive power reduction techniques. In chapter 2, the 

necessary Literature review on the subject is presented.  

 

The chapter 3 describes a ‘Power-scalable’ implementation of Artificial Neural 

Networks. It explains the basic principles behind employing power-scalability in 

ANN and discusses its potential advantages. It is demonstrated with the help of the 

simulation results that by using dynamic pruning techniques, it is possible to achieve 

such scalability and reduce the power consumption.  

  

‘Power Aware Learning’ is described in Chapter 4. We propose ‘Power-aware 

learning’ for class AB analogue ANN implementations by modifying the objective 

function of the learning process. Presented simulation results exhibit significant power 

reduction over a variety of problems.  

 

In chapter 5, we have explored the application of Dynamic word-length variation for 

power reduction in the digital ANN hardware. We have proposed building blocks and 

a design methodology to employ this technique.  

 

Chapter 6 presents SystemC simulation framework for SNN. It also describes the 

possibilities and challenges of applying adaptive power reduction techniques to SNN. 

The thesis concludes with conclusions and future work in chapter 7.  
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Chapter 2  

 

Background  

 

 

 

2.1 Artificial Neural Network   
 

2.1.1 Biological neuron  

 

Neurons are body cells specialized for signal transmission and signal processing. 

Figure 2.1 shows the typical structural characteristics of a neuron.  

 
Figure 2.1 Diagram of a generic neuron 

 

A neuron has a cell body (or soma) and root-like extensions called neurites. Amongst 

the neurites, one major outgoing trunk is the axon, and the others are dendrites. A 

single neuron receives signals from many other neurons, (typically in the order of 

10,000 for mammals) at   specialized sites on the cell body or on the dendrites, known 
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as synapses. Synapses receive signals from a pre-synaptic neuron and release 

neurotransmitter chemicals that alter the state (i.e., membrane potential) of the 

postsynaptic neuron (the receiver neuron).  The changes in the membrane potential 

eventually trigger the generation of an electric pulse, the action potential, in a form of 

a spike. This action potential is initiated at the rooting region of the axon, known as 

the axon-hillock, and subsequently travels along the axon, sending the information 

signal to the other parts of the nervous system.   

 

Thus, functionally, the dendrites play the role of “input devices” that collect the signal 

from other neurons and then transmit them to the soma. The soma is the central 

processing unit that performs an important non-linear processing step: if the total 

input exceeds a certain threshold, the soma generates an output signal. The output 

signal is delivered to the other neurons by the “output device,” the axon.  

 

The biological brain consists of a large number of such neurons. Typically the brain 

exhibits massive connectivity amongst neurons with complex, intricate connection 

patterns. For instance, a human brain consists of approximately  1011 neurons with 

1014 to 1015 synaptic interconnections. 

 

2.1.2 Artificial Neural Network Model 

 

Artificial neural networks utilize highly simplified neuron models which only 

describe the essential computational functionality of a neuron relevant to the network 

in a very abstract manner.  Pioneering binary neuron models (McCulloch and Pitts 

[47])  and perception models (Rosenblatt [48])  have laid the foundation for the field 

of ANN. Figure 2.2 shows a typical neuron model used in the ANN. A number of 

variations of these neuron models have also been proposed [3, 4]. 

 

Figure 2.2Typical ANN neuron model 
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A basic neuron unit is a combination of a linear combiner and an activation function 

(figure 2.2). For the neuron j, the output of the linear combiner is the weighted sum of 

the inputs xi plus a bias term bj. The activation function generates the neuron output 

yj, where 

 









+⋅= ∑

=

n

i

jiijj bxwy
1

,ϕ        (Eq. 2.1) 

 

The activation function φ () can be either a linear or a non-linear function. The choice 

of the activation function depends on the application. Most commonly used functions 

are: the linear or identity function, the sigmoid function, the hard limiting function, 

and the linear saturator [3, 4].  

2.1.3 ANN architectures  

 

Several such neurons are connected in a particular fashion to form the neural network. 

Each connection is assigned a ‘weight’ parameter which is utilized by the target 

neuron to perform the weighted summation. These ‘weights’ are suppose to reflect the 

efficacy of a particular synaptic connection observed in the biological system. The 

connectivity pattern and directions of the signal flow determine the structure or the 

‘architecture’ of the ANN. ANN architectures can be grouped into two categories: (1) 

Feed-forward architectures, which do not involve any feedback connections or loop 

connections within the network, or (2) Recurrent architectures, which involve some 

feedback connections.  

 

Different architectures yield quite different network behaviours. A wide variety of 

ANN architectures have been proposed by researches and some of the most 

commonly used architectures will be described later in this section. More detailed 

network classification is presented in appendix A.  

  

2.1.4 Learning in ANN  

 

In order to perform a specific task, adaptable network parameters (i.e. synaptic 

weights) should be set to the correct values. However, generally, prior knowledge of 

the correct weight values is not available and it is set by using some learning 
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procedure.  In context of ANN, learning is the process of adapting the connection 

weights to minimize a loss function given an input vector. Neural network learning 

rules dictate how connection parameters are updated using input learning examples 

presented to the network.  Two separate learning paradigms are applicable in ANN: 

Supervised learning and Unsupervised Learning (figure 2.3). ( from [49])   

 
Figure 2.3Supervised learning and Unsupervised Learning 

 

In supervised learning, the network is trained to reduce the error between the desired 

response d(n) and the network output y(n) for the specific input signal x(n), where e(n) 

= d(n) - y(n). There is an implicit concept of a teacher or a supervisor. During the 

training period, both the input and the desired response are presented to ANN by the 

teacher. The error between the desired response and output is fed back to a learning 

algorithm. Error is gradually reduced by updating weights using the learning 

algorithms. The training is stopped when some predefined criterion is achieved (e.g. 

when the error level is reduced to an acceptable level).  

 

In unsupervised learning, there is no feedback resulting from the desired response. 

Only the input signal x(n) is applied to the network input. The response of ANN is 

based on the network ability to self-organize. The network organizes itself internally 

so that a set of neurons becomes sensitive to a specific set of the input data space [3, 

49].  

 

Different architectures require separate learning methods. Various possible 

combinations of learning methods and ANN architectures are presented in Appendix 

A. Some of the most widely used ANN architectures and the corresponding learning 

methods are briefly discussed in this chapter.  
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2.1.4.1 MLP   

 

The multi-layer feed forward neural network, known as the Multi-Layer Perceptron 

(MLP), is probably the most popular neural network architecture used in ANN 

applications.  The basic unit, the neuron, is the same as shown in figure 2.4. It is a 

combination of a linear combiner and an activation function.   

 

Figure 2.4 Typical Multi-Layer Perceptron (MLP) network  

 

An MLP net (see Fig. 4) consists of neurons connected to each other in a layered 

fashion.  The network inputs are the inputs of the first layer.  The outputs of the 

neurons in one layer are the inputs to the next layer.  The input information is 

processed from the input layer to the output layer.  The network outputs are the 

outputs of the output layer.  Layers other than the input and output layers are called 

hidden layers.  

 

It has been demonstrated that a two-layer feed-forward perceptron with a sigmoidal 

activation function and a scalar output can approximate continuous functions 

arbitrarily well, provided that a sufficient number of neurons are available [50]. This 

property is called the universal approximation property of MLP.  

 

Training MLP: 

A supervised learning process is used to train MLPs. The most widely used algorithm 

is Backpropagation and its variants [3, 51-53]. In Backpropagation (BP) learning, a 

set of input-output pairs {X0 (n),D(n)} is presented to the network, where D(n) is the 

desired vector response to input vector X0(n) applied at the input layer. The network 
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output is the output of the output layer L, i.e.  XL(n) in response to input X0(n). BP 

trains the network to implement the desired mapping by adjusting weights so as to 

minimize the error cost function. The most commonly used error cost function is the 

Mean Squared Error (MSE) i.e.  E(n) = || D(n) – XL(n) ||2.  

 

In the following notations, the layer index is denoted by k.  x(i)k is the output of 

neuron i of layer k.  w(j,i)k is the weight that links the output x(i)k-1 to neuron j of layer 

k. Nk is the number of neurons in layer k.  The output of the linear combiner of neuron 

j in layer k is   
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The output of a neuron j in layer k is 

( ))()( )()( nvnx kjkj ϕ=         (Eq. 2.3) 

For mathematical convenience, bias b is considered as a weight associated with a 

constant input equal to one. The BP algorithm performs a gradient decent on the error 

cost function to reduce the error. The weights are updated as: 
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Equitation 2.5 can be represented as  

)()()( 1)()(),( nxnnw kikjkij −−=∆ ηδ       (Eq. 2.6) 

 

For output layer L, 
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and for hidden layer k 
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where φ’(x) denotes the first derivative dφ(x)/dx.  
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Thus, the weight update is performed by propagating the error terms “back” from the 

output layer to the input layer. 

 

2.1.4.2 RBF  

 

The RBF network [3] is a two-layer feed-forward network (figure2.5.),  

 

Figure 2.5 An RBF network 

 

The activation function of the first layer is φ(||x||) where φ is a continuous function 

from R+ to R (a radial basis function). A commonly used function is the Gaussian 

function  

( )22 2/exp)( σφ xx −=        (Eq. 2.9) 

The outputs of the first layer neurons are written as  

||)(||1)( iii CXx −=φ          (Eq. 2.10) 

where X is the input vector and Ci is the centre vector associated with the neuron i.  

The network output is written as  
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where N1 is the number of neurons in the first layer, and wj,,i , j= 1,2, … N2 are the 

weights associated with the output layer. The free parameters are therefore the centres 

{Ck} and the weights {wj,i} .  

It has been demonstrated that an RBF network can approximate continuous functions 

arbitrarily well, provided that a sufficiently large number of neurons are available. 

Comparisons of RBF and MLP are given in [3]. 
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Several algorithms have been proposed to update RBF networks. The most widely 

used algorithm is composed of an unsupervised learning rule for the centres update, 

and a supervised learning rule for the output weights update.  

 

Centres update:  

1. Present a signal X(n) to the network. 

2. Compute the distances between the input vector and the centres:  

di(n)= ||X(n)-Ci(n)|| . 

3. Determine the closest centre p to the input signal such that dp(n) = min di(n) . 

4. Update the centre Cp according to Cp (n+1)= Cp(n)+µ(X(n)- Cp(n)) , where µ is a 

small positive constant. 

 

Supervised learning with LMS algorithm for the weights: 

1. Present a pair of input-desired output signals (X(n), D(n)). 

2. Compute the error ej(n)=dj(n)-yj(n).  

3. Update the weights of the output layer according to wj,i(n+1)=wj,1(n)+ηej(n)x(j)1(n), 

where η is a small positive constant. 

 

2.1.4.3 SOM 

 

Let E be a p-dimensional vector space and W an element of E. A neuron k defined in 

E is characterized by its weight vector Wk.  A self-organizing map (SOM) define on E, 

is a grid A (which can be n dimensional) of neurons characterized by Wk defined in E 

[54]. A two-dimensional SOM is represented in figure. 2.6 [49].  

Wk

X(n)

Wp

 

Figure 2.6 A 2-Dimensional self-organizing map. Winner neuron is Wp. 
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Functioning of SOM with Competitive learning rule:  

Let X be the input to the SOM at time n. The adaptation of a neuron Wk at time n is 

determined by computing the distance between X and Wk : d(X, Wk)= || X - Wk||. 

The basic Kohonen learning rule for the SOM map is performed as per the following 

steps:  

0. Initialize the SOM: Neurons Wk are initialized with small random values. 

1. Present an input signal x(n). 

2. For each neuron Wk of the map, compute the distance d(X, Wk). Determine the so-

called excitation centre Wp (i.e. the neuron of grid A that has the minimal distance). 

3. Update the weights:  Wk= Wk+ λΦ(X- Wp), where Φ() is the excitation response 

which defines the response of neuron k when p is the centre. Generally, Φ() is a 

neighbourhood function which decreases as the distance |k-p| increases on the map.  

4. Go back to step 1 and present a new input sample x(n+1) until an equilibrium of the 

map is reached. 

 

SOMs are used for many applications such as clustering, segmentation, vector 

quantization, etc.   

 

2.1.5 Pruning  

 

After ANN is trained by a set of examples, an essential issue is how it will respond to 

the inputs that were not present in the training set. In other words, it is critical how 

well ANN will ‘generalize’ the knowledge learned during the training for the patterns 

that are similar (but not the same) to the training set. This generalization capability of 

ANN is one of the most important issues in ANN performance evaluation [3]. It is 

well known, that for a given problem, the key to obtaining a good generalization is to 

choose an optimally sized network [55]. A rule of thumb for obtaining a good 

generalization is to use the smallest system that will fit the data [56]. However, design 

of the ANN with an optimum size for a particular task is difficult. If the size of the 

ANN is too large then it shows ‘over-fitting’ and results in poor generalization.  On 

the other hand, the capability of the ANN is ultimately limited by its size and if the 

size of the ANN is too small, it cannot perform the task within the tolerable error 

margin [55]. There are no satisfactory analytical methods available to determine the 

optimum size and topology/connectivity of the neural network for a particular task.  
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Two separate approaches are suggested to tackle this problem systematically: 1) 

Constructive methods  and 2) Pruning methods [56]. The constructive methods 

typically start with a small ANN and incrementally add new connections and nodes 

during training until the error cost is decreased to a tolerable level. Pruning methods 

typically start with a big network that and then incrementally reduce the ANN 

functional complexity and decreases the error cost by improving generalization. When 

compared to the growth methods, pruning methods are less sensitive to initial 

conditions and are less susceptible to get stuck in local minima [55, 56]. Several 

pruning methods have been proposed by researches [56, 57]. They can be classified 

into two broad categories [56]: (1) Penalty-term pruning and (2) Sensitivity based 

Pruning.  

 

Penalty-term pruning attempts to prevent over-fitting the training data by restricting 

the complexity of the ANN function. It adds an additional penalty term to the 

objective which penalizes overly high model complexity.  

O(W)  =  ε(W) +  λc· C(W)    

 

O(W) is the objective function that is to be minimized with respect to weight vector 

W, the vector of synaptic weights. E(W) is the error function, usually the Mean 

Squared Error (MSE) over the training samples. C(W) is the complexity penalty term. 

The regularization parameter λc determines the influence of the complexity penalty on 

the learning procedure. It has been reported that the complexity regularization 

parameter λc is difficult to tune.  Some example C(W) terms are [3, 56, 57]: 
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Sensitivity based pruning estimates the sensitivity of the error function to the removal 

of an element, and the elements with the least effect are gradually removed from the 

network.  Penalty-term pruning is applied during the training of ANN. Unlike penalty-

term pruning, the sensitivity methods modify a network after it has been trained. It is 
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applied as a post-training step, although, some limited cycles of retraining may be 

involved.  

 

The simplest form of this method is Magnitude Pruning. In Magnitude Pruning, the 

importance, or the saliency of each weight is equal to the magnitude of the weight. 

Thus, this pruning simply gradually removes the weights with small magnitudes. 

Although very simple to implement, its performance is widely considered inferior in 

comparison with the other sophisticated methods. Hessian based network pruning 

methods, such as Optimal Brain Damage [58] and Optimal Brain Surgeon [59], have 

shown much better results. They incur very high overheads of Hessian matrix 

calculations. Other methods have been suggested by researchers between these 

extremes such as Skeletonization [60], and Karnin Sensitivity Estimation [61].  

 

Apart from these two categories, other types of pruning methods have also been 

explored such as pruning using Genetic Algorithms [62, 63], interactive pruning [64, 

65], and Local and Distributed Bottlenecks [66]  

 

2.1.6 ANN applications in signal processing  

 

ANNs can be useful in a performing a wide variety of tasks such as pattern 

classification, clustering, function approximation, prediction, optimization and search 

and associative  memory implementation [3, 4]. Consequently, ANNs have found 

wide applicability in many diverse aspects of signal processing during the last two 

decades. Two books [1, 23] provide a spacious review of ANN signal processing 

application. ANN signal processing applications have been broadly categorized as 

following:  

 

1) Filtering 

2) Signal detection  

3) Signal reconstruction  

4) Adaptive extraction of Principle and Minor components  

5) Array signal processing  

6) System Identification  

7) Signal compression  
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Similarly, [49] provides a survey of ANN applications to digital communication 

where ANNs have been proven useful for system identification, adaptive channel 

equalization, spread spectrum applications, vector quantization, nonlinear filtering, 

etc. There are many reported applications on ANN for computer vision, speech 

recognition, and character recognition [67, 68]. All these surveys impart a wide 

proliferation of ANN in signal processing applications.  

 

2.2 ANN hardware 
 

Very soon after the inception of the ANN, it was pointed out by researchers that ANN 

has inherent parallelism that can be utilized to speed up the execution by parallel 

processing in hardware.  Moreover, specialized ANN hardware implementation is 

required for the use of ANN in embedded dedicated consumer devices. Consequently, 

ANNs have been subject to a plethora of implementation activities and a wide variety 

of ANN hardware has been designed. A number of  research papers provide a  survey 

of research on ANN hardware  [10-18]. ANN hardware can be categorized into 

various groups as per the general scheme shown in figure 2.7 [16]. Other detailed 

classification schemes have been proposed in [10, 13]. A recent publication [69] 

provides a comprehensive survey of the commercially available ANN hardware. 

