HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FAcULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF OCEAN AND EARTH SCIENCE

Is the Indian Ocean MOC driven
by internal wave breaking?

by

Tycho Nout Huussen

Thesis for the degree of Doctor of Philosophy

June 2010



UNIVERSITY OF SOUTHAMPTON
ABSTRACT
SCHOOL OF OCEAN AND EARTH SCIENCE
NATIONAL OCEANOGRAPHY CENTRE, SOUTHAMPTON
Doctor of Philosophy
Is THE INDIAN OCEAN MOC DRIVEN BY INTERNAL WAVE BREAKING?
by Tycho Nout Huussen

This dissertation investigates the energetics of the Indian Ocean Meridional
Overturning Circulation (MOC) using hydrographic data (Part I), and the
interaction between a broad band internal wave field and a mean flow using
idealized numerical simulations (Part II). The main objective of this work is
to quantify how much energy is needed to drive the Indian Ocean MOC and
to compare this with the energy available in the internal wave field. The
turbulent dissipation needed to sustain the MOC is estimated by assuming a
‘mixing efficiency’ of 0.2 and an advective—diffusive balance in neutral den-
sity layers. The advective transport of mass into this box-model is based on
published estimates of the flow field at 32°S and the Indonesian Through-
flow. A comparison of the large scale dissipation rates with estimates of
the input of energy by the tides and the wind shows that most published
overturning solutions require more energy than is likely to be available. This
result suggests that energy budgets may be useful as constraints in inverse
models. Estimates of turbulent dissipation due to internal wave breaking
are inferred from in-situ observations of shear and strain using a fine scale
parameterization. The isoneutral mean of the inferred internal wave dissi-
pation rates is about one order of magnitude smaller than dissipation rates
inferred from the large scale flow fields. This result appears robust when
considering potential sampling biases in the internal wave observations and
leads to the main conclusion of this work: the Indian Ocean MOC cannot
primarily be driven by internal wave breaking. A preliminary investiga-
tion into other processes capable of dissipating energy in the ocean interior
shows that the MOC may be closed by hydraulic turbulence in the numerous
Fracture Zones in the Indian Ocean.

Thesis supervisor: Alberto Naveira-Garabato
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intermediate, v & 27.0 — 27.6; green: deep, v ~ 27.6 — 28.15;
blue: bottom, v > 28.15. Gray surface with dashed edges
is v = 27.6 at 325, separating upper and lower cell transfor-
mation in the Southern Ocean |[...]|. Dashed arrows indicate
Indian-to-Atlantic westward exchange between Africa and the
ACC. Shallow subtropical cells not included. Format adapted
from Schmitz (1996). This figure and the figure caption are
reproduced from [Lumpkin and Speer, 2007] p.2556.] . . . . . 2

1.2 Salinity as measured during the 2002 occupation of the 32°S
Indian Ocean section. [McDonagh et al., 2008] find that In-
dian Ocean MOC consists of a northward inflow of Lower
Bottom Water (LBW), with neutral density v > 28.23, Up-
per Bottom Water (UBW), with 28.11 < ~ < 28.23, and
Lower Deep Water (LDW), with 27.96 < ~ < 28.11, and
a southward retro-flow of Upper Deep Water (UDW), with
27.70 < v < 27.96. The northward flowing water masses
consist of modified Antarctic Bottom Water (AABW), Cir-
cumpolar Deep Water (CDW), modified North Atlantic Deep
Water (NADW), and the southward upper limb of the over-
turning is often referred to as Indian Deep Water (IDW). This
figure is reproduced from [McDonagh et al., 2008] p.23. . .. 5

2.1  This schematic of a simple two-layer system illustrates the ef-
fect of mass advection and mass diffusion. a) initial state; b)
advective transport 7T into the bottom layer raises the layer
interface; ¢) diffusive mass transport F' due to turbulent mix-
ing moves the interface downward and restores the initial state. 12
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Chapter 1

Introduction

The ocean circulation transports seawater properties
over the globe (see Fig. 1.1). Some of these properties,
such as heat and dissolved greenhouse gasses, have cli-
matological impact, others, like nutrients and pollu-
tants, affect living organisms. The global meridional
overturning circulation (MOC) consists of both hori-
zontal and vertical motion and is sometimes referred
to as the ‘great ocean conveyor’ [Broecker, 1991]. Ver-
tical movement in the ocean is supported by a delicate
balance between deep convective downwelling at a few
sites in the North Atlantic and Southern Ocean and
upwelling throughout the ocean interior.

The Earth’s gravity field has an ordering effect on
the ocean, making it density stratified, with lighter
water above heavier water. This implies that a verti-
cally moving parcel of seawater must change density, if
we are to maintain the stably stratified mean state of
the ocean. The only way to do so is by mass exchange
with the ambient fluid, or the atmosphere in the case of
downwelling at the surface. However, mass exchange
through molecular diffusion in laminar flow is too slow
to produce sufficient upwelling to close the MOC. We
need turbulence. The process of fluid intertwinement

by turbulent eddies and subsequent homogenisation by
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Figure 1.1: Schematic of global overturning circulation. Color indicates
approximate density ranges. Red: upper, v < 27.0; yellow: intermediate,
v & 27.0—27.6; green: deep, v ~ 27.6—28.15; blue: bottom, v > 28.15. Gray
surface with dashed edges is v = 27.6 at 32S, separating upper and lower
cell transformation in the Southern Ocean [...]. Dashed arrows indicate
Indian-to-Atlantic westward exchange between Africa and the ACC. Shallow
subtropical cells not included. Format adapted from Schmitz (1996). This
figure and the figure caption are reproduced from [Lumpkin and Speer, 2007]
p.2556.]
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molecular diffusion is referred to as ‘ocean mixing’.

How much vertical mixing is needed to sustain the
global MOC depends on its structure and strength. If
all the deep water produced at high latitudes upwells
in the ocean interior one would need a global abyssal
dissipation rate of about 2.1 TW (assuming 20% ‘mix-
ing efficiency’) [Munk, 1966; Munk and Wunsch, 1998;
Wunsch and Ferrari, 2004]. The estimated input of
energy is also ~2.1 TW [Wunsch and Ferrari, 2004;
Ferrari and Wunsch, 2009], just enough to sustain the
global MOC if there are no losses to processes that do
not mix the ocean at 20% efficiency.

More recent insights in the structure of the global
MOC alleviate the need for turbulent kinetic energy
(TKE) in the ocean interior. A computer model study
by [Toggweiler and Samuels, 1998] produces a global
overturning sustained by wind driven mixing in the
Antarctic Cicumpolar Current (ACC), without verti-
cal mixing in the ocean interior. However, [Wunsch
and Ferrari, 2004] point out that the deepest isopy-
cnals in the ocean never outcrop or shoal to within
reach of the ACC. These insights give rise to a two
cell picture of the global MOC: a deep lower cell driven
by abyssal vertical mixing and a more shallow upper
cell driven primarily by mixing in the ACC [Webb and
Suginohara, 2001].

The Indian Ocean is generally considered to host
a large limb of the global deep overturning cell, as
depicted in Fig. 1.1. Most of the more recent hydrog-
raphy based studies find that about half of the global
deep upwelling takes place in the Indian Ocean. For
example, [Ganachaud and Wunsch, 2000] have esti-
mated worldwide upwelling across the 28.11 kg m™3

neutral density! surface for all oceans (except the Arc-

!Neutral density is a global density variable that minimizes the work needed to move
a water parcel along any isoneutral trajectory [Jackett and McDougall, 1997]. Note that
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tic Ocean). They find an upwelling rate of 114+5 Sv
(1Sv= 1 x 10° m3s~!) in the Indian Ocean, approxi-
mately equal to the estimated deep upwelling in the
Atlantic Ocean, and about twice bigger than in the
Pacific Ocean. This is especially remarkable when we
realize that the Indian Ocean is the smallest of all
oceans, covering less than 20% of the world ocean.
All hydrography based estimates of Indian Ocean
MOC are primarily based on 32°S hydrographic sec-
tion between South-Africa and Australia. Figure 1.2
shows salinity as measured during the most recent oc-
cupation of this section in 2002 and the water masses
as identified by [McDonagh et al., 2008]. An inverse
model study by [McDonagh et al., 2008], based on
the data collected in 2002, also finds a strong over-
turning cell in the Indian Ocean, similar in strength
to previous solutions for the Indian Ocean overturn-
ing, but with a deeper return flow. The deep Indian
Ocean overturning cell found by [McDonagh et al.,
2008] consists of northward flowing bottom and deep
water, occupied by modified Antarctic Bottom Water
(AABW), Circumpolar Deep Water (CDW), and mod-
ified North Atlantic Deep Water (NADW), balanced
by a deep southward flow, below 1500m, occupied by
Indian Deep Water (IDW), that is fed back into the
ACC, where it blends into the upper CDW water mass.
The IDW, produced by the Indian Ocean MOC, is oxy-
gen depleted, but rich in nutrients and carbon [Dri-
jfhout and Garabato, 2008], suggesting both a long
residence time of the water masses and isolation from
the surface. Isolation from the surface means that
the water mass transformation in the Indian Ocean
MOC must be driven exclusively by abyssal mixing

processes. In this thesis we will assess whether one of

all densities in this dissertation are given as a density anomaly with respect to 1000 kg
-3
m~°.
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Figure 1.2: Salinity as measured during the 2002 occupation of the 32°S
Indian Ocean section. [McDonagh et al., 2008] find that Indian Ocean MOC
consists of a northward inflow of Lower Bottom Water (LBW), with neutral
density v > 28.23, Upper Bottom Water (UBW), with 28.11 < v < 28.23,
and Lower Deep Water (LDW), with 27.96 < v < 28.11, and a southward
retro-flow of Upper Deep Water (UDW), with 27.70 < v < 27.96. The
northward flowing water masses consist of modified Antarctic Bottom Water
(AABW), Circumpolar Deep Water (CDW), modified North Atlantic Deep
Water (NADW), and the southward upper limb of the overturning is often
referred to as Indian Deep Water (IDW). This figure is reproduced from

[McDonagh et al., 2008] p.23.

the abyssal mixing processes most favoured in litera-
ture, that is internal wave breaking, can account for
the mixing needed to sustain the Indian Ocean MOC.

The question whether the Indian Ocean contains
enough TKE to balance the high upwelling rates in-
ferred from hydrographic inverse models has motivated
this study. In Chapter 2 we estimate the turbulent dis-
sipation needed to sustain the Indian Ocean overturn-
ing circulation by assuming a balance between advec-
tion and diffusion. Chapter 3 discusses a fine scale pa-

rameterization to infer internal wave dissipation from

Australia
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fine scale shear and strain and presents internal wave
dissipation estimates for the Indian Ocean WOCE?
sections and other hydrographic stations. Chapter 4
compares the large scale, inverse model dissipation es-
timates with turbulent dissipation estimates inferred
from fine scale, internal wave observations. In the fi-
nal chapter we look at the dissipation of a broad band
internal wave field due to critical layer interactions in
a sheared mean flow, using idealized numerical simula-
tions. This problem is distantly related to the mixing
needed to sustain the Indian Ocean MOC, but will be

treated separately.

2World Ocean Circulation Experiment.



Part 1

MOC energetics



Chapter 2

Box-model mass
budget:
one-dimensional
constraints on the
energetics of mixing

in the Indian Ocean

2.1 Introduction

In this chapter we consider the energetics of five recent
inverse model solutions for the Indian Ocean overturn-
ing circulation. Four solutions are based on hydro-
graphic measurements along the 32°S transect [Mc-
Donagh et al., 2008; Bryden and Beal, 2001; Sloyan
and Rintoul, 2001; Ganachaud and Wunsch, 2000] and
one solution is based on a general circulation model
assimilating hydrographic data [Ferron and Marotzke,
2003].

We calculate the diapycnal mass transport by as-

suming a balance between mass diffusion and advec-
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tion in density layers. The advective mass transport
into the density layers of our Indian Ocean box-model
comprises transport across the open boundary at 32°S
and the Indonesian Throughflow (ITF). In our model
we also account for the high density outflow plumes
from the Red Sea (RS) and the Persian Gulf (PG).

We calculate the turbulent dissipation by assum-
ing that the diapycnal mass flux is the result of turbu-
lent diffusion. Writing the turbulent eddy diffusivity
in terms of dissipation using the Osborn relation [Os-
born, 1980] gives a simple relation between the tur-
bulent mass flux and the dissipation rate, involving
quasi-constants like the gravitational acceleration, the
‘mixing efficiency’, and the mean density.

In the Section 2.6 we compare the dissipation rates
needed to sustain the overturning solutions considered
in this study with estimates of available dissipation.
This comparison shows that the Indian Ocean con-
sumes a large chunk of the globally available energy.
This is consistent with the picture that the Indian
Ocean hosts an important deep upwelling limb of the
global MOC, but also raises questions about the real-
ism of the various circulation schemes. In Chapter 4
we compare the energy demand of the Indian Ocean
MOC with the energy supply by what is commonly
thought to be the major source of turbulence in the

interior ocean: internal waves.

2.2 Methods

2.2.1 Advection—diffusion balance

The stratification of the ocean is preserved if the ad-
vective divergence of its properties is balanced. Diffu-
sion is the only available mechanism to balance advec-

tion in an ocean volume without sources and sinks for
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tracers,

V- (Ug) = -V - (KVg), (2.1)

where K is (eddy) diffusivity, ¢ is the tracer concen-
tration, and U = (u,v,w) the three dimensional flow
field. This balance is expected to hold for the inte-
rior of the ocean, away from boundaries and biological
activity. Assuming that (i) the tracer concentration
only has a vertical gradient, (ii) diffusivity K is later-
ally constant, and (iii) w,v >> w so that u, + v, =0,
gives, wp = —K¢,. [Munk, 1966] used this equation
and observed profiles of temperature and carbon 14
to estimate the global upwelling velocity, w = 0.00014
mms~!, and diffusivity K = 1.3 cm?s™!.

The balance between advective and diffusive diver-
gence given by (2.1) can be written in terms of fluxes
through the sides of a box-volume by (i) integrating
over volume, (ii) applying the divergence theorem to
the left hand side (lhs), (iii) vertical integration of the
right hand side (rhs). These manipulations and writ-

ing p for the ‘mass concentration’ or density give,
/UP -dA = [KPZA]top - [szA]bottom; (22)

where A is the surface area of the volume and Kp,
the area averaged product of the diffusivity and the
density gradient at the top and bottom of the box vol-
ume [Sloyan, 2006]. This mass balance holds to good
approximation for any box volume in a steady, verti-
cally density stratified ocean with negligible horizontal
diffusion.

The integral on the lhs of (2.2) can be simplified for
a box volume enclosed by density layers. For layer i,
between density interface p;_1; and p; 11, with verti-
cal transport T;_1; at the bottom interface and T ;11
at the top interface, horizontal transport 7T; across the

side walls of the layer, and transport weighted den-

10
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sity p; at the side walls, we can write the advection—

diffusion balance as,

pili + pi—1,iTi—1; — piiv1Tiiv1 = Fio1i — Fi i,
(2.3)

where transport into the layer is defined to be positive,
layer numbers go bottom-up with p;_1; > p; > piit1,
and F = Kp,A the turbulent (diffusive) mass trans-
port across the top and bottom interface. The terms
on the lhs represent advective mass divergence and the
terms on the rhs diffusive mass divergence, where the
horizontal diffusion is assumed to be negligible. We
assume a steady state where both layer volume and
layer mass are conserved.

The role of the diffusive mass transport F' in the
advection—diffusion balance is illustrated in Fig. 2.1.
The figure shows a two-layer system with density p;
at the bottom and py at the top (Fig. 2.1a). Lateral
advection into the bottom layer would raise the in-
terface between the layers in the absence of diapycnal
mixing (Fig. 2.1b). Diapycnal diffusion erodes den-
sity gradients (Fig. 2.1c), and effectively restores the
system into its initial state (Fig. 2.1d). Equations 2.1—
2.3 prescribe a continuous balance between these two
effects.

The advection—diffusion balance given by (2.3) can
be solved for F', given the velocity or transport and
the density at the lateral sides of the box, and an
appropriate boundary condition at the bottom of the
box. The vertical transport follows simply from con-
tinuity, 741 = 23':1 Tj. For the boundary condition
we choose Fp1 = Tp1 = 0 at the bottom, that is zero
flow or diffusion through the sea floor. Figure 2.2 gives
a schematic overview of the fluxes in our Indian Ocean
box-model.

The advection—diffusion balance in the form used

11
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a b c d

Figure 2.1: This schematic of a simple two-layer system illustrates the effect
of mass advection and mass diffusion. a) initial state; b) advective transport
T into the bottom layer raises the layer interface; ¢) diffusive mass transport
F due to turbulent mixing moves the interface downward and restores the
initial state.
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Figure 2.2: Schematic of the mass fluxes into the Indian Ocean. The trans-
port across 32°S is given by hydrography and is volumetrically balanced
by the Indonesian Troughflow (ITF). The advection of Red Sea water and
Persian Gulf water is restricted to the upper density layers and effectively
entrains mass into these layers, as indicated by the horizontal mass diffusion
F’. The vertical mass diffusion, Fj;41, is solved for by assuming a balance
between mass advection and diffusion. Finally, the total mass budget is
closed by the exchange of mass with the atmosphere, as symbolized by the
net precipitation Q.
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here ignores the non-linearity of the equation of state
[Munk and Wunsch, 1998]. The effect of these non-
linearities on the global dissipation budget is inves-
tigated by [Klocker and McDougall, submitted 2009]
and found to be significant in the Southern Ocean,
mostly due to sharp temperature fronts and outcrop-
ping isopycnals. This effect however is expected to be

small in the Indian Ocean.

2.2.2 Mass transport into density layers

This section discusses the binning of mass transport
into density layers. The use of density, instead of pres-
sure, as the vertical coordinate allows us to make en-
ergy estimates, as discussed in the next section.

Geostrophic flow calculated from hydrography is
usually given in pressure bins, with typical dimensions
of 20dbar by 10-100km, depending on the distance
between the hydrographic stations. A density layer
intersecting with a binned flow field will generally en-
compass a number of whole and fractional bins, as is
schematically depicted in Fig. 2.3. The total transport
into a density layer is found by integrating all whole
and fractional transport bins, where the contribution
from a fractional bin is assumed proportional to its
area within the layer boundaries.

A layer confined by p; and pa (p2 > p1) and top
pressure p(p1) encompasses fraction f, = (p(p1) —
pn)/Ap of bin n 4+ 1 if pp41 < p1 < pn. Suppose
bin fraction at the upper layer boundary is f,, and at
the lower boundary f,,, then, for some station pair

(s,s+ 1), we write the layer transport as,

m
T5,5+1 = fn Tn+1 + Z E + fm Tm—i—la (24)
i=n+2

where T; is the transport in bin 4.

13
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Figure 2.3: Schematic of the fractional assignment of transport to an inner

ocean density layer.

Note that some layers require special attention, for

example at the surface or bottom and if the layer is very thin (p(p2) —p(p1) <

dp).

Layers encompassing the surface or bottom require
special attention as well as the case where multiple lay-
ers fit into a single transport bin. Accounting for these
situations we exactly reproduce the total transport, as
obtained from simple addition of all the bins. The
method works for any number of arbitrarily spaced
density layers under the one condition that the stratifi-
cation is stable, meaning that a less dense layer cannot
be above a more dense layer, not even locally, because
the method as implemented will account twice for the
transport in the unstable region. The physical rea-
son for avoiding length scales where instabilities are
resolved is that these patches of unstable water will
only exist temporarily, because buoyancy driven down-
ward mass transport will quickly restore the fluid to
an energetically favourable, stably stratified state. In

our analysis however, we are interested in the opposite
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process: the spatial and temporal mean upward mass
transport by mixing processes.

The stability condition is satisfied if the density
layers are not too closely packed. We find instabili-
ties in the pycnocline for 15 layers (or more) if we use
a constant density spacing between layers. Choosing
an exponential density spacing between layers gives a
much more regular layer spacing in pressure space and
allows for 200 layers or more.

The applied linear interpolation ignores the fact
that density does not linearly depend on pressure. Con-
sequently we slightly overestimate layer pressure, in-
troducing an error in the layer transport. However,
this error is small for small layer spacing and in regions
of weak shear. A general discussion of the errors asso-
ciated with methods used in this study is presented in
Section 2.4.

2.2.3 Turbulent dissipation

The turbulent mass transport was defined in Section
2.2.1 as F = K,p,A, with turbulent diffusivity K,,
density gradient p,, surface area A, and the overline a
spatial average over surface A. This relation may be
written as,

F=K,xp, x A, (2.5)

if K, and p, are spatially uncorrelated. Relying on
the same assumption that K, is random with respect
to p, we may write the Osborn relation [Osborn, 1980]
as, B
K, =T—, (2.6)
N2

with the mean buoyancy frequency defined as N2 =
gp~ 7z, and T the so-called ‘mixing efficiency’. Through-
out this work we will assume I'" to be constant and

equal to the canonical value of 0.2, thus ignoring po-
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tential variability of this parameter [Peltier and Caulfield,
2003].

Substitution of the Osborn relation (2.6) in (2.5)
gives a directly proportional relation between the tur-

bulent dissipation rate and the turbulent mass flux,
(2.7)

because the mean density gradient p, cancels out. The
parameters density p and gravitational acceleration g
are both quasi-constants with less than 1% variation.

The same result is obtained by equating the tur-
bulent power available for mixing to the rate at which
potential energy is generated. Potential energy is gen-
erated when heavy water is advected vertically and
lifted against gravity in a density stratified fluid. For
example, for a simple two-layer system, with two den-
sity layers, with p above p/, p < p/, vertical advection
w [ms™1], and layer area A, the mass flux into the top
layer is, F' = (p' — p)wA [kgs™!]. The power required
to lift this mass against gravity, g, over the thickness
of the layer, h, is Fgh [kgm?s~3]. If this energy were
supplied by turbulent dissipation with efficiency I', we
would obtain, I'epAh = Fgh, which is equivalent to
(2.7).

2.3 Data

The budget method described in the previous section
requires knowledge about the basin-wide mass diver-
gence. The box model used in this study comprises the
Indian Ocean north of 32°S, that is roughly north of
Durban, South Africa and Fremantle, Australia (see
Fig. 2.4). The rest of the basin is mostly confined
by land masses, with Africa in west, the Asian conti-

nent in the north and Indonesia and Australia in the



CHAPTER 2. LARGE SCALE BOX-MODEL 17

Bay of
Bengal
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Figure 2.4: Indian Ocean map with main basins and topography. The
depth contour is at 4000m and B.=Basin; DFZ=Diamantina Fracture Zone;
FZ=Fracture Zone; ITF=Indonesian Throughflow; P.=Plateau; R.=Ridge;
SEIR=Southeast Indian Ridge; SWIR=Southwest Indian Ridge.

east. The only other direct connection to the rest of
the world ocean is the Indonesian Throughflow (ITF).
In this study we account for the transport across the
open southern boundary using previously published
hydrographic inverse-model solutions (refer to Section
2.3.2). We assume that the volume transport across
32°S is balanced by the ITF (refer to Section 2.3.3) and
that the mass budget is closed by atmospheric buoy-
ancy exchange. We account for the production of Red
Sea Water (RSW) and Persian Gulf Water (PGW) by
assuming that the outflow plumes of these marginal
seas effectively put mass into deeper layers up to about
1500m depth (refer to Section 2.3.4).
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Figure 2.5: Hydrographic stations during the 1987 and 2002 occupation of
the 32°S section. The depth contour is at 4000m.

2.3.1 Hydrography at 32°S

The 32°S zonal section has been sampled by hydro-
graphic cruises in 1936, 1965, 1987 and 2002. The
first high quality CTD? measurements were collected
in 1987 [Toole and Warren, 1993] and most inverse so-
lutions for the Indian Ocean MOC used in this study
are based on this data set. Only the newest MCD so-
lution [McDonagh et al., 2008] is based on the latest
occupation in 2002 [Bryden, 2003].

The hydrographic cruises in 1987 and 2002 occu-
pied approximately the same stations in the western
half of the section, as shown in Fig. 2.5. The 2002
cruise avoids Broken Plateau by choosing more south-
ern station positions and Naturaliste Plateau at the
south-western tip of the Australian shelf is avoided by
going more north.

The 1987 and 2002 deep temperature fields (below

!The occupations by the British RRS Discovery in 1936 and 1965 are both documented
in the “Oceanographic Atlas of the International Indian Ocean Expedition”, K. Wyrtki,
1971; The German SMS Gazelle sampled hydrographic data along 34°S during the 1874-76

expedition.

2CTD: conductivity, temperature and depth.
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1500m) are shown in Fig. 2.6. The measurements in
2002 are taken at the end of spring and early summer,
that is November and December in the southern hemi-
sphere. The 1987 are taken in early autumn (March
and April). Both temperature fields look very simi-
lar, both in magnitude and structure. However, the
temperature anomaly, and especially the zonally inte-
grated temperature anomaly, show that temperatures
in 2002 are slightly higher, in particular towards the

surface. This could be a seasonal effect.

2.3.2 Transport across 32°S

This study considers five published solutions for the
transport across 32°S (Table 2.1). Four solutions are
based on the 1987 data set and only one solution, the
MCD solution, is based on the 2002 data. We selected
these solutions because the other solutions have some
known issues, for example: [Fu, 1986] is based on older,
lower quality data, [Toole and Warren, 1993] does not
conserve silica, [Robbins and Toole, 1997], and [Mac-
donald, 1998] do not account for the Agulhas under-
current. Below we briefly discuss all five transport
fields.

