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Is the Indian Ocean MOC driven by internal wave breaking?

by Tycho Nout Huussen

This dissertation investigates the energetics of the Indian Ocean Meridional
Overturning Circulation (MOC) using hydrographic data (Part I), and the
interaction between a broad band internal wave field and a mean flow using
idealized numerical simulations (Part II). The main objective of this work is
to quantify how much energy is needed to drive the Indian Ocean MOC and
to compare this with the energy available in the internal wave field. The
turbulent dissipation needed to sustain the MOC is estimated by assuming a
‘mixing efficiency’ of 0.2 and an advective–diffusive balance in neutral den-
sity layers. The advective transport of mass into this box-model is based on
published estimates of the flow field at 32◦S and the Indonesian Through-
flow. A comparison of the large scale dissipation rates with estimates of
the input of energy by the tides and the wind shows that most published
overturning solutions require more energy than is likely to be available. This
result suggests that energy budgets may be useful as constraints in inverse
models. Estimates of turbulent dissipation due to internal wave breaking
are inferred from in-situ observations of shear and strain using a fine scale
parameterization. The isoneutral mean of the inferred internal wave dissi-
pation rates is about one order of magnitude smaller than dissipation rates
inferred from the large scale flow fields. This result appears robust when
considering potential sampling biases in the internal wave observations and
leads to the main conclusion of this work: the Indian Ocean MOC cannot
primarily be driven by internal wave breaking. A preliminary investiga-
tion into other processes capable of dissipating energy in the ocean interior
shows that the MOC may be closed by hydraulic turbulence in the numerous
Fracture Zones in the Indian Ocean.

Thesis supervisor: Alberto Naveira-Garabato
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Chapter 1

Introduction

The ocean circulation transports seawater properties

over the globe (see Fig. 1.1). Some of these properties,

such as heat and dissolved greenhouse gasses, have cli-

matological impact, others, like nutrients and pollu-

tants, affect living organisms. The global meridional

overturning circulation (MOC) consists of both hori-

zontal and vertical motion and is sometimes referred

to as the ‘great ocean conveyor’ [Broecker, 1991]. Ver-

tical movement in the ocean is supported by a delicate

balance between deep convective downwelling at a few

sites in the North Atlantic and Southern Ocean and

upwelling throughout the ocean interior.

The Earth’s gravity field has an ordering effect on

the ocean, making it density stratified, with lighter

water above heavier water. This implies that a verti-

cally moving parcel of seawater must change density, if

we are to maintain the stably stratified mean state of

the ocean. The only way to do so is by mass exchange

with the ambient fluid, or the atmosphere in the case of

downwelling at the surface. However, mass exchange

through molecular diffusion in laminar flow is too slow

to produce sufficient upwelling to close the MOC. We

need turbulence. The process of fluid intertwinement

by turbulent eddies and subsequent homogenisation by

1
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Figure 1.1: Schematic of global overturning circulation. Color indicates
approximate density ranges. Red: upper, γ < 27.0; yellow: intermediate,
γ ≈ 27.0−27.6; green: deep, γ ≈ 27.6−28.15; blue: bottom, γ > 28.15. Gray
surface with dashed edges is γ = 27.6 at 32S, separating upper and lower
cell transformation in the Southern Ocean [. . . ]. Dashed arrows indicate
Indian-to-Atlantic westward exchange between Africa and the ACC. Shallow
subtropical cells not included. Format adapted from Schmitz (1996). This
figure and the figure caption are reproduced from [Lumpkin and Speer, 2007]
p.2556.]
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molecular diffusion is referred to as ‘ocean mixing’.

How much vertical mixing is needed to sustain the

global MOC depends on its structure and strength. If

all the deep water produced at high latitudes upwells

in the ocean interior one would need a global abyssal

dissipation rate of about 2.1 TW (assuming 20% ‘mix-

ing efficiency’) [Munk, 1966; Munk and Wunsch, 1998;

Wunsch and Ferrari, 2004]. The estimated input of

energy is also ∼2.1 TW [Wunsch and Ferrari, 2004;

Ferrari and Wunsch, 2009], just enough to sustain the

global MOC if there are no losses to processes that do

not mix the ocean at 20% efficiency.

More recent insights in the structure of the global

MOC alleviate the need for turbulent kinetic energy

(TKE) in the ocean interior. A computer model study

by [Toggweiler and Samuels, 1998] produces a global

overturning sustained by wind driven mixing in the

Antarctic Cicumpolar Current (ACC), without verti-

cal mixing in the ocean interior. However, [Wunsch

and Ferrari, 2004] point out that the deepest isopy-

cnals in the ocean never outcrop or shoal to within

reach of the ACC. These insights give rise to a two

cell picture of the global MOC: a deep lower cell driven

by abyssal vertical mixing and a more shallow upper

cell driven primarily by mixing in the ACC [Webb and

Suginohara, 2001].

The Indian Ocean is generally considered to host

a large limb of the global deep overturning cell, as

depicted in Fig. 1.1. Most of the more recent hydrog-

raphy based studies find that about half of the global

deep upwelling takes place in the Indian Ocean. For

example, [Ganachaud and Wunsch, 2000] have esti-

mated worldwide upwelling across the 28.11 kg m−3

neutral density1 surface for all oceans (except the Arc-

1Neutral density is a global density variable that minimizes the work needed to move
a water parcel along any isoneutral trajectory [Jackett and McDougall, 1997]. Note that
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tic Ocean). They find an upwelling rate of 11±5 Sv

(1Sv≡ 1 × 106 m3s−1) in the Indian Ocean, approxi-

mately equal to the estimated deep upwelling in the

Atlantic Ocean, and about twice bigger than in the

Pacific Ocean. This is especially remarkable when we

realize that the Indian Ocean is the smallest of all

oceans, covering less than 20% of the world ocean.

All hydrography based estimates of Indian Ocean

MOC are primarily based on 32◦S hydrographic sec-

tion between South-Africa and Australia. Figure 1.2

shows salinity as measured during the most recent oc-

cupation of this section in 2002 and the water masses

as identified by [McDonagh et al., 2008]. An inverse

model study by [McDonagh et al., 2008], based on

the data collected in 2002, also finds a strong over-

turning cell in the Indian Ocean, similar in strength

to previous solutions for the Indian Ocean overturn-

ing, but with a deeper return flow. The deep Indian

Ocean overturning cell found by [McDonagh et al.,

2008] consists of northward flowing bottom and deep

water, occupied by modified Antarctic Bottom Water

(AABW), Circumpolar Deep Water (CDW), and mod-

ified North Atlantic Deep Water (NADW), balanced

by a deep southward flow, below 1500m, occupied by

Indian Deep Water (IDW), that is fed back into the

ACC, where it blends into the upper CDW water mass.

The IDW, produced by the Indian Ocean MOC, is oxy-

gen depleted, but rich in nutrients and carbon [Dri-

jfhout and Garabato, 2008], suggesting both a long

residence time of the water masses and isolation from

the surface. Isolation from the surface means that

the water mass transformation in the Indian Ocean

MOC must be driven exclusively by abyssal mixing

processes. In this thesis we will assess whether one of

all densities in this dissertation are given as a density anomaly with respect to 1000 kg
m−3.
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Figure 1.2: Salinity as measured during the 2002 occupation of the 32◦S
Indian Ocean section. [McDonagh et al., 2008] find that Indian Ocean MOC
consists of a northward inflow of Lower Bottom Water (LBW), with neutral
density γ > 28.23, Upper Bottom Water (UBW), with 28.11 < γ ≤ 28.23,
and Lower Deep Water (LDW), with 27.96 < γ ≤ 28.11, and a southward
retro-flow of Upper Deep Water (UDW), with 27.70 < γ ≤ 27.96. The
northward flowing water masses consist of modified Antarctic Bottom Water
(AABW), Circumpolar Deep Water (CDW), modified North Atlantic Deep
Water (NADW), and the southward upper limb of the overturning is often
referred to as Indian Deep Water (IDW). This figure is reproduced from
[McDonagh et al., 2008] p.23.

the abyssal mixing processes most favoured in litera-

ture, that is internal wave breaking, can account for

the mixing needed to sustain the Indian Ocean MOC.

The question whether the Indian Ocean contains

enough TKE to balance the high upwelling rates in-

ferred from hydrographic inverse models has motivated

this study. In Chapter 2 we estimate the turbulent dis-

sipation needed to sustain the Indian Ocean overturn-

ing circulation by assuming a balance between advec-

tion and diffusion. Chapter 3 discusses a fine scale pa-

rameterization to infer internal wave dissipation from
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fine scale shear and strain and presents internal wave

dissipation estimates for the Indian Ocean WOCE2

sections and other hydrographic stations. Chapter 4

compares the large scale, inverse model dissipation es-

timates with turbulent dissipation estimates inferred

from fine scale, internal wave observations. In the fi-

nal chapter we look at the dissipation of a broad band

internal wave field due to critical layer interactions in

a sheared mean flow, using idealized numerical simula-

tions. This problem is distantly related to the mixing

needed to sustain the Indian Ocean MOC, but will be

treated separately.

2World Ocean Circulation Experiment.



Part I

MOC energetics

7



Chapter 2

Box-model mass

budget:

one-dimensional

constraints on the

energetics of mixing

in the Indian Ocean

2.1 Introduction

In this chapter we consider the energetics of five recent

inverse model solutions for the Indian Ocean overturn-

ing circulation. Four solutions are based on hydro-

graphic measurements along the 32◦S transect [Mc-

Donagh et al., 2008; Bryden and Beal, 2001; Sloyan

and Rintoul, 2001; Ganachaud and Wunsch, 2000] and

one solution is based on a general circulation model

assimilating hydrographic data [Ferron and Marotzke,

2003].