 

 

Figure 2.7 Neural network hardware categories [16] 

 

Accelerator boards are frequently used in neural commercial hardware, because they 

are relatively cheap and widely available. It is simple to setup an interface with a PC, 

and it typically comes with user-friendly software tools [17]. However, these kinds of 
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neural hardware offer a limited size for processing elements [69] and they generally 

lack flexibility and do not offer many possibilities for setting up novel paradigms 

[16]. IBM ZICS360 [70] and  Neuro Turbo II [71] are examples of  this category.   

 

Because of their wide availability and relatively low prices, a number of neural 

hardware systems have been assembled from general purpose processors. They offer 

superior programming flexibility but they are computationally not very efficient [17]. 

Experiences gained from these implementations have been useful for the design of 

dedicated neural hardware. 

 

Digital Neural ASICs are much more powerful in neural computation. Digital 

techniques offer high computational precision, reliability, and programming 

flexibility. CNAPS  and SYNAPSE-1 , NESPIN [17, 69] are some well known digital 

neurocomputers. However, digital technology requires a relatively large circuit size 

compared to analogue implementations.  

 

Because of the inefficient connectivity and the use of area- and power-hungry 

multipliers, it is difficult to integrate a massively parallel ANN on a single chip with 

digital implementation: even with deep sub-micron technologies, only a few hundred 

neurons can be integrated on a chip, while many practical ANN applications require 

thousands of neurons working in parallel [72]. Analogue electronics can offer 

compact, high speed, massively parallel ANN implementations with low energy 

dissipation [72] and it has attracted considerable research efforts in recent years [12, 

31, 72]. However, analogue implementations suffer from noise susceptibility, 

difficulty of weight storage, and reduced programmability [12]. 

 

Several researchers have proposed hybrid analogue-digital systems to combine 

advantages of both the systems. AT &T ANNA and Bellcore CLNN-32 have a digital 

interface with analogue internal processing. The weights are stored as capacitor 

charges are refreshed periodically. Mesa research neuroclassifier [69] has analogue 

inputs and outputs with digital weights of 5 bits. The speed that is claimed reaches 21 

GCPS, which is the highest rate of performance announced in commercial hardware 

[69]. Ricoh RN-200 utilizes digital pulse rates or pulse widths for data communication 

and uses analogue elements for computation.  
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With the progress in FPGA technology in the recent years, digital FPGAs have 

become an attractive option for ANN hardware because of its low cost and shorter 

design time [73] . There is an increasing trend to take advantage of dynamic re-

configurability of FPGA devices for topological exploration of ANN [74, 75].  

 

Some of the major issues involved in ANN hardware implementations is the  

precision requirements [76]. A succinct survey of quantization effects and precision 

requirements of ANN studied by several researches is presented in [18] and [77]. The 

precision requirement of the ANN significantly affects the power consumption of 

implemented ANN and this issue is discussed in greater detail in Chapter 5. 

Researchers have proposed various adaptations of ANN, which can make ANN more 

suitable for hardware implementation. These efforts consist of various approaches 

including architectural modifications [76] and hardware-friendly learning algorithms 

[72, 78].  

 

2.2.1 The Low-power emphasis  

 

Following Moor’s Law over the years on the scaling of transistor sizes, today’s VLSI 

chips have extremely high transistor density, while its computational power has 

increased manifolds. Power dissipation resulting from intensive computation over 

densely packed transistors on the chips has lead to severe heat removal problems.   

In addition, popularity and increased demand of battery operated portable devices in 

the consumer market is driving the development of more sophisticated portable 

gadgets. There is a strong demand for longer battery lifespan even with the increased 

computational intensity of such sophisticated applications. As a result, reduction of 

power consumption has become one of the most important objectives for current 

SOCs and Embedded systems. 

 

With the strong emphasis on the low-power designs in the semiconductor industry, 

this issue has become equally important in ANN hardware implementation. Lower-

power dissipation is one of the major drives behind the development of analogue 

ANN VLSI in the recent years [12, 72].  
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There have been a number of research attempts to design low-power ANN 

implementations. A low-power neuroprocessor has been proposed in [32]. [33] 

proposed a low-power distance computation unit dedicated to neural networks based 

on redundant arithmetic. A low-power current mode approach with class AB neuron 

cells was developed by [31, 36].  [34] presented a cell-library for low-power ANN 

vision applications. During the literature review on this topic, it was noted that most 

of these approaches utilize general circuit level low-power techniques, and none of 

them utilize system level adaptability of ANN to reduce power consumption.  

 

2.3 Spiking Neural Networks 
 

2.3.1 Why spiking neuron models?  

 

As explained in the previous section, the models used in Artificial Neural Networks 

(ANN) are highly simplified. Decades of intensive research have produced numerous 

advancements in ANN with threshold and sigmoid models. Despite that, the current 

ANN systems fail to achieve the computational power, robustness, and efficiency of 

even the simplest biological brain. This poses a serious question against the 

simplification and abstraction used in these models, and forces us to look back at 

biological neural codes more closely.  

 

Simplified models used in ANN are based on the assumption that all the relevant 

information between neurons is communicated through firing rates of the neuron. 

There is an implicit assumption in the models that the individual firing times in the 

biological neural system carry no information, and therefore, small inter-spike timing 

variability should be considered as the noise. However, some recent experiments 

strongly contradict this assumption [6, 79, 80].  

  

Therefore, a new class of neuron models has emerged in the recent years wherein 

spike time is used as a resource for coding information. These models are generally 

referred to as Spiking Neuron Models [9]. These models focus upon the mathematical 

formalization of the computational properties of biological neurons [5, 9] in a way 

that can capture the spiking nature of the neurons. In the last few years, temporal 

spiking models have received great attention and are viewed as the third generation 
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neural network models [5].  Networks based on these models are known as the pulsed 

neural network or Spiking Neural Network (SNN). In SNN, Rather than focusing on 

what will be the value of an output of a computational unit under a given input, we 

have to focus on what time it will produce an output. Computations and processing in 

SNN are quite different than traditional ANN or prevalent electronic circuits [7].  

With spiking models, researches have investigated various other types of information 

encoding schemes that rely on the timings of individual spikes: relative latency coding 

[81, 82], Phase coding [83], correlation and synchrony coding [84].  

 

 

A number of books [8, 9, 85] have been recently published which analyse these 

models in detail. Some recent studies with rigorous mathematical analysis have 

demonstrated that through the use of temporal coding, a pulsed neural network may 

gain more computational power than a traditional network (i.e. sigmoidal neural net) 

of comparable size [86, 87].  

 

 

2.3.2 Spiking neuron models  

 

In this section we will introduce some of the most widely used simplified spiking 

neuron models3. Although SNN models are more biologically realistic in comparison 

with the ANN models, they are computationally considerably less expensive when 

compared with biophysical models. The biological plausibility and justification 

regarding the complexity reduction from the detailed neuron models to simplified 

spiking models can be found in (section 4.3:[9] ).  

 

2.3.2.1 The Integrate–and–Fire Model  

 

The leaky Integrate– and–Fire models (IF neuron model) neuron is probably the best-

known example of a formal spiking neuron model. It simulates the dynamics of the 

neuron membrane potential implementing an equivalent electrical circuit. The 

electrical circuit accumulates the input synaptic currents and, when the membrane 

                                                
3 Most of the material of in this section is represented from [9] W. Gerstner and W. M. Kistler, Spiking 

Neuron Models: Cambridge University Press, 2002.. 
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potential reaches the threshold value, the IF neuron generates a spike. Immediately 

after the spike generation, the potential is reset to the resting potential and is 

maintained there for an absolute refractory period. 

 

 

Figure 2.8 Integrate-and-Fire model (from[9]) 

 

The basic circuit of an integrate-and-fire model consists of a capacitor C in parallel 

with a resistor R driven by a current I(t). (See figure 2.8) The governing equation is 

given by equation 2.4 where u is the membrane potential (i.e. voltage across capacitor 

C.)  

dt

du
C

R

tu
tI +=

)(
)(         (Eq. 2.12) 

Introducing the membrane time constant τm  = R C of the ‘leaky integrator’, we get  

)()( tIRtu
dt

du
m ⋅+−=τ        (Eq. 2.13) 

In integrate-and-fire models, the form of an action potential is not described 

explicitly. Spikes are formal events characterized by a ‘firing time’ t(f). The firing time 

t
(f) is defined by a threshold criterion described in equation 2.6. 

ϑ=)(: )()( ff tut        (Eq. 2.14) 

Immediately after t
(f), the potential is reset to a new value ur < ϑ . For t > t

(f) the 

dynamics are again given by (2.5) until the next threshold crossing occurs. Variations 

of this IF models can be found in [9]. 

 

2.3.2.2 Spike response model 
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Spike Response Model (SRM)(section 4.2 [9]) is similar to the Integrate-and-Fire 

model. However, it uses kernel-based representation instead of differential equations. 

Since the response kernels can be chosen arbitrarily, the models are more general than 

the IF model. The spike response model can be used to simulate the dynamics of 

linear dendritic trees, as well as non–linear effects at the synapses. It can capture 

various biophysical effects during spiking with rather elegant mathematical 

formalization. The IF neuron model can be considered a special case of SRM.  

 

A neuron i is described by a single state variable ui representing its membrane 

potential. The time evolution of the ui between two spike generations is given by the 

equation: 

 ∫∑∑
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The function ε describes the response to an incoming spike. ti
^  is the last firing time 

of neuron i.  tj
(f) are spikes of presynaptic neurons j and wij is the synaptic efficacy. Iext 

is the external driving current. The two sums run over all presynaptic neurons j and all 

firing times tj
(f) < t of neuron  j. The function η describes the form of the action 

potential and the after-potential. Note that unlike the non-linear generalization of the 

IF model, here the parameters are dependent of the time after the last firing time (i.e. 

t- ti
^ ) and not on the membrane potential.  

 

If the summation of the effects of several incoming spikes, ui reaches the thresholdϑ , 

an output spike is triggered. The threshold ϑ  is dynamic and depends on t - ti
^
. 

)ˆ( itt −→ ϑϑ         (Eq. 2.16) 

To capture the effect of the absolute refractory period, generally ϑ  is set to a large 

and positive value after firing in order to avoid another immediate firing and then it 

decays back to its equilibrium value for t > ti
^+ ∆abs. For mathematical convenience, 

the dynamic part of the threshold is many times absorbed in the definition of η.  

 

The functions η, ε and k are the response kernels that describe the effect of spike 

emission, incoming spike reception, and external current on the state variable ui. This 

interpretation has motivated the name ‘Spike Response Model’, SRM for short. The 
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kernel εij(t-ti
^, t-ti(f)) represents the time course of postsynaptic potential (PSP) in 

postsynaptic neuron evoked in response to the firing of a presynaptic neuron j at time 

ti(f). Depending on the type of the synapse, εij models either an excitatory or inhibitory 

postsynaptic potential (EPSP or IPSP). An example of biologically realistic shapes of 

such response functions ε is indicated in figure 2.9. 

 

 

Figure 2.9 Biologically realistic shapes of kernel εij representing EPSP or IPSP 

 

A simplified version of the spike response model, SRM0, is constructed by neglecting 

the dependence of ε and k upon last firing in postsynaptic neuron i.e.  ε0 (t-ti
(f)) =  ε(∞, 

t-ti(f))  ;  ko(s) = k(∞, t-ti(f)).  Thus Eq. 2.12 becomes  
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SRM0 considerably reduces the complexity of SRM for large-scale simulation and 

analytical studies. The computational power of SRM is explored in [8].  

 

2.3.2.3 Dynamic synapse 

 

Traditionally, the role of synapse is modelled as a multiplication of PSP with a static 

scalar parameter: the “weight” of that synapse. The ‘weight’ slowly changes only with 

the ‘learning’ process. However, real biological synapse has a probabilistic behaviour 

instead of commonly modelled simplistic deterministic behaviour. If the spike arrives 

at a presynaptic terminal, synapse may fail to trigger a release of neurotransmitter to 

the postsynaptic neuron. This release probability pr can vary widely (0.1-0.9) and the 

release probability at a synapse is strongly modulated by the history of activity at the 

synapse. This spike activity-dependent synaptic plasticity (also known as the Spike 
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Time Dependent Plasticity –STDP) is increasingly viewed as the one of the key SNN 

characteristics [88].  

 

2.3.3 SNN applications and hardware  

 

SNN has been shown to exhibit a wide range of useful computational properties, 

including feature binding, segmentation, pattern recognition, input prediction, etc. [8, 

24, 26]. SNN applications in vision processing [21, 27, 28], speech processing [89] 

and robotic control [29, 30] have shown promising results. With the growing interest 

in SNN, a generation of VLSI-chips based on SNN is emerging in parallel [8] for both 

the digital and the analogue platform.  

 

On the Digital platform, the simulation of a spiking neural network can be accelerated 

using various approaches. [90, 91]:  using DSP processors [92], FPGAs [93, 94] or 

dedicated ASICs [95, 96]. More recently, the FPGA solutions have gained greater 

attention because of their flexibility, increasing capabilities, low design time, and low-

costs [97-99] to achieve real time performance. With the FPGA implementation, some 

researchers have used hybrid software/hardware computing schemes to achieve both 

speed and flexibility [100, 101]. [75] has suggested exploiting partial dynamic re-

configurability available in some FPGAs for topological explorations of SNN.   

 

Analogue VLSI technologies offer more compact implementations of spiking neuron. 

Hence several researches have proposed analogue SNN implementations for 

massively parallel SNN hardware systems [102-104]. One of the major challenges in 

such SNN hardware is the massive interneuron connectivity, which is extremely 

difficult to implement in VLSI hardware. This problem is generally addressed by the 

Address Event Representation (AER) scheme [105]. In AER schemes, each neuron is 

assigned a unique binary address. When a neuron generates a spike, the address of the 

source neuron is broadcasted on a shared AER bus. Many of the proposed SNN 

systems utilize hybrid analogue-digital schemes where spiking neurons are 

implemented with analogue blocks but interneuron communications are achieved 

using Digital AER schemes [104, 106, 107]. In both analogue and digital approaches, 

there is increasing emphasis on implementing biologically realistic synaptic dynamics 

(i.e. Spike Time Dependent Plasticity –STDP). [108-110].  



30  Chapter 2 Background   

 

 

During the literature survey on SNN hardware, we found that although there is a 

general emphasis on achieving low-power implementations of the SNN, there has 

been no research attempt to utilize the adaptability of the SNN to reduce power 

consumption.  Moreover, we have not found any systematic study on the relationships 

amongst the power consumption of SNN, total spike generation activity, and SNN 

capabilities.  
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Chapter 3  

 

Power Scalable Implementation of Artificial Neural 

Networks 

 

 

 

3.1 Motivation  
 

A typical neuron model used in ANN is presented in figure 3.1.(a), [3] where φ( ) is 

generally a non-linear function such as sigmoid or threshold function. A network is 

formed by connecting neurons with weighted connections.  
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Figure 3.1. (a) A typical neuron model used in ANN. (b) Multi Layer Perceptron network.  

 

In order to understand the motivation behind implementing a power scalable ANN, 

first consider an example ANN application. Suppose that an MLP ANN (similar to the 

shown in figure 3.1.-b) is used for noise reduction. Its input is a noisy signal and the 

expected output is a noise free signal. (Several such noise reduction and cancellation 

ANN applications have been reported in the literature [111-114]). 
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With the current ANN hardware approach, once the ANN hardware is designed and 

trained, its energy consumption during one forward pass remains almost constant 

throughout its operational period. This is because during the forward pass, the signal 

passes through the same number of neurons/connections and hence the number of 

arithmetic operations (addition/multiplication etc.) performed during one forward pass 

remains constant. With a constant supply voltage and clock speed, this will lead to 

almost constant power consumption.  

 

However, in a battery operated mobile application, the ability to trade-off power with 

other performance parameters is highly desirable. If the battery power is low, it might 

be preferable to reduce ANN power consumption further and trade-off this power 

saving with a slightly increased Mean Squared Error (MSE). Current ANN hardware 

approaches do not support such dynamic error-power trade-offs.  

 

Furthermore, in many cases, the Signal-to-Noise Ratio (SNR) of the input signal can 

vary highly with time. ANNs are generally designed and trained to handle the-worst-

case scenario (i.e. expected minimum SNR). Again, in the current ANN hardware, the 

power consumption of the ANN remains almost the same regardless of the input SNR 

during its operational period, because the same number of operations is performed 

during each forward pass. However, we can logically surmise that with the increase in 

input SNR, the complexity of the noise reduction task should decrease. With the 

reduction in the task complexity, it should be possible to reduce the required amount 

of processing and hence reduce its power consumption (figure 3.2). Current ANN 

hardware designs lack the ability to transform reduction in the task complexity into 

power saving by scaling power accordingly.  

 

Figure 3.2 Linking Noise (Task complexity) to power consumption through power scaling 
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In this chapter, we will demonstrate through simulation results that it is possible to 

obtain power reduction by scaling power down according to the input noise level 

without any increase in MSE using a simple network pruning technique. It is 

interesting to note that amongst all well-explored pruning theories [55-57, 65, 115-

120] there is no systematic study available that links dynamic pruning techniques to 

power scaling in ANN.  