McDonagh et al. (2008)

RRS Charles Darwin (CD139) occupied 146 hydro-
graphic stations along the 32°S section in 2002 [Bry-
den, 2003]. The cruise track is roughly the same as
in 1987 (CD29) (see Section 2.3.1). [McDonagh et al.,
2008] use data from this cruise and additional measure-
ments in the Agulhas Current [Bryden et al., 2005], in
the Leeuwin Current [Feng et al., 2003], and in the
Perth Basin [Sloyan, 2006] to calculate the meridional
velocity field at 32°S. The initial state is obtained by

referencing the geostrophic station pair velocities us-

19
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Figure 2.6: Temperature at 32S as measured in 1987 and 2002. The temper-
ature anomaly is the temperature at 2002 stations minus the temperature
at the nearest 1987 stations. Note that the measurements were taken in
different seasons: 12 NOV — 17 DEC 1987 and 1 MAR — 15 APR 2002.
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Hydrography Strength (Sv) Depth (m)
[Toole and Warren, 1993] 27 2600
SLO  [Sloyan and Rintoul, 2001] 23+3 2600
[Macdonald, 1998] 17£5 2000
[Robbins and Toole, 1997] 12+3 2600
GAN  [Ganachaud and Wunsch, 2000] 11+4 2500
BRY  [Bryden and Beal, 2001] 10.1 2000
MCD [McDonagh et al., 2008] 9.0-10.3 3310-3570
[Fu, 1986] 3 2000
Modelling
[Wacongne and Pacanowski, 1996] < 0* NA
[Lee and Marotzke, 1997] 2 2200
[Zhang, 1999 2 2000
[Garternicht and Schott, 1997] 3 3700
FER  [Ferron and Marotzke, 2003] 17 3200

Table 2.1: Estimated overturning strength (i.e. maximum bottom-up inte-
grated transport) and overturning depth (i.e. the depth of the maximum)
from various studies. The three letter abbreviations indicate the solutions
used in this study.

@ no deep northward flow at 32°S.

ing ship-mounted Acoustic Doppler Current Profiler
(ADCP) measurements and lowered ADCP (LADCP)
measurements. Final adjustments of reference levels
are based on silica conservation.

The overturning solution obtained from the new
dataset is comparable in strength with previous esti-
mates (refer to Table 2.1), but the return flow is about
a kilometer deeper (refer to Section 2.5.1 for a discus-

sion about the overturning strength and depth).

Bryden and Beal (2001)

A LADCP survey of the Agulhas current? in 1995 re-
vealed a 6Sv retropropagating (i.e. northward) under-
current [Beal and Bryden, 1997]. [Bryden and Beal,

3The Agulhas Current [...] is the Western Boundary Current of the South-West Indian
Ocean. It flows down the east coast of Africa from 27°S to 40°S. It is narrow, swift and
strong. (source:wikipedia)
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2001] used this finding in combination with the 1987
hydrographic data [Toole and Warren, 1993] to obtain
new reference levels for the geostrophic flow field.

In this study the Bryden and Beal transport field
is reproduced using their reference levels. Transport
in the ‘bottom triangles’ is estimated by assuming a
constant flow velocity from the deepest bin pair to
the bottom and a linearly increasing cross section be-
tween the deepest station and its paired neighbour.
This transport field gives an overturning of 10.1 Sv at
2000m (Table 2.1).

Ganachaud and Wunsch (2000)

Ganachaud and Wunsch estimated the global oceanic
mass transport based on hydrographic data from the
World Ocean Circulation Experiment (WOCE) [Ganachaud
and Wunsch, 2002; Ganachaud, 2003]. The estimate
is based on an inverse model that consistently com-
bines all global sections [Wunsch, 1996; Ganachaud
and Wunsch, 2002]. The solution for the mass trans-
port across 32°S [Ganachaud, 2003] uses 1987 hydro-
graphic data [Toole and Warren, 1993].

We have reproduced the reference velocities used
in [Ganachaud, 2003] based on the mass transport in
density layers as it is provided on Ganachaud’s web-
site*. Per station pair we require that the integrated
transport for the surface referenced geostrophic veloc-
ity V plus some correction ¢ equals the transport given

in density layers integrated over the water column,

S (Vi+dp=3T;, (23)

where i runs over bins and j over density layers and A
is the bin area including bottom triangles. Solving for

¢ we obtain a reference velocity for each station pair.

“http://www.pmel.noaa.gov/people/ganachaud /glbwocemodel.html
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This transport field gives an overturning of about 11
Sv at 2500m (Table 2.1).

Sloyan and Rintoul (2001)

The Sloyan and Rintoul solution for the transport across
32°S uses 1987 hydrographic data [Toole and Warren,
1993]. Inverse box model methods are applied to 15
layers defined by neutral density surfaces, ranging from
24 to 28.3 kg m~3 with a decreasing layer spacing to-
wards the bottom. Mass, heat and salt are conserved
for each layer and silica is conserved in the box. Fur-
ther details can be found in [Sloyan and Rintoul, 2001].

We have reproduced the reference velocities in a
fashion similar to (2.8). Instead of total mass trans-
port per station pair we have used total volume trans-
port per station pair, because the Sloyan and Rintoul
solution was provided in this format.

The Sloyan and Rintoul transport field gives an
overturning of about 23 Sv at 2600m (Table 2.1).

Ferron and Marotzke (2003) OGCM solution

The Indian Ocean overturning strength calculated with

an ocean general circulation model (OGCM) tends to

be weaker than the results from hydrographic inver-

sions, as Table 2.1 shows. The model study by [Fer-

ron and Marotzke, 2003] is an exception in the sense

that it produces a relatively strong overturning, much

stronger than other model results. Ferron and Marotzke
use the MIT® ocean general circulation model.

At first the model is spun-up for 10 years using a
climatology-based initial state. This produces a weak
6 Sv overturning, comparable to previously published
model studies (refer to Table 2.1). The strong over-

turning develops only if hydrographic data are assim-

"Massachusetts Institute of Technology (USA)
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Study Method T (Sv)
[Fieux et al., 1994] JADE?* August 1989 18£7
[Fieux et al., 1996] JADE February 1992 —2.6+9°
[Macdonald, 1998] Hydrography 10 + 10°
[Zhang, 1999 General circulation model 2.7
[Ganachaud and Wunsch, 2000] Based on JADE 15+3
[Hautala et al., 2001] Pressure gauges / ADCP 8.4+34
[Koch-Larrouy et al., 2006] regional OGCM 16.4

Table 2.2: Indonesian Throughflow from various studies. The transport is
westward, from the Pacific to the Indian Ocean.

& Java-Australia Dynamic Experiment.

b Minus sign denotes eastward transport (from Indian Ocean to Pacific).

¢ Actually given in kg per second and converted to Sverdrups using lkg=
10728v.

ilated. The assimilation is an iterative process, where
the model is rerun for a number of times and compared
to WOCE sections and sea surface observations. Each
iterative one-year run has a slightly modified initial
state. The iteration is stopped at some optimal point,
where the end state is close to the observations and
the initial state is still realistic. [Palmer et al., 2007]
however have shown that the MIT ocean GCM cannot
produce a quasi-steady overturning state for any of
the hydrographic flow fields when run with a realistic,
observation-based diffusivity parameter.

The Ferron and Marotzke (2003) transport field
gives an overturning of about 17 Sv at 3200m (Table
2.1).

2.3.3 Indonesian Throughflow (ITF)

Published estimates of the Indonesian Throughflow
vary widely, with annual mean values ranging from
-2.6 Sv (Indian-to-Pacific) [Fieux et al., 1996] to 18
Sv (Pacific-to-Indian) [Fieux et al., 1994]. Most stud-
ies however find an annual mean transport from the
Pacific to the Indian Ocean (Table 2.2).
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25

density [kg m~2 - 1000] ITF [Sv] RSW+PGW [10° kg s 1]
p < 26.50 12.44 2.5
26.50 < p < 26.90 0.83 2.5
26.90 < p < 27.36 1.80 2.5
27.36 < p < 27.78 1.43 2.5
27.78 < p < 27.96 0.01 2.5
27.96 < p < 28.11 0.00 2.5
28.11 < p < 28.23 0.00 0.0
p > 28.23 0.00 0.0

Table 2.3: The Indonesian Throughflow (ITF) in density classes from [Koch-
Larrouy et al., 2006]. Mass input from Red Sea (RS) and Persian Gulf (PG)
is uniformly distributed over layers lighter than 28.11 kg m~3. Note that in

our calculations we normalise the ITF to the transport across 32°S.

We use a model study by [Koch-Larrouy et al.,
2006] to obtain the Indonesian Throughflow transport
into our density layers (Table 2.3). The total transport
reported by [Koch-Larrouy et al., 2006] is 16.52 Sv, but
we have scaled this value to match the discussed trans-
port fields at 32°S, so that volume is conserved. The
balance between the ITF and the transport across the
southern boundary neglects the relatively small (less
than 1Sv) fresh water flux.

2.3.4 Red Sea (RS) and Persian Gulf (PG)

The Red Sea (RS) and the Persian Gulf (PG) are
strongly evaporative basins. The influence on the In-
dian Ocean is that of a ‘salination machine’, taking in
relatively fresh surface water and producing an under-
lying outflow of very saline water. Table 2.4 gives some
relevant properties of the RS and PG exit plumes.
The plumes enter the Indian Ocean at less than 200m,
because both marginal basins have a shallow sill at
the strait connecting them to the Indian Ocean. The
saline and dense plumes plunge down into the Indian
Ocean as frictional density currents modified by ro-

tation, rather than geostrophic currents modified by
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intake Red Sea Persian Gulf unit
depth <200 <200 m
density 26.7° 25.4b kg m~3
salinity 36.0P 36.5P psu
outflow plume
annual mean outflow 0.37%,0.06-0.29° 0.2-0.25P Sv
density 27.7° 28.2b kg m~3
salinity 40.5%, 39.5P 40.3b psu
equilibrium
dilution factor 2.5P 4.0P
depth 800-1300°, 600> 250 m
density 27.0-27.6°, 27.2°  26.5P kg m™3

Table 2.4: Red Sea and Persian Gulf data. The dilution factor is based on
the 1D streamtube entrainment model by [Price and Baringer, 1994] and
calculated by [Bower et al., 2000].

@ [Murray and Johns, 1997]
b [Bower et al., 2000]

¢ [Beal et al., 2000]

4 [Matt and Johns, 2006]

friction. Entrainment dilutes the plumes until they
reach buoyancy equilibrium. A model study by [Bower
et al., 2000] shows that equilibrium is reached within
30km. Signatures of the RS plume however have been
observed thousands of kilometers south of the RS [Beal
et al., 2000]. Both studies report a comparable equilib-
rium depth, the model gives a depth of less than 800m
for the RS water and about 250m for the PG water,
and [Beal et al., 2000] found RS water at depths be-
tween 800 and 1300m in the Agulhas Current .

The annual mean total mass input from the RS
and PG is about 1.5 x 10 kg s~! and the equilibrium
density is about 1027.2 kg m~3 [Murray and Johns,
1997; Bower et al., 2000; Beal et al., 2000]. The dense
water plunging down into the Indian Ocean entrains
ambient water until it reaches equilibrium. This pro-
cess effectively transports mass away from the sur-

face layer and puts it in deeper layers. It is assumed
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that the ‘mass leakage’ from the plume is constant at
all depths between the injection and the equilibrium
depth. This distribution is chosen for its simplicity
and loosely based on the observation that the accel-
eration and the surface area of the plume scale oppo-
sitely with respect to the density difference between
the plume and surrounding water. This simplification
will have little or no effect on the calculated energet-
ics of the deep overturning because the RSW hardly

penetrates below 1000m.

2.3.5 Climatology

The HydrobaseS climatology gives worldwide temper-
ature and salinity values at 85 depth levels. We choose
to use Hydrobase, because it averages seawater prop-
erties on potential density surfaces, instead of depth
surfaces as in the Levitus Atlas. Averaging on density
surfaces prevents artificial mixing of water mass prop-
erties and is therefore more suitable for our applica-
tion. We use the Hydrobase 1 x 1 degree annual mean
climatology for the Indian Ocean to estimate density
surface areas and spacing between density surfaces.
The methods for obtaining these layer properties
are as follows. (i) Calculate neutral densities for all
data points using the CSIRO routine [Jackett and Mc-
Dougall, 1997]. (ii) Check for latitudes north of 32°S
whether there are densities equal to or larger than the
given layer density. If so account for one surface area
element of 472 R? cos(¢) 36072, with R the radius off
the Earth and ¢ latitude. Adding up these area ele-
ments gives an estimate of the total area of the density

surface.

Shttp://www.whoi.edu/science/PO /hydrobase/HB2_home.htm

27
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2.4 Errors

The turbulent dissipation scales as eI’ oc F/A (2.7).
The uncertainty in the layer area A is only 1-2% and
will be neglected in this study. The ‘mixing efficiency’,
I' = Ry/(1 — Ry), with Ry the flux Richardson num-
ber [Osborn, 1980], has a canonical value of 0.2 and
will be treated as a constant. Thus, we ignore ob-
servational evidence suggesting that I', in fact, may
be significantly variable [Peltier and Caulfield, 2003].
The uncertainties in the turbulent mass transport F'
depend on uncertainties in the transport and neutral

density estimates.

2.4.1 Inverse model errors

The transport field is calculated from the velocity field,
T(x,z) = v(z,z)AzAz. The velocity field is derived
from an underdetermined inverse model with noisy
constraints. Inverse model uncertainty is discussed in
the next section. The error associated with the inter-
polation from depth-space to density-space, T(z) —
T(p), and the uncertainty in neutral density will also

be discussed.

The ocean circulation inverse problem

Deriving the flow field from salinity, temperature and
pressure measurements is one of the fundamental prob-
lems in oceanography, involving basic concepts such as
the equation of state and the geostrophic balance. Ver-
tically integrating the thermal wind equation gives the
velocity profile plus an unknown integration constant.
Finding these constants is often referred to as the ‘ref-
erence level problem’, where a reference level is defined
as the depth where the real ocean flow is zero or has

some other known value.

28
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Reference levels can be found by constraining the
velocity, in principle requiring an independent con-
straint for each pair of hydrographic stations. Ocean
circulation experiments are usually designed as a box
model, so that tracer divergences (temperature, salin-
ity, silica, etc.) can be measured and used as con-
straints. In the absence of sources and sinks in the

box we may write,

N
ZA.rj/d)i[Uj + bj]dz ~ (), (2.9)
j=1

with ¢; the concentration of tracer ¢ € [1,2,..., M],

and Az the distance between a pair of hydrographic
stations [Wunsch and Grant, 1982]. Separating the
v and b terms and writing, A;; = Az [ ¢;dz, and
G = —Z]- Az; [ ¢iv;dz, we can write this set of M
equations with N unknowns as a matrix multiplica-
tion,

Ab ~c, (2.10)

with A = (M x N). Typically, there are more un-
knowns than independent constraints, that is the row
rank R of A is smaller or equal to M and smaller than
N. So A is usually rectangular with R < M < N,
and strictly speaking not invertible. Solving such an
underdetermined set of equations, with (M — R) free
variables, is what we refer to as the inverse problem.

Inverse methods deal with finding the optimal so-
lution to an underdetermined problem. The optimal
solution in the oceanographic context will be the ve-
locity field that is closest to our current understanding
of the ocean circulation. Details on inverse methods
and their application in oceanography can be found in
[Wunsch, 1996].

29
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Noise and nullspace

It is a little miracle and at least remarkable that our
understanding of ocean dynamics allows us to calcu-
late a flow field from salinity, temperature and depth
measurements (plus some knowledge of the wind field).
But of course we are only really impressed if the cal-
culated flow field is close to real ocean velocity field.

In other words, suppose we write the ‘real velocity’ as,
v=vR(S,T,P)+vg(r)+b+e, (2.11)

where e is the error,uvp the Ekman velocity calculated
from wind stress 7, v the geostrophic velocity with a
‘best guess’ for the reference levels, and b the correc-
tion to the reference level velocities, we would like to
see e << .

One source of error is our limited knowledge of the
observables, S,T,P, and 7, which we will refer to as
‘noise’. Another error comes into play when A (refer
to (2.10)) does not have an inverse. The row space
of matrix A is usually rank deficient (more station
pairs than constraint equation), which means that the
nullspace contains (M — R) independent vectors q :
Aq = 0. The nullspace vectors can be freely added to
any particular b satisfying Ab = c, giving indefinitely
many solutions for b.

Singular Value Decomposition (SVD) is a method
to find a pseudo-inverse for A, that minimizes both
||b|| and ||Ab — c||. In physical terms this means
that SVD will find one particular solution with ref-
erence levels and property divergences as close as pos-
sible to the a priori ‘guesses’. Inherently, SVD is sen-
sitive to the a priori choices made by the investiga-
tor. Two investigators, given identical datasets (CTD,
wind stress, and tracer concentrations), may construct

different physical models and obtain different velocity
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fields.

The so called nullspace— or omission error comes
from incompleteness of the model, when some of the
physics determining b are missing. This model specific
error will contribute to the uncertainty in the velocity
field, together with the noise in the data. A formal
way of quantifying these uncertainties is described in
[Wunsch et al., 1983].

2.4.2 Interpolation errors

An interpolation method to find the transport into
density layers is presented in Section 2.2.2. This method
assumes constant transport in the neighbourhood of
the density surfaces that define the layer. The error
associated with this assumption is estimated by quan-
tifying the deviation from a velocity profile with a lin-
ear vertical gradient, v(z) = v + (2 — 20)v,, with 2o
the mid-depth of the bin, and vy the mean flow ve-
locity. We may translate the origin to the bottom
of the bin by transforming the vertical coordinate,
2z =z — (20 — Az/2), with Az the vertical bin size.
The fractional bin transport for a linear velocity pro-
file is, T = Ax fOLv(z’) d7', with L < Az, and Ax the
horizontal bin size. The transport difference, when
compared with a constant velocity profile, is voAx L —
Ax fOLv(z’) d? = LAz v.[Az72 — /%], which is max-
imum at 2’ = %Az, giving a maximum difference of
AT = %UZAJJAZQ.

The vertical shear v, below 1000m is typically of
order 1 x 107%s~! and usually everywhere less than
5 x 1074571, Calculating AT for the Sloyan and Rin-
toul velocity field [Sloyan and Rintoul, 2001] gives a
maximum relative error of less than 5% for the trans-
port into a layer with at least 8 bins in the vertical
direction. Note that the relative interpolation error is

larger for thinner layers with fewer bins in the vertical
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direction.

2.4.3 Neutral density errors

The neutral density is calculated as a function of salin-
ity, temperature, pressure, longitude and latitude us-
ing the CSIRO7 routine [Jackett and McDougall, 1997].
The routine provides an error estimate A~y. Multiply-
ing this error with % gives the uncertainty in pressure
Ap and we find that large uncertainties are associated
with weakly stratified deep waters, easily exceeding
the vertical bin size of 20dbar.

The uncertainty in the depth of isopycnals also
makes the estimates of the transport into density lay-
ers uncertain. The relative error in the layer trans-
port is larger for thinner layers and blows up in dense,
weakly stratified water. Based on the density error es-
timates given by the CSIRO routine we estimate that
the relative transport error can be kept smaller than
6% when avoiding layers with v > 28.15 and maintain-

ing a minimum layer thickness of about 200m.

2.4.4 Error propagation

The quantity of interest in the study is the dissipation
rate, € x F/A (refer to (2.7)), where the turbulent
mass flux, F', is a superposition of mass flux terms,
Tp, with error contributions from three sources, (i)
inverse model, (ii) interpolation, and (iii) neutral den-
sity. These errors are not fully independent, and in-
verse model errors tend to diminish when integrated
spatially [Wunsch, 1996]. The error in F' is therefore
assumed to be equal to the transport error in the top
density layer, without contributions from deeper lay-

ers.

"Commonwealth Scientific and Industrial Research Organisation (Australia)
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Assuming a relative error of 5% error due to in-
terpolation, a 5% error due to the uncertainty in the
density, a standard transport error in the top layer of
op, and regarding these errors as independent, gives a

dissipation error of,

e = \/<"TT6)2 +2(0.05¢)2, (2.12)

with T the transport in the top layer and ¢ = %pir
(refer to (2.7)) the dissipation rate.

2.5 Results

2.5.1 Transport into density layers

Using the methods described in Section 2.2.2 we cal-
culated the transport into 26 density layers (Fig. 2.7)
defined by 25 density interfaces, ranging from 22.42
to 28.15 kg m~3 (refer e.g. to Table 4.1). When cal-
culating the turbulent mass transport (Section 2.2.1)
we find that the exact choice of density layers does
not matter, as one would expect (refer to Appendix
A). To avoid significant errors in the estimated depth
of isopycnals in weakly stratified waters (refer to Sec-
tion 2.4.3) we do not resolve density layers below 25.15
kg m~3. This means that the bottom layer is sev-
eral times thicker than the other layers, up to a thick-
ness of about 1200m, whereas other layer are typically
200m thick, as Fig. 2.7 shows. The low density reso-
lution near the bottom means that we lack knowledge
about the turbulent mass transport below 25.15 kg
m~3. This may lead to under-/overestimation of the
mixing in the bottom layer of there is less/more water
mass transformation within the layer than at the 25.15
kg m~3 density level.

The overturning streamfunction (OSF) is often used
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Figure 2.7: Vertical cross-section at 32°S with Sandwell and Smith
bathymetry (v8.2) and the neutral density layers used in our advection—
diffusion model.

to characterize the overturning circulation. Tradition-
ally the OSF is the zonally-integrated meridional flow
along surfaces of constant depth, 1(z) = fZZmM JV(y,7)dydz.
The left panel of Fig. 2.8 shows the traditional OSF for
the five solutions for the flow across 32°S considered in
this study. The main features of the OSF are (i) the
overturning strength or maximum, (ii) the overturn-
ing depth, that is the depth of the maximum, where
the direction of the flow reverses (refer to Table 2.1),
and (iii) the closing depth or zero-crossing, where the
inflow is balanced by the return flow.

Alternatively, the OSF can be calculated in density
space, by integrating along isopycnals instead of iso-
baths. Figure 2.7 shows the density layers used in this
study. Using the ‘density streamfunction’ is advan-
tageous in mixing problems, because it respects water
masses and is explicit about diapycnal transports. The
right panel of Fig. 2.8 shows the density OSF, (),
plotted against depth by labelling the isopycnals with
a typical mean depth®. Comparing the traditional

8The mean isopycnal depth is calculated using the Hydrobase climatology in a central
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OSF, in the left panel, with the density OSF, we see
that they have most features in common. For example,
the strength and depth are similar. The most appar-
ent differences between the OSFs are: (i) the depth
range (the traditional OSFs extent to larger depth),
(ii) Yarep(2) is negative at bottom and 1pre.p(7y) posi-
tive, (iii) the maximum of ¥y;.p () is deeper than the
maximum of ¥pr.p(2), and (iv) ¥ per(2) is deeper than
VYFer(7)-

The difference in depth range is simply explained
by the choice of the densest density layer. Figure 2.7
shows that the deepest isopycnal (28.15) indeed lingers
around 4000m. The other differences can be explained
by zonal asymmetries in density and bathymetry. The
densest waters with v > 28.15 only exist west of the
South-east (SE) Indian Ridge, whereas the deepest wa-
ters below 5000m are found in the east. The effect of
this asymmetry is most profound for the McDonagh
et al. overturning solution, because ¥p.p(z) < 0 for
z > 5000m, that is the deepest water in the east flows
southward.

This suggests that the inflow of bottom water, with
a density larger than 28.15, is restricted to the western
half of the basin, where deep trenches in the Southwest
Indian Ridge (SWIR) offer passageways. Some of the
inflowing water appears to make it past the Central In-
dian Ridge (CIR) and the Ninety-east Ridge, thus con-
stituting the deep return flow through the Diamantina
Fracture Zone (DFZ) (refer to Fig. 2.4 for an overview
of the main topography in the Indian Ocean). The bot-
tom retro-flow in the east appears unaffected by the
ITF as ITF water is not expected to penetrate below
the 27.78 isopycnal (Table 2.3).

Figure 2.9 shows how the OSF changes when we
add the ITF. The ITF total transport is chosen to

Indian Ocean area with lat = [—-41:1: —21]° and lon = [60 : 1 : 80]°.
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match the total transport across 32°S, so that the bot-
tom integrated transport adds up to zero. The figure
also shows that ITF water does not penetrate below

1200m in our model.

2.5.2 Turbulent mass transport

The turbulent mass transport is calculated from layer
transport using the advective—diffusive balance (2.3).
Figure 2.10 shows the turbulent mass transport, F', for
the five overturning solutions considered in this study.
The figure also shows the ‘ingredients’ that go into
(2.3), that is the density profile and the layer trans-
port. Also shown is the overturning streamfunction,
1, which is the bottom-up integrated layer transport,
P = 22:1 T;. Below we discuss how F' is related to
the overturning streamfunction, and in particular how
F' can become negative, as is the case for the [McDon-
agh et al., 2008] solution.