We calculate the diapycnal mass transport by as-

suming a balance between mass diffusion and advec-

8
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tion in density layers. The advective mass transport

into the density layers of our Indian Ocean box-model

comprises transport across the open boundary at 32◦S

and the Indonesian Throughflow (ITF). In our model

we also account for the high density outflow plumes

from the Red Sea (RS) and the Persian Gulf (PG).

We calculate the turbulent dissipation by assum-

ing that the diapycnal mass flux is the result of turbu-

lent diffusion. Writing the turbulent eddy diffusivity

in terms of dissipation using the Osborn relation [Os-

born, 1980] gives a simple relation between the tur-

bulent mass flux and the dissipation rate, involving

quasi-constants like the gravitational acceleration, the

‘mixing efficiency’, and the mean density.

In the Section 2.6 we compare the dissipation rates

needed to sustain the overturning solutions considered

in this study with estimates of available dissipation.

This comparison shows that the Indian Ocean con-

sumes a large chunk of the globally available energy.

This is consistent with the picture that the Indian

Ocean hosts an important deep upwelling limb of the

global MOC, but also raises questions about the real-

ism of the various circulation schemes. In Chapter 4

we compare the energy demand of the Indian Ocean

MOC with the energy supply by what is commonly

thought to be the major source of turbulence in the

interior ocean: internal waves.

2.2 Methods

2.2.1 Advection–diffusion balance

The stratification of the ocean is preserved if the ad-

vective divergence of its properties is balanced. Diffu-

sion is the only available mechanism to balance advec-

tion in an ocean volume without sources and sinks for
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tracers,

∇ · (Uφ) = −∇ · (K∇φ), (2.1)

where K is (eddy) diffusivity, φ is the tracer concen-

tration, and U = (u, v, w) the three dimensional flow

field. This balance is expected to hold for the inte-

rior of the ocean, away from boundaries and biological

activity. Assuming that (i) the tracer concentration

only has a vertical gradient, (ii) diffusivity K is later-

ally constant, and (iii) u, v >> w so that ux + vy ∼= 0,

gives, wφ = −Kφz. [Munk, 1966] used this equation

and observed profiles of temperature and carbon 14

to estimate the global upwelling velocity, w = 0.00014

mms−1, and diffusivity K = 1.3 cm2s−1.

The balance between advective and diffusive diver-

gence given by (2.1) can be written in terms of fluxes

through the sides of a box-volume by (i) integrating

over volume, (ii) applying the divergence theorem to

the left hand side (lhs), (iii) vertical integration of the

right hand side (rhs). These manipulations and writ-

ing ρ for the ‘mass concentration’ or density give,∫
Uρ · dA = [KρzA]top − [KρzA]bottom, (2.2)

where A is the surface area of the volume and Kρz

the area averaged product of the diffusivity and the

density gradient at the top and bottom of the box vol-

ume [Sloyan, 2006]. This mass balance holds to good

approximation for any box volume in a steady, verti-

cally density stratified ocean with negligible horizontal

diffusion.

The integral on the lhs of (2.2) can be simplified for

a box volume enclosed by density layers. For layer i,

between density interface ρi−1,i and ρi,i+1, with verti-

cal transport Ti−1,i at the bottom interface and Ti,i+1

at the top interface, horizontal transport Ti across the

side walls of the layer, and transport weighted den-
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sity ρi at the side walls, we can write the advection–

diffusion balance as,

ρiTi + ρi−1,iTi−1,i − ρi,i+1Ti,i+1 = Fi−1,i − Fi,i+1,

(2.3)

where transport into the layer is defined to be positive,

layer numbers go bottom-up with ρi−1,i ≥ ρi > ρi,i+1,

and F ≡ KρzA the turbulent (diffusive) mass trans-

port across the top and bottom interface. The terms

on the lhs represent advective mass divergence and the

terms on the rhs diffusive mass divergence, where the

horizontal diffusion is assumed to be negligible. We

assume a steady state where both layer volume and

layer mass are conserved.

The role of the diffusive mass transport F in the

advection–diffusion balance is illustrated in Fig. 2.1.

The figure shows a two-layer system with density ρ1

at the bottom and ρ2 at the top (Fig. 2.1a). Lateral

advection into the bottom layer would raise the in-

terface between the layers in the absence of diapycnal

mixing (Fig. 2.1b). Diapycnal diffusion erodes den-

sity gradients (Fig. 2.1c), and effectively restores the

system into its initial state (Fig. 2.1d). Equations 2.1–

2.3 prescribe a continuous balance between these two

effects.

The advection–diffusion balance given by (2.3) can

be solved for F , given the velocity or transport and

the density at the lateral sides of the box, and an

appropriate boundary condition at the bottom of the

box. The vertical transport follows simply from con-

tinuity, Ti,i+1 =
∑i

j=1 Tj . For the boundary condition

we choose F0,1 = T0,1 = 0 at the bottom, that is zero

flow or diffusion through the sea floor. Figure 2.2 gives

a schematic overview of the fluxes in our Indian Ocean

box-model.

The advection–diffusion balance in the form used
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Figure 2.1: This schematic of a simple two-layer system illustrates the effect
of mass advection and mass diffusion. a) initial state; b) advective transport
T into the bottom layer raises the layer interface; c) diffusive mass transport
F due to turbulent mixing moves the interface downward and restores the
initial state.

Figure 2.2: Schematic of the mass fluxes into the Indian Ocean. The trans-
port across 32◦S is given by hydrography and is volumetrically balanced
by the Indonesian Troughflow (ITF). The advection of Red Sea water and
Persian Gulf water is restricted to the upper density layers and effectively
entrains mass into these layers, as indicated by the horizontal mass diffusion
F ′. The vertical mass diffusion, Fi,i+1, is solved for by assuming a balance
between mass advection and diffusion. Finally, the total mass budget is
closed by the exchange of mass with the atmosphere, as symbolized by the
net precipitation Q.
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here ignores the non-linearity of the equation of state

[Munk and Wunsch, 1998]. The effect of these non-

linearities on the global dissipation budget is inves-

tigated by [Klocker and McDougall, submitted 2009]

and found to be significant in the Southern Ocean,

mostly due to sharp temperature fronts and outcrop-

ping isopycnals. This effect however is expected to be

small in the Indian Ocean.

2.2.2 Mass transport into density layers

This section discusses the binning of mass transport

into density layers. The use of density, instead of pres-

sure, as the vertical coordinate allows us to make en-

ergy estimates, as discussed in the next section.

Geostrophic flow calculated from hydrography is

usually given in pressure bins, with typical dimensions

of 20dbar by 10–100km, depending on the distance

between the hydrographic stations. A density layer

intersecting with a binned flow field will generally en-

compass a number of whole and fractional bins, as is

schematically depicted in Fig. 2.3. The total transport

into a density layer is found by integrating all whole

and fractional transport bins, where the contribution

from a fractional bin is assumed proportional to its

area within the layer boundaries.

A layer confined by ρ1 and ρ2 (ρ2 > ρ1) and top

pressure p(ρ1) encompasses fraction fn = (p(ρ1) −
pn)/∆p of bin n + 1 if ρn+1 < ρ1 < ρn. Suppose

bin fraction at the upper layer boundary is fn and at

the lower boundary fm, then, for some station pair

(s, s+ 1), we write the layer transport as,

Ts,s+1 = fn Tn+1 +

m∑
i=n+2

Ti + fm Tm+1, (2.4)

where Ti is the transport in bin i.



CHAPTER 2. LARGE SCALE BOX-MODEL 14

Figure 2.3: Schematic of the fractional assignment of transport to an inner
ocean density layer. Note that some layers require special attention, for
example at the surface or bottom and if the layer is very thin (p(ρ2)−p(ρ1) <
dp).

Layers encompassing the surface or bottom require

special attention as well as the case where multiple lay-

ers fit into a single transport bin. Accounting for these

situations we exactly reproduce the total transport, as

obtained from simple addition of all the bins. The

method works for any number of arbitrarily spaced

density layers under the one condition that the stratifi-

cation is stable, meaning that a less dense layer cannot

be above a more dense layer, not even locally, because

the method as implemented will account twice for the

transport in the unstable region. The physical rea-

son for avoiding length scales where instabilities are

resolved is that these patches of unstable water will

only exist temporarily, because buoyancy driven down-

ward mass transport will quickly restore the fluid to

an energetically favourable, stably stratified state. In

our analysis however, we are interested in the opposite
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process: the spatial and temporal mean upward mass

transport by mixing processes.

The stability condition is satisfied if the density

layers are not too closely packed. We find instabili-

ties in the pycnocline for 15 layers (or more) if we use

a constant density spacing between layers. Choosing

an exponential density spacing between layers gives a

much more regular layer spacing in pressure space and

allows for 200 layers or more.

The applied linear interpolation ignores the fact

that density does not linearly depend on pressure. Con-

sequently we slightly overestimate layer pressure, in-

troducing an error in the layer transport. However,

this error is small for small layer spacing and in regions

of weak shear. A general discussion of the errors asso-

ciated with methods used in this study is presented in

Section 2.4.

2.2.3 Turbulent dissipation

The turbulent mass transport was defined in Section

2.2.1 as F = KρρzA, with turbulent diffusivity Kρ,

density gradient ρz, surface area A, and the overline a

spatial average over surface A. This relation may be

written as,

F = Kρ × ρz ×A, (2.5)

if Kρ and ρz are spatially uncorrelated. Relying on

the same assumption that Kρ is random with respect

to ρz we may write the Osborn relation [Osborn, 1980]

as,

Kρ = Γ
ε

N2
, (2.6)

with the mean buoyancy frequency defined as N2 =

gρ−1ρz, and Γ the so-called ‘mixing efficiency’. Through-

out this work we will assume Γ to be constant and

equal to the canonical value of 0.2, thus ignoring po-
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tential variability of this parameter [Peltier and Caulfield,

2003].