 

Another motivation for implementing dynamic power scaling arises from the need of 

resource sharing of limited resources such as power, memory or memory-bus 

bandwidth. Consider a hardware system with two separate ANNs, one for visual 

image processing and another for auditory signal processing, operating 

simultaneously. The processing/memory requirements for both the ANNs may vary 

according to the changes in the environment. In some scenarios, the operation of 

visual processing can be more critical and complex, while in other scenarios, auditory 

processing may be more important and demanding. In such cases, a dynamically 

scalable ANN will allow for more effective use of resources within the available 

power budget.  

 

Pruning affects power by changing the number of connections and/or nodes. From the 

view point of figure 1.1, (depicting various strands of ‘Adaptive Power Reduction 

Techniques’) this chapter will investigate the “Adaptation of size” approach. As 

explained in chapter 1, when we refer to the size of the ANN, it indicates both the 

number of nodes (neuron) and number of inter-connections (number of synaptic 

weights).  

 

3.2 Power Scalable Implementation: Basic Principles 
 

3.2.1 Network Pruning and Power Consumption 

 

As discussed in section 2.1.5., pruning methods can be broadly classified in two 

groups (1) Penalty-term pruning during learning period [56, 57] (2) Sensitivity based 

Post-learning pruning [56, 57]. In Penalty-term pruning, the weights/connections are 

not actually removed, but are restricted to smaller values through learning process so 

that the network acts like a smaller system, while sensitivity based pruning methods 
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gradually remove connections/nodes of a trained ANN. Amongst these two types of 

pruning, Sensitivity based pruning looks more promising for applying power scaling 

because it will directly affect the power consumption. (Possibilities of using penalty-

term pruning for power reduction are explored in chapter 4.) In a digital 

implementation, each connection corresponds to one multiplication and one addition 

(MAC) operation during the forward signal propagation. Hence, disabling one 

connection decreases the computation efforts by one MAC operation in forward signal 

propagation. It will also save one fetch cycle for each weight value of the connection 

from the external memory. In addition, the removal of one connection also saves 

power during the learning and weight update phase. Thus, the power consumption is 

reduced with pruning of each connection. Removal of one node (i.e., neuron) has an 

even more significant impact on power saving, as it will decrease the calculations 

associated with all the incoming and outgoing connections in addition to the 

calculation of the activation function within the neuron.  

 

The effect of pruning is very similar in an analogue implementation. Elimination of 

each connection will save one analogue multiplication and the electrical currents 

associated with it. Although the current analogue ANN implementations lack a 

mechanism to eliminate connection/node for power scaling, it is quite straightforward 

to implement this mechanism by forcibly driving the transistors into the cut-off 

region. 

 

The exact relationship between the number of pruned connections and amount of 

power reduction can vary according to the implementation. The basic ideas discussed 

in this chapter assume a general positive correlation between them and do not depend 

on the exact mathematical relationship. Hence, for simplicity, we will assume for the 

rest of the discussion in this chapter that the power reduction in ANN hardware 

implementation due to the pruning is approximately proportional to the number of 

pruned connections. 

 

3.2.2 Pruning: Beyond the Improvement in Generalization 

 

Generally, as we start pruning the trained ANN, initially the MSE slightly decreases 

due to improved generalization [55-57] (Fig.3.3 : A� B).  
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Figure 3.3 Variation of in MSE with pruning of ANN 

 

But the capability of the ANN is ultimately limited by its size [55]. Hence beyond a 

certain pruning (point B: fig.3.3), the MSE starts increasing again (B�C�D). In 

most of the available literature [55-57], the sole aim of the pruning is to decrease 

MSE by improving generalization capability. Hence, the effect of pruning is not 

generally investigated beyond point B. If we keep pruning beyond point B, the MSE 

keeps increasing. Our various experiments indicate the following approximate trend 

between increase in MSE and pruning which is depicted in figure 3.3 :  

 

Region 1: MSE decreases slightly because of the improved generalization.  

Region 2: MSE increases with pruning in somewhat linear fashion.  

Region 3: MSE saturates at very high MSE levels.  

 

Since the power consumption also decreases with the increased pruning, region 2 

shown in figure 3.3 presents an opportunity to perform the possible error-power trade-

off discussed in section 3.1. This relationship is also equally important to perform the 

other SNR-power trade-offs explained in the next section. 

  

3.2.3 Pruning in presence of variable SNR 

 

 Reconsider the noise reduction example discussed in section 3.1. Our experiments 

show that for the same ANN, MSE in the output is decreased with the increase in 

SNR (Fig. 3.4 ).  



36  Chapter 3 Power Scalable ANN   

 

Figure 3.4 Decrease in MSE with increase in SNR. (approximate trend) 

 

It was observed during our experiments that this trend is maintained even when 

network pruning is applied to ANN. (Fig. 3.5) 

Figure 3.5 Decrease in MSE with increase in SNR while pruning 

 

Generally, ANNs are designed to handle the worst-case scenario (i.e. SNR_min). 

With SNR_min in the input, ANN is pruned to obtain minimum error point X. 

Network X is implemented in hardware with power reduction P. However, during the 

operation of ANN, if the SNR is increased from the SNR_min to SNR2, we can prune 

the network further to the point Y within the same error margin and reduce the power 

further to point Q. Thus, the characteristic in figure 3.5 presents an attractive 

opportunity to transform an increase in SNR (i.e. decrease in task complexity) into 

power reduction without any increase in error through pruning (depicted in figure 

3.6).  
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Figure 3.6 power reduction with increase in SNR (i.e. decrease in task complexity) with constant 

MSE 

 

A few important questions occur at this point:  

 

(1) Figure 3.5 and figure 3.6 suggests pruning the network according to the 

current SNR to save power. But how can the ANN measure the current level 

of the SNR in order to determine appropriate level of pruning?  

(2) With the increase in SNR, pruning should be applied to reduce the power 

consumption. But what if the SNR decreases again after pruning has been 

applied? 

 

To determine an appropriate level of pruning we need some kind of reinforcement 

feedback mechanism. In many cases, this feedback can be obtained from the higher-

level module that is utilizing filtered output from the ANN. For instance, if the noise 

cancellation ANN is preceding the speech recognition unit (as in[121]), the 

recognition unit will have to inform the ANN whether the current level of noise 

reduction is adequate for unambiguous speech recognition. The ANN will simply 

keep pruning itself as long as the recognition unit allows for it.  

 

The answer to the second question depends on the type and method of pruning. If 

pruning is used without any retraining (like our experiments described in the next 

section), then during the pruning process the connections are simply disabled, but 

their weight values are still stored in the memory. Hence, if the SNR drops again and 

MSE increases beyond maximum tolerable MSE, then we can simply ‘grow’ the 

network back by enabling the connections in the reverse order. If the pruning is used 
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with retraining, then we need to use appropriate growth methods with the training 

dataset to re-grow the network. This point will be discussed again in section 3.4.1.  

 

3.3 Simulation Results 
 

3.3.1 Example ANN application 

 

In [122], a 4-layer ANN was used for harmonic retrieval from noisy signal (SNR 

range: 0 db to –3 db). Each layer contains 60 neurons. For demonstration purposes, 

we have selected the same ANN and a similar test dataset to that used in [122]. The 

same 60x4 ANN architecture was also used for background noise reduction from 

speech signal in [121] and a very similar one was used in [123] for multi-tone 

detection. 

Details: 

• ANN: 

Number of layers:   4 (1 input, 2 hidden, 1 output) 
Number of Neurons:   60 in each layer 
Connectivity:    Each layer is fully connected to the next layer. 
Total number of Connections: 10800 
Activation function:  Linear activation for Input and output layer,
 Sigmoid activation for hidden layer 
 

• Training: the data Signal is a 0.2 Hz sine wave sampled at a 5 Hz sampling 

frequency. White Gaussian noise was added to the signal with a SNR ranging 

from –3 db to 0 db. Input is the noise signal and desired output is the noise free 

data signal. The network was trained using a combination of standard Back-

propagation and Resilient back-propagation [52]. 

 

3.3.2 Pruning  

 

Once the network was trained, its performance in terms of MSE was measured for 

inputs with various SNR. The results are presented in the graph shown in Fig.3.7, 

which is in general agreement with the graph in figure 3.4.  
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Figure 3.7 Variation in MSE according to input SNR  

 

The trained ANN was then pruned using simple Magnitude Pruning method without 

any further training. In the Magnitude Pruning method, the saliency (i.e. importance) 

of each connection is equal to its weight. This pruning method simply disables the 

connections with the least weight. The pruned network was then tested with signals 

with –3 db SNR to 0 db SNR. Figure 3.8 represents the simulation results showing the 

effect of pruning on MSE for different input SNR and they are consistent with the 

trends displayed in figure 3.5.  

 

Here we can see that an increase in MSE is not significant until the number of pruned 

connections is 2600 (point X). Hence, an ANN with 10800 – 2600 = 8200 

connections should be implemented in hardware (ANN-H). However, after the ANN 

is implemented in hardware, we should dynamically scale its size according to the 

input SNR in order to save power. The horizontal dashed line represents the minimum 

MSE possible to obtain with minimum SNR. With the SNR increase of 4 db (–3 db to 

1 db), we can obtain about a 28% power reduction without any increase in MSE. 

(ANN-H with 8200 connections is considered as the network operating with 100% 

power.) The graph of figure 3.9 represents achievable Power Reduction as a function 

of input SNR for various maximum MSE. The results corroborate our projections 

presented in figure 3.6. 
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Figure 3.8 Error of pruned ANN for different input SNR 
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Figure 3.9  Achievable power reduction with increase in SNR (for different MSE value) 
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3.3.3 Pruning with “Optimal Brain Damage”(OBD) [58]Method 

 

The Magnitude pruning method used in this experiment is a very simple pruning 

method and it was chosen for its simplicity and minimum overheads. Other 

sophisticated pruning method like OBD[58] and Optimal Brain Surgeon [59] are 

likely to produce superior results. The graph in figure 3.10 shows the simulation 

results for OBD pruning for the same ANN example. It can be observed that the 

resulting network at implementation point X (10800-4900 = 5900 connection) has 

lower MSE in comparison with the implementation point X with magnitude pruning 

(8200 connections). Now here, even with the smaller network, we are still able to 

convert a 4 db increase in SNR into 25% additional power reduction (without 

increasing MSE) by applying further pruning.  
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Figure 3.10 Error of pruned ANN for different input SNR with OBD pruning 

 

3.4 Remarks  
 

3.4.1 Suitable pruning methods  
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Figure 3.3 is depicted again below.  

 

Figure 3.11 (figure 3.3 represented) Variation of in MSE with pruning of ANN 

 

Pruning methods have been developed to improve generalization. Hence their 

objective is to get the lowest possible point B for a validation/testing dataset. 

However, for a power scalable implementation, our objective is to get a good (low) 

curve BD in region 2. It should be noted that it is NOT necessary to use the same 

pruning methods for all the regions.  

 

In our suggested power scalable approach, the power consumption is changed by 

dynamic variation of size according to variation in task complexity. Once the network 

is pruned with the reduced task complexity, it should be able to ‘grow back’ to 

accommodate the next positive swing of the task complexity. In order to facilitate this, 

pruning-order (i.e. order in which the connections are pruned) needs to be stored in 

memory while pruning.  

 

As explained in section 3.3.2, if the pruning is used without retraining, then we can 

‘grow’ the network back by simply enabling the disabled weights in the reverse order. 

If pruning is applied with retraining, then in the growth phase, we need to re-train the 

network again. However, each retraining consumes extra power (and extra training-

time). Hence, in cases where the ANN requires frequent power scaling, this option 

may not be useful. In some pruning methods like OBS [59], instead of using 

retraining, the weight adjustment required in the remaining weights are 

mathematically calculated after pruning. In this case, during the re-growth phase, we 

need to either (1) perform the inverse calculation for each pruning or (2) store the old 

value of the weights for each change in memory during pruning and load them back 
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during the growth-phase. Both options require additional power and the latter is also 

likely to consume an excessively large amount of memory.  

 

A closely related issue is the ability of bulk variation in size. In case of wide 

fluctuation in task complexity, we need to prune/grow large number of connections. 

Some pruning methods are only able to prune connections one-by-one manner and 

hence they become less attractive for power scalable implementations.  

 

With the power-scalable implementation, two kinds of adaptation are performed in 

separate stages: (A) adaptation of weights to reduce output error (B) adaptation of size 

to scale power. Sensitivity calculations in some of the pruning methods are 

computationally very intensive and consequently its on-chip calculation is power-

hungry. Such methods are not appealing for adaptive systems, which require frequent 

type-A adaptation. However, for the systems that require mainly type-B adaptation, it 

is possible to perform complex sensitivity calculations off-line and store the saliency 

rank associated with each connection in memory. (Saliency value indicates the 

importance of the connection based on sensitivity-calculations). Then on-line power-

scaling can be achieved with disabling/enabling the connections in 

ascending/descending order.  

 

From the discussions above, the following desirable properties of the appropriate 

pruning method for power-scalable implementation can be construed as:  

 

• Small values on the graph of MSE Vs Pruning in Region 2. ( i.e. lower BD 

curve in figure 3.3) to project better power-error trade-offs 

• Minimal or no retraining to facilitate the re-growth 

• Low complexity of the calculations to avoid power overhead   

• Ability of bulk pruning/growth to provide adequately fast response in variation 

in Task complexity 

 

A wide variety of pruning methods are suggested in literature [55-57, 65, 115-120] 

and their suitability should be evaluated in light of all of the above characteristics. 

However, almost all the experiments reported in the literature focus on obtaining 
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lower MSE at point B and they do not investigate region 2 [55-57]. Also, most of the 

reported experiments involve some retraining; and issue of bulk pruning is not 

considered [55-57]. Hence, it is difficult to evaluate suitability of pruning methods 

based on the existing literature; and substantial experiments are required in this 

direction. Some preliminary remarks on the suability of some of the well reported 

pruning techniques are presented below:  

 

Magnitude Pruning [56, 57, 59] is the most simple to implement and requires 

minimum hardware/power overheads, but its performance is widely considered 

inferior in comparison with the other methods [56, 57, 59]. Hessian based network 

pruning methods, such as Optimal brain Damage(OBD) [58] and Optimal Brain 

Surgeon(OBS) [59] have shown much better results. However, calculations involving 

Hessian matrix are computationally intensive. Although OBS has been proven 

theoretically better than OBD [59], OBD is a better candidate for power scalable 

implementation because (1) OBS adjust the weights after each pruning which causes 

problems for the growth phase (2) Hessian calculation of OBS is relatively much 

more complicated and for large networks they are prohibitively intensive due to 

inverse matrix calculations for large Hessian matrix [3, 59].  OBD, despite requiring 

complicated calculations, is a good candidate for network which mainly requires 

power adaptation (Type B adaptation). Once all the links are assigned a rank based on 

the saliency calculated using OBD, the network can quickly change size according to 

the task complexity.  

 

In Skeletonization pruning suggested by Mozer and Smolensky [60], error sensitivity 

is calculated using calculations similar to back-propagation. The reported results are 

better than simple Magnitude pruning yet the computational complexity is much 

lower in comparison with Hessian based Methods [56]. Hence it can be a good 

candidate for power reduction. One limitation of Skelatonization is that it is a node 

pruning algorithm (not a connection pruning algorithm) and hence pruning is not very 

‘granular’. Sensitivity estimation pruning by Karnin [61] is weight pruning algorithm 

and seems a better option. In this method the saliency calculation is incorporated 

during the training process with a small overhead and saliency of each connection is 

available right after training phase.  
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Unlike other pruning methods, pruning using genetic algorithms [62, 63]  do not use 

the gradient information. Use of Multi-objective Evolutionary algorithms 

(MOEA)[124] for optimizing both power and error could be a very interesting option 

for further research.  

 

Although sensitivity based pruning is applied after the learning phase is over, the 

weight distribution determined by the learning process is likely to affect the curve BD 

in region 2. Results in [125] indicate that certain type of stochastic learning is more 

suitable for pruning. This notion can again widen the scope of investigation to 

examine effects of pruning using a variety of learning algorithms.   

 

3.4.2 Applicability to different hardware implementation  

 

The discussions until now assume implementation of ANN using digital hardware. 

However, most of the arguments presented in discussions are equally applicable for 

the analogue ANN implementation, provided a mechanism of switching off/disabling 

individual connections is implemented. The overhead of the mechanism is 

implementation/technology specific and it is possible that in some cases, the 

overheads will exceed any power savings achieved with power-scaling.  

 

It is also possible to apply dynamic size variation in SNN to realize power scaling. 

However, there are no pruning techniques available for SNN and further investigation 

in this direction requires a better mathematical foundation and considerable 

experimentations.  

 

3.4.3 Critical Remarks  

 

This technique has some important limitations.  It is useful if (1) the acceptable output 

error varies due to the system level requirement OR (2) Complexity of the tasks varies 

according to the input signal. However, if none of these factors are variable, then this 

technique cannot yield any benefit. In addition, this technique required some external 

re-enforcement feedback to determine appropriate level of pruning in order to exploit 

task complexity (as explained in section 3.2.3).  
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Most of the pruning methods available in literature are designed for Multi-Layer 

Perceptron (MLP) networks and some techniques are available for Radial Basis 

Function (RBF) networks. Although MLP and RBF nets are the most commonly used 

ANN architectures, many other network architectures are used e.g. Self-Organizing 

maps, Hopfield Networks etc. [1, 23]. At this stage, it is not clear, how this principle 

can be applied to the networks other than MLPs ands RBFs nets in the absence of the 

pruning mechanism for them. 