Generally the global overturning circulation is thought
of as a flow circuit with downwelling at a number of
high latitude sites?, and upwelling elsewhere. The In-
dian Ocean appears to accommodate an important
deep upwelling branch of the global MOC [Schmitz,
1995]. Upwelling needs upward turbulent mass trans-
port, i.e. positive F', to maintain the density strati-
fication of the ocean, and this is what we find for all
the Indian Ocean overturning solutions below 1000m
(Fig. 2.10).

At shallower depth we obtain negative mass trans-
port for the [McDonagh et al., 2008] solution. The
negative, shallow F is unique to the [McDonagh et al.,
2008] solution and suggests a different overturning struc-
ture. Advective mass divergence is needed for F' to

become negative. This means that, when F' becomes

9Deep water is formed due to cooling and brine exclusion when seawater freezes.
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Figure 2.9: Comparison of overturning streamfunctions (OSFs) based on
transport across 32°S without ITF (dashed line) and with ITF (solid line).
The OSF is calculated in density space and the ITF strength is chosen to
balance the transport across 32°S (refer to Section 2.3.3). The depth labels
are based on the interpolated depth of the density layers at the deepest
station of the section. Positive transport is northward and the label ‘OC’
means ‘outcropping’ and indicates that isopycnals come to the ocean surface.
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negative, there is more mass flowing out of the layer
than flowing in, which can only happen when there is
downwelling through the top layer interface. In that
case, the input of lower density water at the top will be
volumetrically balanced by the outflow of higher den-
sity at the lateral boundary. This leads to net mass
divergence if the mass input at the bottom is zero or
small and requires a negative mass flux F' at top in-
terface to close the mass budget.

When F' becomes negative we cannot think of it as
being driven by diapycnal diffusion only, ' # Fy;rr =
mfl, because Fy;rp is positive definite for a sta-
bly stratified ocean (refer to Section 2.2.1). Another
physical process must be taken into account, so that
F = Fgf — F' < 0. A possible explanation for the
downward mass transport near the surface is deep con-
vection due to buoyancy exchange at the surface. For
example, the strong net evaporation in the Red Sea
and the Persian Gulf leads to the production of saline
water that penetrates into the Indian Ocean to a max-
imum depth of 1300m [Beal et al., 2000]. The produc-
tion of Red Sea Water and Persian Gulf Water might
explain the double-cell overturning circulation found
by [McDonagh et al., 2008], with an upwelling cell in
the deep ocean below 1000m and a downwelling cell
above this depth.

39



40

CHAPTER 2. LARGE SCALE BOX-MODEL

j10dsueI) IoAR] pojelIdojul dn-wo3joq 9yl SI (i UOTJOUILIIRII}S SUTLINIIOAO
oy, - Modsuer) IoAe[ oy} pur ‘d ‘UONNQLISIP AJSUOP OY) WO pourelqo ‘4 ‘prodsuer) ssewl Juonqing, :(0['g oInSLg

obx  [sul obx  [sul [o.w 6]

- 0e °14 0c
T 00G¥

1000¥%

1006¢

1000¢

100s¢

w

{000z

10061

1000}

1009




CHAPTER 2. LARGE SCALE BOX-MODEL

2.5.3 Turbulent dissipation and diffusivity

The main results of this chapter are shown in Fig. 2.11.
The top panel shows the basin-wide mean dissipation
rate (2.7), the bottom-left panel shows the isoneutral
mean buoyancy frequency, N2, and the bottom-right
panel shows the diffusivity, K,. The buoyancy fre-
quency is calculated from the WHOI Hydrobase cli-
matology, using the sw_bfrq MATLAB routine from
the CSIRO seawater package, and linearly interpolated
onto neutral density levels using the CSIRO neutral
density routine [Jackett and McDougall, 1997]. The
turbulent eddy diffusivity calculated from the dissipa-
tion estimates using the Osborn relation (2.6).

The figure shows that the dissipation profiles ob-
tained from the older 1987 data increase towards the
surface, whereas the [McDonagh et al., 2008] dissipa-
tion profile, based on the new data from 2002, de-
creases above 1500m. This new dissipation profile
has a maximum around 2000m and becomes negative
around 900m. In the context of this work we interpret
negative € as a loss rate of potential energy.

The total power to sustain the overturning circu-
lation is calculated by bottom-up integration of the

dissipation rate [W kg~!] multiplied by mass,

tmax

Piot = po Z € A; Az, (2.13)
i1

with ¢ = 1 the bottom layer and 4,,,, the layer cor-
responding to the ‘closing density’ of the overturning
streamfunction. The closing density is the density level
where the overturning streamfunction is zero, which is
the point where the deep inflow is balanced by the
shallower retro-flow. Table 2.5 lists the closing densi-
ties for the various overturning solutions considered in
this study.
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Figure 2.11: Mixing estimates inferred from a basin-wide mass balance in
density layers for five different overturning solutions. Top: dissipation esti-
mates [Wkg~!] with error estimates (based on the uncertainties discussed in
Section 2.4). Bottom left: Isoneutral mean buoyancy frequency based on the
Hydrobase climatology. Bottom right: diffusivity estimates as calculated us-
ing the Osborn relation Osborn [1980], K, = 0.2¢/N?. The horizontal black
lines indicate neutral density levels that we use to distinguish between bot-
tom water and deep water.
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1D Uonar [SY] Zmaz [m] Y0 kg m™3] 2z [m] P [TW]

mcd 10.1 4058 27.92 1877 0.17
fer 19.0 4058 25.04 124 1.19
slo 19.2 2146 27.07 667 0.94
gan 10.2 2146 26.93 539 0.68
bry 11.1 1971 24.12 65 0.78

Table 2.5: Estimates of the total dissipated power, P, needed to sustain
the deep Indian Ocean MOC. Also shown are, the overturning maximum
Wohaz, the depth of the overturning maximum z,.;, the closing density
Y0, and the approximate depth of the closing density, zg. The power is
calculated by integrating the dissipation rate from the bottom up to the
closing density. The closing density corresponds to the zero-crossing of the
overturning streamfunction and represents the density level where the the
inflow of dense bottom and deep water is balanced by the more shallow and
less dense retro-flow. We attribute the difference between the overturning
maxima, W,,.:, and the published maxima in Table 2.1 to the fact that we
calculated the overturning maximum in density space as opposed to depth
space.

The layer spacing Az used in (2.13) to calculate
the layer volume between layer interface (i —1) and i is
found by: (i) labelling the Hydrobase grid points with
neutral density, (ii) interpolating the layer depths, and
(iii) calculating the mean vertical distance between the
layers.

The energy requirements of the various overturning
solutions are listed in Table 2.5. The next section puts
these numbers into a global context. When interpret-
ing these numbers it is useful to realize that we have
used a variable closing density, dependent on the par-
ticular shape of the overturning solution. This means
that the total required power represents different ocean
volumes for the different solutions. Integrating all so-
lutions up to the same density level is therefore likely
to change the relative magnitude of the power esti-
mates.

For example, we may integrate all dissipation pro-

files up to a density of 27.78, well below the expected
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influence of the ITF, RSW, or PGW, to find the num-
bers labelled P, in the last column of Table 2.5.
Unsurprisingly, we find that most solutions require less
energy when integrated over a smaller density range,
except for the [McDonagh et al., 2008] solution. This
can be explained by the fact that the [McDonagh et al.,
2008] dissipation profile becomes negative at some den-

sity just below the chosen closing density.

2.6 Discussion

The turbulent diffusivity estimates, as displayed in
Fig. 2.11, are in reasonable agreement with previously
published estimates. To our knowledge, the only other
basin-wide diffusivity estimates, based on Indian Ocean
WOCE data, were published by [Ganachaud and Wun-
sch, 2000; Ganachaud, 2003]. They estimated K, =
4+2x107* m?s~! in the deep Indian Ocean (27.96 <
v < 28.10 kg m™3), and K, = 12+ 7 x 107 m?s~!
for the bottom layer (y > 28.10 kg m~3). Our diffu-
sivity estimates for the Ganachaud et al. overturning
solution agree with their estimates for the deep layer,
but are smaller for the bottom layer. This maybe due
to the limited density resolution near the bottom in
our model (refer to Section 2.5.1). Other studies, fo-
cussing on particular areas of the Indian Ocean, have
produced diffusivity estimates in the range from 3.5 to
35 cm?s~!, as listed in Table 2.6.

The estimates of the power needed to sustain the
deep Indian Ocean MOC become more meaningful when
compared to the available energy. The dynamically
important energy sources for the large scale ocean cir-
culation are winds and tides [Wunsch and Ferrari, 2004].
In an attempt to close the energy budget of the deep
Indian Ocean we consider abyssal energy sources only,

that is (i) wind power input to the geostrophic flow,
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Study K [em?s~!] Remarks

[Ganachaud and Wunsch, 2000] 4+2 Indian Ocean, 27.96 <
v < 28.10

124+ 7 Indian Ocean, v > 28.10

[Barton and Hill, 1989] 10.6 £2.7 Amirante Passage?®,
1.12°C

[Johnson et al., 1998] 3.5 Amirante Passage®,
1.1°C

[Sloyan, 2006] 13 —15 Perth Basin, 0.64°C ~
28.2 kg m~3

~ 10 Perth Basin, inferred
from strain in abyss
[McCarthy et al., 1997] 35+ 14 Ninetyeast Ridge, o4 =
45.92 kg m~3

a between Mascarene Basin and Somali Basin.

Table 2.6: Diffusivity estimates in the Indian Ocean.

(ii) wind power input to downward propagating near-
inertial motions, and (iii) tidal energy input to baro-
clinic internal waves.

All published energy inputs have considerable un-
certainties and we therefore choose to work with a
minimum and a maximum estimate (Table 2.6). The
minimum wind-to-inertial flux is based on a factor 0.5
correction to the [Alford, 2003] estimate, as suggested
by [Plueddemann and Farrar, 2006], integrated over
the Indian Ocean north of 32°S. The maximum esti-
mate is based on the full [Alford, 2003] estimate of
energy input to near-inertial motions, integrated over
higher southern latitudes, up to 50°S, to account for
the fact that near-inertial waves travel to regions with
lower planetary vorticity, that is equatorward.

The lower and upper estimate for the energy trans-
fer between the wind field and the surface geostrophic
currents are based on the uncertainty in the global
value in [Scott and Xu, 2009]. The low and high value

for the energy input in baroclinic tides is based on
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energy source reference P, [TW] Py [TW]
wind inertial [Alford, 2003] 0.02% 0.09P
wind geostrophic  [Scott and Xu, 2009] 0.05 0.06
baroclinic tide [Egbert and Ray, 2000] 0.11 0.18°
total 0.18 0.31

Table 2.7: Energy input to the deep Indian Ocean north of 32°S.

2 factor 0.5 correction to [Alford, 2003] based on [Plueddemann and

Farrar, 2006].
b [Alford, 2003] extended to 50°S.
¢ same as [Nycander, 2005] estimate.

error estimates by [Egbert and Ray, 2000]. We also
calculated the tidal energy based on the [Nycander,
2005] global map and found it to be indistinguishable
from the [Egbert and Ray, 2000] upper estimate.

The estimates of the energy going into the Indian
Ocean should be enough to balance the implied dissi-
pation needed to sustain the deep Indian Ocean MOC
if the energy input is near-locally dissipated. Assum-
ing that the energy flux into or out of the Indian Ocean
is small compared to the local sources we may compare
the energy inputs in Table 2.6 with the estimates of
dissipated power in Table 2.5. This comparison tells
something about the energetic feasibility of the various
MOC solutions. For example, the power, when inte-
grated up to the closing density, varies between 0.24
and 1.57 TW. We note that only the 0.24 TW MCD
solution dissipates less than the 0.31 TW estimated
maximum energy input. This results suggests that en-
ergy budgets may be useful as an additional constraint
in inverse models.

The energy needed to sustain a particular MOC
configuration depends on the amount of diapycnal trans-
port, that is the MOC strength, and the density gra-
dient below the closing density. The most distinct fea-

ture of the MCD solution is that it closes at a much
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higher density, that is deeper, than the other MOC
configurations. Deeper closure means that ‘fewer’ isopy-
cnals are crossed, and that less diapycnal mass trans-
port is needed to balance the advective inflow.

In this section we have estimated the levels of tur-
bulent dissipation needed to sustain various published
solutions for the Indian Ocean MOC. In the next chap-
ter we will estimate the energy in the internal wave
field and Chapter 4 assesses whether the Indian Ocean

MOC can be driven by breaking internal waves.

2.7 Summary and conclusion

This chapter compares the energetics of various solu-
tions for the Indian Ocean MOC. The energetics are
evaluated by assuming mass conservation in density
layers and an one-dimensional balance between advec-
tion and diapycnal diffusion. The energy needed to
sustain a given MOC is defined as the total amount
of work required to lift mass against gravity in order
to preserve the vertical density stratification. Similar
methods are discussed and applied to the global ocean
by for example [Munk and Wunsch, 1998] and [Klocker
and McDougall, submitted 2009].

This work focusses on the energetics of the deep
MOC (roughly below 1000m) in the Indian Ocean north
of 32°S. The advective mass budget in this part of
the ocean is dominated by transport across the open
southern boundary. For completeness we also incor-
porated the Indonesian Throughflow and water mass
exchanges with the Red Sea and the Persian Gulf in
our model, although this hardly affects the deep MOC.

Our model shows that various MOC solutions, based
on hydrographic measurements along 32°S, require dif-
ferent levels of turbulent dissipation, varying between

0.24 and 1.57 TW. These numbers are large in com-
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parison to the estimated global dissipation of 2.1 TW
[Wunsch and Ferrari, 2004], especially considering the
relatively small size of the subtropical Indian Ocean
(about 12% of the world ocean!®). Based on global
maps of the generation of internal tides [Egbert and
Ray, 2000] and near-inertial waves [Alford, 2003] we
estimate that at most 18% of the global total, that is
0.36 TW, is dissipated in the Indian Ocean.

The value of 2.1 TW for abyssal dissipation is rather
weakly constrained due to considerable uncertainties
with regard to the conversion efficiency of wind energy
into near-inertial motions. However, following [Wun-
sch and Ferrari, 2004], and accepting this number as
an upper bound, leads us to conclude that the inverse
model solutions for the Indian Ocean MOC are ener-
getically infeasible when integrated up to the ‘closing
density’, except for the less energy hungry [McDonagh
et al., 2008] solution. This result suggests that energy
budgets may be useful as an additional constraint in
inverse models.

Avoiding the influence of the ITF on our power es-
timates, by limiting the MOC integration range to the
highest ITF density class, gives numbers lower than
0.36 TW for all overturning solutions, except for the
[Ferron and Marotzke, 2003] model result. We em-
phasize however that this is likely an underestimate,
because it does not fully include the returning limb
of the deep overturning cell for most solutions. De-
spite our doubts about the optimal integration range,
and other uncertainties inherent to hydrographic in-
verses, we conclude that our estimate of the energetics
of the Indian Ocean MOC has produced large num-
bers, as compared to estimates of the global dissipa-

tion. This result is consistent with the view that the

10The subtropical Indian Ocean is defined as the Indian Ocean north of 32°S. The
surface area is calculated at a depth of 500m.
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Indian Ocean MOC is an important deep upwelling
cell in the global MOC, but also raises questions about
the supply of the required high levels turbulent kinetic
energy (TKE). Internal waves are generally regarded
as the main agents of TKE in the deep ocean and we
will discuss internal wave energy levels and dissipation

mechanisms in the remainder of the work.
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Chapter 3

Turbulent
dissipation inferred
from fine scale shear

and strain

3.1 Introduction

Turbulence in the open ocean interior, away from the
surface boundary layer, the bottom boundary layer
and sites of deep convection, is generally thought to
originate from internal wave breaking. Internal waves
fill the ocean with motions at a large range of spatial
scales and are important for energy transport through-
out the ocean, both in physical space and in wave num-
ber space.

Numerical simulations have shown that nonlinear
interactions among internal waves cause a net trans-
fer of energy to smaller scales [McComas and Miiller,
1981; Henyey et al., 1986]. The energy flux towards
smaller scales is often referred to as the ‘energy cas-
cade’ and is a key process in the oceanic energy bal-
ance. The cascade transfers energy from large scale

sources, mainly wind forcing at the surface, and tidal
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flows, to fine scale (order 10m) waves that will eventu-
ally break into small scale (order lem) turbulent mo-
tions when the shear overcomes the stratification. The
rate at which breaking waves dissipate energy is ap-
proximately equal to the downscale transfer rate of en-
ergy, which allows the dissipation rate to be expressed
in terms of internal wave parameters.

In this chapter we discuss the fine scale parameter-
ization of turbulent dissipation. Section 3.2 describes
the model configuration, Section 3.3 the data we used
for our analysis, and Sections 3.4 and 3.5 discuss the
model output.

The main purpose of this chapter, in the context of
the rest of the thesis, is a ‘description of methods’. We
use the fine scale parameterization as a tool to ‘pro-
duce’ dissipation rates with the aim to make a com-
parison between fine scale and large scale dissipation
estimates. However, when using the tool we encoun-
tered some inconsistencies in comparison to previously

published estimates.

3.2 Methods

3.2.1 Finescale parameterization of turbu-
lent dissipation

The promise that internal waves hold information about
turbulence has motivated the construction of several
models that relate the turbulent dissipation rate to
internal wave parameters (see [Polzin, 1995 for an
overview). Such a parameterization is useful, because
more direct observations of turbulence require special
equipment and more expensive operations, whereas
fine scale internal waves are picked up in conventional
hydrographic measurements.

Validation experiments by [Gregg, 1989] and [Polzin,

1995] compare finescale parameterizations of dissipa-
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tion with microstructure measurements and conclude
that the Henyey, Wright and Flatté (HWF) model
[Henyey et al., 1986] behaves favourably. HWF use
ray tracing to estimate the energy transfer between a
test wave and a background wave field and formulate
a model to extrapolate their numerical findings in pa-
rameter space. The model is based on a Richardson
number hypothesis and predicts that the dissipated
rate [W/kg] scales as,

e o< E?N?fcosh ™ (N/f), (3.1)

with E the internal wave energy density. Note that the
dissipation rate scales with depth through the buoy-
ancy frequency N(z) and with latitude through the
inertial frequency f.

The usefulness of the above scaling for the inference
of turbulence from measurements was first demonstrated
by Gregg in 1989 [Gregg, 1989], referred to as ‘G89’
hereafter. Gregg uses the energy density of the Garrett-
Munk (GM) internal wave model [Garrett and Munk,
1972] [Garrett and Munk, 1975; Cairns and Williams,
1976] for E and introduces an additional factor to ac-
count for deviations from GM conditions. This factor
is the square of the measured vertical shear variance

normalized by shear variance in the GM model, both

integrated over the same wavenumber band, <S2/S%~M> =

2 $%(k) /SZ (k) dk, with S(k) = AF2[V.], where V.
is vertical shear, F the Fourier transform, and A an
appropriate normalization factor so that variance is
conserved (refer to Section 3.2.2). The shear ratio
(S/San) represents the energy in the internal wave
field in units of the GM energy level.

Comparing the finescale model with dissipation rates
inferred from microstructure measurements Gregg con-
cludes that € = ¢y <S4> N? to within a factor of 2 for
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an appropriate scaling factor ¢g. Comparison with ad-
ditional measurements in a subsequent study [Gregg
et al., 2003] verified the latitudinal dependency fac-
tor fcosh™'(N/f) in the HWF model. This factor
accounts for the slower rate at which wave energy is
transferred to dissipation scales at low f (i.e. low lat-
itude) [Gregg et al., 2003].

Another modification of the original G89 parame-
terization is the inclusion of the shear-to-strain ratio R
to account for the dominant frequency in the observed
wave field [Polzin, 1995]. This factor appears in a sim-
plified form in [Gregg et al., 2003], refer to (3.4) and
(3.7), and is also included in the parameterization used
in this study.

The parameterization is usually applied to (semi
overlapping) vertical segments of measurements from
a hydrographic cast. The segment length and the bin
size of the data within the segment determine the pos-
sible integration range of both shear and strain spec-
tra. Shear is the vertical gradient of the horizontal
flow velocity and is usually measured using a lowered
acoustic Doppler current profiler (LADCP) with a typ-
ical bin size of 20m. Strain is the vertical gradient of
the displacement of isopycnals by internal waves and is
calculated using the local relative change in buoyancy

frequency, , < 2>
N*— (N

&= W, (3.2)

where the brackets (.) indicate spatial averaging. The
buoyancy frequency is calculated from CTD measure-
ments with a typical bin size of 2m (see Section 3.2.4
for details).

Putting everything together gives the relation be-
tween fine scale internal wave parameters and turbu-

lent dissipation used by [Kunze et al., 2006] and in this
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study,

N2 (S)?
)
N§ (Saur)?

=2 (14 8) (525)" a6

L, N) = fcoshfl(N/f)
’ f30 cosh™ (No/ f30)’

h(R)L(f,N), with  (3.3)

(3.5)

with €g = 6.73 x 10719 m?s~3 the canonical GM dissi-
pation rate, S the shear variance spectrum normal-
ized by the buoyancy frequency or the strain vari-
ance spectrum, R the shear-to-strain ratio (3.7), No =
5.24 x 1073 rad s~! the canonical Garrett-Munk buoy-
ancy frequency, and f3g the inertial frequency at 30°
latitude [Gregg et al., 2003; Kunze et al., 2006].

The buoyancy-frequency-normalized shear spectrum
S[V,/N] is calculated directly from the velocity vari-
ance using S[V;] = k2S[V], with k, the vertical wavenum-
ber (refer to Section 3.2.2 and 3.2.3 for more details on
the spectrum). The brackets (.) in (3.3) indicate inte-
gration of the shear spectrum over a given wave num-
ber band. The Garrett-Munk shear spectrum Sgps
is integrated over the same wave number band. The

GMT6 expression for the shear spectrum is,

2

3 -

(3.6)
with energy level Ey = 6.3 x 1075, thermocline scaling
factor b = 1300m, modal scale number j* = 3, k,x =
7j*N/b/Np, and Ny = 5.2 x 1073 rad s~ L.

The strain variance, as used in the shear-to-strain
ratio (3.7), is integrated over a variable wave number
range to avoid noise contamination at high wave num-
bers. The shear spectrum on the contrary is integrated
over a fixed wave number range. Since the integration

ranges will in general differ we cannot simply use, R =
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(S[V./N]) / (S[&.]), to calculate the shear-to-strain ra-
tio. However, assuming that both the shear and the
strain spectrum have Garrett-Munk-like shapes over
their respective integration bands, we can calculate R

by normalization with the GM variance,

S[%)/Sem(%])

R = sle) /Seme))

(3.7)

where the factor 3 corrects for (Sgn [52]/SGM[%]> =
1/3 when integrated over the same wave number band.

An alternative form of the above parameterization
is based on strain only [Polzin, 1995; Mauritzen et al.,
2002]. The global study of internal wave mixing by
[Kunze et al., 2006] uses strain only in the deep ocean,
where the quality of LADCP data usually deteriorates
due to scarcity of acoustical scatterers. The strain
only parameterization is similar in form to 3.3, but
uses S[¢;], instead of S[V,/N]. Refraining from the
use of shear variance means that the shear-to-strain
ratio cannot be calculated. In the deep ocean [Kunze
et al., 2006] use a fixed value of R = 7 and a modified

scaling factor,

1 R(R+1)
hy = o5y = 2T (3.8)

In section 3.4.2 we compare the shear-and-strain and
strain only parameterization to show the effect of dif-

ferent model configurations.

3.2.2 Normalization of variance spectra

This section discusses how we calculate and normalize
the shear and strain spectra. The Fourier transform
is normalized to preserve variance when transforming
from the spatial to the spectral domain.

The velocity signal and the strain signal are as-

sumed to be given in equally spaced depth bins, f(n),
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with n = 1,2,3,..., N and spacing Az. The data is
segmented and detrended before Fourier transforma-
tion, g(n) = w(n)f(n) — y(n), with y(n) a linear fit
to w(n)f(n) and w(n) a 10% sin? ‘window function’.
The fast Fourier transform (FFT) algorithm works op-
timally for N a power of 2, and zeros are padded to
the signal if necessary. The variance spectrum (S) is
equal to the sum of the squared Fourier components

and an appropriate normalization factor,

N
Fo(j) + Fi(j) = Y _g(n)e ™"D2 1 with
n=1
oo a
k, = NAS and j=1[1,2,...,N], and
N Az 2/ . 2, .
Slol() = 25 1E- () + F7 ()],

(3.9)

with j = [2,3,...,N/2]. The overall factor 2 comes
from restricting the spectrum to the Nyquist range,
j=1,...,N/2 4+ 1. The constant component with
j = 1 and the Nyquist component with j = N/2 4+ 1
are unique and therefore not multiplied by 2.

The normalization is chosen so that the variance
of the signal is equal to the integrated variance in
the spectral domain. For a discrete signal we require
var(g(n)) = 1/N 300, lg(n)—g(n)|* = AX L, F(j)F*(j)Ak..
Using that the mean of a detrended signal is zero,
g(n) = 0, and the Parseval theorem, >-N_ |g(n)[> =
1/N Y [F(j)?, and writing Ak, = 27/(AzN), we
obtain A = Az/(2nxN).