Substitution of the Osborn relation (2.6) in (2.5)

gives a directly proportional relation between the tur-

bulent dissipation rate and the turbulent mass flux,

F

A
=
ρ

g
Γε, (2.7)

because the mean density gradient ρz cancels out. The

parameters density ρ and gravitational acceleration g

are both quasi-constants with less than 1% variation.

The same result is obtained by equating the tur-

bulent power available for mixing to the rate at which

potential energy is generated. Potential energy is gen-

erated when heavy water is advected vertically and

lifted against gravity in a density stratified fluid. For

example, for a simple two-layer system, with two den-

sity layers, with ρ above ρ′, ρ < ρ′, vertical advection

w [ms−1], and layer area A, the mass flux into the top

layer is, F = (ρ′ − ρ)wA [kgs−1]. The power required

to lift this mass against gravity, g, over the thickness

of the layer, h, is Fgh [kgm2s−3]. If this energy were

supplied by turbulent dissipation with efficiency Γ, we

would obtain, ΓερAh = Fgh, which is equivalent to

(2.7).

2.3 Data

The budget method described in the previous section

requires knowledge about the basin-wide mass diver-

gence. The box model used in this study comprises the

Indian Ocean north of 32◦S, that is roughly north of

Durban, South Africa and Fremantle, Australia (see

Fig. 2.4). The rest of the basin is mostly confined

by land masses, with Africa in west, the Asian conti-

nent in the north and Indonesia and Australia in the
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Figure 2.4: Indian Ocean map with main basins and topography. The
depth contour is at 4000m and B.=Basin; DFZ=Diamantina Fracture Zone;
FZ=Fracture Zone; ITF=Indonesian Throughflow; P.=Plateau; R.=Ridge;
SEIR=Southeast Indian Ridge; SWIR=Southwest Indian Ridge.

east. The only other direct connection to the rest of

the world ocean is the Indonesian Throughflow (ITF).

In this study we account for the transport across the

open southern boundary using previously published

hydrographic inverse-model solutions (refer to Section

2.3.2). We assume that the volume transport across

32◦S is balanced by the ITF (refer to Section 2.3.3) and

that the mass budget is closed by atmospheric buoy-

ancy exchange. We account for the production of Red

Sea Water (RSW) and Persian Gulf Water (PGW) by

assuming that the outflow plumes of these marginal

seas effectively put mass into deeper layers up to about

1500m depth (refer to Section 2.3.4).



CHAPTER 2. LARGE SCALE BOX-MODEL 18

Figure 2.5: Hydrographic stations during the 1987 and 2002 occupation of
the 32◦S section. The depth contour is at 4000m.

2.3.1 Hydrography at 32◦S

The 32◦S zonal section has been sampled by hydro-

graphic cruises in 1936, 19651, 1987 and 2002. The

first high quality CTD2 measurements were collected

in 1987 [Toole and Warren, 1993] and most inverse so-

lutions for the Indian Ocean MOC used in this study

are based on this data set. Only the newest MCD so-

lution [McDonagh et al., 2008] is based on the latest

occupation in 2002 [Bryden, 2003].

The hydrographic cruises in 1987 and 2002 occu-

pied approximately the same stations in the western

half of the section, as shown in Fig. 2.5. The 2002

cruise avoids Broken Plateau by choosing more south-

ern station positions and Naturaliste Plateau at the

south-western tip of the Australian shelf is avoided by

going more north.

The 1987 and 2002 deep temperature fields (below

1The occupations by the British RRS Discovery in 1936 and 1965 are both documented
in the “Oceanographic Atlas of the International Indian Ocean Expedition”, K. Wyrtki,
1971; The German SMS Gazelle sampled hydrographic data along 34◦S during the 1874–76
expedition.

2CTD: conductivity, temperature and depth.
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1500m) are shown in Fig. 2.6. The measurements in

2002 are taken at the end of spring and early summer,

that is November and December in the southern hemi-

sphere. The 1987 are taken in early autumn (March

and April). Both temperature fields look very simi-

lar, both in magnitude and structure. However, the

temperature anomaly, and especially the zonally inte-

grated temperature anomaly, show that temperatures

in 2002 are slightly higher, in particular towards the

surface. This could be a seasonal effect.

2.3.2 Transport across 32◦S

This study considers five published solutions for the

transport across 32◦S (Table 2.1). Four solutions are

based on the 1987 data set and only one solution, the

MCD solution, is based on the 2002 data. We selected

these solutions because the other solutions have some

known issues, for example: [Fu, 1986] is based on older,

lower quality data, [Toole and Warren, 1993] does not

conserve silica, [Robbins and Toole, 1997], and [Mac-

donald, 1998] do not account for the Agulhas under-

current. Below we briefly discuss all five transport

fields.

McDonagh et al. (2008)

RRS Charles Darwin (CD139) occupied 146 hydro-

graphic stations along the 32◦S section in 2002 [Bry-

den, 2003]. The cruise track is roughly the same as

in 1987 (CD29) (see Section 2.3.1). [McDonagh et al.,

2008] use data from this cruise and additional measure-

ments in the Agulhas Current [Bryden et al., 2005], in

the Leeuwin Current [Feng et al., 2003], and in the

Perth Basin [Sloyan, 2006] to calculate the meridional

velocity field at 32◦S. The initial state is obtained by

referencing the geostrophic station pair velocities us-
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Figure 2.6: Temperature at 32S as measured in 1987 and 2002. The temper-
ature anomaly is the temperature at 2002 stations minus the temperature
at the nearest 1987 stations. Note that the measurements were taken in
different seasons: 12 NOV – 17 DEC 1987 and 1 MAR – 15 APR 2002.
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Hydrography Strength (Sv) Depth (m)

[Toole and Warren, 1993] 27 2600
SLO [Sloyan and Rintoul, 2001] 23± 3 2600

[Macdonald, 1998] 17± 5 2000
[Robbins and Toole, 1997] 12± 3 2600

GAN [Ganachaud and Wunsch, 2000] 11± 4 2500
BRY [Bryden and Beal, 2001] 10.1 2000
MCD [McDonagh et al., 2008] 9.0–10.3 3310–3570

[Fu, 1986] 3 2000

Modelling

[Wacongne and Pacanowski, 1996] < 0a NA
[Lee and Marotzke, 1997] 2 2200
[Zhang, 1999] 2 2000
[Garternicht and Schott, 1997] 3 3700

FER [Ferron and Marotzke, 2003] 17 3200

Table 2.1: Estimated overturning strength (i.e. maximum bottom-up inte-
grated transport) and overturning depth (i.e. the depth of the maximum)
from various studies. The three letter abbreviations indicate the solutions
used in this study.

a no deep northward flow at 32◦S.

ing ship-mounted Acoustic Doppler Current Profiler

(ADCP) measurements and lowered ADCP (LADCP)

measurements. Final adjustments of reference levels

are based on silica conservation.

The overturning solution obtained from the new

dataset is comparable in strength with previous esti-

mates (refer to Table 2.1), but the return flow is about

a kilometer deeper (refer to Section 2.5.1 for a discus-

sion about the overturning strength and depth).

Bryden and Beal (2001)

A LADCP survey of the Agulhas current3 in 1995 re-

vealed a 6Sv retropropagating (i.e. northward) under-

current [Beal and Bryden, 1997]. [Bryden and Beal,

3The Agulhas Current [...] is the Western Boundary Current of the South-West Indian
Ocean. It flows down the east coast of Africa from 27◦S to 40◦S. It is narrow, swift and
strong. (source:wikipedia)



CHAPTER 2. LARGE SCALE BOX-MODEL 22

2001] used this finding in combination with the 1987

hydrographic data [Toole and Warren, 1993] to obtain

new reference levels for the geostrophic flow field.

In this study the Bryden and Beal transport field

is reproduced using their reference levels. Transport

in the ‘bottom triangles’ is estimated by assuming a

constant flow velocity from the deepest bin pair to

the bottom and a linearly increasing cross section be-

tween the deepest station and its paired neighbour.

This transport field gives an overturning of 10.1 Sv at

2000m (Table 2.1).

Ganachaud and Wunsch (2000)

Ganachaud and Wunsch estimated the global oceanic

mass transport based on hydrographic data from the

World Ocean Circulation Experiment (WOCE) [Ganachaud

and Wunsch, 2002; Ganachaud, 2003]. The estimate

is based on an inverse model that consistently com-

bines all global sections [Wunsch, 1996; Ganachaud

and Wunsch, 2002]. The solution for the mass trans-

port across 32◦S [Ganachaud, 2003] uses 1987 hydro-

graphic data [Toole and Warren, 1993].

We have reproduced the reference velocities used

in [Ganachaud, 2003] based on the mass transport in

density layers as it is provided on Ganachaud’s web-

site4. Per station pair we require that the integrated

transport for the surface referenced geostrophic veloc-

ity V plus some correction c equals the transport given

in density layers integrated over the water column,∑
(Vi + c)Aρ =

∑
Tj , (2.8)

where i runs over bins and j over density layers and A

is the bin area including bottom triangles. Solving for

c we obtain a reference velocity for each station pair.

4http://www.pmel.noaa.gov/people/ganachaud/glbwocemodel.html



CHAPTER 2. LARGE SCALE BOX-MODEL 23

This transport field gives an overturning of about 11

Sv at 2500m (Table 2.1).

