Eigenstrain modelling of residual stresses generated by laser shock peening

Achintha, M. and Nowell, D. (2011) Eigenstrain modelling of residual stresses generated by laser shock peening Journal of Materials Processing Technology, 211, (6), pp. 1091-1101. (doi:10.1016/j.jmatprotec.2011.01.011).


[img] PDF oxon_1.pdf - Version of Record
Restricted to Repository staff only

Download (1MB)


This paper presents an eigenstrain (misfit strain) model of the residual stresses generated by laser shock peening (LSP). The shock wave is first modelled as a dynamic pressure load in an explicit finite element(FE) model and the stabilised plastic strain distribution is extracted. This strain distribution is then incorporated as an eigenstrain distribution in a static FE model and the residual stresses generated by the original shock wave are obtained as the elastic response to the eigenstrain. In order to focus on the basic mechanics, an elastic-perfectly plastic material model is assumed. Similarly, a simplified pressure/time variation (a triangular ramp with the peak pressure occurring at the half the total pulse duration) is assumed in order to characterise the pressure pulse. The peak pressure and the duration of the pressure pulse are determined in a way that they are consistent with experimental results. The analysis is extended to study the case of multiple pulses and the results show that the process generates compression in a surface layer of about 1.5–2mmdeep. Furthermore, the results demonstrate that the magnitudes of subsurface tensile stresses are of the order of one fifth of the material’s yield strength for typical peening conditions.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/j.jmatprotec.2011.01.011
ISSNs: 0924-0136 (print)
Keywords: laser shock peening, eigenstrain, residual stress
Organisations: Infrastructure Group
ePrint ID: 209483
Date :
Date Event
28 January 2011e-pub ahead of print
1 June 2011Published
Date Deposited: 30 Jan 2012 10:26
Last Modified: 18 Apr 2017 00:29
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/209483

Actions (login required)

View Item View Item