The University of Southampton
University of Southampton Institutional Repository

Coccolithophores in high latitude and Polar regions: Relationships between community composition, calcification and environmental factors

Coccolithophores in high latitude and Polar regions: Relationships between community composition, calcification and environmental factors
Coccolithophores in high latitude and Polar regions: Relationships between community composition, calcification and environmental factors
Coccolithophores are a unique group of calcifying phytoplankton that dominate pelagic biogenic calcification and facilitate carbon export. Changes in coccolithophore calcite production through changes in their abundance, species distribution or cellular calcification could affect the oceanic carbon cycle. Ocean acidification, global warming and future changes in nutrient and light conditions might affect coccolithophore populations. This study investigated the relationships between coccolithophore distribution and calcification and environmental factors, between the North Sea and the Arctic Ocean and in the Southern Ocean. Large gradients in carbonate chemistry and other variables provided insights into coccolithophore response to concurrent changes in the future ocean. Freshwater inputs and biological processes were driving the carbonate chemistry changes in the surface waters of the North Sea, the Norwegian Sea and the Svalbard Arctic region. Even though biological processes seemed to play a major role in shaping the saturation state (calcite) and pH of these regions, the carbonate chemistry of the freshwater sources (Baltic Sea, sea-ice melt, riverine input/ terrestrial runoff) was also important and had accentuated the effects of biological activity. A multivariate approach showed that changes in pH and mixed layer irradiance explained most of the variation in coccolithophore distribution and community composition between the North Sea and Svalbard. Differences between the Svalbard population (dominated by the family Papposphaeraceae) and those from other regions were mostly explained by pH, whereas mixed layer irradiance explained most of the variation between the North Sea, Norwegian Sea and Arctic water assemblages. Estimates of cell specific calcification rates showed that species composition can considerably affect community calcification.

At Drake Passage, the coccolithophore community was dominated by Emiliania huxleyi B/C. Diversity and abundance were highest in the Subantarctic and Polar Frontal Zones, respectively, where temperature and mixed layer irradiance were high. Community and cell specific calcification, as well as coccolith production rates, showed an overall decreasing trend towards Antarctica and were correlated with the strong latitudinal gradients in temperature and calcite and anti-correlated with nutrient concentrations. Additionally, coccolith production rates and cell specific calcification were also correlated with mixed layer irradiance.

Coccolithophore calcification rates at Svalbard and at Drake Passage were low compared to other oceanic regions. At Svalbard, the low calcification rates were the result of very low abundances of species that have both a low (e.g. Papposphaeraceae) and high (e.g. Coccolithus pelagicus) calcite content. At Drake Passage low calcification rates were the result of low to moderate abundances of E.
huxleyi B/C, which has a low calcite content.

The results of this study suggest that changes in future pelagic calcite production may result from physiological changes acting on single species and/or from shifts in the species composition of coccolithophore assemblages, as well as poleward biome migrations induced by ocean acidification,
sea surface warming and stratification.
Charalampopoulou, Anastasia
2b5d63cd-be8f-45d2-95cd-68cb591d7407
Charalampopoulou, Anastasia
2b5d63cd-be8f-45d2-95cd-68cb591d7407
Tyrrell, Luke
6808411d-c9cf-47a3-88b6-c7c294f2d114
Poulton, Alex
14bf64a7-d617-4913-b882-e8495543e717
Lucas, Mike
d79f01e9-8218-4e0f-ab74-371ca73c6896

Charalampopoulou, Anastasia (2011) Coccolithophores in high latitude and Polar regions: Relationships between community composition, calcification and environmental factors. University of Southampton, School of Ocean and Earth Science, Doctoral Thesis, 139pp.

Record type: Thesis (Doctoral)

Abstract

Coccolithophores are a unique group of calcifying phytoplankton that dominate pelagic biogenic calcification and facilitate carbon export. Changes in coccolithophore calcite production through changes in their abundance, species distribution or cellular calcification could affect the oceanic carbon cycle. Ocean acidification, global warming and future changes in nutrient and light conditions might affect coccolithophore populations. This study investigated the relationships between coccolithophore distribution and calcification and environmental factors, between the North Sea and the Arctic Ocean and in the Southern Ocean. Large gradients in carbonate chemistry and other variables provided insights into coccolithophore response to concurrent changes in the future ocean. Freshwater inputs and biological processes were driving the carbonate chemistry changes in the surface waters of the North Sea, the Norwegian Sea and the Svalbard Arctic region. Even though biological processes seemed to play a major role in shaping the saturation state (calcite) and pH of these regions, the carbonate chemistry of the freshwater sources (Baltic Sea, sea-ice melt, riverine input/ terrestrial runoff) was also important and had accentuated the effects of biological activity. A multivariate approach showed that changes in pH and mixed layer irradiance explained most of the variation in coccolithophore distribution and community composition between the North Sea and Svalbard. Differences between the Svalbard population (dominated by the family Papposphaeraceae) and those from other regions were mostly explained by pH, whereas mixed layer irradiance explained most of the variation between the North Sea, Norwegian Sea and Arctic water assemblages. Estimates of cell specific calcification rates showed that species composition can considerably affect community calcification.

At Drake Passage, the coccolithophore community was dominated by Emiliania huxleyi B/C. Diversity and abundance were highest in the Subantarctic and Polar Frontal Zones, respectively, where temperature and mixed layer irradiance were high. Community and cell specific calcification, as well as coccolith production rates, showed an overall decreasing trend towards Antarctica and were correlated with the strong latitudinal gradients in temperature and calcite and anti-correlated with nutrient concentrations. Additionally, coccolith production rates and cell specific calcification were also correlated with mixed layer irradiance.

Coccolithophore calcification rates at Svalbard and at Drake Passage were low compared to other oceanic regions. At Svalbard, the low calcification rates were the result of very low abundances of species that have both a low (e.g. Papposphaeraceae) and high (e.g. Coccolithus pelagicus) calcite content. At Drake Passage low calcification rates were the result of low to moderate abundances of E.
huxleyi B/C, which has a low calcite content.

The results of this study suggest that changes in future pelagic calcite production may result from physiological changes acting on single species and/or from shifts in the species composition of coccolithophore assemblages, as well as poleward biome migrations induced by ocean acidification,
sea surface warming and stratification.

PDF
Charalampopoulou_PhD_2011.pdf - Other
Download (8MB)

More information

Published date: July 2011
Organisations: University of Southampton, Ocean Biochemistry & Ecosystems

Identifiers

Local EPrints ID: 209545
URI: https://eprints.soton.ac.uk/id/eprint/209545
PURE UUID: b7473e9c-625a-402f-a50c-e3aa6ad7b715
ORCID for Luke Tyrrell: ORCID iD orcid.org/0000-0002-1002-1716

Catalogue record

Date deposited: 30 Jan 2012 15:22
Last modified: 06 Jun 2018 13:03

Export record

Contributors

Author: Anastasia Charalampopoulou
Thesis advisor: Luke Tyrrell ORCID iD
Thesis advisor: Alex Poulton
Thesis advisor: Mike Lucas

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×