Sloyan and Rintoul (2001)

The Sloyan and Rintoul solution for the transport across

32◦S uses 1987 hydrographic data [Toole and Warren,

1993]. Inverse box model methods are applied to 15

layers defined by neutral density surfaces, ranging from

24 to 28.3 kg m−3 with a decreasing layer spacing to-

wards the bottom. Mass, heat and salt are conserved

for each layer and silica is conserved in the box. Fur-

ther details can be found in [Sloyan and Rintoul, 2001].

We have reproduced the reference velocities in a

fashion similar to (2.8). Instead of total mass trans-

port per station pair we have used total volume trans-

port per station pair, because the Sloyan and Rintoul

solution was provided in this format.

The Sloyan and Rintoul transport field gives an

overturning of about 23 Sv at 2600m (Table 2.1).

Ferron and Marotzke (2003) OGCM solution

The Indian Ocean overturning strength calculated with

an ocean general circulation model (OGCM) tends to

be weaker than the results from hydrographic inver-

sions, as Table 2.1 shows. The model study by [Fer-

ron and Marotzke, 2003] is an exception in the sense

that it produces a relatively strong overturning, much

stronger than other model results. Ferron and Marotzke

use the MIT5 ocean general circulation model.

At first the model is spun-up for 10 years using a

climatology-based initial state. This produces a weak

6 Sv overturning, comparable to previously published

model studies (refer to Table 2.1). The strong over-

turning develops only if hydrographic data are assim-

5Massachusetts Institute of Technology (USA)



CHAPTER 2. LARGE SCALE BOX-MODEL 24

Study Method T (Sv)

[Fieux et al., 1994] JADEa August 1989 18± 7
[Fieux et al., 1996] JADE February 1992 −2.6± 9b

[Macdonald, 1998] Hydrography 10± 10c

[Zhang, 1999] General circulation model 2.7
[Ganachaud and Wunsch, 2000] Based on JADE 15± 3
[Hautala et al., 2001] Pressure gauges / ADCP 8.4± 3.4
[Koch-Larrouy et al., 2006] regional OGCM 16.4

Table 2.2: Indonesian Throughflow from various studies. The transport is
westward, from the Pacific to the Indian Ocean.

a Java-Australia Dynamic Experiment.
b Minus sign denotes eastward transport (from Indian Ocean to Pacific).
c Actually given in kg per second and converted to Sverdrups using 1kg=

10−9Sv.

ilated. The assimilation is an iterative process, where

the model is rerun for a number of times and compared

to WOCE sections and sea surface observations. Each

iterative one-year run has a slightly modified initial

state. The iteration is stopped at some optimal point,

where the end state is close to the observations and

the initial state is still realistic. [Palmer et al., 2007]

however have shown that the MIT ocean GCM cannot

produce a quasi-steady overturning state for any of

the hydrographic flow fields when run with a realistic,

observation-based diffusivity parameter.

The Ferron and Marotzke (2003) transport field

gives an overturning of about 17 Sv at 3200m (Table

2.1).

2.3.3 Indonesian Throughflow (ITF)

Published estimates of the Indonesian Throughflow

vary widely, with annual mean values ranging from

-2.6 Sv (Indian-to-Pacific) [Fieux et al., 1996] to 18

Sv (Pacific-to-Indian) [Fieux et al., 1994]. Most stud-

ies however find an annual mean transport from the

Pacific to the Indian Ocean (Table 2.2).
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density [kg m−3 - 1000] ITF [Sv] RSW+PGW [105 kg s−1]

ρ ≤ 26.50 12.44 2.5
26.50 < ρ ≤ 26.90 0.83 2.5
26.90 < ρ ≤ 27.36 1.80 2.5
27.36 < ρ ≤ 27.78 1.43 2.5
27.78 < ρ ≤ 27.96 0.01 2.5
27.96 < ρ ≤ 28.11 0.00 2.5
28.11 < ρ ≤ 28.23 0.00 0.0
ρ > 28.23 0.00 0.0

Table 2.3: The Indonesian Throughflow (ITF) in density classes from [Koch-
Larrouy et al., 2006]. Mass input from Red Sea (RS) and Persian Gulf (PG)
is uniformly distributed over layers lighter than 28.11 kg m−3. Note that in
our calculations we normalise the ITF to the transport across 32◦S.

We use a model study by [Koch-Larrouy et al.,

2006] to obtain the Indonesian Throughflow transport

into our density layers (Table 2.3). The total transport

reported by [Koch-Larrouy et al., 2006] is 16.52 Sv, but

we have scaled this value to match the discussed trans-

port fields at 32◦S, so that volume is conserved. The

balance between the ITF and the transport across the

southern boundary neglects the relatively small (less

than 1Sv) fresh water flux.

2.3.4 Red Sea (RS) and Persian Gulf (PG)

The Red Sea (RS) and the Persian Gulf (PG) are

strongly evaporative basins. The influence on the In-

dian Ocean is that of a ‘salination machine’, taking in

relatively fresh surface water and producing an under-

lying outflow of very saline water. Table 2.4 gives some

relevant properties of the RS and PG exit plumes.

The plumes enter the Indian Ocean at less than 200m,

because both marginal basins have a shallow sill at

the strait connecting them to the Indian Ocean. The

saline and dense plumes plunge down into the Indian

Ocean as frictional density currents modified by ro-

tation, rather than geostrophic currents modified by
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intake Red Sea Persian Gulf unit

depth <200 <200 m
density 26.7b 25.4b kg m−3

salinity 36.0b 36.5b psu

outflow plume

annual mean outflow 0.37a, 0.06–0.29c 0.2–0.25b Sv
density 27.7b 28.2b kg m−3

salinity 40.5a, 39.5b 40.3b psu

equilibrium

dilution factor 2.5b 4.0b

depth 800–1300c, 600b 250b m
density 27.0–27.6c, 27.2b 26.5b kg m−3

Table 2.4: Red Sea and Persian Gulf data. The dilution factor is based on
the 1D streamtube entrainment model by [Price and Baringer, 1994] and
calculated by [Bower et al., 2000].

a [Murray and Johns, 1997]
b [Bower et al., 2000]
c [Beal et al., 2000]
d [Matt and Johns, 2006]

friction. Entrainment dilutes the plumes until they

reach buoyancy equilibrium. A model study by [Bower

et al., 2000] shows that equilibrium is reached within

30km. Signatures of the RS plume however have been

observed thousands of kilometers south of the RS [Beal

et al., 2000]. Both studies report a comparable equilib-

rium depth, the model gives a depth of less than 800m

for the RS water and about 250m for the PG water,

and [Beal et al., 2000] found RS water at depths be-

tween 800 and 1300m in the Agulhas Current .

The annual mean total mass input from the RS

and PG is about 1.5× 106 kg s−1 and the equilibrium

density is about 1027.2 kg m−3 [Murray and Johns,

1997; Bower et al., 2000; Beal et al., 2000]. The dense

water plunging down into the Indian Ocean entrains

ambient water until it reaches equilibrium. This pro-

cess effectively transports mass away from the sur-

face layer and puts it in deeper layers. It is assumed
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that the ‘mass leakage’ from the plume is constant at

all depths between the injection and the equilibrium

depth. This distribution is chosen for its simplicity

and loosely based on the observation that the accel-

eration and the surface area of the plume scale oppo-

sitely with respect to the density difference between

the plume and surrounding water. This simplification

will have little or no effect on the calculated energet-

ics of the deep overturning because the RSW hardly

penetrates below 1000m.

2.3.5 Climatology

The Hydrobase6 climatology gives worldwide temper-

ature and salinity values at 85 depth levels. We choose

to use Hydrobase, because it averages seawater prop-

erties on potential density surfaces, instead of depth

surfaces as in the Levitus Atlas. Averaging on density

surfaces prevents artificial mixing of water mass prop-

erties and is therefore more suitable for our applica-

tion. We use the Hydrobase 1× 1 degree annual mean

climatology for the Indian Ocean to estimate density

surface areas and spacing between density surfaces.

The methods for obtaining these layer properties

are as follows. (i) Calculate neutral densities for all

data points using the CSIRO routine [Jackett and Mc-

Dougall, 1997]. (ii) Check for latitudes north of 32◦S

whether there are densities equal to or larger than the

given layer density. If so account for one surface area

element of 4π2R2 cos(φ) 360−2, with R the radius off

the Earth and φ latitude. Adding up these area ele-

ments gives an estimate of the total area of the density

surface.

6http://www.whoi.edu/science/PO/hydrobase/HB2 home.htm
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2.4 Errors

The turbulent dissipation scales as εΓ ∝ F/A (2.7).

The uncertainty in the layer area A is only 1-2% and

will be neglected in this study. The ‘mixing efficiency’,

Γ ≡ Rf/(1 − Rf ), with Rf the flux Richardson num-

ber [Osborn, 1980], has a canonical value of 0.2 and

will be treated as a constant. Thus, we ignore ob-

servational evidence suggesting that Γ, in fact, may

be significantly variable [Peltier and Caulfield, 2003].

The uncertainties in the turbulent mass transport F

depend on uncertainties in the transport and neutral

density estimates.

2.4.1 Inverse model errors

The transport field is calculated from the velocity field,

T (x, z) = v(x, z)∆x∆z. The velocity field is derived

from an underdetermined inverse model with noisy

constraints. Inverse model uncertainty is discussed in

the next section. The error associated with the inter-

polation from depth-space to density-space, T (z) →
T (ρ), and the uncertainty in neutral density will also

be discussed.

The ocean circulation inverse problem

Deriving the flow field from salinity, temperature and

pressure measurements is one of the fundamental prob-

lems in oceanography, involving basic concepts such as

the equation of state and the geostrophic balance. Ver-

tically integrating the thermal wind equation gives the

velocity profile plus an unknown integration constant.