3.2.3 Spectral corrections

Spectral corrections account for the loss of variance
due to non-continuous data and instrument limita-
tions. The strain spectrum S[¢,] is only corrected for

bin-to-bin first differencing and the correction factor
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is sinc?(Azk,/2r) for bin-size Az. The shear variance
spectrum is corrected for loss of variance due to, (i)
range averaging, (ii) finite differencing, (iii) interpo-
lation, and (iv) instrument tilting, by the following

spectral functions:

Sy = sinc(k. Az /(21))? x sinc(k, Az, /(2m))%, (
(k.Az/(2m))?, (3.11
(k.Az,/(2m)* x sinc(k.Az/(2m)?  (

Sy = sinc(k.d/(2n))?, (

Sy = sinc

S3 = sinc

with Az; the LADCP transmitter vertical pulse length
(typically 16m), Az, the LADCP receiver processing
bin length (typically 16m), Az data bin size (typi-
cally 20m), and d = 9m determined empirically [Polzin
et al., 2002].

3.2.4 Buoyancy frequency and strain

The buoyancy frequency, N, is an important ingre-
dient of the fine scale parameterization. In this sec-
tion we show how we calculate N and we discuss some
of the potential issues we encountered when the deep
ocean becomes weakly density stratified.

The mean buoyancy frequency can be calculated in
different ways. We chose to calculate the mean buoy-
ancy frequency <N 2> in the strain expression using a
second order least-square fit to N2 over the length of
each segment (320m), instead of the physically more
elegant method of adiabatic levelling [Bray and Fo-
fonoff, 1981]. The motivation for this simplification
is the significantly lower computational cost (O(100)
times faster) and the fact that we observe a low impact
on the dissipation estimates.

The dissipation parameterization depends on strain

through the integrated strain variance in the shear /strain
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ratio. Figure 3.1 compares strain variance obtained
from a simple quadratic fit to N? and adiabatic lev-
elling. The agreement of both estimates is reasonable
throughout the water column, which we observe sim-
ilarly for other hydrographic stations. Moreover it
should be noted that the shear/strain parameteriza-
tion depends only weakly on strain variance.

There is however one point of concern when us-
ing a simple fit to estimate the mean buoyancy fre-
quency. It works fine for estimating the deviation
from the mean state in the numerator of the strain
expression, but cannot be used for the denominator,
as (N?) may be zero. Negative (N?) (and therefore
zero-crossings) occur because there are negative N2
values, mostly due to noise in temperature and salin-
ity measurements and perhaps also due to real density
overturns. The simplest way to suppress noise is av-
eraging and we chose to use the segment mean N2, so
that & = (N?(2)— < N%(z) >)/N2.

One more point of caution is the risk of N2 becom-
ing prohibitively small, that is indistinguishable from
zero. Monte Carlo simulations with WOCE standard
errors of 0.001°C for temperature and 0.003 for salin-
ity gives a standard error of 2 x 107!° rad s~! for the
segment mean buoyancy frequency N2. We use this
value as a lower bound for N2 and discard segments

with a smaller mean buoyancy frequency.

3.2.5 Shear-to-strain ratio

The shear-to-strain ratio is related to the dominant

frequency of a broadband internal wave field, because,

(@ + N~ w?)

R= N2(w? — f2)

(3.14)

for a single, linear wave [Polzin, 1995]. Linear wave

theory also predicts that the interaction rate of single
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Figure 3.1: Buoyancy frequency and strain. Left: Comparison of the mean
buoyancy frequency from a 2nd order fit (IV Q)Simple and from adiabatic lev-
elling (N?),4ia. The buoyancy frequency is calculated by first differencing
of 2m density bins. Right: Comparison of strain variance calculated using
<N2>simple and <N2>adia-
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model feature configuration

data segments bottom-up and 320m long

Fourier window 10% sin?

buoyancy frequency N2> fand N2> 8x 1078 rad s~!

shear integration limits  150-320m

strain integration limits Ay—150m, where Ay = 10m or the shortest
wavelength for which f/\lj’om S[E](N) dX < 0.1.

shear-to-strain ratio minimum value set to R = 1.01 as in [Kunze

et al., 2002]; and we use R = 7 if only strain is
available or when strain is too noisy.

Table 3.1: Model configuration

wave with a background wave field is proportional to,

W2 — f2 1/2
[((NQ_ZZ?)] . (3.15)

Combining these relations gives an estimate of the ex-
pected interaction rate in terms of R, which can be
used to improve the HWF-scaling in non-GM condi-
tions [Polzin, 1995]. We use the w < N approxima-
tion of the shear-to-strain scaling factor hy(R), refer to
(3.4), as in [Kunze et al., 2006]. Note that this factor
is 1 for a GM wave field, because Rgpy = 3.

3.2.6 Summary of model configuration

The main features of our model configuration are sum-
marized in Table 3.1. The criterion for the integra-
tion range of strain variance, as well as the choice of
the shear integration bandwidth is taken from [Kunze
et al., 2006]. The use of different integration ranges
aims to avoid small scales where LADCP data be-
come noisy and large scales where strain variance is
less likely to originate from internal waves.

With regard to the buoyancy frequency and the
calculation of strain we choose a relatively straightfor-

ward approach (refer to Section 3.2.4). The buoyancy
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frequency N(z) is calculated using sw_bfrq, a routine
in CSIRO SEAWATER library for MATLAB!. The
‘background’ mean buoyancy frequency is calculated
by a simple quadratic fit to N(z) within a segment, in-
stead of using the more elaborate method of adiabatic
levelling [Bray and Fofonoff, 1981] as was preferred by
[Polzin, 1995], [Naveira-Garabato et al., 2004b], and
[Naveira-Garabato et al., 2004a).

Another omitted configuration option is averag-
ing shear and strain variance over several segments at
the same depth from neighbouring hydrographic sta-
tions. Averaging of spectra reduces the statistical un-
certainty. Instead of spectral averaging over segments
at the same depth we choose to average over segments

at the same density.

3.3 Data

The fine scale parameterization for turbulent dissi-
pation or diffusivity requires information about the
density gradient and the vertical variance of the hor-
izontal flow velocity. This information can be col-
lected through simultaneous CTD and LADCP pro-
filing. The required CTD quality standard and the
need for LADCP measurements limits the available
data sets to the WOCE and post-WOCE era. Table
3.2 gives an overview of the data sets used in this study
and Fig. 3.2 shows the locations of the measurements.

A reformulation of the G89 parameterization in
terms of strain variance instead of shear variance makes
it possible to infer mixing from CTD data only. The
validity of this method is less established, and appears
to underestimate the dissipation rate below 3000m (re-
fer to Section 3.4.2). Nevertheless we added a number

of CTD only hydrographic casts to our analysis (again

"http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm
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Figure 3.2: Locations of hydrographic stations used for the estimation of
turbulent dissipation. Open circles/diamonds indicate depth profiles with
CTD and LADCP data and the plus signs mark the locations of CTD only
measurements.

refer to Table 3.2) to improve the spatial coverage.
The total number of CTD and LADCP casts used in
this study is 1545 plus 453 CTD only casts. For some
hydrographic sections we have access to both down-
cast LADCP data and the mean of the up— and the
down-cast. These sections are marked with an asterisk
in Table 3.2.

3.4 Results

3.4.1 Shear and strain spectra

The methods discussed in this chapter rely critically
on our ability to estimate the energy density of the

internal wave field. Estimation of the energy content
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no. dataset chief scientist year /month Az  # casts
1 TI09N* A.L. Gordon 1995/1 20.0 129
2 ISSo1/10* H.L. Bryden 1995/2 20.0 15
3 TR03 A. Ffield 1995/3 10.0 114
4 IRO1IW R. Molinari 1995/5 10.0 93
5 I4-I5W-17C*  J. Toole 1995/6 20.0 134
6 I01W J.M. Morrison 1995/8 20.0 105
7 I01E H.L. Bryden 1995/9 20.0 53
8 IR04 R. Molinari 1995/9 10.0 92
9 110 N. Bray 1995/11 20.0 61
10 I02* B. Warren 1995/12 20.0 168
11  ACSEX1 H. Ridderinkhof 2000/3 19.5 55
12 ACSEX2 H.M. van Aken 2001/3 19.4 63
13 ACSEX3 H. Ridderinkhof 2001/3 19.6 79
14 105 H.L. Bryden 2002/3 19.5 133
15 103/104 M. Fukasawa 2003/12 20.0 141
16  I09N_2007 J. Sprintall 2007/3 8.4 110
I nioz - - - 80
II  sismer - - - 196
IIT  nodc - - - 177

Table 3.2: Hydrographic sections used for estimation of turbulent dissipa-
The LADCP bin size is given in the Az column and the asterisk
means that both up— and mean cast data are available. All sections prior
to 1998 are part of the World Ocean Circulation Experiment (WOCE) and
later sections fall under the Climate Variability and Predictability (CLI-
VAR) program, except for the ACSEX series, which was organised and
funded by the Netherlands Institute for Sea Research (NIOZ). The data
sets I, II and III contain additional CTD-only profiles from NIOZ, Systemes
d’Informations Scientifiques pour la Mer (SISMER), and the United States
National Oceanographic Data Center (NODC).

tion.
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is commonly done in spectral space, using spectral fil-
tering to discriminate between internal wave motions
and other motions, where the latter are referred to as
‘noise’. Noise characteristics of shear and strain dif-
fer because of differences in the spatial sampling fre-
quency (typically 20m for shear and 2m for strain) and
instrument differences (LADCP for shear and CTD for
strain measurement) [Polzin et al., 2002].

The spectra shown in Fig. 3.3 represent the me-
dian spectral level in the proximity of a given density
level. Both the spectral variance of vertical shear nor-
malized by buoyancy frequency and the spectral vari-
ance of strain are shown. These spectra are calculated
as discussed in Section 3.2.2 and corrected for finite
differencing and smoothing (refer to Section 3.2.3).

It is obvious from Fig. 3.3 that the observed spec-
tra are not strikingly GM-like. Similarity to the GM-
spectrum generally deteriorates towards the lowest den-
sity levels and is generally not convincing for the shear
spectra. Strain spectra are often GM-like, that is flat,
within the integration limits, but the shear spectra
have steeper slopes. The ‘blueness’ of the shear spec-
tra gives us the impression that the loss of variance is
over-compensated when we apply spectral corrections
(3.10)—(3.13).

3.4.2 Comparison of shear and strain vari-

ance

Both shear variance and strain variance have been used
in various studies to infer the energy density of the
internal wave field, see [Gregg, 1989] and [Kunze et al.,
1990] for some pioneering studies. In this section we
explore the relation between shear and strain in our
observations.

Figure 3.4 shows the quantile-quantile plots of the

logarithm of the shear spectral level versus the loga-
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Figure 3.3: Median level of shear (red) and strain (blue) variance at given
density. Dotted spectra indicate the GM spectral levels. Vertical lines corre-
spond to wavelengths of 320, 150 and 10m (from left to right). The number
between brackets is the number of spectral estimates at the given density

level.
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rithm of the strain spectral level for all such estimates
available at a given density. The spectral level is the
spectrum integrated over a given wave band normal-
ized by the GM-spectrum integrated over the same
wave band. The integration wavelengths are typically
150-320m for shear and 10-150m for strain (refer to
Table 3.1 for details). The integrated quantity ex-
presses the energy density of the internal wave field
in units of GM energy density.

The quantile—quantile plots give us information on
how the distributions differ. Focussing on density lev-
els denser than 26.64 we can make a few general ob-
servations: (i) There is a shift in location, and strain
generally becomes smaller at higher densities; (ii) The
plots are somewhat S-shaped, which means that the
shear distribution has heavier tails and/or strain is
truncated; (iii) The quantiles are quasi-linear within
the interquartile range, indicating similar distributional
shapes within this range; (iv) The slope of the line
connecting the first and the third quartile is generally
slightly less than 45°, indicating a different scaling,
with shear being more dispersed than strain.

A comparison of shear-and-strain dissipation esti-
mates and strain-only dissipation estimates is shown
in Figures 3.5 and 3.14. Figure 3.5 is a scatter plot of
strain only versus shear-and-strain at different density
levels. Figure 3.14 displays the depth-mean dissipation
profile for section 102 and shows that, below 3000m,
strain-only estimates are up to 2 orders of magnitude
smaller than shear-and-strain estimates.

The shear-to-strain ratio is used to estimate the
dominant frequency of the internal wave field (refer
to Section 3.2.5). Figure 3.6 displays the shear-to-
strain ratio versus the GM-normalized shear variance
at different density levels. Noisy strain estimates are
avoided by omitting R < 1.01, the ‘hard-coded’ lower
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Figure 3.4: Quantile—quantile plots of the logarithm of the shear spectral
level versus the logarithm of the strain spectral level at different density lev-
els. Both the shear and the strain spectra are normalized by their respective
GM spectral values. The red dashed line joins the first and third quartiles
of each distribution.
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limit, and R = 7, the value we use when the integrated
strain exceeds 0.1 when integrated over the lowest two
wave numbers. The plots show a positive correlation,
that is larger shear-to-strain ratios for higher shear
levels, which implies that strain does not scale pro-
portionally to shear. The shift towards larger R also
implies a shift towards lower, more inertial frequencies.

In Fig. 3.6 we also address the question whether
R = 7 is a good choice for the deep ocean, when shear
is not available. Each plot gives the median shear-to-
strain ratio, < R >, and we see that < R > increases
towards higher density levels, from < R >= 2.5 at
v=24.47,to < R >= 8.4 at v = 28.15.

We find that shear-to-strain ratios are even higher
for N > N.,r = 4.5 x 107* rad s~! and have a median
value of 19. This suggests that the canonical value
of R =7 for N < Ng, as used by [Kunze et al.,
2006], is on the low side. Choosing R = 19, instead of
R =7, would increase the [Kunze et al., 2006] strain-
only dissipation estimates, for N < N, by a factor
of 3.9 (refer to Fig. 3.7).

3.4.3 ADCP noise

This section discusses ADCP noise in relation to con-
cerns raised by [Kunze et al., 2006] about the qual-
ity of shear estimates in the deep ocean. The typical
accuracy of a single-ping ADCP velocity estimate is,
Av = 3.2 x 1072 ms™!. Averaging will reduce the
standard deviation of the velocity error by the square
root of the number of pings if the ping-to-ping error is
uncorrelated. The noise spectrum for u? +v? is ‘white’

and given by,

2 Av? Az

SVl= =

(3.16)
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Figure 3.6: Shear-to-strain ratio versus GM-normalized shear variance. Note
that we have excluded R < 1.01 and R = 7 from the ensemble and that
< R > denotes the median value.
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Figure 3.7: Shear-to-strain dependence, h;(R) (3.4) in the shear-based pa-
rameterization (3.3), and ha(R) (3.8) in strain-only parameterization.
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Figure 3.8: Number of acoustical pings going into a LADCP bin-average
for the 102 section. Left: average number of pings for each depth level.
Right: number of pings (vertical axis) versus bin-averaged buoyancy fre-
quency (horizontal axis).

with IV, the number of pings, and Az; the transmitted
sound pulse length projected on the vertical. The ver-
tical shear spectrum is obtained by multiplying (3.16)

by the vertical wave number k., that is,
SV.] = k.S[V]. (3.17)

The number of pings going into an ensemble aver-
age depends on the presence of small scale suspended
matter, capable of refracting the sound signal. The
abundance of acoustical scatterers in the ocean typi-
cally decreases towards the bottom, as the left panel
of Fig. 3.8 shows.

The choice to discard shear estimates at low strat-

ification, as preferred by [Kunze et al., 2006], is based
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Figure 3.9: Observed vertical shear variance at section 102 and estimated
ADCP noise spectra. The blue solid line is the mean spectrum for data
segments at low stratification, with N < Ng,., and the blue dotted line is
based on data in the depth range from 1340m to 1660m. The red lines are
estimated ADCP noise levels for different number of pings. The number of
pings going into a velocity estimate determines its accuracy and depends on
the local abundance of acoustical scatterers.

on concerns about scatterers. In Fig. 3.9 we com-
pare the observed shear variance at section 102 with
the estimated ADCP noise spectrum (3.17). The fig-
ure shows that the expected noise spectrum may in-
deed exceed the observed spectrum in the deep ocean
where N < Ng., if less than 20 pings are available for
averaging.

The right panel of Fig. 3.8 however shows that
there is no clear correlation between the number of
pings and the stratification. For section 102 we find
LADCP bins with less than 20 pings for a large range

of buoyancy frequencies, between 7x 107> and 1 x 1072
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rad s~1.

We note that the vast majority of the ‘low
ping’ bins has a mean buoyancy frequency larger than
Nepr = 4.5%107* rad s~1 and that most LADCP bins
with N < N, are averaged over more than 20 bins.
This leads us to conclude that the [Kunze et al., 2006]
criterion to select ‘bad” LADCP bins with insufficient
pings is unfit. For this reason, and because we do not
have information on the number of pings for most hy-
drographic sections, we choose to use shear throughout

the water column.

3.4.4 Inferred dissipation patterns

Internal waves are omnipresent in the ocean, but not
uniformly distributed as for example the Garrett-Munk
model assumes. Although the internal wave field in-
deed tends to relax to a steady state that is adequately
described by the GM model, there is still plenty of
reason to expect spatial and temporal variability, be-
cause both forcing (mostly tides and wind) and sinks
(mean flow and topography) are non-uniform and non-
stationary. For example over the past 15 years it
has been demonstrated that steep topographic features
lead to intensified internal wave breaking and turbu-
lent dissipation [Ferron et al., 1998; Ledwell et al.,
2000; Mauritzen et al., 2002].

Figure 3.10 shows the dissipation profile inferred
from the main zonal hydrographic sections in the In-
dian Ocean. The main topographic features of interest
in the Indian Ocean are the Southwest Indian Ridge
(SWIR), the Central Indian Ridge (CIR) and the Nine-
tyeast Ridge (NER). These features are labelled in
the figure and all sections show elevated dissipation
rates above the SWIR and the CIR, but not above the
NER. Other locations of elevated dissipation are the
Andaman-Nicobar Ridge (refer to hydrographic sec-

tion I01E), off the continental shelf, and near islands
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and seamounts. In particular Madagascar (102) and
Mauritius (I03/104) appear to radiate internal wave
beams. Similar features are visible off the west flank
of Mozambique Plateau and Madagascar Ridge. There
is also elevated dissipation between the plateau and
the ridge, which perhaps could be explained by wave
trapping [Maas et al., 1997].

The meridional sections displayed in Figure 3.11
show fewer dissipation features and also less obvious
correlation to the bottom topography. The Seychelles
in section 107 is perhaps an exception to this general
observation. The most clear pattern in the meridional
sections is the east—west divide, with generally higher
dissipation rates in the west. Again, one could ar-
gue that this is correlated to the more abundant and
steeper topography in the western part of the basin.
Indeed, the Ganges sediment cone supports the gen-
eral notion that weak mixing is to be expected above

smooth topography.

3.4.5 Comparison with previously published
estimates

This section discusses a discrepancy between dissipa-
tion estimates by Kunze et al. at the University of
Victoria (UVic) and Naveira-Garabato at al. the Na~
tional Oceanography Centre, Southampton (NOCS).
Andreas Thurnherr (personal communication) com-
pared the depth mean dissipation rate for section 102
as estimated by [Kunze et al., 2006] with estimates
by [Palmer et al., 2007] (refer to their Fig. 2) and
noticed a difference of about one order of magnitude
in the upper 4000m and several orders of magnitude
below that depth. This difference is disconcertingly
large because both authors used an incarnation of the
GO03 parameterization [Gregg et al., 2003]. Hereafter

we will refer to the [Kunze et al., 2006] dissipation
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estimates as ‘UVic’ and to the [Palmer et al., 2007]
estimates as ‘NOCSvI’.

The diffusivity estimates by UVic and NOCS for
section 102dn are shown in Fig. 3.12, where ‘dn’ stands
for downcast. We use the downcast because strain
from upcasts is often contaminated by the CTD wake.
The color coding in the figure is the same used by
[Kunze et al., 2006] for easy comparison with their
Fig. 6. The reproduced NOCSvI estimates are almost
identical to the results published by [Palmer et al.,
2007] and the NOCSvII parameterization is based on
[Kunze et al., 2006], and has the form of (3.3). The
colored diffusivity patterns clearly show the discrep-
ancy between NOCSvI and UVic as pointed out by A.
Thurnherr.

To allow for comparison with the large scale dissi-
pation estimates obtained in Chapter 2 we have con-
verted the previously published diffusivity estimates
to dissipation rates using the Osborn relation [Osborn,
1980]. NOCSvI and UVic dissipation rates and buoy-
ancy frequencies are plotted against each other in Fig.
3.13. The comparison of buoyancy frequencies is re-
assuring in the sense that it gives a tight one-to-one
relation. The dissipation rates however scatter over
multiple orders of magnitude. The NOCSvI estimates
are biased high compared to the UVic estimates, espe-
cially towards the bottom. The different scaling with
depth becomes very pronounced below 3000 m, where
NOCSvI estimates increase over 2 orders of magnitude,
whereas the UVic dissipation rates remain more or less
constant.

The NOCSvII parameterization is the result of an
attempt to reproduce the UVic results by rebuilding
the model from scratch following [Kunze et al., 2006]
and guidelines personally communicated by E. Kunze.

The most distinct feature of the UVic parameteriza-
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section. Top: station positions. (a) UVic estimates [Kunze et al., 2006]. (b)
NOCSVI estimates [Palmer et al., 2007]. (c) New NOCSVII estimates.
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bottom-up and NOCSvI goes top-down).

tion, that is the use of only strain at low stratification,
is not incorporated in NOCSvVII, but has been eval-
uated in model test runs. Other features, that have
been incorporated, and differ from NOCSvI include
different integration bandwidths for shear and strain,
and the use of the shear-to-strain ratio. The configu-
ration of the NOCSvII model is summarized in Table
3.1

The new result is presented in Fig. 3.14, where the
NOCSvII depth mean dissipation rate is compared to
UVic and NOCSvI. We see that the new NOCSvII
estimates agree with the NOCSvI estimates to within
a factor of 3, except in the bottom bin where the old
NOCSvI estimates are about an order of magnitude
larger. This result means that the discrepancy with
the UVic estimates remains unresolved. In test runs
we found that the new estimates converge towards the
UVic values if we use strain-only when N > Ng,.,., but
we have not been able to reproduce the shear based
estimates.

Both NOCSvI and NOCSvII give dissipation esti-
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Figure 3.14: Depth mean dissipation rates in 500m bins.

mates that are about one order of magnitude larger
than the UVic estimates. The fact that both NOCS
models were independently developed, and the fact
that the NOCS estimates are of the same order of
magnitude as the dissipation rate predicted by the GM
model, give us reasons to believe that UVic systemat-

ically underestimates the dissipation.

3.5 Discussion

Two decades of fine scale parameterization of ocean
turbulence have resulted in a recipe that still appears
to require substantial ‘cooking skills’. In this section
we discuss some of the applicability limitations dis-
cussed in the literature and the issues we encountered
ourselves.

Extensions to the original G89 parameterization
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have improved its performance in non-GM conditions
[Polzin, 1995; Gregg et al., 2003], but have not re-
sulted in a foolproof recipe that works anywhere, any-
time, because the physics incorporated in the model
remains limited. Several studies have explored the
break-down point, for example, (i) [Kunze et al., 2002]
report factor 30 underestimation of dissipation in Mon-
terrey Canyon, (ii) [Finnigan et al., 2002] find that
strain variance underestimates mixing in regions of
weak stratification compared to mixing estimates based
on Thorpe scale analysis and budget methods, and
(iii) [MacKinnon and Gregg, 2003] conclude that the
Gregg—Henyey scaling fails on the continental shelf.

However, at many other sites the method has proven
to be accurate to within a factor 2-3 compared to
micro-structure measurements, e.g. [Polzin, 1995]. This
makes the method a powerful tool to reveal mixing
patterns, as demonstrated by [Naveira-Garabato et al.,
2004a,b; Kunze et al., 2006].

The main issue discussed in this chapter is the dis-
crepancy between published diffusivity estimates for
the 102 section in the Indian Ocean by [Kunze et al.,
2006] and [Palmer et al., 2007]. It is a case of: same
method, same data, different answer. And the differ-
ence is much larger than the widely reported accuracy
of factor 2-3.

This disconcerting discrepancy has motivated our
attempt to reproduce the [Kunze et al., 2006] result,
first by iterative modification of our existing routine,
and later by totally rebuilding of the code from scratch.
This effort has increased our appreciation of some flavour
differences, such as different ways of dealing with noise
at low stratification. Every flavour has its own bias
and we conclude that the different scaling behaviour in
the deep ocean appears to be attributable to the use of

strain variance instead of shear variance as preferred
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by [Kunze et al., 2006]. We found that using strain
variance, limited to an integrated value of 0.1, pro-
duces much lower mean dissipation rates below 3500m,
compared to estimates based on shear variance.

We do not share concerns expressed by [Kunze et al.,
2006] about excessive noise contamination of the LADCP
data at low N and therefore chose to use shear vari-
ance throughout the water column. On the contrary,
we find that the buoyancy frequency, and thus also
strain, may be seriously affected by noise at low strat-
ification. To us, it appears that strain in weakly strat-
ified waters may be more affected by noise than shear.