 

The simple test example presented in this chapter and some of the examples of the 

standard test-bench Proben1 [126] were used in our experiments. Although the results 

are encouraging for initial investigations, simulations of more test-cases with real-

world low-power ANN signal processing application are required in order to establish 

the usefulness of this technique.   

 

In the discussions presented in this chapter, it is assumed that the power reduction 

resulting from pruning of each link is almost equivalent. This is not true in many 

cases. However, estimating the effect of each pruning on power can heavily 

complicate the pruning process and can cause excessive implementation overheads. 

Hence, assuming equal power saving for each connection is likely to provide a more 

feasible solution. 

 

If step-wise ‘coarse-grain’ power scaling is acceptable, then we can design ANN of 

different sizes, train them separately and ‘load’ the network of appropriate size 

according to the task complexity. This is likely to be much more power-efficient and 

effective instead of using pruning and retraining. However, since it is required to train 

each network separately and to store their weights separately in this approach, it may 

result in larger training time and larger memory overheads.  

 

 

3.5 Summary 
 

In this chapter, we discussed the motivation for investigating power scalable ANN 

implementation and illustrated the basic principles with the help of an example noise 

reduction ANN application. The simulation results shows that using simple 
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Magnitude Pruning, a 4 db increase in SNR can be translated into about 28 % 

reduction in number of connections (and thus a significant power reduction) in ANN 

without any increase in MSE. These results demonstrate that it is possible to translate 

a reduction in task complexity into a power saving using dynamic pruning of ANN.  

Pruning with OBD resulted in even smaller network, and yet a 25% reduction in 

number of connections with 4 db increase in SNR was achieved. Suitability of various 

pruning methods was discussed and we concluded that more experiments are needed 

to perform comparative analysis amongst them. Our work provides a strong 

motivation for further exploration of pruning and growth theories in the light of 

resulting power scalability for various types of ANN architectures. A research paper 

based on the work of this chapter was presented in IEEE Electronics, Circuits, and 

Systems (ICECS), 2005 [127]. 
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Chapter 4  

 

Power Aware Learning for Class AB Analogue VLSI 

Neural Network 

 

 

 

4.1 Motivation  
 

4.1.1 Analogue VLSI implementation of ANN 

 

The digital VLSI implementations of ANN offer adaptive and flexible solutions. 

However, because of the inefficient connectivity methods used and the use of area- 

and power-hungry multipliers, it is difficult to integrate massively parallel ANN on a 

single chip. Even with deep sub-micron technologies, only a few hundred neurons can 

be integrated on a chip, while many practical ANN applications require thousands of 

neurons working in parallel [72]. 

 

For these reasons, the possibility of using an analogue ANN is appealing as it offers 

many potential advantages over digital implementations, including:  

• The processing elements are generally smaller than their digital equivalent [72], 

and a single wire transports many equivalent bits of information, notably 

reducing the area requirement of interconnects. As a result, we can potentially 

implement large numbers of neurons and interconnects on a single chip and thus 

significantly increase the overall processing speed by massive parallel 

computation.  
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• The use of weak inversion operated MOS transistors offer the possibility of very 

low-power ANN hardware systems.   

• The low cost of additional nodes allows us to introduce redundant nodes to 

provide improved fault tolerance.  

• It offers a more direct real-world interface by directly communicating to sensors 

and actuators and thus potentially eliminating the need for A/D and D/A 

converters.  

 

On the negative side, analogue hardware commonly suffers from susceptibility to 

noise, process-parameter variations, limited computational precision, problem of 

storing adaptable weights and a much longer design time.  However, overall, the 

compact size and low power dissipation of analogue ANN has made it an attractive 

choice for dedicated ANN hardware and it has attracted considerable research efforts 

in recent years [12, 31, 72].  A number of analogue ANN commercial hardware (.e.g. 

AT&T ANNA, Bellcore CLNN-32, Mesa Research Neuralclassifier, Ricoh RN-200) 

have been developed [69]. A recent publication [128] has reported mixed-mode VLSI 

implementation that achieves 0.8 Tera-connections per second with 4096 synapses on 

less than 1 mm2 silicon area.  

 

4.1.2 Low-power Class AB implementation and learning process 

 

As discussed in chapter 2, the power consumption of ANN is a major implementation 

issue. Since shrinking biasing voltage makes it difficult to process high resolution data 

in voltage-mode, there has been increasing emphasis on the low power current mode 

implementation of the ANN [31, 36, 129, 130] which gives better results at lower 

bias.   The Class AB current mode implementations are particularly attractive options 

as they remove the necessity to maintain large bias current levels (leading to very 

low-power consumption) and this allows the input signal magnitude to exceed the bias 

current improving the calculation precision [31, 36, 131].   

 

The power consumption of such class AB current mode ANN systems depends 

heavily on the values of signal currents, which in turn depend on the values and 

distribution of weights of synaptic connections. Since the weights are determined by 
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the applied learning process, the learning process is very likely to affect the power 

consumption considerably. 

 

To the best of our knowledge, none of the currently used ANN learning algorithms are 

capable of taking into account the effect of the weight distribution on the power 

consumption.  In this chapter, we propose a new power-aware learning algorithm that 

is sensitive to the power consumption of the design and directs the learning process 

accordingly. The algorithm is based on the variation of weight perturbation [132, 133]  

algorithms; it  adds a penalty term for power consumption in the objective function. 

We have applied our algorithm on a sample class AB ANN system described in [31, 

36] for various classification and function approximation tasks. We will discuss the 

results of these experiments and potential of this algorithm in this chapter.  

 

In this method, the power consumption of the system is affected by the changes in 

synaptic weights. Thus, from the view point of the figure 1.1, (depicting various 

strands of ‘Adaptive Power Reduction Techniques’) this chapter is an investigation 

using the “Adaptation of synaptic weights” approach.   

 

4.2 Power-aware learning  
 

4.2.1 Complexity Regularization with Penalty-term 

 

An essential aspect of neural network training is to improve generalization (i.e. the 

ability to correctly respond to the unseen data samples that are not used in the 

training). A class of commonly used techniques for improving the generalization of 

ANN is known as complexity regularization, which aims to prevent the learning 

algorithm from over-fitting the training data by restricting the complexity of the ANN 

function [3, 56]. A popular approach is to include an additional penalty-term in the 

cost function of learning algorithms, which penalizes overly high model complexity 

[56].  

 

O(W)  =  ε(W) +  λc· C(W)     (Eq . 4.1) 
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O(W) is the objective function that is to be minimized with respect to the weight 

vector W, the vector of synaptic weights. ε(W) is the error function, usually the Mean 

Squared Error (MSE) over the training samples. C(W) is the complexity penalty term. 

The regularization parameter determines λc the influence of the complexity penalty on 

the learning procedure. A variety of complexity terms (e.g. weight decay: C(W)=Σwi
2, 

C(W)= Σ׀wi׀; weight elimination: C(W)= Σ [(wi/wo)
2/1+(wi/wo)

2] and regularization 

schemes have been reported in literature [3, 56, 57]. These techniques are also known 

as the penalty term pruning, which has been described in detail in section 2.1.5.  

 

4.2.2 On-chip Learning and Weight Perturbation 

 

On-chip learning can greatly increase the training speed and realize the full potential 

of the massive parallelism of analogue VLSI ANN. Moreover, on-chip 

implementation of learning mechanism is required for adaptive ANN systems, i.e. 

systems that are continuously taught while being used.  

 

Traditional back-propagation approaches require high precision calculations and 

precise modelling of the activation function, which are unsuitable for on-chip 

implementation in analogue VLSI. Alterative weight perturbation (WP) methods have 

been developed [132-134]  and implemented successfully on analogue/mixed mode 

VLSI [135].  In these methods, the effect of random weight perturbations on output 

error is observed and the estimation of gradient is measured rather than calculated, 

thus avoiding the complicated derivative calculations and backward error propagation. 

This estimation of the gradient is obtained by perturbing the network parameters (i.e., 

the weights) and observing the change in the network output. If the weight 

perturbation pj,i 
(n)

 at the nth iteration is small enough, then neglecting higher order 

terms [132]: 
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Where ε is error of the network,  p j,i
 (n)

 is the random perturbation injected in the w j,i 

synaptic weight at the nth iteration, ∆w j,i is the value used to update the weight w j,i  
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and η is the learning-rate coefficient.  For circuit implementation issues, all the weight 

perturbation p j,i
 (n)

 are applied with same magnitude but random in sign [72]  i.e.  

  steppertp n

ij

n

ij ⋅= )(
,

)(
,      (Eq. 4.4 ) 

where step is the perturbation value, while pertj,i
(n) can assume the values +1 or −1 

with equal probability. Now, Equation 4.1 can be written as:  
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Assuming η’ = η / step ,  

)(
,,
n

ijpij pertw εη ∆′−=∆      (Eq. 4.7 ) 

where, index p in ∆εp indicates the error difference due to perturbation.   

 

The original form of WP is sequential i.e. only one synapse’s weight is perturbed at a 

time. This is generally too slow in real applications with big networks.  In the fully 

parallel techniques,  all weights are perturbed simultaneously [72, 133],. figure 4.1 

presents a proposed hardware implementation scheme for WP learning.  

Figure 4.1 implementation of Weight Perturbation learning scheme  

 

Here only one global feedback signal is required and the learning is performed 

locally, hence all the weights can be updated in parallel. This technique does not 

assume any model for implemented ANN (also known as the ‘model-free’ learning 

mechanisms) and hence is not strongly affected by small deviations in the 
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characteristics   due to mismatch affects and process variations in analogue hardware 

[72, 136]. Other advantages and disadvantages  of WP with respect to back-

propagation algorithm have been discussed in [72].  

 

4.2.3 Power-aware Weight Perturbation 

 

The power consumption of a class AB current mode ANN system depends heavily on 

the values and distribution of weights, and is therefore directly affected by the 

learning procedure. For power-aware learning in such systems, we propose an 

alternative objective function as: 

   

O(W)  =  ε(W) +  λp· P(W)     (Eq . 4.8) 

 

Where, P(W) is the penalty term for power consumption during the feedforward phase 

and λp is the regularization parameter for the P(W) term similar to λc in Eq.  4.1 (In 

most of the practical ANN hardware applications, the utilization period  of the trained 

ANN (i.e. “recall phase”) is much larger compared to the training period. Hence, we 

assume that only the power consumption of the feedforward phase is significant.)    

 

There are several difficulties in implementing this power aware learning with standard 

back-propagation offline training. First, the effect of weight vector W on power (i.e. 

P(W) ) is difficult to estimate. In addition, back-propagation is based on the 

calculation of gradient of the objective function with respect to weight wi. The 

expression for partial derivative of the power term (∂P(W)/ ∂wi) cannot be defined 

precisely, making it unsuitable for standard back propagation calculations.   

 

However, in an on-chip learning scenario, the power consumption can be easily 

measured. This measured power along with the measured error can form a new 

objective function for power-aware weight perturbation learning scheme.  With the 

modified objective function, the change ∆w j,i in the weight w j,i is  
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Since the weight perturbation learning is ‘model-free’ and it is driven solely by the 

measured objective function, this modification in the objective function does not need 

any extra calculations and can be implemented with minimal overheads. The proposed 

implementation is shown in figure 4.2. 

 

Figure 4.2 Proposed implementation of the Power-aware weight perturbation learning 

 

With the addition of the power-penalty term, we are essentially attempting a multi-

objective learning problem. Although, there have been previous attempts to 

implement such multi-objective learning and regularization [63, 137], to the best of 

our knowledge, none of the attempts involves power consumption as one of the 

objectives.    

 

4.3 Case Studies 
 

4.3.1 Class AB ANN Implementation and Estimate of Power Consumption  
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Figure 4.3 Current mode implementation of ANN 

 

Figure 4.3 shows the schematic for a current mode implementation of ANN.  For 

these case studies, we have considered the low power current mode class AB ANN 

analogue cells presented in [31, 36]  Figure 4.4 and figure 4.5 shows the activation 

cell and the multiplier cells respectively used in  [31, 36].  

Figure 4.4 Class AB current mode neuron activation function circuit(represented from [31]) 

 

Figure 4.5 Class AB current mode multiplier cell (represented from [31])  
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The current and power consumption of the multiplier cell and the sigmoid activation 

function cell are approximated by equations 4.10 and 4.11 respectively [36]. 

2,5.25.0 multmultINSmult IPiiI ≈⋅+⋅≈   (Eq. 4.10) 

2,2 actactINact IPiI ≈⋅≈    (Eq. 4.11) 

Imult and Iact are the current consumption of the multiplier and activation cell 

respectively. For the multiplier cell, current iS represents synaptic weight and current 

iIN is incoming current from the previous layer. A number of synapses are connected 

at the input of a neuron. The summation of all the synaptic currents is iIN. for the 

activation cell. The total power consumption of ANN is assumed to be the sum of 

total power consumption of all the multiplier and activation units.  

 

This approximation of power consumption is not very accurate and accurate power 

consumption can be a more complex non-linear function of input currents, especially 

at low signal levels.  However, our proposed on-chip learning is driven by the actual 

on-chip power measurement and does not require evaluation of any equation to obtain 

power consumption. Hence the choice of the power approximation function is not 

critical for our experiments and for demonstration purpose, we have used Eq. 4.10 and 

Eq. 4.11 for the simulation experiments described in this paper. Indeed, our additional 

simulations show that adding small non-linearity and offsets to Eq. 4.10 and Eq. 4.11 

does not alter our results significantly. 

 

4.3.2 Case Study Simulation Results 

 

 

4.3.2.1 The N-M-N encoder problem [53] 

 

The Network: 

Number of layers:  3 (1 input, 1 hidden, 1 output) 

Number of Neurons:  8 + 3+ 8 

Connectivity:   Each layer is fully connected to the next layer. 

    No shortcut connections are allowed 

Weight vector:  59 elements (48 connections weights plus 11 biases) 

Activation function: bipolar sigmoid activation function  
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Sum of Squared Error (SSE) was used for feedback. The sum of binary classification 

error was also calculated to check classification performance. (The binary 

classification was calculated applying a binary threshold function on the ANN at the 

outputs.)  Percentage power was measured with respect to the maximum power during 

the entire training period. All the weights were initialized with zero and the weights 

were restricted within the range [-10, 10] to reflect the limitation imposed by limited 

operating range of the transistor devices. The training was performed with the parallel 

weight perturbation with power penalty term (Eq. 4.5) in batch update mode. All 

simulation tests in this paper were carried out on the Stuttgart Neural Network 

Simulator (SNNS) [138].  The graph in figure 4.6 shows the training results for the 8-

3-8 encoder problem. 

Figure 4.6 Power-aware learning for 8-3-8 Encoder problem 

 

It can be observed that after the power consumption reduces substantially (~45%) 

after employing the proposed power aware learning.  

 

4.3.2.2 Proben1 benchmark dataset  

 

We also carried out tests on the number of problem available in the Proben1 

benchmark datasets [126], which contains measured data for various real-life 

classification and approximation tasks. The experiments where performed on the 

‘pivot architecture’ [126] for each problem with shortcut connections. The precision 
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of all the calculations and weights were restricted to 3 decimal points (i.e. resolution = 

0.001) to reflect the limited precision available in the analogue hardware. Also, 

weights and calculation results were restricted within the range [-10, 10]. Weights 

were initialized to zero.  

 

Each network was first trained to achieve a minimum validation error with Parallel 

Weight Perturbation (batch update mode)[72] without the power penalty term and 

minimum Mean Squared validation Error(MSEmin_valid) achieved was recorded. Those 

trained networks were then further trained with our proposed power-aware learning 

with the condition that its Mean Squared validation Error (MSEvalid) does not exceed 

above 5% of MSEmin_valid (i.e.  MSEvalid < 1.05* MSEmin_valid). The results of the 

achieved power reduction are presented in Table 4.1. L indicates the Linear 

Activation function in the output layer while S indicates the Sigmoid activation 

function in the output layer. See [126] for further details of the problems and datasets 

used in the tests.  

Table 4.1 Results of power –aware learning on the Proben1 benchmark problems 

 

Problem Type Dataset Architecture Achieved 

Power reduction (%) 

classification Cancer1 9+8+4+2 L 32.6 

classification Cancer2 9+8+4+2 L 21.6 

classification Cancer3 9+8+4+2 L 33.7 

Function Approximation Builing1 14+16+8+3 L 31.5 

Function Approximation Builing2 14+16+8+3 L 21.3 

Function Approximation Builing3 14+16+8+3 L 26.0 

Function Approximation Flare1 24+32+3 L 28.7 

Function Approximation Flare2 24+32+3 L 28.7 

Function Approximation Flare3 24+32+3 L 27.7 

classification Glass1 9+16+8+6 S 55.2 

classification Galss2 9+16+8+6 S 37.6 

classification Galss3 9+16+8+6 S 53.7 

classification Diabetes1 8+16+8+2 S 48.1 

classification Diabetes2 8+16+8+2 S 44.1 

classification Diabetes3 8+16+8+2 S 26.5 
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classification Thyroid1 21+16+8+3 S 35.8 

classification Thyroid1 21+16+8+3 S 25.4 

classification Thyroid1 21+16+8+3 S 31.0 

 

It can be observed that our proposed approach is capable of significant power 

reduction (20%~55%) over a wide variety of problems.   