Finding these constants is often referred to as the ‘ref-

erence level problem’, where a reference level is defined

as the depth where the real ocean flow is zero or has

some other known value.
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Reference levels can be found by constraining the

velocity, in principle requiring an independent con-

straint for each pair of hydrographic stations. Ocean

circulation experiments are usually designed as a box

model, so that tracer divergences (temperature, salin-

ity, silica, etc.) can be measured and used as con-

straints. In the absence of sources and sinks in the

box we may write,

N∑
j=1

∆xj

∫
φi[vj + bj ]dz ' 0, (2.9)

with φi the concentration of tracer i ∈ [1, 2, . . . ,M ],

and ∆x the distance between a pair of hydrographic

stations [Wunsch and Grant, 1982]. Separating the

v and b terms and writing, Aij = ∆xj
∫
φidz, and

ci = −
∑

j ∆xj
∫
φivjdz, we can write this set of M

equations with N unknowns as a matrix multiplica-

tion,

Ab ' c, (2.10)

with A = (M × N). Typically, there are more un-

knowns than independent constraints, that is the row

rank R of A is smaller or equal to M and smaller than

N . So A is usually rectangular with R ≤ M < N ,

and strictly speaking not invertible. Solving such an

underdetermined set of equations, with (M − R) free

variables, is what we refer to as the inverse problem.

Inverse methods deal with finding the optimal so-

lution to an underdetermined problem. The optimal

solution in the oceanographic context will be the ve-

locity field that is closest to our current understanding

of the ocean circulation. Details on inverse methods

and their application in oceanography can be found in

[Wunsch, 1996].
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Noise and nullspace

It is a little miracle and at least remarkable that our

understanding of ocean dynamics allows us to calcu-

late a flow field from salinity, temperature and depth

measurements (plus some knowledge of the wind field).

But of course we are only really impressed if the cal-

culated flow field is close to real ocean velocity field.

In other words, suppose we write the ‘real velocity’ as,

v = vR(S, T, P ) + vE(τ) + b+ e, (2.11)

where e is the error,vE the Ekman velocity calculated

from wind stress τ , vR the geostrophic velocity with a

‘best guess’ for the reference levels, and b the correc-

tion to the reference level velocities, we would like to

see e << v.

One source of error is our limited knowledge of the

observables, S,T ,P , and τ , which we will refer to as

‘noise’. Another error comes into play when A (refer

to (2.10)) does not have an inverse. The row space

of matrix A is usually rank deficient (more station

pairs than constraint equation), which means that the

nullspace contains (M − R) independent vectors q :

Aq = 0. The nullspace vectors can be freely added to

any particular b satisfying Ab = c, giving indefinitely

many solutions for b.

Singular Value Decomposition (SVD) is a method

to find a pseudo-inverse for A, that minimizes both

||b|| and ||Ab − c||. In physical terms this means

that SVD will find one particular solution with ref-

erence levels and property divergences as close as pos-

sible to the a priori ‘guesses’. Inherently, SVD is sen-

sitive to the a priori choices made by the investiga-

tor. Two investigators, given identical datasets (CTD,

wind stress, and tracer concentrations), may construct

different physical models and obtain different velocity
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fields.

The so called nullspace– or omission error comes

from incompleteness of the model, when some of the

physics determining b are missing. This model specific

error will contribute to the uncertainty in the velocity

field, together with the noise in the data. A formal

way of quantifying these uncertainties is described in

[Wunsch et al., 1983].

2.4.2 Interpolation errors

An interpolation method to find the transport into

density layers is presented in Section 2.2.2. This method

assumes constant transport in the neighbourhood of

the density surfaces that define the layer. The error

associated with this assumption is estimated by quan-

tifying the deviation from a velocity profile with a lin-

ear vertical gradient, v(z) = v0 + (z − z0)vz, with z0

the mid-depth of the bin, and v0 the mean flow ve-

locity. We may translate the origin to the bottom

of the bin by transforming the vertical coordinate,

z′ = z − (z0 − ∆z/2), with ∆z the vertical bin size.

The fractional bin transport for a linear velocity pro-

file is, T = ∆x
∫ L

0 v(z′) dz′, with L < ∆z, and ∆x the

horizontal bin size. The transport difference, when

compared with a constant velocity profile, is v0∆xL−
∆x
∫ L

0 v(z′) dz′ = 1
2∆x vz[∆z z

′ − z′2], which is max-

imum at z′ = 1
2∆z, giving a maximum difference of

∆T = 1
8vz∆x∆z2.

The vertical shear vz below 1000m is typically of

order 1 × 10−6s−1 and usually everywhere less than

5× 10−4s−1. Calculating ∆T for the Sloyan and Rin-

toul velocity field [Sloyan and Rintoul, 2001] gives a

maximum relative error of less than 5% for the trans-

port into a layer with at least 8 bins in the vertical

direction. Note that the relative interpolation error is

larger for thinner layers with fewer bins in the vertical
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direction.

2.4.3 Neutral density errors

The neutral density is calculated as a function of salin-

ity, temperature, pressure, longitude and latitude us-

ing the CSIRO7 routine [Jackett and McDougall, 1997].

The routine provides an error estimate ∆γ. Multiply-

ing this error with dp
dγ gives the uncertainty in pressure

∆p and we find that large uncertainties are associated

with weakly stratified deep waters, easily exceeding

the vertical bin size of 20dbar.

The uncertainty in the depth of isopycnals also

makes the estimates of the transport into density lay-

ers uncertain. The relative error in the layer trans-

port is larger for thinner layers and blows up in dense,

weakly stratified water. Based on the density error es-

timates given by the CSIRO routine we estimate that

the relative transport error can be kept smaller than

6% when avoiding layers with γ > 28.15 and maintain-

ing a minimum layer thickness of about 200m.

2.4.4 Error propagation

The quantity of interest in the study is the dissipation

rate, ε ∝ F/A (refer to (2.7)), where the turbulent

mass flux, F , is a superposition of mass flux terms,

Tρ, with error contributions from three sources, (i)

inverse model, (ii) interpolation, and (iii) neutral den-

sity. These errors are not fully independent, and in-

verse model errors tend to diminish when integrated

spatially [Wunsch, 1996]. The error in F is therefore

assumed to be equal to the transport error in the top

density layer, without contributions from deeper lay-

ers.

7Commonwealth Scientific and Industrial Research Organisation (Australia)
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Assuming a relative error of 5% error due to in-

terpolation, a 5% error due to the uncertainty in the

density, a standard transport error in the top layer of

σT , and regarding these errors as independent, gives a

dissipation error of,

σε =

√(σT
T
ε
)2

+ 2(0.05ε)2, (2.12)

with T the transport in the top layer and ε = F
A

g
ρΓ

(refer to (2.7)) the dissipation rate.

2.5 Results

2.5.1 Transport into density layers

Using the methods described in Section 2.2.2 we cal-

culated the transport into 26 density layers (Fig. 2.7)

defined by 25 density interfaces, ranging from 22.42

to 28.15 kg m−3 (refer e.g. to Table 4.1). When cal-

culating the turbulent mass transport (Section 2.2.1)

we find that the exact choice of density layers does

not matter, as one would expect (refer to Appendix

A). To avoid significant errors in the estimated depth

of isopycnals in weakly stratified waters (refer to Sec-

tion 2.4.3) we do not resolve density layers below 25.15

kg m−3. This means that the bottom layer is sev-

eral times thicker than the other layers, up to a thick-

ness of about 1200m, whereas other layer are typically

200m thick, as Fig. 2.7 shows. The low density reso-

lution near the bottom means that we lack knowledge

about the turbulent mass transport below 25.15 kg

m−3. This may lead to under-/overestimation of the

mixing in the bottom layer of there is less/more water

mass transformation within the layer than at the 25.15

kg m−3 density level.

The overturning streamfunction (OSF) is often used
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Figure 2.7: Vertical cross-section at 32◦S with Sandwell and Smith
bathymetry (v8.2) and the neutral density layers used in our advection–
diffusion model.

to characterize the overturning circulation. Tradition-

ally the OSF is the zonally-integrated meridional flow

along surfaces of constant depth, ψ(z) =
∫ z
zmax

∫
V (y, z′) dy dz′.

The left panel of Fig. 2.8 shows the traditional OSF for

the five solutions for the flow across 32◦S considered in

this study. The main features of the OSF are (i) the

overturning strength or maximum, (ii) the overturn-

ing depth, that is the depth of the maximum, where

the direction of the flow reverses (refer to Table 2.1),

and (iii) the closing depth or zero-crossing, where the

inflow is balanced by the return flow.

Alternatively, the OSF can be calculated in density

space, by integrating along isopycnals instead of iso-

baths. Figure 2.7 shows the density layers used in this

study. Using the ‘density streamfunction’ is advan-

tageous in mixing problems, because it respects water

masses and is explicit about diapycnal transports. The

right panel of Fig. 2.8 shows the density OSF, ψ(γ),

plotted against depth by labelling the isopycnals with

a typical mean depth8. Comparing the traditional

8The mean isopycnal depth is calculated using the Hydrobase climatology in a central
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OSF, in the left panel, with the density OSF, we see

that they have most features in common. For example,

the strength and depth are similar. The most appar-

ent differences between the OSFs are: (i) the depth

range (the traditional OSFs extent to larger depth),

(ii) ψMcD(z) is negative at bottom and ψMcD(γ) posi-

tive, (iii) the maximum of ψMcD(γ) is deeper than the

maximum of ψMcD(z), and (iv) ψFer(z) is deeper than

ψFer(γ).