The NOCSvII model configuration, as used in this
study, is preferred over the NOCSvI model, as used by
[Palmer et al., 2007], for the following reasons:

1. NOCSvVI does not use the shear-to-strain ratio,

2. NOCSvI segments the data starting at the surface,
whereas NOCSvII segments start at the bottom,
which ensures optimal use of the bottom data,

3. NOCSvI uses variable shear integration limits based
on the number of ADCP pings going into a data

bin, this information however is often not available
and therefore not used in NOCSvII.

3.6 Summary and conclusion

In this chapter we discussed the details of the param-
eterization we used to infer dissipation from fine scale
vertical shear and strain.

A comparison with previously published estimates
by [Kunze et al., 2006] and [Palmer et al., 2007] shows
that we reproduce the latter to within the uncertainty
of the method, except in the bottom 500m, where our
estimates are about one order of magnitude smaller,
due to segmenting from bottom and the use of the

shear-to-strain ratio. The [Kunze et al., 2006] esti-



CHAPTER 3. FINE SCALE OBSERVATIONS

mates are smaller than our estimates, by about one
order of magnitude in the upper 4000m, and up to
almost three orders of magnitude below this depth.
Based on our inability to reproduce the [Kunze et al.,
2006] results we conclude that their dissipation esti-
mates are suspiciously small.

Another indication that the [Kunze et al., 2006]
dissipation estimates may be biased low is the fact
that they are systematically smaller than the canoni-
cal Garrett-Munk dissipation value (refer to Fig. 3.14).
Moreover, [Nikurashin and Ferrari, 2009] find that their
simulations of internal wave radiation and dissipation
in Drake Passage and the Scotia Sea (Southern Ocean)
are larger than dissipation estimates inferred from ob-
servations by [Kunze et al., 2006] and agree with [Naveira-
Garabato et al., 2004a).

The dissipation estimates discussed in this chap-
ter will be compared to the box-model estimates from
Chapter 2 in Chapter 4.
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Chapter 4

Comparison of large
scale and fine scale

dissipation estimates

4.1 Introduction

In this chapter we test the hypothesis that the Indian
Ocean MOC can be sustained by internal wave break-
ing. We test this hypothesis by comparing the MOC
energy budget we discussed in Chapter 2 with the in-
situ estimates of internal wave dissipation as presented
in Chapter 3.

The fine scale method to estimate in-situ dissipa-
tion rates (refer to Chapter 3) is designed to parame-
terize turbulent dissipation due to internal wave break-
ing and is based on the assumption that elevated inter-
nal wave energy density leads to elevated dissipation.
Away from internal wave energy sources or sinks we ex-
pect GM-like energy levels (we discuss the GM model
in Section 5.4.3). Under non-GM conditions, for ex-
ample at generation sites and at places of increased
nonlinear interaction we expect higher energy levels.
Such sites are often related to bottom topography, be-

cause internal tides may be generated at super critical
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slopes and waves are scattered by rugged topography
(see for example [Nycander, 2005] and [Polzin et al.,
1997)).

Non-linear interactions among internal waves cause
a net transfer of energy to smaller scales which will
eventually lead to wave breaking and turbulent dis-
sipation. Internal wave—wave interaction depends on
latitude through the inertial frequency (f). Indepen-
dent of topography we expect internal wave dissipa-
tion to drop close to the equator, because the rate at
which waves are Doppler shifted is smaller for smaller
f [Gregg et al., 2003] and we expect elevated wave—
wave interaction close to 28.9°, because of increased
parametric subharmonic instability at this latitude [MacK-
innon and Winters, 2005].

The dissipation rate is highly variable, both in time
and space. In this study we focus on the spatial vari-
ability associated with topography, but we will touch
on temporal variability in Section 4.3.4. Section 4.3.3
discusses sites of extremely elevated dissipation rates,
the so called ‘mixing hotspots’. The dissipation rate at
these sites is typically a factor 100 to 1000 higher than
the background value. To obtain any useful statistic
it is therefore essential that hotspots are well repre-
sented in the data set, that is the magnitude of the
dissipation rate should be approximately right and the
number of sampled hotspots should be representative
for the basin wide distribution. If these conditions are
not met we might end up comparing ‘applesauce and
oranges’ as [Munk and Wunsch, 1998] have warned
against.

Whether our set of measurements is adequate to
estimate the mean dissipation rate depends on our
ability to model the statistical nature of ocean tur-
bulence. In this chapter we investigate a number of

potential biases with regard to the spatial distribution
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of the measurements.

4.2 Null hypothesis

In chapter 2 we use a one dimensional box-model in
density space to estimate the basin-wide mean dissipa-
tion rate. In chapter 3 we use a parameterization to in-
fer dissipation rate from fine structure measurements.
The resulting in-situ dissipation estimates are inter-
polated onto density levels using linear interpolation.
Section 4.5 discusses the way we calculate the Indian
Ocean mean dissipation rate and its uncertainty.

In this chapter we assess whether there is enough
energy in the internal wave field to support the Indian
Ocean MOC. More specifically we will compare the
fine scale dissipation estimates with five hydrography
based estimates of the Indian Ocean MOC. This means
that we test the null hypothesis,

Hy:p>L against Hy:p <L, (4.1)

with p the mean fine scale dissipation rate and L the
large scale dissipation rate. We reject the null hypoth-
esis Hy when the upper confidence level of y is smaller
than L.

4.3 Exploratory statistics

4.3.1 Ensemble statistics

This section discusses the basic statistics of the ensem-
ble of all fine scale dissipation estimates. The ensemble
of observations includes only single occupations. Only
data from LADCP down casts is used if up— and down
cast data are separately available. In case of multiple

occupation of the same section we use the data col-
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lected closest to 1995' to minimize temporal spread
in the ensemble. In order to achieve better spatial
coverage we also include CTD-only estimates in the
ensemble.

The probability density distribution of the dissi-
pation rates is shown in Fig 4.1. The range of dis-
sipation rates is between 3.1 x 10714 and 1.5 x 1076
m?s~3 with most measurements close to the median,
i.e. 1.6 x 10719 m2s—3. Negative dissipation rates have
no physical meaning and the probability distribution is
therefore strongly skewed to the right, with a skewness
of 37. Another difference in comparison to the Gaus-
sian distribution is the fact that the observed probabil-
ity density is more peaked. This property is expressed
by the high kurtosis value of 1640, much larger than
the ‘normal’ value of 3.

The asymmetry (skew) and peakiness (kurtosis) of
the distribution make its mean sensitive to values in
the high-end tail. This is best illustrated by a simple
example. Suppose we have systematically underesti-
mated /undersampled the mixing hotspots by factor
10, and we correct for this by multiplying the high-
est 1% of the data by factor 10. This correction, to
only 1% of the data in the thin high-end tail, has a
large impact on the mean? and results in a 6.9 times
higher value (from 2.14 x 107 to 1.48 x 10~ %m?s™3).

Figure 4.1 shows the frequency histogram of the
dissipation rate (left panel) and the density histogram
of the logarithm of the same dissipation estimates (right
panel). A maximum likelihood fit of a standard nor-
mal distribution to the pdf of log(e) shows that the
data is approximately lognormally distributed. This

suggests that the logmean of the dissipation estimates

11995 is a year with many Indian Ocean WOCE observations.
2Strictly speaking we should increase the number of elements by 1% when accounting
for undersampling, but this makes a minor difference.
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Figure 4.1: Basic statistics of all estimated values for the dissipation rate.
Left: frequency histogram. Right: logarithmic density histogram. The red
line is a normal distribution with fit parameters i = —9.74 £ 0.01 and
6 = 0.77 +0.01. The range indicates 95% confidence intervals.

is less sensitive to outliers, and therefore a more robust

statistic, than the arithmic mean.

4.3.2 Isopycnal statistics

We interpolate the dissipation estimates onto density
surfaces to enable comparison with the large scale MOC
energy budget as discussed Chapter 2. This transfor-
mation to density space is possible because there is
an one-to-one relation between the vertical coordinate
(parallel to gravity) and the density v of a (stably)
stratified fluid.

Table 4.1 shows some basic dissipation statistics at
the large scale density levels defined in Chapter 2. The
inferred fine scale dissipation rates are interpolated
onto the density levels using linear interpolation. The
table shows that the median value is smaller than the
mean for all density levels. This is consistent with a

right-skewed distribution and we indeed find a positive
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skewness for each of the isopycnal ensembles, as shown
in the second column from the right. The scaling of
the mean and median dissipation rate with depth cor-
responds to the dissipation patterns shown in Fig. 3.10
and Fig. 3.11. These figures generally show high dissi-
pation rates in the upper 1000m, smaller values of or-
der 1071 m?s73 at intermediate depth, and elevated
dissipation towards the bottom. The bottom intensifi-
cation in the table is not very pronounced because we
do not regard densities larger than 28.15 kg m~3. Fig-
ure 2.4 shows that this isopycnal lingers around 3800m
at 32°S, which is still about 1km from the bottom.

4.3.3 Mixing hotspots

Mixing rates in the upper ocean interior are typically
of order 1x107® m?s~! [Gregg, 1989]. That is about a
factor 10 smaller than the mixing rate required to sus-
tain the global MOC [Munk, 1966]. This observation
has led to the conjecture that most mixing takes place
in relatively few vigorous mixing regions. Such ‘mixing
hotspots’, with mixing rates up to 1000 times higher
than the open ocean value, have indeed been identi-
fied over the past 15 years. Sites of elevated mixing
include rough topography (ridges, seamounts, conti-
nental slopes etc.) [Polzin et al., 1997; Ledwell et al.,
2000] and submarine canyons [Thurnherr et al., 2005].

In this section we look for sites with high dissipa-
tion rates. We identify hotspots using the criterion
that the local dissipation rate at a density level is
higher than the median value of the large scale dis-
sipation estimates from Chapter 2. Figure 4.2 shows
the locations of these sites for five different density
levels.

The general picture arising from Fig. 4.2 is that all
hotspots are located south of the equator and that

there are more hotspots in the western half of the
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ID DPTH DENS N MEAN MEDIAN STD SKEW KURT
1 0 2242 0 - - - - -
2 42 23.56 0 - - - - -
3 87 2447 0 - - - - -
4 137 25.21 16 1.2e-007 7.8e-009  3.8e-007 4 14
) 192 25.79 60  9.1e-008 5.8e-009  2.5e-007 4 16
6 257  26.26 183 4.3e-008  4.1e-009  1.2e-007 5 30
7 349 26.64 615  2.0e-008 2.2e-009  6.6e-008 7 59
8 543 2694 1294  6.8e-009 8.6e-010  2.8e-008 10 113
9 765 2718 1631  1.6e-009  4.6e-010  4.2e-009 8 104
10 930 2737 1629 1.1e-009 3.4e-010  2.4e-009 ) 40
11 1100  27.53 1594  8.7e-010 2.8e-010  1.9e-009 6 45
12 1285  27.65 1546  6.6e-010 2.2e-010  1.6e-009 9 123
13 1466  27.75 1490  6.3e-010 1.9¢-010  2.9e-009 27 899
14 1639  27.83 1457  4.7e-010 1.7¢-010  1.1e-009 8 115
15 1808  27.89 1395  3.6e-010 1.4e-010  7.2e-010 6 54
16 1971 2794 1286  2.9e-010 1.2e-010  5.3e-010 5 31
17 2146 2799 1191  2.5e-010 9.5e-011  5.7e-010 8 90
18 2335  28.02 1142  2.3e-010 8.2e-011  9.7e-010 26 769
19 2537  28.04 1091  2.0e-010 7.9e-011  3.7e-010 ! 38
20 2756  28.07 1016  1.8e-010 8.2e-011  3.3e-010 5 32
21 2965  28.08 932 2.0e-010 8.9e-011  3.7e-010 6 62
22 3154 28.10 848  2.1e-010 8.7e-011  3.6e-010 4 26
23 3322 28.11 774 2.2e-010 9.3e-011  4.8e-010 9 120
24 3466  28.12 703  2.4e-010 9.7e-011  6.7e-010 16 323
25 4058  28.15 448  4.3e-010 1.3e-010  1.5e-009 10 129
all - — 22341 2.12e-009 1.75e-010 2.46e-008 34 1551

Table 4.1: Statistics of the dissipation rate interpolated onto neutral density

levels.
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Figure 4.2: Dissipation hotspots red circles at four different density levels.
The hotspots are marked with red circles and defined as locations where
the fine scale dissipation rate is larger than the median of the large scale
basin wide estimates. Grey circles indicate locations that do not satisfy this
criterion. Depth contours are drawn every 750m.

basin. The density of hotspots appears particularly
high in the Southwest Indian Ridge (refer to Fig. 2.4
for a map with labelled topography), close to the south-
western tip of Madagascar, around the Amirante Pas-
sage (between the Mascarene— and Somali Basin), and
in the Madagascar Basin. In the eastern half of the
basin, east of Ninety East Ridge (NER), we find a
cluster of hotspots around 20°S and a single hotspot at
about 10°S, which might be related to a saddle point in
the NER at this latitude [Warren and Johnson, 2002].
We also find a few scattered hotspots at the continen-

tal shelf break south of Indonesia.
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4.3.4 Temporal variability

We explore the temporal variability of the dissipation
rate by comparing the January 1995 and March 2007
occupation of section I09N. The top left panel of Fig.
4.3 shows that the 2007 cruise has not occupied all the
1995 stations. In the comparison however we only use
stations that are less than 600m apart.

The top right panel of Fig. 4.3 compares the depth
mean dissipation rate in 500m depth bins. The means
are the means of the logarithm of the dissipation rate
which is close to the geometric mean (i.e. median) for a
quasi-lognormal distribution. Assuming lognormality
we may perform a paired T-test and find that mean
values are not significantly different at all depth levels.

The bottom panel of Fig. 4.3 compares the geo-
metric means per station for all stations with at least
5 dissipation estimates. We observe similar patterns
for 1995 and 2007 and when applying a T-test to the
logged dissipation estimates we again find that the
mean has not changed significantly for most stations.
The observed general similarity between the station
mean and depth mean dissipation rates is consistent
with a quasi-steady dissipation climate on decadal time
scales. Based on this result we assume that isopycnal
mean dissipation rates, based on observations in dif-
ferent years, may be put together in a single statistical

ensemble.

4.4 Sampling biases

4.4.1 Latitude

The parameterization used to infer dissipation (3.3)
depends on latitude through L(f, N) o< facosh(N/f),
with f o sin(lat) the inertial frequency and N the
buoyancy frequency. The latitudinal function L(f, N)

93
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Figure 4.3: Comparison of dissipation estimates inferred from the 1995 and
2007 occupation of I09N. Top left: station track with 500m depth contours.
Top right: depth mean dissipation rate. Bottom: station mean dissipation
rate. The number at the top of the grey bars indicate whether the means of
logo(€) are different (1 means different) at 0.05 significance.



CHAPTER 4. RECONCILIATION OF SCALES 95

0.04 T T T T T T
I stations

m— random

0.035- b

0.025- i

probability density
o
o
N
T
1

0.015- b

0.005 - B

-50 -40 -30 -20 -10 0 10 20 30
lat [deg]

Figure 4.4: Estimated probability density P(lat) for station locations and
random locations in the Indian Ocean between 45°S and 30°N.

is zero at the equator and close to one for latitudes
larger than 10°. We therefore expect that the sam-
ple distribution with respect to latitude matters for
the mean dissipation rate. Oversampling in equatorial
waters, for example, would lead to underestimation of
the mean dissipation rate.

The distribution of hydrographic stations is not
likely to be random with respect to latitude, because of
the WOCE sampling strategy with zonal sections. In-
deed, the histogram of station probability densities, as
shown in Fig. 4.4, shows higher probabilities around
the latitudes of the zonal sections (nominally: 30°S,
20°S, 10°S, 0°, 10°N). The probability of a truly ran-
dom sample scales with the width of the basin and is
also shown in Fig. 4.4.

The latitudinal sampling bias can be corrected for
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distribution (€) [1079 m?s73]
uniform (all latitudes have same probability) 2.28
observational (latitudes of hydrographic stations) 1.97
random (latitudes scales with basin width) 2.45

Table 4.2: Latitudinal bias estimates. The mean dissipation rate (€) is based
on (3.5).

by applying weights to the dissipation estimates. The
effect of such a correction may be considerable if the
dissipation rate indeed scales as L(f, N). We estimate
this bias by comparing three spatial distributions, (i)
uniform: all latitudes have the same probability, (ii)
random: latitudes are distributed according to the
basin shape, and (iii) observational: latitudes of hy-
drographic stations.

Table 4.2 compares the mean dissipation rate within
the latitude band from —45°S to 30°N for these lat-
itude distributions. The results are obtained by cal-
culating the average of, € = g L(f, N) (refer to (3.5)),
for the each latitude distribution. This simple exam-
ple shows that the observed mean dissipation rate may
be biased low by about 25%.

Figure 4.5 shows the observed dissipation rate be-
tween 500m and 1000m versus latitude and the average
dissipation rate in 1° latitude bins. The scaling with
latitude of the dissipation estimates looks flatter than
L(f,N), with a less pronounced dip at the equator
than prescribed by L(f, N). This observation is consis-
tent with lower shear-to-strain ratios close to the equa-
tor, that is higher hi(R) values, due to the propagation
of near-inertial waves to lower latitudes. The impact
of non-random sampling would be less pronounced, if
the dependency on latitude is indeed weaker, and the

25% bias is therefore likely an upper bound.
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Figure 4.5: Upper ocean dissipation estimates (1000m<z<500m) versus lati-
tude (blue dots) and averaged over 1° latitude bins (red line). The analytical
dissipation rate €y x L(f, N) is also shown for reference (black dots).



CHAPTER 4. RECONCILIATION OF SCALES

4.4.2 Bottom roughness

Roughness of bottom topography is a measure for the
variance of the bathymetry (refer to App. B). Most
variance is associated with the larger topographic struc-
tures and those are mostly found in the western half
of the Indian Ocean. Many areas of high roughness
are easily identifiable when we overly Fig. 4.6 and Fig.
2.4. We observe that roughness is associated with fea-
tures such as the Southwest Indian Ridge, the Central
Indian Ridge, the Owen Fracture Zone, the Carlsberg
Ridge (i.e. the northern extension of the Central In-
dian Ridge), the Mascarene Plateau (northeast of the
Mascarene Basin), and the Chagos-Loccadive Ridge
(meridionally oriented around 72°E, just south of In-
dia). The eastern basin has generally smaller topo-
graphic features with little roughness. Most rough-
ness in the east is associated with the Southeast Indian
Ridge, Broken Plateau, the Lost Dutchmen Ridge (be-
tween Broken Plateau and Australia), and generally in
the North Australia Basin, including Java Ridge. The
Ninetyeast Ridge is an example of a large topographic
feature with little roughness.

Scattering and generation of internal waves at rough
topography explains the generally observed positive
correlation between roughness and turbulent dissipa-
tion [Polzin et al., 1997; Ledwell et al., 2000]. Our
dissipation estimates are also weakly correlated with
roughness (refer to Fig. 4.7). Under— or over sampling
of areas with high roughness may therefore bias the
mean dissipation rate. Rejection of the null hypothe-
sis, locations of hydrographic stations are random with
respect to roughness, means that a roughness bias is to
be expected.

We test the null hypothesis by comparing the em-
pirical probability density distribution of roughness at
all Indian Ocean grid points with the distribution of

98
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Figure 4.6: Square-root of bottom roughness and hydrographic stations in
red. The roughness is calculated in 0.5x0.5 degree non-overlapping grid
cells (refer to App. B).
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Figure 4.7: Scatter plot of the logarithm of the roughness parameter r ver-
sus the logarithm of the dissipation rate e. The parameter p is the linear
correlation coefficient.
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Figure 4.8: Comparison of roughness at all Indian Ocean grid points with
roughness at the location of hydrographic stations. Left panel: empirical
probability density histogram. Right panel: empirical cumulative density

function.

roughness at the station locations. Roughness at sta-
tion locations is estimated from the roughness grid
cells by triangle-based linear interpolation. The left
panel of Fig. 4.8 shows the probability distribution
of all grid cells and the roughness at station loca-
tions. Both distributions look similar, suggesting ran-
dom sampling. This notion is enforced by comparing
the cumulative density functions and applying a two-
sample Kolmogorov-Smirnov test. The test confirms
that the samples are from the same underlying popula-
tion with 95% likelihood. We therefore accept the null
hypothesis and conclude that there is no significant

roughness bias.

4.4.3 Internal tides

The energy flux from the My tide to internal waves
can be estimated as a function of the tidal velocity, the
bottom roughness and the buoyancy frequency. Figure
4.9 shows the Indian Ocean segment of the global map
based on linear theory [Bell, 1975], as presented by
[Nycander, 2005] (refer to Fig. 5), which is based on
Smith and Sandwell bathymetry, the TPXO0.6 tidal
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Figure 4.9: Energy conversion to internal tides [Wm™2] for one third degree
grid cells and with a logarithmic colour scale (courtesy J. Nycander). Red
circles indicate hydrographic stations.

velocity field, and the SAC? hydrographic climatology.

We estimate the sampling bias with respect to the
distribution of tidal energy conversion by comparing
the energy flux at all grid cells with the energy flux at
station locations. This is directly analogous to the es-
timation of the roughness bias in Section 4.4.2. Figure
4.10 shows the histogram of both distributions. As
with roughness we again find that the Kolmogorov-
Smirnov test accepts the hypothesis that the stations
are sampled randomly with respect to internal tides.

We therefore expect no significant tidal bias.

3World Hydrographic Program Special Analysis Centre
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Figure 4.10: Empirical probability density histogram of the energy flux to
internal tides at all Indian Ocean grid cells and at station locations (tidal
conversion rates from J. Nycander).

4.5 Hypothesis testing

4.5.1 Perfect data assumption

In Section 4.3.1 we saw that the distribution of dissipa-
tion rates has a heavy right tail. This makes the mean
of the distribution sensitive to outliers. However, the
mean is still a robust statistic in the absence of out-
liers, that is when all values, including the extreme
ones in the tail can be trusted to accurately represent
the real dissipation rate.

We will consider the data perfect when all esti-
mates are 100% accurate and randomly sampled from
the real ocean dissipation field. Under these ideal-
ized conditions there is no reason to suspect the mean
value for a sufficiently large sample set. In Table 4.3
we compare the simple arithmetic mean of the inferred
dissipation with the large scale dissipation estimates.

In order to either accept or reject the null hypoth-
esis (i.e. internal waves can sustain the Indian Ocean

MOC) we will need an estimate of the statistical un-
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certainty. Avoiding strong parametric assumptions, in
particular the obviously unfit assumption of normality
that is inherent to the standard deviation, we chose
to use bootstrap resampling (refer to App. C) to esti-
mate the uncertainty. Bootstrap estimates of the mean
and its standard deviation are given in Table 4.3 for a
resampling frequency of 1000. The null hypothesis is
rejected when the mean plus three standard deviations
is smaller than the large scale value.

Focussing on layers relevant to the deep MOC,
which we choose to be layers denser than 27.00, we
see that the fine scale inferred mean dissipation rate is
sufficient to support the large scale estimates for a few
layers only. The energy in the internal wave field is
sufficient to support the MCD solution for v = 27.18
kg m™3 and v = 27.37 kg m~3, the BRY solution for
v =28.12kg m™3 and v = 28.15 kg m~3, and the SLO
solution for v = 28.15 kg m—3. Based on this compar-
ison we conclude that the estimated internal wave dis-
sipation falls short to support the Indian Ocean MOC

at all other density levels.

4.5.2 Lognormal assumption

In Section 4.3.1 we saw that the probability density
function (pdf) of the logged dissipation estimates re-
sembles the bell-shape of the standard normal pdf.
The pdf of a truly lognormal e-distribution can be writ-

ten as,

flelp, o) =

exp (_ (log(e) — u)2> 42

eo\ 2T 202

2 and expected

with ‘logmean’ 1 and ‘logvariance’ o
value exp(p + %02). In Fig. 4.11 we compare the log-
arithm of the fine scale expected value, i.e. u—+ %UQ,
and the logarithm of the large scale expected value.

Assuming lognormality we use p = mean(log(e)) and
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ID DENS MEAN STD MCD GAN FER BRY SLO
1 22.42 - - - - - - -
2 23.56 - - - - - - -
3 2447 - - - - - - -
4 2521 1.23e-007 8.83e-008 0 0 0 0 0
5 2579  9.23e-008 3.11e-008 0 0 0 0 0
6  26.26 4.26e-008 9.12e-009 0 0 0 0 0
7 26.64 1.97e-008 2.78e-009 0 0 0 0 0
8 2694 6.82e-009 8.07e-010 0 0 1 1 1
9 2718 1.60e-009 1.01e-010 0 1 1 1 1
10 27.37  1.09e-009 5.93e-011 0 1 1 1 1
11 2753  8.67e-010 4.88e-011 1 1 1 1 1
12 27.65  6.62e-010 4.05e-011 1 1 1 1 1
13 27.75  6.26e-010 7.48e-011 1 1 1 1 1
14 27.83  4.69e-010 2.89e-011 1 1 1 1 1
15 27.89  3.65e-010 1.82e-011 1 1 1 1 1
16 27.94  2.93e-010 1.50e-011 1 1 1 1 1
17 2799  2.49e-010 1.55e-011 1 1 1 1 1
18 28.02  2.33e-010 2.81le-011 1 1 1 1 1
19 28.04 1.96e-010 1.04e-011 1 1 1 1 1
20 28.07 1.85e-010 1.04e-011 1 1 1 1 1
21 28.08 1.97e-010 1.19e-011 1 1 1 1 1
22 2810  2.06e-010 1.22e-011 1 1 1 1 1
23 2811  2.22e-010 1.71e-011 1 1 1 1 1
24 2812  2.36e-010 2.43e-011 1 1 1 0 1
25  28.15  4.23e-010 7.13e-011 1 1 1 0 0

Table 4.3: Bootstrap estimates of the mean dissipation rate and the standard
deviation with B = 1000 for the number of bootstrap replicates (refer to
App. C). The logical in the last five columns indicates whether the null
hypothesis is rejected (1 means rejection).
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0?2 = var(log(e)).