4.3.3 Observations 

 

4.3.3.1 The power regularization parameter λp 

 

The algorithm is quite sensitive to the value of λp and it is difficult to tune. We have 

tried number of different strategies to set λp. The most successful strategy amongst 

our experiments was to initially train the network with λp = 0 to obtain minimum 

validation error and then slowly increase λp. This strategy is similar to the complexity 

regularization strategies described in [57]. When the training was started with a non-

zero value of λp , the ANN was generally unable to reduce the error to the level with 

the ANN trained with λp = 0, even if λp was reduced to zero later in the training     

 

4.3.4 Training time  

 

The Training time required to achieve low-power (T_power) is typically much larger 

in comparison to the training time to reduce the error (T_error). (i.e. the low-power 

objective is achieved at a much slower rate in comparison with the low-error 

objective.) Figure 4.7 shows result of the training in the Flare3 dataset in the Proben1 

Benchmark.  

Error and Power Variation with Power-aware Learning 
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Figure 4.7 Training times for Flare3 dataset in proben1 benchmark 
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This is not surprising, because initially with λp=0, learning has only a single objective; 

while after the power-aware learning is switched-on, the network is attempting more 

complex multi-objective learning. For the problems attempted from Prben1 

benchmarks, the ratio T_power/ T_error is typically 5-10 or greater. This indicates 

that for the ANN applications requiring relatively quick and frequent adaptations, our 

proposed learning scheme may not be able to yield significant power saving due to the 

lack of sufficient training. 

 

4.3.4.1 Issue of generalization capability 

 

ANN can lose the capability of generalization due to overtraining. Generally ‘early 

stopping’ is used to prevent overtraining of ANN [3]. Since power-aware learning 

requires a considerably large number of training epochs even after reaching the early 

stopping point, there is a danger that we might over-train the network for the training 

dataset and lose its generalization capability.  However, since Power-aware learning 

generally restricts the free network parameters (i.e. weights) to small values, it acts as 

a form of complexity regularization mechanism and hence prevents the loss of 

generalization. In all our experiments, we found that additional training with a power-

penalty term did not degrade the generalization performance in any of the problems 

and in many cases, it actually improved the generalization. Please note that the results 

presented in Table 4.1 are obtained within the tight constrains of the validation dataset 

error and not the training dataset error, which indicates that the networks maintained 

their generalization capability with Power-aware training. 

 

4.3.4.2 Other observations 

 

Parallel weight perturbation with an ‘update-by-pattern’ learning approach is 

generally considered better in terms of learning speed in comparison with ‘update-by-

epochs’ [72]. However, when ‘update-by-pattern’ was applied with a power-penalty 

term for power-aware learning, it produced inferior results compared to the ‘update-

by-epochs’ approach.  
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In our experiments, initializing all the weights to zero produced better and more 

consistent result in terms of Power, Error and learning speed in comparison to a 

random weight initialization approach. Moreover, we observed that unless the range 

for weights values are about 10 times the range of the values of input signals, it is 

unable to learn the task properly. i.e. if inputs are scaled between [-1, 1], then the 

range of the weight values should be [-10, 10].  

 

4.3.5 Comparison with the weight decay regularization scheme 

 

In a class AB current mode ANN design, the lower values of weights are likely to 

consume low power due to the direct relationship between signal levels and power 

consumption. Hence back propagation learning with a weight decay [57] complexity 

regularization can also drive such circuits towards lower power consumption. With 

this in mind we need to consider the potential advantages of using the suggested 

power-aware weight perturbation in comparison with the weight decay regularization. 

We can derive an expression similar to Eq.  4.9 for weight perturbation with weight 

decay as follows: 
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Assuming  λ’c = 1-2ηλc 
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Figure 4.8 shows a schematic of on-chip implementation of weight perturbation 

learning with weight decay. 

  
Figure 4.8 Implementation of on-chip weight perturbation learning with weight decay 

 

However, in comparison with WP with weight-decay, several reasons make power-

aware weight perturbation more appealing: 

 

1. Weight decay using Eq. 4.1 is basically aimed at the complexity reduction for 

improved generalisation and not for power reduction.  The relation between 

P(W) and C(W) can be highly nonlinear, especially with the non-linearities and 

offsets involved at the very low weights (hence very low-currents) in analogue 

VLSI.  

2. On-chip implementation of the weight decay mechanism is costly in terms of 

hardware (figure 4.8), as it requires an additional multiplication for each weight. 

Moreover, the limited precision available in the analogue VLSI can be a major 

limiting factor for implementing an on-chip weight decay scheme.  

3. There is a fundamental difference between the approaches. Weight decay 

procedure treats all weights in Multi-Layer Perceptron (MLP) equally which is 

not the appropriate strategy for power reduction because the power consumption 
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not only depends on the weights but also on the input patterns. Consider the 

following typical MLP ANN in figure 4.9.  

 

Error! Objects cannot be created from editing field codes. 
Figure 4.9 A typical MLP ANN 

 

Suppose, in the input patterns, the inputs 1, 2, and 3 generally have larger input 

values than inputs 4, 5 and 6. Clearly, compared to the reduction in weights of 

the outgoing connection from neuron 4-5-6, the reduction in weights of the 

outgoing connections from neuron 1-2-3 will yield a better result in terms of 

power reduction by preventing high value signal propagation in the network. In 

contrast, the weight decay procedure is incapable of giving preferential 

treatment to different weights in order to achieve better power reduction. Since 

our suggested power-aware weight perturbation is solely driven by the objective 

function, it can encourage selective weight reduction for better power saving. 

We tried to reduce the power consumption using weight decay in some of the 

problems of the Proben1 benchmark datasets and the results presented in Table 

4.2 show that weight decay regularization give inferior results compared to the 

proposed Power–aware learning approach. 

 

 Table 4.2 Results of weights-perturbation learning with weight decay   

 

Problem 

Type 

Dataset Architecture Achieved 

Power reduction (%) 

Classification Cancer3 9+8+4+2 L < 2 

Func. Approx Builing3 14+16+8+3 L < 3 

Func. Approx Flare1 24+32+3 L 4.22 

 

4.3.6 Critical remarks 

 

The applicability of this method is limited to analogue Class AB implementations. It 

cannot be applied to any analogue implementations where weight values do not make 

a difference in power consumption.  Our initial experiments with the same technique 

on a digital platform have yielded discouraging results.  

Our power-aware learning can only be used with MLP using the supervised learning 

driven by an objective function. It is not useful for ANN using unsupervised learning 
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such as Self-Organizing Maps, Auto-associative nets, ART etc. Even with the 

supervised learning, it is not clear at this stage if the similar techniques can be 

extended to the RBF network or any of the recurrent/feedback network architectures.  

 

The performance of this method over the standard test-bench Proben1 [126] indicates 

that it can be successful over variety of classification and function approximation 

problem. However, it has not been tested for any power sensitive signal processing 

applications yet and such tests are planned for future work.    

    

The accuracy of the power approximation for cells presented in [31, 36] is 

questionable. Out initial simulation does not match with the results presented in [31, 

36]. Moreover, in the presented simulation results, we have assumed linear 

multiplication operation with floating point precision; while the real analogue 

implementation will have some nonlinearities, restricted signal range and small finite 

calculation and weight storage precision. A SPICE-level simulation is required to 

further verify our approach.  

 

4.4 Summary 
 

In this chapter, we have proposed a novel power-aware learning mechanism for class 

AB analogue neural network VLSI which is suitable for on-chip implementation. 

Experiments on the Proben1 benchmark problems indicate that it is capable of 

significant power reduction over a wide range of problems. Key observations on 

training time, regularization parameter and issue of generalization were discussed. 

The proposed algorithm shows significant advantages over the other possible low 

power training method i.e. weight decay regularization. A research paper based on the 

work of this chapter has been accepted in IEEE International Symposium on Circuits 

and Systems (ISCAS), 2006 [127].  

 

In this work, we have tested the algorithm on the standard benchmark problems with 

simple approximation of the power estimation. The encouraging results provide strong 

motivation for further detailed investigation about the performance of this learning 

mechanism with more realistic simulation (e.g. power characteristics obtained from 
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SPICE simulations) on practical ANN applications in mobile embedded devices, 

finally leading to complete low-power on-chip implementation. 
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Chapter 5  

 

Dynamic Word-Length Variation in Artificial Neural 

Network Digital Hardware 

 

 

 

5.1 Introduction 
 

5.1.1 Precision requirements in ANN implementation   

 

The cost of hardware implementation of ANN, in terms of both area and power, is 

directly affected by the implemented precision [76, 77]. A reduced precision can be 

translated into a reduced implementation cost. However, most of the theoretical 

results on the capabilities of ANN are based on real number with floating point 

precision. Previous research has studied the effect of reduced precision and 

quantization of the weights and calculations. [77]and [18] provide excellent surveys 

of the research on this issue and their main results can be summarized as follows4:  

 

Effects of the reduced weight precision on the theoretical capabilities of ANN has 

been studied in a number of papers [77, 139-141] and these studies indicate that “the 

capabilities of neural networks diminish as more restrictions are placed on the number 

and the precision of the weights” [77]. 

 

                                                
4  Since the focus of this chapter is on the digital implementation, we will omit the approaches 
specific to the analogue implementation.  



67  Chapter 5 Dynamic Word Length Variation 

 

Experiments have shown that the popular back propagation algorithm is highly 

sensitive to the use of limited-precision weights and that training can fail when the 

weight accuracy is lower than 16 bits [142, 143]. This is mainly because the weight 

updates are often smaller than the quantization step, which prevents the weights from 

changing.  There have been several research efforts to realize a more “hardware-

friendly” ANN implementation with reduced precision.  Two separate trends can be 

observed in such efforts [77].   

 

(a) The first trend is to modify existing algorithms and adapt them for a reduced 

precision implementation.  One of the approaches is to use a hybrid Continuous-

Discrete learning method. For ANN utilizing off-chip learning, hardware is not 

involved in the training process. The training is performed on a computer using high 

precision (i.e. continuous variables); then the resulting weights are quantized (discrete 

variables) and are then downloaded on the chip.  Only the forward pass is performed 

on-chip during the recall phase. Previous work indicated that the accuracy needed for 

only on-chip forward pass is around 8 bits [139, 142]. This approach has been proven 

even more successful for chip-in-the-loop learning, wherein the neural network 

hardware is used during training, but only in forward propagation. The calculation of 

the new weights is done off-chip on a computer with high precision. Continuous 

weight values are discretized using a staircase-shaped multiple-threshold function 

with some heuristics and then again downloaded on the chip for the next round of 

forward propagation. Studies presented in [144, 145] show that it works well with 5-7 

bits/weight and sometimes it can even achieve 2 bits/weight.  Another technique used 

in [146] gradually reduces the number of bits during the training sessions. The 

technique approximates the sigmoid with a linear function and can achieve 

convergence with 4-7 bits/weight.  

 

(b) The second trend is represented by novel techniques developed for low precision. 

Probabilistic rounding algorithms [147] use a minimal weight update. When a 

proposed weight update is smaller than this minimal update, the algorithms use the 

minimal one with a probability proportional to the magnitude of the proposed weight 

update. The required precision dropped from 12 bits to 6 bits in the experiments 

presented in [147].  Some researchers have suggested the use of dynamic rescaling of 

the weights and adapting the gain of the activation function [147-149]. However, 
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these approaches may not be very attractive from the viewpoint of power-efficient 

digital designs, as their implementation may result in considerable power overhead 

due to increased arithmetic operations.   

 

Algorithms designed for a Limited Precision Integer Weight (LPIW) are more 

attractive for digital hardware implementation because integer weights and integer 

computation circuitry can be implemented more efficiently in hardware, which will 

reduce both area and power costs. Studies indicate that although the convergence 

process is complicated when ANN is implemented with LPIW, it is possible to train it 

[77]. A class of LPIW ANN that uses only integer numbers which are powers of two 

[150-153] is particularly interesting for power efficient digital design because in this 

scheme, a power hungry multiplier can be replaced by simple shift operations.  

 

5.1.2 Motivation  

 

5.1.2.1 Limitations of the previous proposed approach in the thesis  

 

Power-scaling using dynamic pruning: 

This technique is designed to perform dynamic Error-Power trade-offs and to convert 

reduction in task complexity into reduction in power consumption. Possible Error-

Power trade-offs depend on the level of maximum tolerable output error according to 

system level requirements, while the task complexity is dependent on the input signal. 

The technique is based on exploiting variations in (1) tolerable output error and/or (2) 

task complexity. However, if none of these factors are variables, then this technique 

will be unable to yield any benefit.  

 

Most of the pruning methods available in literature are designed for Multi-Layer 

Perceptron(MLP) networks[56]. Some node pruning techniques are available for RBF 

networks [120]. For other varieties of highly useful networks (E.g. Self-Organizing 

Maps, Associative Memory nets, ART etc), it is not clear how this technique can be 

applied in the absence of the pruning mechanism for them. 
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Power aware learning:  

This technique adjusts the ANN weight value in order to reduce the power 

consumption. It cannot be applied to any analogue implementations where weight 

values do not make a difference in power consumption. Thus, the applicability of this 

method is limited to analogue Class AB implementation. Our initial experiments with 

the same technique on a digital platform have yielded discouraging results. Even 

though analogue ANN is a good candidate for some specialized applications, a 

majority of current ANN applications are implemented on a digital platform and it is 

likely to remain so because of the flexibility and shorter design cycles offered by the 

digital platform.   

 

Our power-aware learning can only be used with MLP using the supervised learning 

driven by an objective function. It is not useful for ANN using unsupervised learning 

such as Self-Organizing Maps, Auto-associative nets, ART etc. Even with the 

supervised learning, it is not clear at this stage if similar techniques can be extended to 

the RBF network, LVQ, or to any of the recurrent/feedback networks. 

 

5.1.2.2 Exploring dynamic word-length variation  

 

For digital designs, the precision is reflected by the implemented bit-resolution i.e. the 

word-length of the operation/variable. During the forward and backward pass in ANN 

hardware, some key arithmetic operations like addition, multiplication, or vector-

distance calculation [33] are performed in very large numbers repeatedly. The 

dynamic power consumption of these operations account for a major portion of the 

total power consumption. Hence the selection of the word-length has a significant 

impact on overall power consumption. Generally, the word-length is selected during 

design time according to available chip area and minimum precision required for the 

proper functioning of ANN. Once the selected word-length is implemented in 

hardware, it remains constant during the operating period of ANN hardware.  

However, if we are able to change and adapt word-length of the key operations 

dynamically without excessive overheads, it provides a way to significantly impact 

the power consumption of ANN dynamically.  
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Initial experimental results on the hybrid continuous-discrete learning methods (group 

(a) in section 5.1.1) are encouraging. In order to extend the same methods for adaptive 

systems with on-chip learning, arithmetic components with multiple precision is 

required where the precision (word-length) of the operations can be change 

dynamically. Although it is difficult to implement dynamic word-length variation in 

hardware without increasing the power overheads, recent publications [38-40, 41 , 42] 

denote promising results in that direction. Such arithmetic blocks with variable word-

length can be building blocks of our proposed technique and are described in detail in 

the next section.  

 

I propose to selectively reduce word-length of arithmetic operations for different 

weights/groups of weights. It is intended to reduce power consumption by reducing 

the total number of switching activities (i.e. total number of transitions), which will 

reduce the dynamic power consumption. This word-length adaptation can be 

performed either during the training phase or post-training. Various possible 

algorithms to employ this adaptation will be discussed later in the chapter.  

 

Note that our proposed technique of selective word-length adaptation is principally 

slightly different from all of the approaches described in section 5.1.1. It has been 

remarked in most of the studies of ANN precision requirements that the requirement 

depends on the actual task attempted by ANN. All of the previous researches on this 

topic use a rather generic approach in which precision of all the weights and related 

operations were treated uniformly. None of them proposed to adapt the precision for 

operations associated with different weights selectively and thus they did not attempt 

to exploit the weight distribution for the specific task undertaken by ANN.  

 

In some ways, this approach is similar to the dynamic pruning approach presented in 

Chapter 3. To understand this, consider the word-length adaptation for weight 

multiplication in forward propagation. Reduction of the word-length of each 

multiplication operation will reduce power consumption, but is likely to introduce 

error in the forward propagation computation chain [142]. This effect is similar to 

pruning beyond the minimum error point and presents the opportunity to perform (1) 

error/power trade-offs and (2) transformation of reduction of task complexity into 

power reduction, in the same manner as dynamic pruning. However, despite these 
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similarities, there are some important differences. Word-length adaptation gives 

greater control over error introduction in the network and it can introduce error more 

gradually. It is a more general technique which can be used for a wide variety of 

networks. Word-length adaptation is likely to effectively exploit the fault tolerance 

inherent to ANN. Some of these differences will be revisited later in the chapter.  

 

Some of the methods for designing low precision ANN in the literature seems quite 

successful, [18, 77] and with the achieved low-resolution of a few bits in some of the 

experiments, it may appear that there is not much scope in applying word-length 

variation. However, a few points should be noted about these reported experiments 

while examining their results.  

• Most of the experiments were restricted to a few artificial classification 

problems. Hardly any of them have been utilized for real world signal 

processing applications.  

• The primary aim of the reported approaches is area reduction and memory 

storage reduction- not power saving.  