The difference in depth range is simply explained

by the choice of the densest density layer. Figure 2.7

shows that the deepest isopycnal (28.15) indeed lingers

around 4000m. The other differences can be explained

by zonal asymmetries in density and bathymetry. The

densest waters with γ ≥ 28.15 only exist west of the

South-east (SE) Indian Ridge, whereas the deepest wa-

ters below 5000m are found in the east. The effect of

this asymmetry is most profound for the McDonagh

et al. overturning solution, because ψMcD(z) < 0 for

z > 5000m, that is the deepest water in the east flows

southward.

This suggests that the inflow of bottom water, with

a density larger than 28.15, is restricted to the western

half of the basin, where deep trenches in the Southwest

Indian Ridge (SWIR) offer passageways. Some of the

inflowing water appears to make it past the Central In-

dian Ridge (CIR) and the Ninety-east Ridge, thus con-

stituting the deep return flow through the Diamantina

Fracture Zone (DFZ) (refer to Fig. 2.4 for an overview

of the main topography in the Indian Ocean). The bot-

tom retro-flow in the east appears unaffected by the

ITF as ITF water is not expected to penetrate below

the 27.78 isopycnal (Table 2.3).

Figure 2.9 shows how the OSF changes when we

add the ITF. The ITF total transport is chosen to

Indian Ocean area with lat = [−41 : 1 : −21]◦ and lon = [60 : 1 : 80]◦.
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match the total transport across 32◦S, so that the bot-

tom integrated transport adds up to zero. The figure

also shows that ITF water does not penetrate below

1200m in our model.

2.5.2 Turbulent mass transport

The turbulent mass transport is calculated from layer

transport using the advective–diffusive balance (2.3).

Figure 2.10 shows the turbulent mass transport, F , for

the five overturning solutions considered in this study.

The figure also shows the ‘ingredients’ that go into

(2.3), that is the density profile and the layer trans-

port. Also shown is the overturning streamfunction,

ψ, which is the bottom-up integrated layer transport,

ψi =
∑i

j=1 Tj . Below we discuss how F is related to

the overturning streamfunction, and in particular how

F can become negative, as is the case for the [McDon-

agh et al., 2008] solution.

Generally the global overturning circulation is thought

of as a flow circuit with downwelling at a number of

high latitude sites9, and upwelling elsewhere. The In-

dian Ocean appears to accommodate an important

deep upwelling branch of the global MOC [Schmitz,

1995]. Upwelling needs upward turbulent mass trans-

port, i.e. positive F , to maintain the density strati-

fication of the ocean, and this is what we find for all

the Indian Ocean overturning solutions below 1000m

(Fig. 2.10).

At shallower depth we obtain negative mass trans-

port for the [McDonagh et al., 2008] solution. The

negative, shallow F is unique to the [McDonagh et al.,

2008] solution and suggests a different overturning struc-

ture. Advective mass divergence is needed for F to

become negative. This means that, when F becomes

9Deep water is formed due to cooling and brine exclusion when seawater freezes.
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Figure 2.9: Comparison of overturning streamfunctions (OSFs) based on
transport across 32◦S without ITF (dashed line) and with ITF (solid line).
The OSF is calculated in density space and the ITF strength is chosen to
balance the transport across 32◦S (refer to Section 2.3.3). The depth labels
are based on the interpolated depth of the density layers at the deepest
station of the section. Positive transport is northward and the label ‘OC’
means ‘outcropping’ and indicates that isopycnals come to the ocean surface.
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negative, there is more mass flowing out of the layer

than flowing in, which can only happen when there is

downwelling through the top layer interface. In that

case, the input of lower density water at the top will be

volumetrically balanced by the outflow of higher den-

sity at the lateral boundary. This leads to net mass

divergence if the mass input at the bottom is zero or

small and requires a negative mass flux F at top in-

terface to close the mass budget.

When F becomes negative we cannot think of it as

being driven by diapycnal diffusion only, F 6= Fdiff =

KρρzA, because Fdiff is positive definite for a sta-

bly stratified ocean (refer to Section 2.2.1). Another

physical process must be taken into account, so that

F = Fdiff − F ′ < 0. A possible explanation for the

downward mass transport near the surface is deep con-

vection due to buoyancy exchange at the surface. For

example, the strong net evaporation in the Red Sea

and the Persian Gulf leads to the production of saline

water that penetrates into the Indian Ocean to a max-

imum depth of 1300m [Beal et al., 2000]. The produc-

tion of Red Sea Water and Persian Gulf Water might

explain the double-cell overturning circulation found

by [McDonagh et al., 2008], with an upwelling cell in

the deep ocean below 1000m and a downwelling cell

above this depth.
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2.5.3 Turbulent dissipation and diffusivity

The main results of this chapter are shown in Fig. 2.11.

The top panel shows the basin-wide mean dissipation

rate (2.7), the bottom-left panel shows the isoneutral

mean buoyancy frequency, N2, and the bottom-right

panel shows the diffusivity, Kρ. The buoyancy fre-

quency is calculated from the WHOI Hydrobase cli-

matology, using the sw_bfrq MATLAB routine from

the CSIRO seawater package, and linearly interpolated

onto neutral density levels using the CSIRO neutral

density routine [Jackett and McDougall, 1997]. The

turbulent eddy diffusivity calculated from the dissipa-

tion estimates using the Osborn relation (2.6).

The figure shows that the dissipation profiles ob-

tained from the older 1987 data increase towards the

surface, whereas the [McDonagh et al., 2008] dissipa-

tion profile, based on the new data from 2002, de-

creases above 1500m. This new dissipation profile

has a maximum around 2000m and becomes negative

around 900m. In the context of this work we interpret

negative ε as a loss rate of potential energy.

The total power to sustain the overturning circu-

lation is calculated by bottom-up integration of the

dissipation rate [W kg−1] multiplied by mass,

Ptot = ρ0

imax∑
i=1

εiAi ∆zi, (2.13)

with i = 1 the bottom layer and imax the layer cor-

responding to the ‘closing density’ of the overturning

streamfunction. The closing density is the density level

where the overturning streamfunction is zero, which is

the point where the deep inflow is balanced by the

shallower retro-flow. Table 2.5 lists the closing densi-

ties for the various overturning solutions considered in

this study.
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Figure 2.11: Mixing estimates inferred from a basin-wide mass balance in
density layers for five different overturning solutions. Top: dissipation esti-
mates [Wkg−1] with error estimates (based on the uncertainties discussed in
Section 2.4). Bottom left: Isoneutral mean buoyancy frequency based on the
Hydrobase climatology. Bottom right: diffusivity estimates as calculated us-
ing the Osborn relation Osborn [1980], Kρ = 0.2ε/N2. The horizontal black
lines indicate neutral density levels that we use to distinguish between bot-
tom water and deep water.
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ID Ψmax [Sv] zmax [m] γ0 [kg m−3] z0 [m] P [TW]

mcd 10.1 4058 27.92 1877 0.17
fer 19.0 4058 25.04 124 1.19
slo 19.2 2146 27.07 667 0.94
gan 10.2 2146 26.93 539 0.68
bry 11.1 1971 24.12 65 0.78

Table 2.5: Estimates of the total dissipated power, P , needed to sustain
the deep Indian Ocean MOC. Also shown are, the overturning maximum
Ψmax, the depth of the overturning maximum zmax, the closing density
γ0, and the approximate depth of the closing density, z0. The power is
calculated by integrating the dissipation rate from the bottom up to the
closing density. The closing density corresponds to the zero-crossing of the
overturning streamfunction and represents the density level where the the
inflow of dense bottom and deep water is balanced by the more shallow and
less dense retro-flow. We attribute the difference between the overturning
maxima, Ψmax, and the published maxima in Table 2.1 to the fact that we
calculated the overturning maximum in density space as opposed to depth
space.

The layer spacing ∆z used in (2.13) to calculate

the layer volume between layer interface (i−1) and i is

found by: (i) labelling the Hydrobase grid points with

neutral density, (ii) interpolating the layer depths, and

(iii) calculating the mean vertical distance between the

layers.

The energy requirements of the various overturning

solutions are listed in Table 2.5. The next section puts

these numbers into a global context. When interpret-

ing these numbers it is useful to realize that we have

used a variable closing density, dependent on the par-

ticular shape of the overturning solution. This means

that the total required power represents different ocean

volumes for the different solutions. Integrating all so-

lutions up to the same density level is therefore likely

to change the relative magnitude of the power esti-

mates.

For example, we may integrate all dissipation pro-

files up to a density of 27.78, well below the expected
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influence of the ITF, RSW, or PGW, to find the num-

bers labelled Pdeep in the last column of Table 2.5.

Unsurprisingly, we find that most solutions require less

energy when integrated over a smaller density range,

except for the [McDonagh et al., 2008] solution. This

can be explained by the fact that the [McDonagh et al.,

2008] dissipation profile becomes negative at some den-

sity just below the chosen closing density.

2.6 Discussion

The turbulent diffusivity estimates, as displayed in

Fig. 2.11, are in reasonable agreement with previously

published estimates. To our knowledge, the only other

basin-wide diffusivity estimates, based on Indian Ocean

WOCE data, were published by [Ganachaud and Wun-

sch, 2000; Ganachaud, 2003]. They estimated Kρ =

4± 2× 10−4 m2s−1 in the deep Indian Ocean (27.96 <

γ < 28.10 kg m−3), and Kρ = 12 ± 7 × 10−4 m2s−1

for the bottom layer (γ > 28.10 kg m−3). Our diffu-

sivity estimates for the Ganachaud et al. overturning

solution agree with their estimates for the deep layer,

but are smaller for the bottom layer. This maybe due

to the limited density resolution near the bottom in

our model (refer to Section 2.5.1). Other studies, fo-

cussing on particular areas of the Indian Ocean, have

produced diffusivity estimates in the range from 3.5 to

35 cm2s−1, as listed in Table 2.6.