The bars in Fig. 4.11 represent the basin-wide isopy-
cnal dissipation rates with fine scale estimates in red.
Green-blue-ish bars represent the fine scale expected
value under the assumption of lognormality.

Assuming lognormality we can perform a T-test to
check whether the logged data are a random sample
from a normal distribution with a given mean. We use
the one-sample T-test to check whether the mean of
the logged data is larger or equal to the large scale (LS)
logmean. The large scale logmean can be calculated
from the expected value when we assume that the vari-
ance is similar to the fine scale (FS) variance. Writing
Ele] for the large scale expected value and assuming
lognormality so that log(E[e]) ~ prs + 3074, we find
the large scale logmean by assuming U% g~ U%S.

Table 4.4 shows whether the T-test has accepted
the null hypothesis (4.1) for all density layers and all
large scale expected values. The null hypothesis is
rejected for all large scale expected values at densities
between v = 26.94 kg m™ and v = 28.12 kg m~3.
Disregarding surface layers we conclude that the null
hypothesis is only accepted for the [Bryden and Beal,
2001] and [Sloyan and Rintoul, 2001] solution at the
densest level.

This result is in qualitative agreement with the
bootstrap comparison in Table 4.3. The apparent sim-
ilarity of mean and logmean values seems to indicate
that the fine scale mean is not significantly contami-
nated by outliers. We conclude that assuming lognor-
mality does not appreciably change the findings from
the previous section. In other words, the shortfall of
energy in the internal wave field to support the Indian
Ocean MOC persists under the assumption of lognor-

mality.
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Figure 4.11: Logmean of the fine scale dissipation estimates (red) and the
largescale dissipation estimates for the various overturning solutions con-
sidered in this study. The Garret-Munk background dissipation rate ¢y is
plotted for reference. Refer to Table 4.1 for the layer densities and to Table
2.1 for the meaning of the large scale abbreviations.
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1D DENSITY LOGMEAN MCD GAN FER BRY SLO
1 22.42 - - - - - -
2 23.56 - - - - - -
3 24.47 - - - - - -
4 25.21 1.06e-008 - 0 0 0 0
5 25.79 8.58e-009 - 0 0 0 0
6 26.26 5.81e-009 - 0 0 0 0
7 26.64 2.85e-009 - 0 1 0 0
8 26.94 1.06e-009 - 1 1 1 1
9 27.18 4.94e-010 - 1 1 1 1
10 27.37 3.71e-010 - 1 1 1 1
11 27.53 2.99e-010 1 1 1 1 1
12 27.65 2.32e-010 1 1 1 1 1
13 27.75 1.96e-010 1 1 1 1 1
14 27.83 1.70e-010 1 1 1 1 1
15 27.89 1.41e-010 1 1 1 1 1
16 27.94 1.18e-010 1 1 1 1 1
17 27.99 9.53e-011 1 1 1 1 1
18 28.02 8.59e-011 1 1 1 1 1
19 28.04 8.19e-011 1 1 1 1 1
20 28.07 8.11e-011 1 1 1 1 1
21 28.08 8.64e-011 1 1 1 1 1
22 28.10 8.97e-011 1 1 1 1 1
23 28.11 9.29e-011 1 1 1 1 1
24 28.12 9.86e-011 1 1 1 1 1
25 28.15 1.38e-010 1 1 1 0 0

Table 4.4: T-test of the hypothesis that the logged fine scale dissipation
estimates come from a distribution with a mean given by the large scale
expected value minus the variance of the logged fine scale estimates. Out-
come ’1” means that null hypothesis (4.1) is rejected under the assumption
of lognormality at a 0.05 significance level.
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Figure 4.12: Quantile—quantile plot of the logarithm of the ensemble of all
dissipation estimates versus the standard normal distribution. Q1 and Q3
are the first and third quartile value of log;,(e).

4.5.3 Parametric bias

The parametric assumption about the lognormality of
the dissipation rate is useful to estimate confidence
intervals for purposes of comparison, but may also
introduce bias when the underlying distribution dif-
fers. Here we discuss differences between the data set
and the lognormal distribution based on the quantile—
quantile plot in Fig. 4.12.

The plot shows that dissipation estimates are close
to normally distributed in the range 10~ < ¢ < 107
m?s73. Low and high dissipation rates outside this
range are biased by over an order of magnitude.

When using the T-test in Section 4.5.2 we assume
lognormality and we expect the test to be reasonably

robust under small departures from normality for suf-
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Figure 4.13: Ratio of the mean of log;y(e) and mean of the interquartile
range at a given density layer. Note that we only display layers with a
density larger than 27.00.

ficiently large sample sizes. The T-test compares the
mean value of a supposedly normally distributed data

set x with a given value pg using the statistic,

T — Ho
t= N (4.3)
where T is the sample mean, s the variance and n the
number of elements.

Figure 4.12 shows that the data is close to lognor-
mal within the interquartile range. We estimate the
effect of the heavy tails by comparing the mean of z =
log(€) with the mean in the interquartile range TrQr.
Figure 4.13 shows that the ratio Z/Z7gr is within 20%
difference for denser layers, with v > 27.18. From this
plot we conclude that the logmean is hardly biased
by the heavy tails when compared to the lognormal
distribution.

The variance of the observed distribution is larger
than the variance of a distribution with lighter, lognor-
mal tails. The statistic ¢ (refer to (4.3)) could therefore
overestimate the probability of  having mean value
po- In our case this means that the few cases where
the T-test has accepted the null hypothesis (4.1) might

still be rejected at the 95% level when we correct for
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this bias. This enforces our conclusion that the en-
ergy in the internal wave field falls short to support

the investigated Indian Ocean MOC solutions.

4.6 Discussion

The main result of this chapter is graphically displayed
in Fig. 4.11. The figure shows the basin-wide fine scale
and large scale dissipation estimates at 25 density lev-
els. Disregarding the top 10 levels, corresponding to
shallow depths below ~1000m, and the lowest density,
i.e. the 28.15 kg m~3 isopycnal, we find that the fine
scale estimates are always smaller than all the large
scale estimates. The gap between fine— and large scale
estimates is considerable, more than one order of mag-
nitude at most density levels, and much larger than the
spread among the large scale estimates.

The statistical comparison of the fine scale and
large scale estimates discussed in this chapter accounts
for uncertainty due to undersampling, but does not ex-
plicitly discuss the uncertainty of the estimates them-
selves. Inverse model errors are discussed in Section
2.4.1, but error estimates are not available for all the
inverse solutions discussed in this work. Alternatively,
we interpret the spread among the various inverse solu-
tions as a measure for the uncertainty about the Indian
Ocean MOC.

The fine scale parameterization is shown to be ac-
curate to within a factor 2—3 when compared to micro-
structure dissipation estimates. In principle we do not
believe that this level of accuracy is compromised by
the previously discussed discrepancy between our esti-
mates and estimates published by [Kunze et al., 2006]
(see Section 3.4.5), because we have reason to believe
that this difference is due unintentional biases intro-

duced by their implementation of the model [Polzin



CHAPTER 4. RECONCILIATION OF SCALES 111

et al., 2010].

Assuming that our fine scale method produces rea-
sonably reliable estimates of internal wave dissipation
leads to the question whether the MOC can be closed
by other mixing processes that are not captured by
the fine scale parameterization. Previous studies have
identified mixing processes in canyons as potentially
important, possibly even dominant, in the abyssal ocean
[Bryden and Nurser, 2003; Thurnherr et al., 2005; Thorpe,
2007]. These studies explain the observed high mixing
rates in canyons by hydraulically controlled mixing at
sill overflows, a process that is not captured by the fine
scale parameterization.

Another mixing process that is not well captured
by the fine scale parameterization is critical layer inter-
action with a sheared mean flow. In Chapter 5 we ex-
plore this process numerically. Observations in the At-
lantis IT FZ suggest that this process may be relevant
to water mass transformation in this canyon [MacKin-
non et al., 2008]. The contribution of this process to
the Indian Ocean deep mixing budget may be consid-
erable, because most bottom and deep waters appear
to enter the basin through the Atlantis II FZ and the
Melville FZ in the Southwest Indian Ridge [Warren,
1978; MacKinnon et al., 2008] or as deep boundary
currents east of South Africa and east of Madagascar
[Donohue and Toole, 2003; Bryden and Beal, 2001].

4.7 Summary and conclusion

The statistical exploration of fine scale dissipation es-
timates in this section discusses temporal variability
and potential spatial biases. The ultimate aim of this
section is to answer the question whether the Indian
Ocean MOC, as inferred from large scale inverse mod-

els, can be sustained by internal wave breaking.
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When comparing the 1996 and 2007 occupation
of section I09N we found little variability, which sug-
gests a more or less steady dissipation climate on a
decadal time scale. The combination of measurements
from different years, and perhaps also different sea-
sons, seems therefore permissible.

Spatial biases may be significant when measure-
ments are scarce or not randomly sampled with re-
spect to the environmental variables that influence the
internal wave field. We have investigated three such
variables: latitude, bottom roughness, and energy con-
version into internal tides. The sample set does not
appear to be biased with respect to the latter two and
we have estimated that the mean dissipation rate is
biased low by at most 25% due to the latitudinal dis-
tribution of measurements.

The ultimate question, that is the hypothesis that
the Indian Ocean MOC is sustained by internal wave
breaking, is not supported by our analysis. We find
that the energy in the internal wave field falls short.
This result suggests that the closure of the Indian
Ocean MOC needs other mixing processes that are
not captured by the fine scale parameterization. One
such process, that we think deserves special attention,
is mixing in the numerous fracture zones by internal

wave mean flow interaction.



Part 11

Numerical

simulations

113



Chapter 5

Dissipation of
internal waves in a

sheared mean flow

5.1 Introduction

This work is motivated by the observation of a strong
and persistent jet flow through the Atlantis II Fracture
Zone (AF7Z) in the South West Indian Ridge (Fig. 5.1)
[MacKinnon et al., 2008]. The jet flows northward
through a submarine canyon with a typical width of
20 km and a length of about 200 km and has a max-

imum flow speed of about 0.4 ms™!.

The transport
rate is about 3 x 10°m3s™! and the water masses in
the jet flow are identified as North Atlantic Deep Wa-
ter, Circumpolar Deep Water and Antarctic Bottom
Water.

A comparison of water properties at the entrance
and exit of the canyon shows that water masses are
mixed during the transit. The observed water mass
transformation requires a mixing rate of about K, =
1x 1072 m?s~! below 2000m [MacKinnon et al., 2008],
a factor 1000 larger than the generic open ocean value.

This image of vigorous mixing of deep— and bottom
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Figure 5.1: Location and bathymetry of Atlantis II Fracture Zone (AFZ).
Left: map of the South-west Indian Ocean with a red square around the
area of the AFZ and 1000m depth contours. Right: multi-beam bathymetry
of the AFZ.
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water is corroborated by the observation of large den-
sity overturns and high levels of shear variance.

The combination of large transport and vigorous
mixing makes this site, and similar environments, po-
tentially important for the Indian Ocean MOC. The
estimated basin wide diapycnal transport in the Indian
Ocean is about 10 Sv across an isopycnal in the range
27.5-28.0 [McDonagh et al., 2008; Bryden and Beal,
2001; Ganachaud and Wunsch, 2000]. The diapycnal
transport in the AFZ is limited by the short residence
time and the narrow extent of the canyon and has
an estimated value of only 0.002 Sv across the 28.11
isopycnal [MacKinnon et al., 2008]. Canyons however
are very numerous in the Indian Ocean. Collectively
they could explain why much of the deep mixing in
the global MOC appears to take place in the Indian
Ocean.

Observations of turbulence and vertical diffusion
in other abyssal passageways [Polzin et al., 1996; Fer-
ron et al., 1998; St Laurent and Thurnherr, 2007] have
led to speculation that much of the energy needed for
deep ocean mixing is drawn from the mean flow by hy-
draulically controlled sill overflows [Thurnherr et al.,
2005; Thorpe, 2007]. Here we explore an alternative
explanation: internal wave instability due to interac-
tion with the mean flow.

Internal wave breaking is a likely mixing mecha-
nism in the AFZ, because the mean flow appears sta-
ble, Ri = (N?)/{U2) ~ 10, and not hydraulically
controlled. Hydraulic jumps may occur downstream
of sills if the flow has a Froude number close to one
or larger. The typical Froude number for the jet in
the AFZ is a factor 10 smaller than the critical value,
Fr = (U)/(N)/H ~ 0.1. The geometry of the AFZ
is not favourable to hydraulic jumps either, because

there are only two sills, one at the entrance and one
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at the exit. Hydraulic turbulence could be generated
downstream of the entrance sill, but is not expected
to dominate the mixing budget, because of the low
Froude number [MacKinnon et al., 2008].

In this chapter we explore the dynamics of a broad
band internal wave field in the presence of a mean flow
by numerical integration of the fully nonlinear Navier-
Stokes equations. We run a series of unforced ini-
tial value problems in 2D and 3D with simple bound-
ary conditions, a constant density stratification, and
a mean flow with a high bulk Richardson number and
a low Froude number. We focus on the energy trans-
fer rate to smaller scales and assume that the energy
transferred to the smallest numerical scales is repre-

sentative of the dissipation rate.

5.2 Conceptual model

In this section we review a few elementary concepts
with regard to wave—mean flow interactions. The the-
ory presented here is based on lecture notes from E.
Kunze [Kunze, 2000]. It is assumed that the fast-scales
and slow-scales can be treated as independent vari-
ables in the sense of the WKB ray-tracing approxi-
mation. This approximation is valid when the back-
ground mean flow has a large wavelength and a low
frequency in comparison to the internal waves.
Suppose there is a steady mean flow with velocity
U = (U, 0,0) and a single plane wave with velocity u =
texpli(k - x — w;t)], with @t a vector with the velocity
amplitudes in the three spatial directions, k = (k, [, m)
the wave vector, and w; the intrinsic frequency. The
intrinsic frequency is the frequency of the wave in a
frame of reference that moves with the mean flow and
does not change when the mean flow changes. On the

contrary, the frequency in a fixed frame of reference,
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that is the Eulerian frequency wg, is Doppler shifted
when the wave is advected.

The Doppler relation can be derived using the total
derivative of the velocity, Di(u+U) = [0; + (u+ U) -
V](u+U). Ignoring self-advection of waves, u-Vu = 0,
wave advection of the mean flow, u-VU = 0, and using
U =0 and U - VU = 0, gives the Doppler relation,

w; = wg + kU(z) = constant, (5.1)

with & the horizontal wave number.

Suppose a wave propagates into a mean flow (i.e.
the vertical wave number m and the vertical gradient
of the mean flow U, have the same sign). The hori-
zontal wavenumber of this wave is either be directed
in the direction of the flow or against the flow. The
sign of the horizontal wave number k& matters for the
‘direction’ of the Doppler shift of wg (5.1) and below
we discuss how the Doppler shift affects the vertical

wave number and vertical group velocity.

Wave propagates with the flow (kU > 0) The
relation between the Eulerian frequency and the wave
numbers for linear internal waves is given by the dis-
persion relation (5.16). Substitution of the Doppler

relation (5.1) into (5.16) and re-ordering terms, gives,

o NP (wy — KUPR
 (wi— kU2 - f?

(5.2)

This relation for the vertical wave number is singular
for (w; —kU)? — f2=00r U = Upit = (w; — f)/k. In
other words, the vertical wave number blows up when
the wave reaches a critical level in the mean flow.

Using the definition of the horizontal phase speed,
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¢ = w;/k, we find,

Uerit = ¢ — % (5.3)
Because both f > 0 and kU > 0 we note that a critical
level exists when the horizontal phase speed is smaller
than the maximum flow speed.

The vertical wave length, A\, = 27 /m, goes to zero,
when m — oo. This means that the energy of a wave
approaching a critical layer becomes concentrated in
increasingly smaller-scale vertical motions. The high
vertical shear associated with these small-scale mo-
tions would lead to strong damping by molecular dissi-
pation in a viscous fluid. Conceptually, we may there-
fore regard a critical layer as a sink for internal waves.

It is also instructive to see what happens to the
vertical group velocity, %"—rf when m — oco. The dis-
persion relation (5.16) can be approximated by w?% ~
f? 4+ N2K?/m? when m > k, and we find,

owg _N2k2

m S e (54)

for the vertical group velocity. Clearly, lim;, %“—mE =
0, that is the wave stalls when approaching a critical
level.

Summary: There is a critical level for a wave prop-
agating into a the mean flow, when (i) the wave prop-
agates in the same direction as the mean flow, and (ii)
the horizontal phase speed is smaller than the maxi-
mum mean flow speed. The fate of a wave approaching
a critical layer is catastrophic in the sense that it stalls

and dissipates its energy, and thus ceases to exist.

Wave propagates against the flow (kU < 0) The
Doppler shift of wg is towards higher frequencies when
kU < 0 (refer to (5.1)). The dispersion relation (5.16)
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shows that high frequency internal waves have a large
aspect ratio, that is £ > m. In this limit we may ap-
proximate the dispersion relation by, w2E ~ f?m?/k?+
N2 or )

m? ~ ;fg((wi — kU)* — N?), (5.5)
after substitution of the Doppler relation. This equa-
tion has no singularities, but becomes zero and changes
sign for increasing mean flow speed, U. We find m =0
for (w; — kU)? — N2 = 0 and define the turning point
as,

N

Uturn = C — ?7 (56)

In analogy to the critical layer we note that a turning
point exists for a wave propagating against the flow
with a horizontal phase speed smaller than the maxi-
mum flow speed.

The vertical group velocity in the k > m limit is,

Owg f?
Thus, we find lim,,_ %‘"—Tf = 0, that is the vertical

group velocity goes to zero when a wave reaches the
turning point. The wave energy is conserved, because
the vertical shear decreases (since m — 0). Note that
further propagation of the wave energy can only be
directed in the opposite direction, towards lower mean
flow speeds.

Summary: There is a turning point for a wave
propagating into a the mean flow, when (i) the wave
propagates in the opposite direction of the mean flow,
and (ii) the horizontal phase speed is smaller than the
maximum mean flow speed. A wave approaching a
turning point reverses its vertical direction of propa-

gation without loss of energy.
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Discussion This basic theory on wave—mean flow in-
teraction does not represent all the physics of a real
fluid, but captures the essential behaviour. The pre-
dicted singularities at the critical level and turning
point are obviously unphysical and emerge because
the theory lacks a dissipation mechanism. The the-
ory breaks down when scales are not separable, for
example when the internal wave lengths are similar to
the length scale of the mean flow. Some phenomena
are not captured at all, such as partial reflection and

transmission (tunneling) at a critical level.

5.3 Numerical model

5.3.1 Model equations

The numerical model used in this study is a pseudo-
spectral algorithm for finding approximate solutions
to the Navier—Stokes equations for an incompressible,
density stratified fluid on a f-plane. Decomposing the
density field into a reference value, a background field,
and a fluctuating component, p = po+p(2)+0' (x,y, 2, ),

and invoking the Boussinesq approximation! we obtain

!The Boussinesq approximation assumes that inertial density fluctuations can be ne-
glected (and replaced with the reference value po). However, fluctuations of the gravita-
tional density are dynamically important and remain unaffected in this approximation.
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the following form for equations of motion,

D 10
Fz = _%a—i + fv—"Du (zonal momentum)
(5.8)
D 1
. ——@ — fu—Dv (meridional momentum)
Dt po Oy
(5.9)
D 10
ﬁ = —%8—5 +b—Dw (vertical momentum)
(5.10)
Db
5 = —N?w—Db (buoyancy)
(5.11)
V-u=0 (continuity)
(5.12)

where we used D/Dt as a shorthand for the ‘material
derivative’ along the fluid parcel trajectory, for exam-
ple Du/Dt = Ou/0t+u-Vu. The buoyancy frequency
squared is defined as N? = —9gpy 15, and the sym-
bol D represents diffusion of momentum / buoyancy
(refer to Section 5.3.2), where buoyancy is defined as
b=—gpy'p'

The algorithm Fourier transforms the momentum
equations and calculates the derivatives in spectral
space. This is efficient and accurate for simple bound-
ary conditions?, because differentiation reduces to scalar
multiplication in spectral space, (0, 0y, 0.) — (ik,il,im).
More details about the model can be found in [Winters
et al., 2004].

5.3.2 Numerical viscosity

Kinetic energy in the ocean cascades to smaller scales

and ultimately to internal energy (i.e. heat) through

2Boundary conditions are either triple periodic or double periodic with a rigid lid and
flat bottom.
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molecular viscosity. Scales at which energy is dissi-
pated are of the order of the Kolmogorov length scale,
which is typically orders of magnitude smaller than the
numerical grid spacing. This poses a numerical prob-
lem, because transfer of energy to sub grid-size length
scales leads to numerical instability.

This problem is solved by damping momentum and
buoyancy at high wavenumbers close to the numerical
cut-off. Selective damping of high wavenumbers, with-
out affecting the dynamics at larger scales, is achieved
by a higher order viscosity operator,

or or or

D
0zP

This operator reduces to Newtonian viscosity for p =
2 (and v = 107% m?2 s7! for water), but becomes a
‘hyperviscosity’ with higher order derivatives, with p >
2. In the model we use p = 10.

The wavenumber range at which hyperviscosity be-
comes dynamically important can be tuned with the
value chosen for the viscosity coefficient v [mP s~1].
The actual tuning parameter in the model is the char-
acteristic damping timescale at the Nyquist wavenum-
ber, Tyiss = I/x_leﬂ'_lnz_l, with n, the number of grid
points and L, the horizontal domain size.

Figure 5.2 shows the magnitude of the hypervis-
cosity term in the non-dimensionalized Fourier trans-
formed equations of motion, vU L =p+1kP. The plot
shows that hyperviscosity acts on higher wavenumbers
for increasing Tyss. Viscosity becomes dynamically
important when it reaches the magnitude of the Cori-
olis acceleration, which in its nondimensionalized form
is the inverse Rossby number, as indicated in the fig-
ure. The dynamics at smaller wavenumbers are es-
sentially inviscid / nondiffusive, because of the strong

scale dependency of the hyperviscosity operator.
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Figure 5.2: Magnitude of the hyperviscosity term in the non-dimensionalized
Fourier transformed equations of motion, with characteristic units L, =
4000m and Uy = 0.1ms™', and hyperviscosity order p = 10, and vari-
ous values for Tys. For reference are also plotted the Newtonian viscos-
ity, vUy *L;'k? (with v = 1079 m? s™1), and the inverse Rossby number,
Ro~''= fL,U;".
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The hyperviscosity operator has the sole purpose
of taking energy out of the system at the smallest nu-
merical scales and works indiscriminately on momen-
tum (kinetic energy) and buoyancy (potential energy).
Damping of buoyancy means that density perturba-
tions are not allowed to develop at high wavenum-
ber, because b = —gp, Ly, but the molecular diffusion
of the background density field is in fact retained in
the model equations. In other words there is a term
—k0%p/02% in the density equation. This term how-
ever is zero for the experiments discussed here because
the stratification is constant (refer to Section 5.7 for a
discussion about internal wave breaking and mixing).

The hyperviscosity is ad hoc in the sense that it
does not describe actual physics. However, the rep-
resentation of internal dissipation by hyperviscosity is
justified under the assumption that (i) upscale transfer
of energy is negligible [McComas and Miiller, 1981],
and (i) internal waves break locally. The validity
of the first assumption was demonstrated for vertical
wavelengths of 5m by [McComas and Miiller, 1981]
and the second assumption relies on the observation
that the product of the internal wave interaction time

scales and the group velocity is small.

5.4 Initial conditions

5.4.1 Linear plane waves

The temporal and spatial oscillation of a single plane
wave with wave vector k = (k,l,m) and frequency w;

is prescribed by,
[u, v, w,p,b](x,y, 2,t) = [, 0, d,p, b

where (u,v,w) is the full velocity, p pressure and b

buoyancy. This wave is a solution to the linearized,



CHAPTER 5. WAVE MEAN FLOW INTERACTION

rotating, density stratified, incompressible, inviscid,
Boussinesq equations of motion, that is (5.8)—(5.12)
with D = 0 and u - Vu = 0, when the polarization
relations are satisfied. The polarization relations are
obtained by plugging (5.14) into the equations of mo-

tions (5.8)—(5.12), giving a set of homogeneous linear

equations,
[—iwg  —f 0 ik 0 ] [a
f  —iwg 0 il 0 o
Mv=| 0 0 —iwg im —1 w | =0,
0 0 N2 0 —iwg||P
| ik il im0 0 b
(5.15)

where P = PoP-

Gaussian elimination shows that a non-trivial so-
lution exists and that there is one independent vari-
able. This means that we may eliminate all property
amplitudes except for example w. The existence of a
non-trivial solution also implies that the determinant
must be equal to zero. Solving det(M) = 0 gives the

internal wave dispersion relation [Kunze, 2000],

f2m2 +N2(k2+l2)

k2 + 12 + m? (5.16)

wQE(k,m) =

5.4.2 Boundary conditions

The boundary conditions we used are periodic in both
horizontal directions. This means that all discrete
wave numbers smaller than the Nyquist wave num-
ber fit in the domain, that is, (k,1) = (i/Ls, j/Ly)27
with i € [0,1,2,...,n,/2], and j € [0,1,2,...,n,/2].
At the top and bottom of the domain we impose ‘rigid

lid” and ’free slip’ conditions,

w(z=0,L,)=b(z=0,L,) =0, (5.17)

126
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and from continuity follows, u.(z = 0,L,) = v,(z =
0, L) = 0. The non-zero horizontal flow is assumed to
slip freely (i.e. frictionless) along the boundaries.