• A comparative benchmarking study of quantization effects on different neural 

network models and the improvements that can be obtained by weight 

discrimination algorithms has not yet been done.  The reported precision 

accuracies are therefore highly biased by the different benchmarks that were 

used by the various authors [18].  

• Most of the experiments reported that the required accuracies depend on the 

actual problems attempted. For flexible adaptive systems where attempted 

tasks may not be predefined, adaptation of world-length according to a 

specific problem seems more appealing.  

 

In the rest of this chapter we will describe the potential hardware building blocks for 

applying dynamic word-length variation. Fixed point implementation is more suitable 

for power efficient designs in comparison with floating point implementation; hence 

we will restrict our discussions to fixed point arithmetic units. Since signed additions 

and multiplications are the basic and most significant operations in ANN, I will focus 

our efforts on these operators. After discussing the basic issues about variable multi-

precision arithmetic blocks, the overall implementation of the ANN system with 
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various word-length adaptation strategies will be described. A suitable SystemC 

platform for evaluating this technique will be proposed. From the view point of figure 

1.1, (depicting various strands of ‘Adaptive Power Reduction Techniques’), this 

chapter is an investigation using the “Adaptation of calculation precision” approach. 

  

5.2 ANN implementation with Dynamic word-length variation  
 

5.2.1 Building blocks:  

 

5.2.1.1 Partially Guarded Computation  

 

[38] presented Partially Guarded Computation (PGC), which disables a part of the 

arithmetic Functional Unit (FU) according to the dynamic range of input data. The 

basic idea behind this technique is that although the implemented word-length is 

generally determined by the maximum dynamic range of the data, many real data 

samples are limited to a smaller range and do not require the full word-length of the 

functional unit. In such cases, some part of the FU is not useful and any signal 

transitions in that part should be avoided to save power. Thus, this technique basically 

exploits narrow-width operations to reduce power consumption. Work presented in 

[39] also exploits the narrow-width operations similarly using value based clock 

gating. Figure 5.1 illustrates the scheme presented by [38]. 

 
Figure 5.1 Power minimization by Partially guarded computation ( adapted from [38] ) 

 

The technique first divides the input data in two parts: Most Significant Part (MSP) 

and Least Significant Part (LSP). Accordingly, the functional units are also divided in 

two parts: MSP and LSP. The output of the LSP of the FU depends only on the input 

LSP, while the output of the MSP of the FU depends on both the input MSP and the 
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carry out signals from the LSP of FU.  It is assumed that input registers are reserved 

for each functional unit, where the registers play the role of guard latches [154]. 

Additional guard latches are introduced between the ‘boundary’ of MSP and LSP.  

(i.e. carry out signals from LSP to MSP).  

 

When the input data range is small (i.e. all the operands do not exceed the range of the 

LSP), the computation in the LSP is sufficient to provide the correct output with some 

sign extension logic at the output. In such cases, the signal propagation to the MSP 

should be prevented to save power. This is achieved by using range detection and 

guarded evaluation technique [154]. When the input operands are within a certain 

range, range detection prevents any signal activity in the MSP by disabling the MSP 

input guard latches and boundary signal guard latches. The implementation of PGC 

for a ripple carry adder and array multiplier from [38] is shown in the figure 5.2.  

 
Figure 5.2 PGC for ripple carry adder and array multiplier (from [38]) 

 

Simulation experiments reported by [38] showed a 10%-40% reduction in power 

consumption over various benchmarks (Though [42] later reported that those results 

slightly overestimate the power savings). A recent publication [42] suggests many 

improvements over the basic method proposed by [38]. By utilizing an improved 

special value detection unit, better exploitation of input of special values, multiple 

partitions of the functional unit and more realistic power estimate models, [42]  claims 

to achieve further improvement of 28%-40% over the previous approaches.  

 

However, all these current approaches [38, 39, 42] assume one basic requirement – 

that the output of the functional unit should be error free in all cases. This is not a 

rigid requirement when functional units are used in ANN. As explained in 5.1.2.2, the 
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precision requirement of ANN can depend on the problem. Moreover, some of the 

methods can train ANN to perform operations with reduced precision. Thus, even if 

the errors are introduced in arithmetic operations because of the reduced word-length, 

ANN will be able to tolerate them up to a certain extent. We plan to exploit the 

adaptation capabilities and built-in fault-tolerance of ANN for power reduction. One 

of the well-observed characteristics of ANN is that it has a graceful degradation of 

performance in the presence of noise due to its distributed processing and 

connectionist architecture. Even if the error introduced because of reduced word-

length propagates through the output, the performance degradation is likely to be 

gradual. This gives us an opportunity to perform error/power trade-offs and to exploit 

task complexity variations like dynamic pruning as noted in section 5.1.2.2.  

 

With these differences in mind, we will re-examine and further explore the above 

mentioned approaches for arithmetic functional units of power-efficient ANN.   

 

5.2.1.2 Partially Guarded Computing schemes for ANN Functional Units  

 

In the existing approaches [38, 39, 42], the determination of word-length is ‘value-

based’ i.e. Functional Sub-Units (FSUs) can be deactivated only in case of some 

special combination of inputs. In contrast, we wish to determined word-length through 

an ANN adaptation process. The effective word-length of the operation will be stored 

in memory and it will be adapted using various strategies described in the next 

section. The ‘special value detection,’ similar to the existing approaches, can be 

utilized in conjunction with this adaptation.   

 

In the schemes presented in [38, 39] , LSBs of the operator are utilized in narrow-

width operations. According the input operands, the MSP of the operator is activated 

or disabled, but the LSP is always utilized, hence we call these schemes ‘active LSP 

schemes’. For functional units in ANN, it is also possible to use only the MSBs of the 

operator. This ‘active MSP’ scheme is presented in the schematic in figure 5.3 for a 

16-bit Ripple Carry Adder (RCA) where the length of both the LSP and the MSP is 8 

bits.  
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Figure 5.3 Active MSP scheme for RCA 

 

Here, input registers of the LSPs are used as the guarded latch which is controlled by 

the word-length control (WC) signal. The signal carrying the output carry of FA7 is 

the ‘boundary signal’ between the MSP and the LSP. Note that here the boundary 

signal should not be latched but it is required to be forced to ‘0’ using a control signal. 

Output registers are also forced to ‘0’ by the word-length control signal. Although in 

figure 5.3, the gate ‘BD1’ (applied to force the boundary signal) is displayed as a 

separate gate outside the adder blocks for clarity in practice it should be integrated in 

the carry_out generation of FA7 to save the extra transitions during operations with 

full precision. For instance, 2 input NAND gate used in output carry generation 

should be replaced with 3 input NAND where the additional input is the word-length 

control signal [40].  

 

When a non-zero LSP of the input in computation is neglected, it introduces error in 

the computation, which, as explained in the previous section, may be acceptable due 

to the nature of the ANN processing. It is not essential to force the LSP output to zero. 

Forcing the output to zero will introduce truncation error, while leaving the previous 

output of LSPs will introduce error based on the previous LSP calculation. Which of 

these two options is less detrimental for ANN processing is questionable and requires 

further investigations. A general ‘active LSP’ scheme is presented in the schematic in 

figure 5.4. When deactivating the LSP, boundary signals should be forced to values 

such that it will ‘look’ to the MSP as if the LSP is zero. A proposed general 

methodology to convert any combinational arithmetic unit into multi-precision using 

the active MSP scheme is presented in appendix B.  



76  Chapter 5 Dynamic Word Length Variation 

 

 

FSU-MSP

Input MSP Input LSP

A B

output MSP output LSP

FSU-

LSP

‘1’

FU

 
Figure 5.4 Active MSP scheme  

 

In comparison with the ‘active LSP’ scheme presented in the previous section, 

overheads of active MSP are considerably smaller. No boundary latches or sign 

extension logic is required. The overhead for the forced boundary signals generation 

can be very small. [40] presented a twin precision multiplier where an 8 x 8 Bough-

Wooley multiplier can be converted into two 4 x 4 multipliers dynamically by forcing 

the boundary signals. The reported overheads for the implementation were very small: 

0.9% increase in power and 9.0% increase in delay [40].  For a scheme with even 

lesser overhead, it is also conceivable to remove the requirement of the forced 

boundary signals. When the boundary signals are not forced, it will introduce error in 

the MSP calculation. But the magnitude of the error will be limited and in many cases 

it can be tolerable. With the low overheads of the active MSP scheme, implementation 

of FUs with several operational precision becomes more viable.    

 

It is also possible to combine both the active LSP and active MSP schemes, (figure 

5.5) where either LSP or MSP can be deactivated.  This idea is attractive from the 

viewpoint of the ANN weight multiplier, because for operands with larger values, the 

computation in the LSP is likely to be insignificant but with operands of smaller 

magnitude, LSP calculations are important. Hence the ANN should attempt to learn to 

utilize only one of the FSUs.  
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Figure 5.5 Combining active MSP and active LSP schemes 

 

If this combined approached is implemented without using guarded latches for a 

boundary, then some unnecessary transitions can occur in the MSP when only the 

LSP is utilized for calculation. However, those transitions will only occur when the 

word-length control changes and forces the boundary signal to a new value. This is a 

more attractive option when the frequency of change in the word-length is not very 

high, as this removes the boundary latch overheads.  

 

5.2.2 Word-length Adaptation  

 

In order to selectively adapt word-lengths, I propose to associate a separate word-

length Control-word (WLC) with each synaptic weight in ANN. Those WLC will be 

stored in the memory along with the weights.   For larger networks, a common WLC 

should be assigned to a group of weights. One natural way to group them is to group 

all the weights associated with incoming synaptic connection to the same neuron. 

When functional units (multipliers/ adders etc.) perform operations related to a 

particular weight/groups of weights, the FU will utilize guarded evaluation based on a 

WLN and detection logic.  

 

Hybrid continuous-discrete strategy utilized in chip-in-the-loop learning such as [139, 

142, 146] can be adapted for on-line learning with the arithmetic functional units with 
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word-length variation capabilities. Backward error propagation and weight update 

calculations should be performed using full-precision while word-length in forward 

propagation operation should be based on WLC and associated word-length should be 

gradually reduced, provided the output error stays within a tolerable limit.   

 

One simplistic approach is to reduce each associated word length one by one and until 

the output error crosses the tolerance limit. However, this is not the best strategy 

considering the complex nonlinear interrelations amongst the synaptic weights in 

ANN.  

 

Our aim is to selectively reduce the word-length of the set of operations that introduce 

minimum error in computation, yet saves maximum power. Optimal selection of such 

set requires some solution search strategy. Blind search algorithms such as Simulated 

Annealing or Genetic Algorithm (GA) can be a good candidate for this purpose. Such 

algorithms require many iterations before finding a good solution. However, that can 

be acceptable in the cases where the utilization period (recall phase) is much longer in 

comparison with the training phase. Multiple objective evolutionary algorithms [124] 

are a particularly good option, as it gives multiple solutions on pareto-optimal front 

simultaneously, which will directly provides various solution for error-power trade-

off in ANN.  

 

5.2.3 Discussion: 

 

In the dynamic pruning technique, each synaptic link is either present or it is 

completely removed. Pruning of a link can introduce error in the network computation 

with a rather coarse granularity. Compared to dynamic pruning, dynamic word-length 

variation introduces errors in a more gradual fashion. This can potentially lead to 

better error and power trade-offs. As mentioned previously, dynamic pruning requires 

variations in (1) tolerable output error and/or (2) task complexity to significantly 

impact power saving. This is not a necessity for dynamic word length variation 

because it can also exploit the fault-tolerance of ANN towards low-precision 

calculation.  
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In dynamic word length variation, the word length adaptation is quite separated from 

the normal ANN learning mechanism. With the use of blind search algorithms like 

GA, the technique can be easily employed in other wide variety of networks which 

utilize wide-length arithmetic operations (provided there is a kind of reinforcement 

mechanism for power and error performance). For instance, it is possible to use this 

technique in competitive networks and RBF networks for Euclidean distance 

calculations [33].  

 

Our proposed technique is a power-aware mechanism. We propose to utilize the 

actual power consumption during on-line adaptation.  Hence, it does not depend on 

any power estimation when it is employed on-chip.  

 

Ideas presented in this chapter have not been verified by simulation experiments. 

Extensive experiments are required to validate any potential benefits of this word-

length variation technique. Building blocks should be synthesized with standard cell 

library to obtain realistic power estimation. Those blocks should be utilized in a set of 

test-applications with some power-sensitive signal processing applications using 

ANN.  A SystemC simulation framework useful for evaluating this technique is 

presented in the following section.  

 

5.3 Simulation Framework 
 

5.3.1 Simulation requirements 

 

The proposed dynamic word-length technique is a power-aware technique, which 

utilizes real-time measurement of power consumption. Hence, its simulation requires 

estimate of its dynamic power consumption during simulation run-time.   

 

Word-length variation affects power consumption by reducing transitions in 

functional units. Its effect can only be captured if the dynamic power consumption 

due to each signal transition at the gate output is taken into account. Hence, system 

level power estimation technique such as [155-157] is not useful for our simulation. 

On the other hand, accuracy of SPICE level may not be required as we need only 

comparative figures of dynamic power consumption for different word-lengths.  
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Word-length variation scheme will be employed only in key arithmetic functional 

units. The power estimation is only required for those units and the rest of system 

should be modelled with abstract behavioural models. Many of the neural networks 

learning algorithms and tools are available in C/C++. (The SNNS tool used in 

simulation experiments in the previous chapters is an open-source C library.)  

Moreover, we need target signal processing test applications which generally require 

MATLAB or C/C++ platform for simulation.  Hence, simulation platform capable of 

Hardware and software co-simulation is highly desirable.   

 

ANN typically requires a large number of training epochs and even without power 

estimation it can be computationally intensive and time consuming. As our 

experiments require ANN simulation with power estimation and word-length 

adaptation that might require additional training cycles, simulation speed is a very 

important criterion for our simulation experiments.   

 

5.3.2 Limitations of Current simulation tools 

 

Accurate power estimation can be obtained using a SPICE simulation of the 

synthesized design. However, SPICE simulations are quite slow and the SPICE level 

accuracy is not necessary for our experiments.  

 

A faster simulation can be obtained using Synopsis PrimePower [158] or similar tools. 

However, the major problem with this tool is that it is designed for post-simulation 

power estimate. Typically, a signal activity file is generated for post-syntheses 

simulation using an HDL simulator (e.g. ModelSim [159]) This signal activity file is 

fed to PrimePower to estimate power consumption along with the technology library 

files. Here, the simulation and power estimation is performed by separate tools in 

batch mode and hence PrimePower is unable to provide power-estimate during 

simulation.  One way round this problem is to alternatively invoke ModelSim and 

PrimePower with an automation script. However, this can have considerably adverse 

effect on the simulation speed. In addition, Prime power and ModelSim are not very 

suitable for hardware software co-simulation.  
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5.3.3 SystemC Framework for testing Power-aware / Energy-aware Systems  

 

SystemC [160] provides a flexible platform for a fast and efficient simulation, which 

is well suited for hardware/software co-simulation. Since SystemC is an open-source 

C++ library, it is possible to customize and extend its capabilities. If the power 

estimation can be performed using SystemC with acceptable accuracy, both 

simulation and estimation can be combined on the same platform which enables us to 

obtain power estimation during a simulation run. With its co-simulation capability and 

fast execution speed, it will provide an ideal platform for our experiments.  

 

Although there has been several works for system level power estimation using 

SystemC [156, 157, 161], none of them are suitable for our purpose. Their approaches 

do not involve the signal transitions in the synthesized library gates and hence 

estimates are not sufficiently accurate for our experiments. More accurate information 

can be obtained with an approach similar to [162].  

 

Alcantara et. al.  presented a methodology for dynamic power consumption estimation 

using VHDL descriptions [162]. In this proposed approach, the post-synthesis 

simulation is performed using a new VHDL library with power consumption 

behaviour.  The description is created to substitute the original library (without power 

consumption behavioural description). Component delays are also characterized in 

order to make it possible to count the effect of glitches on power consumption. An 

example of such VHDL description is presented below from [162]:   

 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_ARITH.all; 
use WORK.pack_power.all; 
 
entity LIBXOR is 
port ( Y : out std_logic; 
      A, B : in std_logic); 
end LIBXOR; 
architecture power of LIBXOR is 
begin 
    process (A, B) 
    variable power, acum: real; 
    variable now: std_logic := ’ 0’ ; 
    variable before: std_logic; 
    begin 
        now:= (not(A) AND B) OR 
              (A AND not(B)); 
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        if (A´event AND now =´0´ AND 
        before=´1´ ) then 
            Y<= now after 1.319 ns; 
        elsif (B´event AND now = ´0´ 
        AND before =´1´) then 
            Y<= now after 1.314 ns; 
        elsif (B´event AND now = ´1´ 
        AND before =´0´) then 
            Y<= now after 1.073 ns; 
        elsif (A´event AND now = ´1´ 
        AND before =´0´) then 
            Y<= now after 0.956 ns; 
        else 
            Y<= now after 0.956 ns; 
        end if; 
        if now /= before then 
            power:= 6.01; 
        else 
            power:= 0.601; 
        end if; 
        counter_power(power); 
        before:= now; 
    end process; 
end power; 

 

 

We propose the approach similar to [162] to estimate dynamic power consumption in 

SystemC.  The basic idea of this approach is to capture the signal transition of each 

library gates using SystemC events. During the simulation, wherever the output of the 

gate changes, predefined energy consumption is added to the total consumption count. 