The estimates of the power needed to sustain the

deep Indian Ocean MOC become more meaningful when

compared to the available energy. The dynamically

important energy sources for the large scale ocean cir-

culation are winds and tides [Wunsch and Ferrari, 2004].

In an attempt to close the energy budget of the deep

Indian Ocean we consider abyssal energy sources only,

that is (i) wind power input to the geostrophic flow,
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Study K [cm2s−1] Remarks

[Ganachaud and Wunsch, 2000] 4± 2 Indian Ocean, 27.96 <
γ ≤ 28.10

12± 7 Indian Ocean, γ > 28.10
[Barton and Hill, 1989] 10.6± 2.7 Amirante Passagea,

1.12◦C
[Johnson et al., 1998] 3.5 Amirante Passagea,

1.1◦C
[Sloyan, 2006] 13− 15 Perth Basin, 0.64◦C ∼

28.2 kg m−3

∼ 10 Perth Basin, inferred
from strain in abyss

[McCarthy et al., 1997] 35± 14 Ninetyeast Ridge, σ4 =
45.92 kg m−3

a between Mascarene Basin and Somali Basin.

Table 2.6: Diffusivity estimates in the Indian Ocean.

(ii) wind power input to downward propagating near-

inertial motions, and (iii) tidal energy input to baro-

clinic internal waves.

All published energy inputs have considerable un-

certainties and we therefore choose to work with a

minimum and a maximum estimate (Table 2.6). The

minimum wind-to-inertial flux is based on a factor 0.5

correction to the [Alford, 2003] estimate, as suggested

by [Plueddemann and Farrar, 2006], integrated over

the Indian Ocean north of 32◦S. The maximum esti-

mate is based on the full [Alford, 2003] estimate of

energy input to near-inertial motions, integrated over

higher southern latitudes, up to 50◦S, to account for

the fact that near-inertial waves travel to regions with

lower planetary vorticity, that is equatorward.

The lower and upper estimate for the energy trans-

fer between the wind field and the surface geostrophic

currents are based on the uncertainty in the global

value in [Scott and Xu, 2009]. The low and high value

for the energy input in baroclinic tides is based on
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energy source reference Plo [TW] Phi [TW]

wind inertial [Alford, 2003] 0.02a 0.09b

wind geostrophic [Scott and Xu, 2009] 0.05 0.06
baroclinic tide [Egbert and Ray, 2000] 0.11 0.18c

total 0.18 0.31

Table 2.7: Energy input to the deep Indian Ocean north of 32◦S.

a factor 0.5 correction to [Alford, 2003] based on [Plueddemann and
Farrar, 2006].

b [Alford, 2003] extended to 50◦S.
c same as [Nycander, 2005] estimate.

error estimates by [Egbert and Ray, 2000]. We also

calculated the tidal energy based on the [Nycander,

2005] global map and found it to be indistinguishable

from the [Egbert and Ray, 2000] upper estimate.

The estimates of the energy going into the Indian

Ocean should be enough to balance the implied dissi-

pation needed to sustain the deep Indian Ocean MOC

if the energy input is near-locally dissipated. Assum-

ing that the energy flux into or out of the Indian Ocean

is small compared to the local sources we may compare

the energy inputs in Table 2.6 with the estimates of

dissipated power in Table 2.5. This comparison tells

something about the energetic feasibility of the various

MOC solutions. For example, the power, when inte-

grated up to the closing density, varies between 0.24

and 1.57 TW. We note that only the 0.24 TW MCD

solution dissipates less than the 0.31 TW estimated

maximum energy input. This results suggests that en-

ergy budgets may be useful as an additional constraint

in inverse models.

The energy needed to sustain a particular MOC

configuration depends on the amount of diapycnal trans-

port, that is the MOC strength, and the density gra-

dient below the closing density. The most distinct fea-

ture of the MCD solution is that it closes at a much
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higher density, that is deeper, than the other MOC

configurations. Deeper closure means that ‘fewer’ isopy-

cnals are crossed, and that less diapycnal mass trans-

port is needed to balance the advective inflow.

In this section we have estimated the levels of tur-

bulent dissipation needed to sustain various published

solutions for the Indian Ocean MOC. In the next chap-

ter we will estimate the energy in the internal wave

field and Chapter 4 assesses whether the Indian Ocean

MOC can be driven by breaking internal waves.

2.7 Summary and conclusion

This chapter compares the energetics of various solu-

tions for the Indian Ocean MOC. The energetics are

evaluated by assuming mass conservation in density

layers and an one-dimensional balance between advec-

tion and diapycnal diffusion. The energy needed to

sustain a given MOC is defined as the total amount

of work required to lift mass against gravity in order

to preserve the vertical density stratification. Similar

methods are discussed and applied to the global ocean

by for example [Munk and Wunsch, 1998] and [Klocker

and McDougall, submitted 2009].

This work focusses on the energetics of the deep

MOC (roughly below 1000m) in the Indian Ocean north

of 32◦S. The advective mass budget in this part of

the ocean is dominated by transport across the open

southern boundary. For completeness we also incor-

porated the Indonesian Throughflow and water mass

exchanges with the Red Sea and the Persian Gulf in

our model, although this hardly affects the deep MOC.

Our model shows that various MOC solutions, based

on hydrographic measurements along 32◦S, require dif-

ferent levels of turbulent dissipation, varying between

0.24 and 1.57 TW. These numbers are large in com-
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parison to the estimated global dissipation of 2.1 TW

[Wunsch and Ferrari, 2004], especially considering the

relatively small size of the subtropical Indian Ocean

(about 12% of the world ocean10). Based on global

maps of the generation of internal tides [Egbert and

Ray, 2000] and near-inertial waves [Alford, 2003] we

estimate that at most 18% of the global total, that is

0.36 TW, is dissipated in the Indian Ocean.

The value of 2.1 TW for abyssal dissipation is rather

weakly constrained due to considerable uncertainties

with regard to the conversion efficiency of wind energy

into near-inertial motions. However, following [Wun-

sch and Ferrari, 2004], and accepting this number as

an upper bound, leads us to conclude that the inverse

model solutions for the Indian Ocean MOC are ener-

getically infeasible when integrated up to the ‘closing

density’, except for the less energy hungry [McDonagh

et al., 2008] solution. This result suggests that energy

budgets may be useful as an additional constraint in

inverse models.

Avoiding the influence of the ITF on our power es-

timates, by limiting the MOC integration range to the

highest ITF density class, gives numbers lower than

0.36 TW for all overturning solutions, except for the

[Ferron and Marotzke, 2003] model result. We em-

phasize however that this is likely an underestimate,

because it does not fully include the returning limb

of the deep overturning cell for most solutions. De-

spite our doubts about the optimal integration range,

and other uncertainties inherent to hydrographic in-

verses, we conclude that our estimate of the energetics

of the Indian Ocean MOC has produced large num-

bers, as compared to estimates of the global dissipa-

tion. This result is consistent with the view that the

10The subtropical Indian Ocean is defined as the Indian Ocean north of 32◦S. The
surface area is calculated at a depth of 500m.
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Indian Ocean MOC is an important deep upwelling

cell in the global MOC, but also raises questions about

the supply of the required high levels turbulent kinetic

energy (TKE). Internal waves are generally regarded

as the main agents of TKE in the deep ocean and we

will discuss internal wave energy levels and dissipation

mechanisms in the remainder of the work.



Chapter 3

Turbulent

dissipation inferred

from fine scale shear

and strain

3.1 Introduction

Turbulence in the open ocean interior, away from the

surface boundary layer, the bottom boundary layer

and sites of deep convection, is generally thought to

originate from internal wave breaking. Internal waves

fill the ocean with motions at a large range of spatial

scales and are important for energy transport through-

out the ocean, both in physical space and in wave num-

ber space.

Numerical simulations have shown that nonlinear

interactions among internal waves cause a net trans-

fer of energy to smaller scales [McComas and Müller,

1981; Henyey et al., 1986]. The energy flux towards

smaller scales is often referred to as the ‘energy cas-

cade’ and is a key process in the oceanic energy bal-

ance. The cascade transfers energy from large scale

sources, mainly wind forcing at the surface, and tidal

50



CHAPTER 3. FINE SCALE OBSERVATIONS 51

flows, to fine scale (order 10m) waves that will eventu-

ally break into small scale (order 1cm) turbulent mo-

tions when the shear overcomes the stratification. The

rate at which breaking waves dissipate energy is ap-

proximately equal to the downscale transfer rate of en-

ergy, which allows the dissipation rate to be expressed

in terms of internal wave parameters.

In this chapter we discuss the fine scale parameter-

ization of turbulent dissipation. Section 3.2 describes

the model configuration, Section 3.3 the data we used

for our analysis, and Sections 3.4 and 3.5 discuss the

model output.

The main purpose of this chapter, in the context of

the rest of the thesis, is a ‘description of methods’. We

use the fine scale parameterization as a tool to ‘pro-

duce’ dissipation rates with the aim to make a com-

parison between fine scale and large scale dissipation

estimates. However, when using the tool we encoun-

tered some inconsistencies in comparison to previously

published estimates.

3.2 Methods

3.2.1 Finescale parameterization of turbu-

lent dissipation

The promise that internal waves hold information about

turbulence has motivated the construction of several

models that relate the turbulent dissipation rate to

internal wave parameters (see [Polzin, 1995] for an

overview). Such a parameterization is useful, because

more direct observations of turbulence require special

equipment and more expensive operations, whereas

fine scale internal waves are picked up in conventional

hydrographic measurements.