The vertical boundary conditions are met by verti-
cally standing modes. These modes can be constructed
by subtracting identical waves that differ only by the
direction of vertical propagation (so only the sign of
m differs). Introducing a localization function F'(z),
we obtain the following solution for a free slip linear
wave in a frame of reference with arbitrary horizontal

directions (and m parallel to z),

U= Ew <’;g‘) [cos(k:x +ly — wt) — <]i> (i) sin(kz + ly — wt)} G(2),

(5.18)

v = éw (:’QH) [cos(ka: Fly —wt) — (’;) (£> sin(ka + ly — m} G(2),
(5.19)

w = Ewsin(kx + ly — wt)Fsin(mz), (5.20)

€ = Ecos(kx + ly — wt)F sin(mz), (5.21)

with € the wave displacement amplitude, kg = V&2 + 12
is the horizontal wave number and G(z) = [F cos(mz)+
Fl

o sin(mz)].
5.4.3 GM76 wave amplitudes
The GMT76 spectrum

The Garret-Munk spectrum [Garrett and Munk, 1972,
1975] assumes that spectral energy dependency on fre-

quency and vertical mode number is separable,

E(w,j)dwdj = Ey B(w)dw H(j)dj [dimensionless],
(5.22)

with vertical mode number j and frequency w. The

model is a power law fit to ocean observations con-
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sistent with linear internal wave theory. Time and
length scales are non-dimensionalized using an ide-
alized buoyancy frequency profile, N(z) = Noe /¢,
with Ny = 3cph= 5.21073rad s~! and fall-off scale
d = 1300m. Multiplication of (5.22) by NZd? gives the
dimensional spectrum in Joules per kg (i.e. m2s~2).
Model constants, such as the energy level, Ey = 6.31075,
and the frequency and modal scaling are obtained from
a least square fit to observational data.

The frequency dependency is proportional to 1/w?
for high frequencies (w > f) and peaks around the in-
ertial frequency (with a singularity at w = f) [Garrett
and Munk, 1975],

Blw) = im s (5.23)
This representation of the internal wave field captures
the general frequency dependency as it is observed in
the ocean, but lacks more detailed features such as the
spectral peaks at tidal frequencies. The normalization
is chosen such that f}fv B(w)dw =~ 1.

The dependency on vertical modes also scales with
the inverse square for large modes (j > jx), but is
flattened for modes close to the modal scale number,

J* =3,

(52 + j=5) !
Imar (52 4 jx2) !

H(j) = [dimensionless|. (5.24)

The j~2 scaling for large j was proposed by [Cairns
and Williams, 1976] differs from the j5/2 scaling in

[Garrett and Munk, 1975]. This form for H(j) to-
gether with (5.22) is referred to as GMT76.
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Transformation to wave number space

The GM76 spectrum is originally formulated in frequency—
mode number space, but can be transformed to wave
number-mode number space using the dispersion re-
lation. The energy in (k,j) space is related to the
GMT76 spectrum through E(k,j) = E(w,j)dwdk™!,

so that the total energy is the same in both spaces,
Jdw} > E(w,j) = [dk}>; E(k,j). Using the linear
dispersion relation (5.16) in the w < N approxima-
tion gives,

N(w2 _ f2)1/2

E(k,j)dkdj = E(w,j) dk dj, [dimensionless],

(5.25)

with m = jLLZ, and L, the vertical domain size [Flatté
et al., 1979].

Wave amplitudes

The polarization relations (5.18)(5.21) and b = —N2¢
allow to write the amplitudes of all wave property am-
plitudes in terms of the displacement amplitude. This
means that the displacement amplitude for a set of
wave numbers (k,l,m) can be solved for a given spec-
tral energy level. Kinetic wave energy is contained in
motion of water parcels and potential energy in the

displacement of isopycnals,

1

Ex 25[112 + 9% + 07 [m2s72], (5.26)
1.

E, :§£2N2 [m%s2], (5.27)

where the hatted quantities, (, 0, W), are velocity am-
plitudes and é the displacement amplitude. A generic
open ocean value for the spectral energy density [m2s~2]
is provided by (5.25) multiplied by NZb?. Plugging

the polarization relations into (5.26) and (5.27) and
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rewriting using the dispersion relation gives,

[m] )

(5.28)

. Bk ) dkdj N2BZ [ w? — £2\ 2
E(r ) = YERD RGN (;2_“;2)

for the displacement amplitude in meters.

5.4.4 Ambient shear flow

The ambient shear flow flows in the x-direction, is uni-
form in the y-direction and has a hypertangent profile
in the z-direction (parallel to gravity),

U(z) = @[tanh(g(—z + &)) + 1], (5.29)

2 d 3

with Uy the maximum mean flow speed, d the vertical
scale length, and L, the vertical domain size. This an-
alytical form has a number of desirable characteristics,
among which are satisfaction of the no-slip boundary
condition, U,(0) ~ 0 and U,(L,) =~ 0, and a single,
well defined shear region.

The maximum flow velocity is Uy. All waves with
horizontal group velocities smaller than Uy will even-
tually meet a critical layer and either stall or reflect.
These encounters take place mostly in the bottom half
of the domain because the maximum vertical shear is
at L,/3. Waves in the upper half of the domain are
hardly affected by the mean flow.

The vertical scale parameter d determines the ex-
tent of shear zone and needs to be smaller than ~
L./3 to satisfy the boundary conditions. The pa-
rameter d determines the predominant shear of the
mean flow. In fact, the shear is Up/d in the vicin-
ity of the depth of maximum shear, i.e. L,/3, as
can be seen from expanding U(z) around this depth,
U(Z') =Uy/2 — (Up/d)z' — O(2"?).

The shear is Up/d or less and the stratification is
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constant (N = 5.21073 rad s7!), which means that the
Richardson number is larger than N2d%/UZ. To avoid
mean flow shear instabilities we choose Ri> 0.25, or
equivalently d/Uy > v/0.25/N > 96. We also check the
stability of the mean flow more directly by initializing
the model with the mean flow only, without internal
waves (refer to Section 5.6.1).

This study focusses on the effect of the mean shear
flow on internal waves. In this context we prefer a
steady mean flow and consider effects of rotation un-
desirable. Therefore we envision a non-rotating mean
flow as if it were confined by the walls of a straight
canyon in the x-direction. In a canyon the Coriolis
force would have been balanced by a pressure gradi-
ent, but this cannot be done in 2D experiments and it
is not easily set up in 3D either when using a spectral
model.

Therefore we choose to disable rotation for the back-
ground flow only by disallowing temporal evolution of
k = 0 and m = 0 terms in the Fourier transformed
equations of motion. This means that we also prohibit
changes in the mean flow due to momentum trans-
fer from the wave field, which we again justify by our
aim of studying the effect of the mean flow on internal
waves. Note however that the dynamics of the internal
waves are unaffected because all wave numbers larger
than zero evolve according to the full momentum equa-

tions with rotation.
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5.5 Diagnostics

5.5.1 Energetics

A useful bulk diagnostic is the total energy in the in-

ternal wave field,

E =E+E,, [m%7? (5.30)
— 11
Ey =3V (u—U)? + 0>+ w?dV, (5.31)
Jop / N2¢2av, (5.32)
PV ’ '

with V = L, x L, x L, the domain volume, U = U(z)
the mean flow speed, (u,v,w) the full internal wave
velocity, and £ the wave displacement. The potential
energy (E,) is the available potential energy in the in-
ternal wave field due to the displacement of isopycnals.
We derive the displacement from the perturbation den-
sity, &€ = p’/p., which is almost exact for the virtually
mixing free problems discussed here (refer to Section
5.7). Available potential energy can be calculated for
problems with mixing by introducing the concept of

background potential energy [Winters et al., 1995].

5.5.2 Hyperdissipation

Hyperdissipation is the local irreversible loss of kinetic
energy due to hyperviscosity (refer to Section 5.3.2).
The rate of kinetic energy loss can be derived from
the momentum equation (5.8)—(5.12) by taking the in-
product with velocity, F; = u; - u. A hyperviscosity of
the form (5.13) gives a dissipation rate [MacKinnon,
2003], ,
0 "2 ] . (5.33)

The hyperdissipation rate is conveniently calculated

in Fourier space, where taking the spatial derivative
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Figure 5.3: Comparison of hyperdissipation (5.33) and the loss rate of total
energy dE/dt (refer to (5.31) and (5.32)). The simulation is initialized with
a broadband GM-like wave field without a mean flow.

becomes multiplication by wave number. Figure 5.3
compares the dissipation rate calculated directly from
the total energy, ¢ = dE/dt ~ AE/At, and the hyper-

dissipation rate.

5.6 Numerical experiments

5.6.1 Mean flow stability

In this study we look at the transfer of internal wave
energy to dissipative scales in the presence of a mean
shear flow. The mean flow itself is designed to be
stable, in the sense that shear instabilities are suffi-
ciently suppressed by the density stratification so that
the flow is essentially laminar. The design criterion is
Ri = N?/U? > 0.25. To test the usefulness of this cri-
terion we simulate the temporal evolution of the mean
flow only, without internal waves.

We use the numerical dissipation rate to diagnose
the stability of the mean flow and we compare three
different mean shear flows. Each model run is ini-
tialized with a hypertangent mean flow profile, as de-
scribed in Section 5.4.4, and numerically integrated
over 10 days. The dissipation rate is averaged along

the horizontal dimension and over time from day 9
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Figure 5.4: Horizontally averaged dissipation profiles for three different
mean flows without internal waves. The maximum flow speed is 0.5 ms™!
for all three cases, but the shear differs, and therefore also the bulk Richard-
son number Ri = N2/U? ~ d®?N?/UZ. The straight blue line is a reference
showing the GM dissipation level for free waves.

until 10.

Figure 5.4 compares the dissipation profile for flows
with identical maximum flow speeds of Uy = 0.5 ms™!
and different vertical sales. For reference we recall
that the dissipation rate of the generic Garrett—Munk
internal wave field is g = 6.73 x 10719 m?s73. The
dissipation rate of the mean flow is orders of magni-
tude smaller than this value, even for the flow with
the largest vertical shear and a Richardson number of

order 1.
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1 I
L, 35000 1700 m Domain size, x direction
L, 0 0 Domain size, y direction
L, 4000 4000 m Domain size, z direction
k 2x %—: [2,£3]x %’; rad m~! Wave number, x direction
l - - Wave number, y direction
m 8% %—Z [8,12] x%—: rad m—! Wave number, z direction
N 0.0052 0.0052 rad s—! Buoyancy frequency?®
f 1.3x107° 1.3x107° rads™! Inertial frequency®
Ny 64 64 Grid points, x direction
Ny 1 1 Grid points, y direction
n, 64 64 Grid points, z direction
At 10 1 S Integration time step
tena 12.5 12.5 hr Integration time
D 10 10 Hyperviscosity coefficient
Tyiss 100 100 S Hyperviscosity time scale

Table 5.1: Model parameters for single wave (I) and two wave (II) simula-

tions.

& Buoyancy frequency is the canonical GM value of 3 cycles per hour.

b Inertial frequency corresponds to a latitude of 33°.

5.6.2 Single wave

This simulation provides some basic insight into the
dissipation of a single wave approaching a critical level.
The mean shear flow is expected to compress the verti-
cal length scale until the wave has dissipated its energy
due to numerical viscosity. We assess how the vertical
dissipation profile is affected by the amplitude of the
wave and the shear of the mean flow.

The parameters for the single wave experiment,
which we refer to as ‘simulation I’; are listed in Ta-
ble 5.1. The initial wave packet is confined to the
top of the domain using an exponential envelope func-
tion F(z) = exp[—(z — L,)?/d?] with fall-off scale d =
L,/10. Figure 5.5 shows snapshots of the free evo-
lution of the wave packet without a mean flow. The
vertical velocity is shown in the top four panels and

the bottom panels show the vertical velocity spectrum.



CHAPTER 5. WAVE MEAN FLOW INTERACTION 136

Note that the vertical mode number counts the num-
ber of half wave lengths that fit into the domain and
the horizontal mode number the number of full wave
lengths.

The evolution of the modal spectrum differs for
both modal directions. The energy remains in the
2nd horizontal mode during the 12.5 hr evolution, but
there is energy exchange between the vertical modes.
At t = 0 the energy is spread out over many ver-
tical modes with a maximum around the 13-th ver-
tical mode, although the initial vertical mode is 16.
This can be explained by the spatial localization of
the initial wave. After four hours of free wave propa-
gation we see that vertical mode 16, and neighbouring
modes, indeed contain most energy. The snapshot af-
ter eight hours shows two distinct spectral peaks at
vertical mode 12 and 17 and after 12 hours the bulk
of the energy has moved to vertical mode 14. Energy
transfer between modes can occur when a wave inter-
acts with its own reflection from the top and bottom
of the domain.

Figure 5.6 shows the time evolution of single wave
in the presence of a mean flow, refer to simulation
I in Table 5.1. The wave propagates freely until it
encounters the mean shear flow in the bottom half of
the domain. The top panels of Fig. 5.6 show that the
wave hardly propagates below the critical level, which
is the white line in the figure. The critical level is
the depth where the mean flow speed equals, U, =
(wi — f)/k =0.38 ms™ 1.

The spectral picture at the bottom of Fig. 5.6 shows
that the energy gradually moves towards higher verti-
cal modes when the wave approaches the critical level.
Waves are numerically damped when the vertical length
scale becomes sufficiently small. This effect is demon-

strated in the right panel of Fig. 5.7, which shows the
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Figure 5.5: Time evolution of a single wave packet without a mean flow.
The wave is initialized with modes [ik,im] = [2, 8], displacement amplitude
¢ = 10m. Top row: four snapshots of the vertical velocity with a variable
colour scale in mms~!. Bottom row: vertical velocity spectrum. The time
interval between each snapshot is 4 hours.
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Figure 5.6: Time evolution of a single wave packet with a mean flow
and a critical layer. The wave is initialized with modes [ik,im] = [2,8],
with displacement amplitude £ = 10m and the mean flow parameters are
Up = 0.8ms™ !, and d = 400m. Top row: four snapshots of the vertical ve-
locity with a variable colour scale in mms™'. Bottom row: vertical velocity
spectrum. The time interval between each snapshot is 4 hours. The white
line indicates the critical level for the initial wave (refer to Table 5.1).
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Figure 5.7: Vertical profiles of velocity and dissipation for the single wave
simulation. Left panel: mean shear flow (thick) and wave velocity (thin)
at t=0. Right panel: dissipation spatially averaged in the x-direction and
temporally averaged over 11 hours (thick), and the ‘half maximum’ value
as defined in Section 5.6.2 (dotted). The wave amplitude is 20 m and the
shear parameters are Uy = 0.8 m s~! d = 600 m.

spatially and temporally averaged dissipation rate for
a simulation similar to the one shown in Fig. 5.7, but
with d = 600m instead of d = 400m. The right panel
of Fig. 5.7 shows how the mean shear increases the
dissipation rate until it reaches a maximum at some
distance above the critical level.

Most wave energy is dissipated in the mean shear
region with maximum dissipation rates at a distance
of a few hundred meters above the critical level. The
magnitude of the maximum depends on the energy of
the initial wave and scales quadratically with the dis-
placement amplitude as one would expect from (5.28).

However, the left panel of figure 5.8 shows the scaling
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Figure 5.8: Exploration of the single wave parameter space. Dissipation
rates are averaged over the entire spatial domain and in time between 5.6
and 12.5 hr. Left: dissipation/energy scaling (E oc £2), with mean flow
parameters: Uy = 0.8ms™!, and d = 600m. Middle: dissipation versus mean
flow shear, with ¢ = 20m, and Uy = 0.8 m s~!. Right: width of dissipation
peak versus mean flow shear, with ¢ = 20m, and Uy = 0.8ms ™.

becomes smaller than quadratic for very large ampli-
tudes, which we attribute to non-linearity of the free
wave and loss of energy before it reaches the mean
shear zone.

The fact that the dissipation peak is above the crit-
ical layer can be explained by the finite dissipation
length scale of both real and numerical waves. The
critical level value is obtained from WKB ray trac-
ing theory and predicts the unphysical value of zero
for the wavelength at the critical level. Real waves be-
come unstable at scales of order 1 meter and numerical
waves are dissipated at scales close to the Nyquist wave
length, which is typically 30m for the experiments dis-
cussed here.

The dashed line in the right panel of Fig. 5.8 shows
that the distance from the dissipation maximum to the
critical level scales almost linearly with the shear scal-
ing parameter d and increases for larger values of d.

This behaviour can be explained by the quasi-linearity
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of the hyper-tangent profile in the proximity of Uy /2.
Numerical waves dissipate at some finite wave length
at some distance from the critical level, and this dis-
tance scales quasi-linearly with the mean flow inverse-
shear parameter d.

Most energy is dissipated above the critical level,
but some energy makes it past this level (again refer to
right panel of Fig. 5.8) and shows that total stalling,
as predicted by ray tracing theory, is not a reality. The
dissipation peak is surprisingly symmetric around its
maximum. This allows us to define the width of the
dissipation peak. We define the Full Width at Half
Maximum (FWHM) with the ‘half maximum’ given by
(€maz—(€(2)))/2, and (.) the vertical average operator.
Figure 5.8 shows the FWHM of the dissipation peak
versus shear parameter d and reveals a quasi-linear

relation.

5.6.3 Two waves

In this simulation we investigate the basic effect of
non-linearity on wave dissipation. We compare the
dissipation of two separately evolving waves with a
simulation initialized with two waves with the same
wave numbers. The wave— and numerical parameters
for this experiment are summarized in column II of
Table 5.1.

We have run two simulations initialized with two
waves localized at the top of the domain. The wave
numbers for one simulation are chosen so that there is
a critical level for each of them. The other simulation
has a critical level for the wave propagating with the
flow and a turning point for the wave going against the
flow. The critical flow velocity and the turning velocity
for the initial waves are given by, Uit = (wi — f)/k
and Upyrn = (N — w;)/k, and fall within the range of

quasi-linear mean flow shear (refer to Section 5.4.4).



CHAPTER 5. WAVE MEAN FLOW INTERACTION 142

Two critical waves The time evolution of two crit-
ical waves is shown in Fig. 5.9. The top panels show
snapshots of the vertical velocity and the bottom pan-
els show the evolution of the modal spectrum. The
total kinetic energy, Ef, is also shown in the bottom
panels as a percentage of the energy at ¢t = 0 and shows
that more than 80% of the energy is dissipated in the
course of the 12 hour experiment.

Based on the theory presented in Section 5.2 we
expect spectral transfer of energy to higher vertical
modes when the waves approach the critical layers. In-
deed, the critical wave with [ik1,im;] = [2, 16] quickly
transfers energy to higher vertical modes around im =
22. This wave has dissipated almost all its energy after
8 hours. The modal evolution of the other wave, with
[ike,ima] = [3,24], looks different. For example, the
energy is still concentrated in the initial vertical mode
after 4 hours of free evolution. It looks like the wave
has not reached the mean flow by this time, which
can be explained by the lower vertical group veloc-
ity of waves with higher vertical wave numbers (refer
to (5.4)). However, after 8 hours there is hardly any
energy left in the ¢k = 3 horizontal mode, which we
ascribe to the effect of critical layer interaction.

Energy transfer among horizontal modes is initially
to the second harmonics, 2ik; and 2iks, and in partic-
ular to the sum of the initial wave numbers, ik + ikso.
Subsequently, energy is spread out between the lowest
six horizontal modes, with higher levels in mode 4 and
5.

One critical and one turning wave The wave
packet with a critical wave, [ik1,im1] = [2,16], and
a turning wave, [ika, imgo] = [—3,24], is shown in Fig.
5.10. In the top four panels we observe that wave en-

ergy initially propagates downward in the first half of
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Figure 5.9: Time evolution of wave packet with two critical waves,
[iki,im1] = [2,16] and [ike,ime] = [3,24]. Top row: four snapshots of
the vertical velocity with a variable colour scale in mms~!. Bottom row:
vertical velocity spectrum. The white lines indicate the critical level for
each of the waves (lower level corresponds to wave 1). All waves have equal
displacement amplitudes, ¢ = 40 m, and the mean flow parameters are,

Up=0.7ms™ ', and d = 600 m.
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the simulation and upward in the second half. This
is consistent with the expected reflection of the turn-
ing wave at the turning point. The reflection of wave
energy is also reflected in the slower decline rate of
total kinetic energy compared to the simulation with
two critical waves. More than 60% of the initial ki-
netic energy is still in the system at the end of the
simulation.

The spectral energy distribution also develops dif-
ferently. Energy quickly concentrates around vertical
mode 22 for both waves. This agrees with the pre-
vious experiment where we also found that the en-
ergy in the wave with initial modes [2,16] transfers
to [2,~ 22] after 4h. The turning wave is initialized
with a higher vertical mode number, im = 24, and has
not reached the mean flow after 4h. After 8h we find
that the critical wave (ik = 2) has dissipated almost
completely and that some of the energy in the turning
wave (ik = —3) has been transferred to slightly lower
vertical modes, as expected based on (5.5). More re-
markably, we also observe a significant transfer of en-
ergy to waves with low vertical modes and horizontal

mode number ik = 4.

Nonlinear effects Figure 5.11 compares dissipation
rate for two separately evolving waves and two waves
evolving together. One of the waves is critical and the
other is a turning wave. The dissipation rate is aver-
aged along the horizontal spatial dimension and plot-
ted against the vertical coordinate and time. The ver-
tical dissipation profile for two initial waves (e(k; + k2)) (2)
has a larger peak in the mean shear zone compared to
the summed dissipation rates of the two single wave
simulations (e(ki) + €(kz2)) (2). In the mean shear zone
we observe that dissipation rates are more than 1.5

times larger for the two waves case compared the lin-
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Figure 5.10: Time evolution of wave packet with one critical and one turning
wave, [ik1,im1] = [2,16] and [ika, ime] = [—3,24]. Top row: four snapshots
of the vertical velocity with a variable colour scale in mms~'. Bottom row:
vertical velocity spectrum. The white line indicates the critical level for each
of the waves and the black line indicates the turning level. All waves have
equal displacement amplitudes, £ = 40 m, and the mean flow parameters
are, Uy = 0.7 ms™!, and d = 600 m.
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Figure 5.11: Horizontally averaged dissipation profile versus time for two
waves: one critical and one turning. Top left: critical wave. Top right:
turning wave. Bottom left: critical and turning wave together. Bottom
right: dissipation anomaly, i.e. the difference between two waves together
and the sum of single waves, de = e(k1 + ko) — (e(k1) + €(k2)) (refer to Table
5.1 for the used wave numbers). The white line indicates the critical level
and the black line the turning point.

ear superposition of the single wave experiments.
Figure 5.12 is comparable to Fig. 5.11, but shows
dissipation rate for two critical waves. This figure
shows that the dissipation anomaly in the mean shear
zone is less pronounced and of opposite sign, compared
to the previous case with one critical and one turning
wave. This suggests that the net effect of nonlinear
interactions among two critical waves is to transfer
energy into other, non-critical waves. This means that
the waves have lost some energy when they reach the
critical layer and dissipate. The individually propagat-

ing waves have no other waves to interact with, and
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Figure 5.12: Horizontally averaged dissipation profile versus time for two
critical waves. Bottom left: two critical waves. Bottom right: dissipation
anomaly, de = €(k; + k2) — (e(k1) + €(k2)), refer to Table 5.1 for the used
wave numbers. The white lines indicate the critical levels.

therefore we expect them to dissipate close to all their
initial energy when they reach the critical level.

This experiment demonstrates a significantly larger
energy transfer rate to smaller scales by internal wave
— mean flow interactions when we allow for wave-wave
interactions. The nonlinear coupling between waves is
directly evaluated in our model, based on (5.8)-(5.12),
without any further assumptions. We will use this
advantage of direct numerical simulation to investigate
the dynamics of a broad band internal wave field in a

mean shear flow.

5.6.4 The broadband wave field

The two-dimensional initial wave field is a superposi-
tion of left— and right propagating waves in the z — 2-
plane. Initially, energy and phase propagate horizon-
tally, because of the rigid boundaries at the top and
bottom of the domain (refer to Section 5.4.2). The
energy in each wave is derived from the GM76 spec-
trum (refer to Section 5.4.3) and distributed normally
among right and left propagating waves (with = 0.5
and o = 0.2 and at least 1% of the total energy going
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Figure 5.13: Modal spectrum. Left: initial state. Right: spectrum after 1
day evolution.

in either direction). The initial wavefield contains all
combinations of the 30 lowest modes (except zero) in
both spatial directions, including negative horizontal
modes.