 

The first step is to synthesize the hardware design using the target library and obtain 

the synthesized Verilog/VHDL gate-level net-list. The next step is to convert the gate-

level net-list to SystemC gate-level net-list using an automation script. While 

converting to a SystemC gate-list, each gate i will be assigned a constant ‘Kpi’ 

indicating the power consumption for each transition at output. This Kp for each gate 

will be derived from information in the target cell technology library file.   

 

During the simulation, whenever there is signal transition at the output of the gate i, 

Kpi will be added to total power consumption count. Note that at the fist instance, we 

do not intend to incorporate dissipation due to routing and interconnect capacitance. 

Initially we also plan to neglect the effect due to gate delays, routing delays and hence 

the resulting glitches. However, if more accurate power estimation is required, those 
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effects can be incorporated to quite an extent by modifying Kp extraction methods 

and incorporating delays in SystemC  gate-level net-list .   

 

One of the limitations of the [162] is that as the VHDL does not accept global 

variable, counter_power() function creates a text file with all the values.  At the end of 

the simulation, this file has to be read by another function that accumulates the values. 

The SystemC implementation does not suffer from this limitation.    

 

In the recent years there has been considerable interest in power-aware computation 

techniques,[2, 163]. If our approach succeeds in getting a reasonably accurate power 

estimation  (close to PrimePower estimation) then this tool can be highly useful to test 

various power-aware approaches with the realistic power estimation of the target 

synthesized design and would be a useful contribution to SystemC open-source  

community.  

 

5.4 Summary  
 

In this chapter, the precision requirement of ANN implementation and its effect of 

power consumption were discussed. The motivation behind exploring dynamic word-

length variation in ANN was described.  Arithmetic functional units with partially 

guarded evaluation, which can serve as the building blocks for this technique, were 

introduced. Its application to ANN was investigated; some modifications to the 

existing work and a few word-length adaptation strategies were suggested.  

 

Our proposed technique has not yet been verified with simulation experiments. Since 

the unavailability of the suitable simulation framework is one of the major difficulties 

in verifying this technique, we also proposed a suitable SystemC framework in this 

chapter.  
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Chapter 6  
 

SystemC Simulation Framework for Spiking Neural 

Network 

 

 

 

6.1 Motivation  
 

6.1.1 Spiking Neural Network Hardware  

 

Most biological neurons communicate with other neurons using electrical pulses. This 

pulse is also known as “spike,” which indicates its short and transient nature. 

Traditionally, it has been thought that most information, if not all, was contained in 

the mean spike rate of the neuron. Hence, traditional Artificial Neural Network 

(ANN) models assume continuous analogue variables for the inputs and the output 

representing the mean firing rate. However, recent biological evidence [6] suggests 

that the timing of an individual spike plays an important role in information 

processing. This has lead researchers exploring new Spiking Neuron models [9], 

which are considered to be third generation of neural network models[5]. Spiking 

Neural Networks (SNNs) offer novel information processing with temporal coding 

schemes, where the time of the signal is the information carrier [7]. It perceived that 

SNNs are computationally more powerful than conventional ANNs [86, 164].  SNNs 

have been applied for a number of applications in the field of visual processing [21, 

28], auditory processing [89], robot control [29, 30], and the experiments have 

exhibited very promising results.   
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With the growing interest in SNNs, a generation of VLSI-chips based on SNN, also 

known as ‘pulsed VLSI’, [8] is emerging in parallel with the theory of  SNN. 

Simulation of SNNs is computationally expensive, and despite exponential growth of 

the computational power of serial processors, they are not adequate for simulation of 

large aggregates of spiking neurons [165]. Moreover, spiking neural networks utilize 

dynamic learning properties (e.g. synaptic plasticity[88] ), and in order to explore 

such properties and to investigate its operation with real-world interaction, the SNN 

processing platform requires real-time behaviour [98, 99]. Hardware implementations 

of SNNs can increase the execution speed by manifolds through exploitation of the 

inherent parallelism of SNNs and the desired real-time performance cab be achieved. 

Specialized hardware implementation of an SNN is also necessary to use SNNs in 

embedded devices.  

 

In an SNN, all the computational activities are triggered by spikes. Hence the total 

number of spikes and their spatio-temporal pattern can have a direct effect on the 

dynamic power consumption. For many cases, it is reasonable to assume that we can 

reduce the dynamic power consumption by reducing the total number of spike 

generation in SNNs for a given task. There are no results available in the current 

literature explicitly examining this effect.    

 

The total number of spikes and their spatio-temporal patterns can be dynamically 

influenced by many factors including size, connectivity patterns, weights, and 

calculation precision. For SNN hardware, it should be possible to influence the power 

consumption by all three strands presented in figure 1.1. The size of an ANN (i.e. 

number of neurons and number of synaptic connections) is likely to effect the power 

consumption of an SNN; however, in an SNN, the mere presence of an additional 

synaptic condition may not result in additional computation (and hence additional 

power), because power is only consumed in synaptic calculations when it is triggered 

by the source neuron. An addition/removal of a connection can affect spike generation 

in the target neuron, which propagates in consequent layers, thus affecting not only 

the related synaptic calculations but also the power consumption in many of the 

following layers. Hence, the relationship between the size and power consumption can 

be quite complicated and strongly depends on the overall spike generation patterns.  

Since weight distribution and learning process has a strong effect on spike generation 
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in both analogue and digital SNN hardware, there is a strong motivation to consider 

power-aware learning for them. It is interesting to note that in comparison with a 

digital ANN, weight distribution and learning process has a more direct effect on the 

total spike activity in digital SNNs and hence there is a better scope of applying 

power-aware learning with digital SNNs. Calculation precision can effect the power 

consumption in digital SNN hardware, and dynamic word-length variation is a 

potential candidate for power reduction in such implementations. Like the analogue 

ANN, adaptation of calculation precision may not be practical in the analogue SNN.   

 

To the best of our knowledge, there is no systematic study available that links power 

consumption, capabilities, and size/precision requirements for SNNs. There has been 

no previous research effort to utilize SNN adaptability to reduce power consumption. 

Growing interest in SNN hardware provides a strong motivation to explore the 

adaptive power reduction techniques for SNN hardware.  

 

6.1.2 Simulation  

 

SNN models are more biologically realistic when compared with ANN models. The 

research and development of SNNs is heavily bio-inspired and there is a strong 

emphasis to closely mimic the Biological Neuron System (BNS)[9, 166]. Available 

theoretical analysis of SNN capabilities and characteristics is limited. Design and 

applications of SNNs is still going through the early stages of research, which often 

requires comparisons between experimental results and real BNS. Currently the 

development and verification of SNN hardware requires biologically realistic 

simulations of BNS. There are three major issues involved: (i) difficulty of efficiently 

simulating large realistic neuron aggregates; (ii) getting sensible interpretation of the 

results; and (iii) integration of such a simulation system within the hardware design 

environment.  

 

Real BNS typically consists of a very large number of neurons, and simulation of a 

large aggregate of neurons is imperative for both the theoretical analysis and the 

development of engineering SNN applications. However, the simulation of biological 

neurons is computationally expensive and designing a practical simulation platform is 

an area of active research [167, 168].  A very related issue is the correct level of 
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abstraction to be used in the simulation. Simulation based on the detailed bio-physical 

models is computationally expensive, and it is not feasible to simulate a large 

aggregate of neurons, while simulation with an abstract model is not sufficiently 

faithful to their biological counterpart. Moreover, researchers often do not know the 

correct level of abstraction at the beginning, and deciding correct level and model 

parameters is likely to be a gradual and interactive process. Therefore, the simulation 

platform should be flexible to handle various levels of abstraction.  

   

Another important issue is to obtain the meaningful interpretation of the simulation 

results. Generally, the voltage and/or current signal of all the neurons are stored 

during the result of such simulations. The results in the form of voltage/current 

waveforms of the signals of a large number of neurons are not very intuitive and it is 

difficult to obtain any insight regarding system level behaviour using these results. 

Moreover, often voltage/current of an individual neuron is not measurable in real 

biological experiments. Generally, only some biological behaviour resulting from the 

neuronal activity is observable and if the simulation results are presented in the form 

of animated behaviour, it can provide intuitive and verifiable results. Finally, in order 

to explore the power optimization for SNN hardware, it is important to choose a 

simulation platform that can also support hardware simulation. The platform should 

be suitable for hardware-software co-simulation to provide easy integration of SNN 

hardware simulation into a BNS simulation and verification framework.  

 

Several researchers have proposed simulators for SNN, and a review of the recent 

simulators is presented in my previous report [169]. However, none of them are very 

suitable for our purpose. The simulation system developed in  [170] has successfully 

used event driven simulation with cell automata techniques for biologically realistic 

neuron systems and it has achieved very good performance for neuron systems of 

about 105 neurons. With the cell automata approach, neuron behaviour can be 

captured at various levels of abstraction. We have proposed a scalable SystemC 

framework based on [170] and also developed a design interface to enable the 

development of network structures and connection maps with animated visualization 

of the results [171].   

 



88  Chapter 6 SystemC Simulation Framework for SNN 

 

6.1.3 Rationale for using SystemC  

 

The simulation of a large number of spiking neurons requires simulation of a large 

number of concurrently functioning distributed processing units. It encompasses the 

concepts of time and concurrency. Thus, a Hardware Description Language (HDL) 

with inbuilt concurrency and time becomes a natural candidate for this kind of 

modelling. SystemC is built on the general purpose C++ programming language, 

which enables us to use it for applications in domains other than purely electronic 

designs and broadens the scope to a large variety of potential applications. Choosing 

SystemC for the design of a neural simulator framework is appealing for the following 

reasons: 

 

• SystemC has an efficient event driven kernel. Its event management system is a 

well-tested, mature industrial standard and is designed to handle very large 

systems. By using the SystemC kernel as a backbone, our simulation framework 

becomes intrinsically more reliable, standard, and reusable. 

 

• SystemC is an HDL language which was specifically design for facilitating 

hardware-software co-simulation. Design BNS simulator in SystemC provides 

seamless integration of any hardware component in the framework.  

 

• SystemC includes an inbuilt concept of events, message passing, concurrency, and 

time. Robust event-queues and event-management system are already designed 

and implemented in the kernel, reducing complex application design time 

drastically. 

 

• SystemC uses object-oriented programming and promotes a methodology using 

“plug and play” components. Model developers can gradually increase the level of 

abstraction and/or mix different levels of abstraction. 

 

• C/C++ is pervasive in the scientific/ engineering community.  SystemC is freely 

available as open source C++ and uses standard ANSI C++ compilers. This makes 

it especially attractive for the academic community.  
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6.2 SYSTEMC FRAMEWORK 
 

6.2.1 Overview 

 

Figure 6.1 shows the hierarchical structure of the simulator.  

 
Figure 6.1 Structure of the simulator 

 

There are two core functional components:  neuron and synapse. A network is made-

up of connected instantiations of neurons and synapses.  Each neuron has one output 

port connected to a Boolean signal in network (shown as solid lines). These signals 

are connected to the input of a synapse. When a synapse is triggered by a presynaptic 

neuron, after some delay the synapse changes weight sum variable w_sum in a target 

neuron (indicated by dashed lines). Changes in w_sum start or stop burst generator 

via threshold mechanism.  When triggered ‘on’, burst generator generates a burst of 

output (toggles the Boolean output). This again triggers the synapses attached to that 

particular neuron and thus a signal is propagated. Stimuli are provided either by the 

monitor_driver module by changing input signals in network, and/or by 

internal oscillators in the neuron module.  
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Figure 6.2 Neuron impulse timing diagram 

 

An assumption in our simulation system is that the information is in the timing of the 

impulse of action potential of the neuron and not in the shape of the impulse 

waveform. Two the classes of information coding scheme, spiking rate coding and 

temporal coding, can be implemented using relevant models in our framework.  The 

models used are based on the work in [172]. Like their biological counterparts, all 

models work asynchronously and there is no central clock. They use the time 

reference provided by SystemC to model delays. 

 

6.2.2 Models 

  

6.2.2.1 Synapse Model  

 

In biological neurons, the consequence of an action potential in the axon is the release 

of neurotransmitter after a certain delay from synapse to postsynaptic neuron (target 

neuron). The release of a neurotransmitter affects the postsynaptic neuron by 

increasing or decreasing its membrane potential. After some duration, this effect is 

diminished. The efficacy of different synapse on target neuron membrane potential 

can be represented in models by relative weight attached to it. Our synapse model is 

parameterised by the following parameters, which reflects the properties of its 

biological counterpart: syn_delay - representing axonal delay, syn_duration - 

Duration of postsynaptic pulse & w_syn - representing synaptic efficacy.  

 

The input of a synapse is attached to the presynaptic neuron output (a Boolean signal). 

A change in presynaptic neuron output (either positive or negative edge) triggers the 
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synapse. It waits for syn_delay time and then increases w_sum in target neuron by 

w_syn (via update_w_sum function); and decreases it by w_sum after 

syn_duration (figure 6.2). The synapse basically works as a delay element.   

 

Typically most of the neurons have large number of input synapses. For network of n 

neurons, the number of synapses can reach an order of n
2. The synapse module is 

likely to be instantiated in a very large number (10,000 or more) for any realistic 

medium size neuron network. Therefore, the performance of the synapse module, both 

in terms of memory and execution speed, is the most critical factor for the 

performance of the simulator. Hence, optimisation of the synapse module is essential. 

Section 6.2.3 addresses performance issues of synapse in more detail. 

   

6.2.2.2 Neuron Model 

 

A neuron block basically works as a burst generator, where burst generator is 

controlled by a threshold function. When the neuron state variable w_sum exceeds its 

excitatory threshold, the burst generator starts toggling Boolean output of the neuron.  

After generating a finite number of bursts, the burst generator stops. If during the 

bursting period w_sum drops below the inhibitory threshold, the burst generator stops 

immediately. w_sum is controlled by input synapse via update_w_sum function. 

Neuron also has an internal oscillator, which triggers neuron burst generator 

periodically. Table 6.1 lists the characterizing neuron parameters with its biological 

relevance. The more complete description of the model can be found in [173]. 

  

Table 6.1 Neuron parameters and its biological relevance 

 

Parameter Biological relevance 

w_sum Intrinsic Membrane voltage  

ex_thold Excitatory threshold membrane voltage 

inh_thold Inhibitory threshold membrane voltage 

t_ap Duration of action potential 

t_ref Duration of refractory period 

N_bursts Number of spikes per burst 

t_osc Oscillation period of internal 

oscillatory mechanism 
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6.2.2.3 Network Model  

 

A network is created using instantiations of synapse and neuron modules and 

connecting signals according the user specifications. The network component 

parameterises all instantiations of neuron and synapse while instantiating. 

Connectivity can be specified either by explicit connectivity list or by probabilistic 

connectivity rules. Output of presynaptic neurons is connected to the input port of 

synapse. A synapse is provided its target neuron pointer via a constructor argument. 

  

6.2.3 Design and Performance issues 

 

6.2.3.1 Coding style 

 

Both neuron and synapse models require modelling of delay. Modelling using 

SC_THREAD type of procedure produces very simple and highly readable code. 

However, the memory requirement of a SC_THREAD procedure is much higher than 

a SC_METHOD procedure (see figure 6.3).  

 
Figure 6.3 Comparison of memory consumption of different implementation style 

 

 

6.2.3.2 Modelling of Transport delay  

 

Synapse behaves like a delay element where several signals can be in pipeline. If the 

maximum time period between 2 consecutive bursts in a pre-synaptic neuron is less 

than sum of synaptic delay and synaptic duration, then we need to model transport 

delay in synapse. Unfortunately, we find this case in many biological systems where a 
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synaptic delay (representing axonal delay) is larger than the bursting interval. This 

feature becomes even more important when we are implementing models using 

variable rate coding.  

 

Transport delay is not built into SystemC and hence poses a considerable design 

problem for its efficient implementation. A class scx_event_queue has been 

developed by OSCI members, which can be used for modelling transport delays. 

However its memory consumption is much higher in comparison to a simple blocking 

synapse with no transport delay as shown in figure 6.4, even higher than the neuron 

module, which results into very memory-inefficient simulation.   

 

 
Figure 6.4  Memory consumption of different synapse modules 

 

Since the performance of a synapse module is critical for overall simulator 

performance, we have developed several other models to elevate this problem, and 

their performance in terms of static memory allocation is compared in figure 6.4.  

Performance of some of the models in terms of execution time is presented in figure 

6.5 and [172].  More detail analysis about using different synapse models can be 

found in [173].  
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Figure 6.5 Execution time for different synapse models 

 

6.2.3.3 Pointer access Vs Signal communication 

 

In our framework, the synapse accesses a member function of neuron by a function 

pointer, rather than using pre-defined interface of ports and signals.  The use of 

Pointer access instead of signal has the advantages of scalability, easy and flexible 

runtime reconfigureability and efficient computation of w_sum. Using signals the 

description of a threshold module would be: 

 

SC_METHOD ( threshold)  
sensitive( in1,in2,in3,. . . ,in_n) 
… 
void neuron :: threshold () { 
w_sum= in1+in2+in3 + . . . + in_n ; 
if ( w_sum >= excitation_threshold ) 
     { start_burst_generator( ) }; 
if ( w_sum <= inhibitory_threshold )   
{ stop_burst_generator( ) }; 
} 

 

In this implementation, whenever any of the input changes, the simulator computes 

w_sum by summing all the (large number of) inputs. This is computationally very 

costly. Instead the pointer access implementation changes w_sum just by the change 

required by w_syn (synaptic weight) using function update_w_sum: 

 

void neuron::update_w_sum (float weight_change) 
{w_sum+= weight_change;} 
void neuron::mth_threshold (){ 
if ( w_sum >= excitation_threshold ) 
{ start_burst_generator( ) ) ; 
if ( w_sum <= inhibitory_threshold )  
{ stop_burst_generator( ) ) ; 
} 
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This implementation takes much less computational power than the one using a 

signal-based interface. (The implemented model in fact uses a combination of w_sum 

variable and internal signals to avoid multiple triggering of the burst generator.)  

 

6.2.3.4 Use of inter-process shared variable  

 

In SystemC, generally signals are used for inter-process communication. However, 

signals cannot have multiple drivers thus cannot be shared between processes. Other 

synchronization method such as sc_mutex, sc_semaphore etc. have some memory and 

performance overheads.  However, all processes in a module can access a variable, 

which provides a flexible and efficient way of communicating information amongst 

the processes. We have used shared variables/events as flags. The SystemC 

documentation advises against using pointer access and inter-process variables. 

However, we maintain that the careful use of pointers and shared variables should not 

create any problem and we have used both pointer access and shared variables 

because it produces more flexible and efficient design.  

 

6.2.3.5 Reconfiguribility 

 

Each model provides access to its parameters during runtime through friend 

classes: change_param and get_param. Connectivity can also be changed at run 

time by changing value of the target neuron pointer in synapse.  Network module 

stores, manages and finds synapse and neuron pointers and hand it to the 

monitor_driver. The monitor_driver is designed to monitor/drive /change 

the network by user without looking details of other components. The following 

simple piece of code in a process of monitor_driver changes the burst timing 

parameters of neuron1 after 100 ms. 

 

wait(100,SC_MS); 
neuron_ptr=nw_ptr->get_neuron_ptr(1); 
change.t_ref(neuron_ptr,sc_time(1,SC_MS)); 
change.t_ap(neuron_ptr,sc_time (1,SC_MS)); 
 
 

6.3 Animated Visualization   
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Simulation results (traced signals) are dumped into .vcd file, which can be viewed 

using any standard waveform viewer supporting .vcd format. A snapshot of one such 

simulation result is presented in figure 6.6using GTKWAve). 

 

 
Figure 6.6 Simulation result showing typical impulses 

 

However, a waveform view, indicating values of signal changing with time, may not 

be sufficient to give insight of network behaviour because information processing in 

neural network utilizing temporal coding is quire different compared to the data 

processing system we are accustomed with. Here information is mainly in timing and 

sequence of events rather than the values of the signals. 

 

A Tcl / TK GUI application was therefore developed to represent simulation results in 

an animated form. Figure  6.7 represents the snapshot of the Tcl/Tk application. The 

application shows signalling activities and state of neuron in animated form and 

displays complete connectivity. Rounds symbolize neurons and an arrow represents 

connection. A thick arrow indicates signalling event from the source neuron at the 

time shown by current time.  A red outline on a neuron indicates that the neuron is in 

its bursting state.  

 

The user can play animation at a desired speed, which can be modified at runtime. 

The option of running step-by-step animation is available for detailed analysis. The 

simulation starting point can be specified and the user can pause, step and run the 

simulation. A right mouse button click on a neuron reveals the neuron parameters in a 

dialog box. 
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Figure 6.7 Tcl/Tk applications for animated visualization 

 

6.4 C.elegans Locomotory Nervous System 
 

C.elegans is a free living nematode of small size (1 mm long and approximately 80 

µm in diameter). The nervous system of C.elegans includes 302 neurons. C.elegans 

have number of interesting properties, (including its known topology) which makes it 

interesting from the modelling point of view and it is widely used in studies of 

neuroscience. Neurons and their connectivity seem to be fairly constant amongst 

different individual worm. Topology of its nervous system has been completely 

mapped using electron microscopy [174]. Its body is transparent, which allows laser 

beam to ablate specific neurons to test its functionality. Also histo-chemical 

experiments allow the identification of the neuron transmitter used in individual 

synapse and suggests a tentative classification for the connection as inhibitory or 

excitatory. C.elegans is well-known in biology as a standard animal for study of 

Neuroscience. We modelled a part of the nervous system of C.elegans consisting of 

85 neurons controlling the locomotory system. It was simulated for different motions 

of the worm (forward, backwards, coiling and velocity reversals). The results were 

compared with the results in [172]. Figure 6.8 shows the reference results of neuron 

activities for the velocity reversal motion of the C.elegans from [172] and our 

SystemC simulation results.  
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(a) Reference simulation results [172] 

 
(b) SystemC simulation results 

Figure 6.8 comparison of neuron activities for the velocity reversal motion of the C.elegans 

 

We have obtained nearly the same output for all the motions as presented in [172]. 

Since, result in [172] is amply verified with the biological experiments, this 

resemblance to the reference results validates our basic models and framework and its 

application in biologically realistic neuron system simulation.   
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Figure 6.9 animated visualization for the forward motion of the C. elegans 

 

Figure 6.9 shows the snapshot of the animated visualization for the forward motion of 

C.elegans. The yellow rounds represent the neuron controlling the muscle (Top 

yellow row for dorsal muscles and bottom row for ventral muscles). During the 

animation, we can observe the zigzag muscle activation in the worm during the 

forward motion. Figure 6.9 provides an idea of the effectiveness and worth of the 

animated visualization for such kind of biological simulations.  

    

6.5 Summary 
 

A SystemC Framework with basic models was developed for the simulation of 

biologically realistic neuron systems. It has been used to simulate the C.elegans 

nervous system controlling locomotory muscles. The results obtained are consistent 

with results in [172] which validates the models and framework.  The animated 

visualization Tcl/Tk application developed in this project was highly useful in 

providing insight of the network behaviour.  

 

Although SystemC is mainly designed for modelling hardware systems, it can be 

successfully used for behavioural modelling of biological neuron systems since it is 

built on general purpose C++ language.  Using SystemC as a platform allows the 

building of a general-purpose, flexible and extensible framework in a relatively very 
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short time. Moreover, any SNN hardware simulation can be easily integrated in the 

proposed simulation framework since the framework is designed in an HDL. 

  

Work presented in this chapter was presented in an IEEE Workshop on Behavioural 

Modelling and Simulation (BMAS), San Jose, 2004[171] and IEE/ACM Postgraduate 

Seminar on SOC Design, Test and Technology, Loughborough,2004[175]. Several 

further possible optimizations of this framework along with the detailed reviews of 

the current simulators were presented in our previous reports [169, 173].  
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Chapter 7  

 

Conclusion and Future Work 

 

 

 

All the current research on low-power implementations of neural hardware focuses on 

general low-power techniques and do not attempt to utilize the adaptability of ANN to 

reduce power consumption. In this thesis, three different adaptive power reduction 

techniques were proposed which attempts to exploit the adaptability of ANN to 

reduce power consumption: adaptation of size, adaptation of network weights, and 

adaptation of calculation precision. Early investigations on these proposed techniques 

have indicated promising results.   

 

Adaptation of the size of ANN was considered in Chapter 3. It was proposed that 

using pruning, dynamic Error-Power trade-offs can be performed, and reduction in 

task complexity can be converted into power reduction. The simulation results show 

that using simple Magnitude Pruning, a 4 dB increase in SNR can be translated into 

about a 28 % reduction in the number of connections (and thus a significant power 

reduction) in ANN without any increase in error cost. Pruning with OBD resulted in 

an even smaller network, and yet a 25% reduction in the number of connections with 

a 4 dB increase in SNR was achieved. These results demonstrate that it is possible to 

translate reduction in task complexity into power saving using dynamic pruning of 

ANN. This work provides a strong motivation for further exploration of various 

pruning methods in light of resulting power scalability.  Although the discussions in 
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the chapters generally assume a digital implementation, it is also possible to apply this 

technique to an analogue implementation.  

 

Adaptation of network weights was investigated in Chapter 4. A novel power-aware 

learning algorithm was proposed for the class AB analogue VLSI implementation of 

ANN.  The algorithm is based on the variation of weight perturbation algorithms with 

an added power-penalty term in the objective function. The algorithm is sensitive to 

the power consumption of the design and directs the learning process accordingly. 

Simulation experiments on the Proben1 benchmark problems indicated that it is 

capable of significant power reduction (20%~50%) over a wide range of problems. 

However, when the same power aware learning was applied to a digital 

implementation, it yielded discouraging results in our preliminary experiments.  

 

Adaptation of calculation precision for digital ANN implementation was discussed in 

Chapter 5.  We proposed a dynamic word-length adaptation for the arithmetic 

operations associated with different weights/groups of weights.  The use of partially 

guarded computation schemes for this technique was discussed and a few more 

advantageous variations of such schemes were devised for ANN. This approach has 

not yet been tested with simulation experiments. Since the unavailability of a suitable 

simulation framework is one of the main impediments to evaluate this promising 

approach, we proposed a distinct SystemC simulation framework suitable for the task. 

Although the proposed SystemC framework is motivated by our specific 

requirements, it has the potential to be a highly useful general tool for the evaluation 

of a variety of power-aware techniques.   

 

For the neural hardware based on Spiking Neural Network (SNN), it might be 

possible to influence the power consumption by all three types of adaptations 

described above.  The efficient SystemC simulation framework for SNN described in 

Chapter 6 is the first stepping-stone for evaluating adaptive power reduction 

techniques for SNN.  
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Future work 

 

Proben1 benchmark examples and some simple ANN applications were used to 

evaluate our techniques. These examples were useful for early investigations and in 

the next stage of research; the technique should be evaluated with real-world low-

power signal processing applications to establish the usefulness of this technique. 

However there is no standard benchmark available for such ANN applications. Even 

though the data in Proben1 (and other similar benchmarks) represent complex and 

real-life examples, they do not represent power-sensitive signal processing 

applications. Therefore the first major future task is to compose a test-set of ANN 

examples with real-world low-power signal processing applications. In further 

experiments, this test-set will be utilized to evaluate all three proposed approaches.  

 

For the ‘adaptation of size’ approach, various pruning algorithms will be applied on 

the test applications and the respective power reduction will be compared. We will 

particularly focus on the application with variable task complexity using MLP.  

 

In the simulation experiments of power-aware learning, the accuracy of the power 

approximation is questionable. Realistic characteristics and power consumption of the 

key cells (i.e. the multiplier cell and the activation cell) will be obtained using SPICE 

simulation.  Moreover, in the presented simulation results, we have assumed a linear 

multiplication operation with floating point precision. Further experiments on the test 

applications will be performed with realistic characteristics, restricted signal range, 

and small, finite calculation/weight storage precision.  

 

The SystemC simulation described in Chapter 5 will be implemented to evaluate the 

dynamic word-length variation approach. Suitable SystemC framework will be 

developed for run-time power estimation. The estimation accuracy will be checked 

against commercial tools. Basic building blocks with word length variation capability 

will be synthesized. Various Partially Guarded Computation schemes will be 

evaluated. Various word-length adaptation strategies will be tested - first on simple 

applications and later on some target signal processing applications.  
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Appendix A  

ANN Classification  

The classifications presented in this appendix following the classifications presented 

in [4].   

 
Types of ANN:  

Following is the list of major types of ANN. This list is not exhaustive and even with 

the presented types there are many sub-variations. 

  
ADALINE (Adaptive Linear Neural Element)  
ART (Adaptive Resonance Theory)  
AM (Associative Memory)  
BAM (Bidirectional Associative Memory) 
Boltzman Machine  
BSB (Brain-State-in-Box)  
CNN (Cascade Correlation Network) 
Cauchy Machine  
CPN (Counter Propagation Network)  
GRNN (Generalized Regression Network)  
Hopefield  
LVQ  
MADALINE  
MLP (Multi-Layer Perceptron)  
Neocognitron  
PNN (Probabilistic Neural Network)  
RBF (Radial Basis Function)  
RNN (Recurrent Neural Network) 
SOM (Self-Organized Map)  
 
Classification of the ANN according to Architectures 
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Learning methods and ANN: 

Learning Algorithms applied to ANN can be broadly classified as supervised or 

unsupervised strategies. For each of these categories ANN will utilize one of the four 

subcategories according to the type of learning (or some combinations of them): (1) 

Correlative or Hebbian Learning (2) Gradient Decent or Error Correction (3) 

Competitive (4) Stochastic 

 

Error correction

( Detal Rule , Back propagation ) 

Hebbian

Stochastic

Competitive 

Hebbian

Supervised Unsupervised

Learning Strategy

 
 

Supervised Unsupervised

Learning Strategy

ADALINE

Boltzman

CCN

LVQ
GRNN

MLP

PNN

RBF

RNN

ART

Hopfield

LVQ

Neogonitron
SOM

Hopfield  
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Appendix B  

Boundary signals:  

 

Suppose there is a gate level net-list N with any arbitrary structure which consists of a 

number of logic gates and the connecting signals. All the inputs to the net-list are 

divided into two sets: set P and set Q. Assume a fixed vector Fixed_q is applied at Q. 

 

 

 
 

Let’s define a set G_Q which consist of all the gates whose output solely depends on 

fixed vector Fixed_q applied at Q regardless of input applied at P. Similarly, set of 

outputs solely determined by the Fixed_q applied at Q regardless of input at P is O_Q. 

The set of the rest of the outputs is O_P. Let set G_P the set of all the gates whose 

outputs are essential to produce correct output at O_P but are not a member of O_Q. 

N_P utilize some of the signals driven by members of G_Q and/or some of the Q. Set 

of all those input signals to G_P is defined as BD( a set of boundary signals ).  Since 

BD is driven by members of G_Q or Q, values of BD are fixed (vector Fixed_bd ) and 

solely determined by the Fixed_q.  Fixed_bd is the sufficient condition for producing 

correct output at O_P as if Fixed_q is applied at Q. 
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General Methodology to convert combinational arithmetic unit with multiple 

precision with Active MSP scheme:  

 

We propose the following simple general methodology to convert any combinational 

arithmetic unit with multiple precision: 

 

a) Determine the number of word-length option for each input you wish to implement. 

(As an example, consider 16 x 16 bit multiplier (with 32 bits output). We may wish to 

implement 5 different word-length options:  16 x 16, 16 x 8, 8 x 16, 8 x 8 and 12 x 8. )  

b) Select a gate level implementation circuit for the operator for maximum word-

length required. ( e.g. 16 x 16 multiplier can be implemented with various 

architectures like array multiplier, Wallace tree multiplier etc.) 

c) For each input world-length configuration:  

1. Group input signals in LSP and MSP. (e.g. for 12 x 8 configuration of 16  x 16 

multiplier  with input A and B , A[3:0] and B[7:0] are in LSP ; A[16:4] and 

B[16:8] are in MSP )  

2. Connect the ‘Load Enable’ signal of the LSP input registers with the control 

signal.  

3. Identify the relevant output signals. Connect reset of the resister of the irrelevant 

output bits to a control signal. [For 8 x 8 configuration of 16 x 16 multiplier, only 

OUT[31:16] are relevant, OUT[15:0] are irrelevant ].  

4. Apply ‘0’ at all the inputs in theLSB. Identify the boundary signals and note down 

the value of the boundary signals. (Boundary signals are the signal that when they 

are set to a certain fixed values, it will ‘look’ to the circuit generating the relevant 

output as if the LSBs are set to ‘0’.More formal description was presented in the 

section above.) 

5. Modify the circuit in a way that when the relevant control signal is applied for the 

particular word-length configuration, the control signal should force the boundary 

signals to a predetermined fixed value noted earlier. This modification should be 

applied in a way that it should cause minimum power overheads when the circuit 

is operating in full precision.  

 

There is a trade-off between number of different world-length configurations and 

related area/delay/power overheads. To investigate this trade-off and to find the best 
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suitable options for a particular application, the above method should be applied to 

many variations of architectural implementation of the same arithmetic operation. (A 

vast variety of adders and multipliers been reported in literature.) This process can be 

time consuming and error prone (particularly, the identification of the ‘boundary 

signals’), and hence it is desirable to automate the process.    

 

We propose the following method that exploits the use of built-in ‘X: unknown’ data-

type in HDLs to identify the boundary signals and relevant outputs automatically: 

 

1. Obtain a gate-level net-list of the targeted arithmetic operation.5  

2. Group input signals in LSP and MSP ( as explained in the step c-1 above) 

3. Apply ‘0’ at LSB inputs and ‘X’6 at MSB inputs.  

4. The outputs with value ‘X’ are the relevant outputs.  

5. For each gate in the net-list, check the output and input signal values. If the output 

is ‘X’ AND one of the input signals is 1/0 (i.e. not X) , then that input signal is a 

boundary signal.  

 

Note that this method in its present form can only be used for purely combinational 

units. Its application to pipelined structures and sequential logic is under investigation. 

  

 

                                                
5  The HDL description must use ‘standard logic vector’ if described in VHDL.  

6  Apply data-type ‘U’ if VHDL is used. 