Figure 5.13 shows the modal spectrum of the initial
wavefield. The spectrum has the general GM energy
distribution, with most energy in the lowest horizon-
tal modes, but is not as smooth. We interpret the
speckles in the spectra as a result of the interference
of left- and right propagating modes. The offset from
the GM spectrum differs for each wave number, be-
cause all waves have a different energy and different
phase. The right panel of Fig. 5.13 shows that energy
quickly spreads to higher wave numbers up to the point
where the energy is dissipated by hyperviscosity (refer
to Section 5.5.2).

The left panel of Figure 5.14 shows the filling of
frequency space. The large horizontal extent of the do-
main accommodates near-inertial waves with frequen-
cies close to f. Pure gravity waves exist in the limit
k — oo and are limited by the horizontal Nyquist wave
number. Each frequency represents an unique aspect

ratio %, which explains the existence of multiple pairs
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Figure 5.14: Broadband initial state with all combinations of the 30 lowest
horizontal and vertical modes. Left: frequency spectrum. Right: frequencies
per horizontal mode.

of modes (k, m) per frequency.

Figure 5.15 compares the velocity and shear spec-
trum with the GM model. Integrating the GM model
(5.22) over all frequencies between f and N and us-
ing the polarization relations to write V? = u? 4 v?
in terms of the vertical mode number j gives veloc-
ity spectrum S[V](j) = 3Eob3Ng (25*m) L (1+4/5%) 2.
The buoyancy frequency normalized shear can be de-
rived from the velocity spectrum by vertical differ-
entiation, S[V,/N?|(j) = N2m2S[V](j), with m =
jrL;t.

5.6.5 Dissipation versus mean flow shear

In a series of numerical experiments we explore the re-
lation between internal wave dissipation and the shear
of the mean flow. All the experiments are initialized
with the same internal wave field with an energy den-
sity of 0.89FE¢as. The mean flow has the same ampli-
tude, Uy = 0.5 m/s, but a different shear length scale,
d € [200, 400, 600, 800, 1000] m (refer to Section 5.4.4).

Figure 5.16 shows the temporal evolution of the
dissipation rate for the simulation with lowest shear
(d = 1000m) and Fig. 5.17 shows the result of the
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Figure 5.15: Velocity and shear spectrum as calculated from the initial
velocity field and after 1 and 10 days of free evolution (no mean flow).
The dashed red line indicates the GM76 spectral level.
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Figure 5.16: Weakly sheared mean flow with d = 1000m and a GM-like
wavefield. Top left: initial wave field. Top right: mean flow. Middle:
horizontally averaged dissipation rate of waves plus mean flow normalized
by dissipation rate of waves only. Bottom: dissipation rate averaged in
horizontal direction and between z = 1000m and z = 2000m for waves only

and waves plus mean flow (labeled as ‘mean flow’).

simulation with highest shear (d = 200m). The middle

panel displays the dissipation rate normalized by the

dissipation of free waves without a mean flow, and

hence shows how much the dissipation is amplified by

mean flow interaction. The maximum amplification

of the background dissipation rate due to wave—mean

flow interaction is up to 55 times in the low shear case

and more than factor 400 in the high shear case.

Interestingly, the bottom panel of Fig. 5.16 and

5.17 shows that the dissipation rate in the shear zone
(defined as the vertical range 1000 < z < 2000m) is

more or less the same for both shears after an initial

ramp up time. Figure 5.18 shows that this is also the
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Figure 5.17: Strongly sheared mean flow d = 200m and a GM-like wavefield.
Top left: initial wave field. Top right: mean flow. Middle: horizontally
averaged dissipation rate of waves plus mean flow normalized by dissipation
rate of waves only. Bottom: dissipation rate averaged in horizontal direction
and between z = 1000m and z = 2000m for waves only and waves plus mean
flow (labeled as ‘mean flow’).
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Figure 5.18: Dissipation versus mean flow shear, Uy/d, with Uy = 0.5 ms™.

The dissipation rate is spatially averaged along the horizontal dimension and
between z = 1000 and z = 2000m in the vertical and temporally between
day 9 and 10.

case for other values of the shear parameter d. This
suggests that the energy transfer rate to smaller scales
is not sensitive to the exact location of the critical
layers nor to the spacing between these layers.

The ramp up time however is different for different
shears. The low shear case gives a long ramp up time
of almost two days and the high shear case ramps up
quickly in less than half a day.

The dissipation in the shear zone reaches a rate of
about 1071° m?s3 after the ramp up and stays almost
exactly at this level for the duration of the experiment.
This suggests that nonlinear wave—wave and wave—
mean flow interactions supply ‘critical waves’ (here

defined as waves for which a critical layer exists) at
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a more or less constant rate during the 10 day evolu-
tion.

Critical waves however are not merely supplied by
nonlinear interactions. Figure 5.22 shows that a frac-
tion of the initial waves is critical and thus directly
available for critical layer interaction.

We have constructed a simple model to predict the
dissipation rate in the shear zone due to initial crit-
ical waves only. We define a single critical layer at
z = L,/3 and assume that all waves with a horizontal
phase speed smaller than Uy will eventually dissipate
when encountering this level. We assume a GM-like
wave field and estimate the amount of energy reaching

this level using the vertical group velocity,

Cg, =0w/Om = o f* - (f2m? + N*k?)
(f2m2—|—N2k2)% (k:2—|—m2)% (k:2+m2)%
(5.34)

At time interval [¢,t + At] we expect waves from dis-
tance range Cg, X [t,t + At] to arrive at the critical
layer. The permissible distance range is limited by the
dimensions of the computational domain and multi-
plied by factor 2 when smaller than L, /3 to account for
waves travelling towards the critical layer from above
and below.

Assuming uniform spatial distribution of the initial
waves we estimate the energy of wave (k,m) arriving

at the critical layer at time ¢ as,

Cyg.(k,m)At

E(t,k,m) = T

Ecy(k,m). (5.35)
The energy arriving at the layer is dissipated when
the vertical wave number gets close to the Nyquist
wave number, myy,q = n.7/L,, because the numerical
viscosity damps these motions out (refer to Section
5.3.2).

The rate of change of the vertical wave number
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in the presence of a mean flow is proportional to the
shear, dm/dt = —kU,, according to WKB ray-tracing
theory [Kunze, 2000]. For our mean flow profile we
approximate dm/dt = kUy/d, where the minus sign
has dropped out because k£ > 0 and Uy > 0 and k and
Up have equal signs for a critical layer (refer to Section
5.2) and U, < 0 for z positive upward. The additional

time for a wave (k, m) to reach the dissipation scale is,

_ Mpyqg — M

== T (5.36)

Adding t + ¢’ gives the time when E(t,k,m) is dissi-
pated and we define the dissipation rate as E(t, k,m)/(t+
t'). Binning the dissipation rates for all waves in time
bins gives the dissipation time series in Fig. 5.19.
From Fig. 5.19 we learn that different ramp up
times can be explained by the dependence of the trans-
fer rate to small scales on the magnitude of the shear.
We also observe that the dissipation rate decreases af-
ter reaching its maximum value, in contrast to the
numerical calculations (refer to Fig. 5.16, Fig. 5.17 or
Fig. 5.19). The results from our simple model seems to
indicate that the energy in the critical waves present
at t = 0 is quickly depleted and insufficient to explain
the magnitude and steadiness of the dissipation rate
in the numerical experiments. We therefore conclude
that the bulk of the energy at critical wavelengths is

supplied through nonlinear interactions.

5.6.6 Dissipation versus mean flow strength

We explore the dependence of the internal wave dis-
sipation on the strength of the mean flow by varying
the mean flow amplitude Uy and keeping the shear
constant at a value of Uy/d = 0.001 s~!. Figure 5.20
shows the temporal evolution of the mean dissipation

in the range 1000m< 2z < 2000m for three values for
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Figure 5.19: Dissipation rate based on a simple model (solid lines) compared
to full simulations (dotted lines). The model treats all wave modes as non-
interacting except at the critical layer where they transform to smaller scales
at a rate, dm/dt = kUy/d, until they dissipate close to the given Nyquist

wave number.
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Up: 0.05, 0.25 and 0.5 ms~'. Note that the evolu-
tion of the dissipation rate looks remarkably similar
for Uy = 0.25 ms™! and Uy = 0.5 ms™".

Figure 5.21 shows the average dissipation rate in
the shear zone. The spatial averaging range is be-
tween z = 1000 m and z = 2000 m vertically and the
horizontal domain size. We allow some time for inter-
actions between the internal waves and the mean flow
to develop by choosing the temporal averaging win-
dow between day 9 and 10. For Uy > 0.2 ms™! we
see that the dissipation rate is more or less constant,
whereas Uy < 0.2 ms™! shows a collapse towards free
wave dissipation rates.

A weak mean flow provides a critical level for waves
with high wave numbers, as is shown in Fig. 5.22.
These small scale, high wave number waves contain rel-
atively little energy because energy in the initial GM
wave field is concentrated in the lower modes. More-
over, the bit of energy that is available at high wave
numbers is also viscously damped, as hyperdissipation
becomes more important at high wave numbers. We
explain the collapse of the dissipation rate at low mean
flow strength by the combination of these two effects.

The dissipation plateau for large amplitude mean
flows, with Uy > 0.2 ms™!, seems to imply that the
replenishment rate of dissipated waves is more or less
constant when sufficiently many, lower wave number
waves are critical. Whether this presumption can be
backed by internal wave theory is subject of ongoing

research.

5.6.7 Sensitivity to the number of initial
modes

The majority of the energy in the Garrett-Munk field
resides in the lowest modes. For example, only the low-

est three vertical modes account for 52% of the total
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Figure 5.20: Dissipation versus mean flow strength. Top: Uy = 0.05 ms™!.
Middle: Uy = 0.25 ms~!. Bottom: Uy = 0.5 ms~!. The shear is the same
and has a value of 0.001 s~ .
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Figure 5.21: Dissipation versus mean flow strength with constant vertical
shear, Up/d = 0.001 s~!. The dissipation rate is averaged along the hori-
zontal direction and vertically between z = 1000 m and z = 2000 m and
temporally between day 9 and 10.

energy®. Although the bulk of the energy is contained
in the lowest modes we chose to initialize our model
with an additional number of higher modes. This puts
very little extra energy into the system but does pro-
vide more resonant wave triads for nonlinear interac-
tion and energy transfer towards dissipative scales.
Many experiments discussed in this chapter are ini-
tialized with all combinations of the lowest 30 vertical
and horizontal modes. Figure 5.23 compares the time
evolution of the dissipation rate for simulations with
202, 302, and 402 initial modes. The figure shows that
quadrupling the number of modes, from 202 to 402,
increases the dissipation rate by 700%, although the
total initial energy increases only 6%. This supports
the notion that the inclusion of higher modes facili-

tates the transfer of energy to small scales.

3The total energy is defined as the energy in the lowest 250 modes.
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Figure 5.22: Lowest critical wave numbers for a given mean flow amplitude.
The grey shaded area indicates the wave numbers for which the numerical
viscosity is smaller than the molecular viscosity of water.
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Figure 5.23: Time evolution of the spatially averaged dissipation rate for a
different number of initial modes. There is no mean flow in this simulation.



CHAPTER 5. WAVE MEAN FLOW INTERACTION 162

Whether 302 initial modes is sufficient appears dis-
putable. Figure 5.3 shows that the dissipation rate
reaches its maximum after about 60 days when ini-
tialized with 302 modes. The maximum rate is about
2x 1071 m2s73, which is about 30% of the GM steady
state dissipation rate. The dissipation rate after 10
days is only 12% of the GM value.

The simulation with 40? initial modes reaches a

2573 after only one day

dissipation level of 1 x 10710 m
and increases only slightly over the next 9 days, which
could be regarded as a more adequate representation
of the dissipation of a steady and thus forced GM wave

field.

5.6.8 Sensitivity to the choice of viscosity
parameters

In this section we assess the effect of the choice of hy-
perviscosity parameters on the dissipation rate. Fig-
ure 5.24 shows the time evolution of the spatially av-
eraged dissipation rate for different hyperviscosity co-
efficients. The simulation is initialized with a GM-like
broad band wave field with 30 horizontal and 30 ver-
tical modes and a weakly sheared mean flow with d =
1000m (refer to Section 5.4.4). The figure shows three
simulations with hyperviscosity coefficients, [p, Ty;ss] =
[8,10000], [10, 1000] and [12,100].

The simulations show that the dissipation rate is
higher for lower order hyperviscosities, that is smaller
p values. The dissipation time scale, Ty;ss, is chosen
such that the hyperviscosity crosses the Newtonian vis-
cosity at approximately the same wave number (refer
Fig. 5.2). The viscous wave damping becomes signifi-
cant beyond this wave number, and this happens espe-
cially ‘quickly’ for higher p values. Thus, the p value
effectively determines how many higher wave number

are permitted in the system.
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Figure 5.24: Spatially averaged dissipation rate for different hyperviscosity
coefficients. Coefficients are chosen such that the wave number at which
hyperviscosity surpasses Newtonian viscosity remains more or less the same.
The coeflicients used for the broadband simulations are p = 10 and Tys5 =

1000.
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This means that many of the high wave numbers
that partake in nonlinear interactions in the simulation
with p = 8 are non-existent in the simulation with
p = 12, because they have been damped out by the
hyperviscosity. Apparently, there is a higher net flux
of energy towards dissipative wave numbers if waves
with higher wave numbers are available for interaction
with the rest of the wave field.

5.7 Discussion

In this chapter we looked at the dissipation of a broad
band, Garret-Munk-like wave field in the presence of
a sheared mean flow. This problem was brought to
our attention by the observation of a strong jet flow
in the Atlantic II Fracture Zone, in the Southwest In-
dian Ridge [MacKinnon et al., 2008]. The discovery of
the jet led us to hypothesize that internal wave mean
flow interaction might be an alternative or comple-
menting mechanism to explain the generally observed
high dissipation rates in submarine canyons. Canyon
mixing has so far been associated mostly with ‘hy-
draulic jumps’, downstream of sills [Thurnherr et al.,
2005; Thurnherr, 2006; Thorpe, 2007].

Many important features of the upper atmosphere
are explained by internal wave mean flow interaction
[Lindzen, 1973] and this likely holds true for the deep
ocean as well. For example, [Muench and Kunze, 1999,
2000] show that the momentum flux divergence due
to internal wave critical layer interactions suffices to
maintain the equatorial deep jets. Internal waves are
also likely to cause momentum transfer and instabili-
ties in the vicinity of other persistent ocean currents,
such as the Antarctic Circumpolar Current, the Gulf-
stream and other western boundary currents, such as
the Agulhas— and the Kuroshio Current. The interac-
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tion between internal waves and deep flows is poten-
tially relevant to the deep MOC.

Interactions between the internal wave field and a
mean flow may be relevant to the Indian Ocean MOC
because it could cause mixing at places where it is
most needed. For example, the bulk of the inflow of
deep and bottom water into the Indian Ocean across
32°S may be concentrated in jet-like flows through
the SWIR [MacKinnon et al., 2008] and deep western
boundary currents [Beal and Bryden, 1997]. Strong
mixing at the interface between these flows and the
lighter overlaying water masses appears advantageously
localized to transform the deep limb of the Indian
Ocean MOC. However, whether this leads to signifi-
cant mixing of deep water masses is not obvious, be-
cause of the limited contact area between the deep
water masses and the critical layers and also because
of the short transient times of deep water masses in
strong flows.

Our numerical results show an interesting relation
between wave dissipation and the strength of the mean
flow. As expected, we find higher dissipation rates
when we introduce a mean flow in the system. More
surprisingly, we also find that the dissipation rate reaches
a plateau value for mean flow amplitudes larger than
0.2 ms~!'. At this point it is unclear whether this
threshold value is related to a fundamental property
of the internal wave field, such as the spectral replen-
ishment rate, or a numerical artefact. This issue is
subject of ongoing research.

Motions in the oceanic internal wave field span
length scales from the size of the basin to centimetres,
which makes it impossible to capture the full range in
a numerical model. We focus on ‘mid-range’ scales,
which means that largest, near-inertial motions, and

the smaller, sub-grid size, motions are not represented
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in the model. Therefore we rely on the assumption
that there is a negligible upscale energy transfer at
scales close to the numerical grid size or smaller.

In fact, we use a relatively coarse grid compared
to the displacement amplitude of the internal waves,
similar to the numerical setup used by [Winters and
D’Asaro, 1997]. This means that the dynamics of
wave-breaking are not resolved in our model, but that
does not mean that the dissipation rates calculated by
the model are unrealistic. Using essentially the same
model in a 3D setup, [Winters and D’Asaro, 1997] find
that a simulation initialized with a GM-like internal
wave field produces a GM-like dissipation rate. Based
on their result we believe that the results from our ide-
alized model are in principle comparable to the real
ocean when appropriately initialized.

Details of wave-instability near a critical level have
been studied using similar numerical methods for a
single wave packet in 2D [Winters and D’Asaro, 1989
and in 3D [Winters and D’Asaro, 1994]. These stud-
ies focus on the development of shear— and convective
instabilities and find that convective instabilities need
the third dimension and some random noise to develop
vortical motions. It is shown that vortical motions
are important in the onset to turbulence, but we do
not expect that the two-dimensionality of our simula-
tions affects the dynamics of the scales resolved in our
model.

Plans for future research include: (i) more detailed
analysis of the spectral transfer of energy in the exper-
iments with a few waves only; (ii) further exploration
of how the dissipation rate depends on the initial wave
field; (iii) exploration of the relation between dissipa-
tion and the energy of the internal wave field, both in
2D and 3D; (iv) and, as mentioned above, a further

investigation of the relation between dissipation and
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mean flow strength.

5.8 Summary and conclusion

In this chapter we used a spectral numerical model
to study the interaction between internal waves and a
sheared mean flow. We did a number of numerical ex-
periments with increasing complexity, from one wave
and one critical layer to many waves with Garrett-
Munk wave amplitudes and various mean flow settings.
All simulations are unforced and initialized with a two-
dimensional flow field. The model equations however
are three-dimensional and fully nonlinear.

In all simulations we observed increased wave dissi-
pation in the presence of a mean flow, as compared to a
control run with internal waves only. This is consistent
with theory. More interestingly, we find that the dissi-
pation of kinetic energy in the system hardly depends
on the shear of the mean flow. The local intensity of
the dissipation however does depend on shear and is
higher for stronger shear. This is likely to be relevant
in the real ocean where wave dissipation is associated
with wave breaking and turbulent mixing.

We also found that the strength of the mean flow
only matters below a threshold value of 0.2 ms~!.
Larger mean flow amplitudes do not affect the mean
dissipation level as long as the mean flow itself remains
stable. The question whether this result is fundamen-
tal to internal waves or a numerical artefact is subject

of ongoing research.



Chapter 6

Conclusion

The main result of this dissertation is that turbulent
kinetic energy (TKE) production by internal waves
is not enough to sustain the deep meridional over-
turning circulation (MOC) in the subtropical Indian
Ocean. This result challenges the view expressed by
[Wunsch and Ferrari, 2004] that “Much, if not all, of
the mixing energy is bound up in the internal wave
field,[...]” (p.28). It looks like internal wave breaking
has been over-emphasized as a source of TKE in the
deep ocean, which implies that other viable processes,
such as drag on the general circulation in passageways,
deserve more attention.

The overturning circulation is a bulk carrier of ki-
netic energy to the deep ocean, but it is unclear how
much of this energy is converted to TKE. Hydraulic
jumps at sill overflows in narrow passageways provide
a mechanism to draw energy from the general circu-
lation and produce turbulence. This energy pathway
to TKE production has been explored in the Mid At-
lantic Ridge [Thurnherr et al., 2005; St Laurent and
Thurnherr, 2007] and may explain the observed ele-
vated mixing rates in Indian Ocean fracture zones and
passages [Barton and Hill, 1989; Johnson et al., 1998;
McCarthy et al., 1997].
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The deep northward limb of the Indian Ocean over-
turning may be sustained by mixing in the numer-
ous fracture zones, but this seems less likely for the
shallower, southward return flow. For example, the
27.18 kg m~3 density surface, which is the typical clos-
ing density for most overturning solutions, intersects
only with the Owen Fracture Zone and the Mascarene
Plateau. However, the [McDonagh et al., 2008] solu-
tion is based on newer observations and gives a sig-
nificantly deeper overturning cell that closes at about
27.75 kg m™3. A quick analysis shows that this density
surface intersects with almost all major topographic
formations in the Indian Ocean. In future research we
wish to address the question whether mixing in pas-
sages and canyons can close any of the overturning
energy budgets considered in this study.

Another source of TKE explored in this disserta-
tion is the dissipation of a broad band internal wave
field due to critical layer interactions in a sheared mean
flow. Enhanced internal wave dissipation due to mean
flow interaction may not be captured adequately by
the fine scale shear/strain parameterization of turbu-
lent dissipation. Elevated spectral levels of shear and
strain have been observed in the vicinity of mean flows,
for example close to equatorial jets in the Indian Ocean
by [Dengler and Quadfasel, 2002], but the accuracy
of the inferred dissipation rates in unknown in this
regime. It would be interesting to assess the perfor-
mance of the fine scale parameterization in a sheared

mean flow.
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Appendix A

Density resolution
advection—diffusion

model

This derivation shows that the choice of density levels
in the advection—diffusion model does not matter for

the turbulent mass transport at a given density level.

F at z;, one layer Let’s start with the single den-
sity layer in Fig. A.la, with a hard bottom at z = 0,
a density interface at z = z; with density p; and ad-

vective mass transport fozl pT' dz through the left hand

side, where T' = [u(y, z) dy is the transport per unit

Figure A.1: Vertical cross-section of a box-volume with hard walls on three
sides and a hard bottom. Advective transport is allowed through the open
left-hand-side. Note that T is transport per unit depth.
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depth [m2s~!]. Assuming a balance between advec-
tion and diffusion we can solve for the turbulent mass

transport at z7,
zZ1 21
P :/ psz—pl/ Tdz. (A.1)
0 0

F at 2y, one layer Suppose we introduce a new
layer at z = zg, with 0 < zg < 21, see Fig. A.1b. The

turbulent mass transport at zg is,
z20 20
Fy = / pT dz — pg/ Tdz. (A.2)
0 0

F at z1, two layers Let’s now calculate the turbu-
lent mass transport at z; based on the mass transport
into the layer between zy and z;. Collecting all the

mass flux terms in Fig. A.1c we get,

21 20 21
F1:F0—|—/ psz+po/ sz—pl/ Tdz.

20 0 0
(A.3)
Substitution of (A.2) in (A.3) gives,

20 20
F :/ oT dz —W+
0 0
Z1 ) Z1
/ psz+M—p1/ Tdz =
20 0 0
Z1 Z1

/ psz—pl/ Tdz, (A4)
0 0

and we get the same expression as in the one layer

case, refer to (A.1).



Appendix B

Bottom roughness

We define bottom-roughness as the square root of the
mean square distance between a smooth polynomial
surface Z(x, y) and the Smith and Sandwell bathymetry
zss Smith and Sandwell [1997],

r(z,y) =4/ (zss — 2)% (B.1)

where the overline denotes spatial averaging.

The 2D polynomial Z(z,y) = c1x + cox? + c3zy +
cay + csy® + cg (same as in Morris et al. [2001]) is fit-
ted to one thirtieth degree bathymetry data in 0.5x0.5
degree, non-overlapping patches. For each patch A we
find the polynomial coefficients by solving, Mc¢ = zgg,
where the matrix M contains the polynomial terms
evaluated at the points (z,y) € A, and ¢ = (¢1,¢2,...,C6)
is a vector with the unknown polynomial coefficients.
In our particular case we deal with an overdetermined
set of equations (240 equations, 6 unknowns). We can
find a least-squares solution to this problem by solving

the normal equations,
(MTM)e = M7 255, (B.2)

where M7 is the transpose of M, and (M7 M) is in-
vertible (in principle if M is full rank). The unique
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solution for the coefficients ¢ gives a least-square fit of
Z to zgg.

The parabolic polynomial fits well to features of the
patch size, that is to length scales of about 50km. The
roughness parameter r is therefore a measure for the
abundance of smaller features. The lower limit of the
topographic length scale is set by the resolution of the
Smith and Sandwell bathymetry, which is 27 x depth
for the bulk of the bathymetry that is obtained from
satellite gravity anomaly measurements Morris et al.
[2001]. So we expect 7(z,y) to reflect roughness at
15-50km length scales.



Appendix C

Bootstrap

resampling

The bootstrap method is a non-parametric method to
estimate the standard deviation of a statistic. The
method is based on a large number of random draws
with replacement from the data set, where ‘replace-
ment’ means that the same sample may be drawn mul-
tiple times. How bootstrap resampling can be used to
assess the robustness of a statistic is best illustrated
with an example. The bootstrap recipe to estimate
the standard deviation of for example the mean p of
dataset X = [x1,x9,...,2N] i,

1. randomly sample N elements &1, Z9,..., 2y from

X with replacement,

2. calculate the mean i of the bootstrap sample X,

3. repeat step 1 and 2 B times

4. calculate the standard deviation of fi1, fi2, ..., fip.

See for example Martinez and Martinez [2002] for a

more comprehensive discussion about bootstrapping.
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