Validation experiments by [Gregg, 1989] and [Polzin,

1995] compare finescale parameterizations of dissipa-
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tion with microstructure measurements and conclude

that the Henyey, Wright and Flatté (HWF) model

[Henyey et al., 1986] behaves favourably. HWF use

ray tracing to estimate the energy transfer between a

test wave and a background wave field and formulate

a model to extrapolate their numerical findings in pa-

rameter space. The model is based on a Richardson

number hypothesis and predicts that the dissipated

rate [W/kg] scales as,

ε ∝ E2N2f cosh−1(N/f), (3.1)

with E the internal wave energy density. Note that the

dissipation rate scales with depth through the buoy-

ancy frequency N(z) and with latitude through the

inertial frequency f .

The usefulness of the above scaling for the inference

of turbulence from measurements was first demonstrated

by Gregg in 1989 [Gregg, 1989], referred to as ‘G89’

hereafter. Gregg uses the energy density of the Garrett-

Munk (GM) internal wave model [Garrett and Munk,

1972] [Garrett and Munk, 1975; Cairns and Williams,

1976] for E and introduces an additional factor to ac-

count for deviations from GM conditions. This factor

is the square of the measured vertical shear variance

normalized by shear variance in the GM model, both

integrated over the same wavenumber band,
〈
S2/S2

GM

〉
=∫ k2

k1
S2(k)/S2

GM (k) dk, with S(k) = AF2[Vz], where Vz

is vertical shear, F the Fourier transform, and A an

appropriate normalization factor so that variance is

conserved (refer to Section 3.2.2). The shear ratio

〈S/SGM 〉 represents the energy in the internal wave

field in units of the GM energy level.

Comparing the finescale model with dissipation rates

inferred from microstructure measurements Gregg con-

cludes that ε = ε0
〈
S4
〉
N2 to within a factor of 2 for
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an appropriate scaling factor ε0. Comparison with ad-

ditional measurements in a subsequent study [Gregg

et al., 2003] verified the latitudinal dependency fac-

tor f cosh−1(N/f) in the HWF model. This factor

accounts for the slower rate at which wave energy is

transferred to dissipation scales at low f (i.e. low lat-

itude) [Gregg et al., 2003].

Another modification of the original G89 parame-

terization is the inclusion of the shear-to-strain ratio R

to account for the dominant frequency in the observed

wave field [Polzin, 1995]. This factor appears in a sim-

plified form in [Gregg et al., 2003], refer to (3.4) and

(3.7), and is also included in the parameterization used

in this study.

The parameterization is usually applied to (semi

overlapping) vertical segments of measurements from

a hydrographic cast. The segment length and the bin

size of the data within the segment determine the pos-

sible integration range of both shear and strain spec-

tra. Shear is the vertical gradient of the horizontal

flow velocity and is usually measured using a lowered

acoustic Doppler current profiler (LADCP) with a typ-

ical bin size of 20m. Strain is the vertical gradient of

the displacement of isopycnals by internal waves and is

calculated using the local relative change in buoyancy

frequency,

ξz =
N2 −

〈
N2
〉

〈N2〉
, (3.2)

where the brackets 〈.〉 indicate spatial averaging. The

buoyancy frequency is calculated from CTD measure-

ments with a typical bin size of 2m (see Section 3.2.4

for details).

Putting everything together gives the relation be-

tween fine scale internal wave parameters and turbu-

lent dissipation used by [Kunze et al., 2006] and in this
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study,

ε = ε0
N2

N2
0

〈S〉2

〈SGM 〉2
h1(R)L(f,N), with (3.3)

h1(R) =
3

4

(
1 +

1

R

)(
R

R− 1

) 1
2

, and (3.4)

L(f,N) =
f cosh−1(N/f)

f30 cosh−1(N0/f30)
, (3.5)

with ε0 = 6.73× 10−10 m2s−3 the canonical GM dissi-

pation rate, S the shear variance spectrum normal-

ized by the buoyancy frequency or the strain vari-

ance spectrum, R the shear-to-strain ratio (3.7), N0 =

5.24×10−3 rad s−1 the canonical Garrett-Munk buoy-

ancy frequency, and f30 the inertial frequency at 30◦

latitude [Gregg et al., 2003; Kunze et al., 2006].

The buoyancy-frequency-normalized shear spectrum

S[Vz/N ] is calculated directly from the velocity vari-

ance using S[Vz] = k2
zS[V ], with kz the vertical wavenum-

ber (refer to Section 3.2.2 and 3.2.3 for more details on

the spectrum). The brackets 〈.〉 in (3.3) indicate inte-

gration of the shear spectrum over a given wave num-

ber band. The Garrett-Munk shear spectrum SGM

is integrated over the same wave number band. The

GM76 expression for the shear spectrum is,

SGM [Vz/N ] =
3

2
πE0 b j

∗ k2
z

(kz + kz∗)2
, (3.6)

with energy level E0 = 6.3×10−5, thermocline scaling

factor b = 1300m, modal scale number j∗ = 3, kz∗ =

πj∗N/b/N0, and N0 = 5.2× 10−3 rad s−1.

The strain variance, as used in the shear-to-strain

ratio (3.7), is integrated over a variable wave number

range to avoid noise contamination at high wave num-

bers. The shear spectrum on the contrary is integrated

over a fixed wave number range. Since the integration

ranges will in general differ we cannot simply use, R =
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〈S[Vz/N ]〉 / 〈S[ξz]〉, to calculate the shear-to-strain ra-

tio. However, assuming that both the shear and the

strain spectrum have Garrett-Munk-like shapes over

their respective integration bands, we can calculate R

by normalization with the GM variance,

R = 3

〈
S[VzN ]/SGM [VzN ]

〉
〈S[ξz]/SGM [ξz]〉

, (3.7)

where the factor 3 corrects for
〈
SGM [ξz]/SGM [VzN ]

〉
≡

1/3 when integrated over the same wave number band.

An alternative form of the above parameterization

is based on strain only [Polzin, 1995; Mauritzen et al.,

2002]. The global study of internal wave mixing by

[Kunze et al., 2006] uses strain only in the deep ocean,

where the quality of LADCP data usually deteriorates

due to scarcity of acoustical scatterers. The strain

only parameterization is similar in form to 3.3, but

uses S[ξz], instead of S[Vz/N ]. Refraining from the

use of shear variance means that the shear-to-strain

ratio cannot be calculated. In the deep ocean [Kunze

et al., 2006] use a fixed value of R = 7 and a modified

scaling factor,

h2 =
1

6
√

2

R(R+ 1)√
R− 1

= 2.7. (3.8)

In section 3.4.2 we compare the shear-and-strain and

strain only parameterization to show the effect of dif-

ferent model configurations.

3.2.2 Normalization of variance spectra

This section discusses how we calculate and normalize

the shear and strain spectra. The Fourier transform

is normalized to preserve variance when transforming

from the spatial to the spectral domain.

The velocity signal and the strain signal are as-

sumed to be given in equally spaced depth bins, f(n),



CHAPTER 3. FINE SCALE OBSERVATIONS 56

with n = 1, 2, 3, . . . , N and spacing ∆z. The data is

segmented and detrended before Fourier transforma-

tion, g(n) = w(n)f(n) − y(n), with y(n) a linear fit

to w(n)f(n) and w(n) a 10% sin2 ‘window function’.

The fast Fourier transform (FFT) algorithm works op-

timally for N a power of 2, and zeros are padded to

the signal if necessary. The variance spectrum (S) is

equal to the sum of the squared Fourier components

and an appropriate normalization factor,

Fr(j) + Fi(j) =

N∑
n=1

g(n)e−ikz(n−1)∆z, with

kz =
2π(j − 1)

N∆z
, and j = [1, 2, . . . , N ], and

S[g](j) = 2
∆z

2πN
[F 2
r (j) + F 2

i (j)],

(3.9)

with j = [2, 3, . . . , N/2]. The overall factor 2 comes

from restricting the spectrum to the Nyquist range,

j = 1, . . . , N/2 + 1. The constant component with

j = 1 and the Nyquist component with j = N/2 + 1

are unique and therefore not multiplied by 2.

The normalization is chosen so that the variance

of the signal is equal to the integrated variance in

the spectral domain. For a discrete signal we require

var(g(n)) = 1/N
∑N

n=1 |g(n)−g(n)|2 = A
∑N

j=1 F (j)F ∗(j)∆kz.

Using that the mean of a detrended signal is zero,

g(n) = 0, and the Parseval theorem,
∑N

n=1 |g(n)|2 =

1/N
∑N

j=1 |F (j)|2, and writing ∆kz = 2π/(∆zN), we

obtain A = ∆z/(2πN).

3.2.3 Spectral corrections

Spectral corrections account for the loss of variance

due to non-continuous data and instrument limita-

tions. The strain spectrum S[ξz] is only corrected for

bin-to-bin first differencing and the correction factor
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is sinc2(∆zkz/2π) for bin-size ∆z. The shear variance

spectrum is corrected for loss of variance due to, (i)

range averaging, (ii) finite differencing, (iii) interpo-

lation, and (iv) instrument tilting, by the following

spectral functions:

S1 = sinc(kz∆zt/(2π))2 × sinc(kz∆zr/(2π))2, (3.10)

S2 = sinc(kz∆z/(2π))2, (3.11)

S3 = sinc(kz∆zr/(2π))4 × sinc(kz∆z/(2π))2 (3.12)

S4 = sinc(kzd/(2π))2, (3.13)

with ∆zt the LADCP transmitter vertical pulse length

(typically 16m), ∆zr the LADCP receiver processing

bin length (typically 16m), ∆z data bin size (typi-

cally 20m), and d = 9m determined empirically [Polzin

et al., 2002].

3.2.4 Buoyancy frequency and strain

The buoyancy frequency, N , is an important ingre-

dient of the fine scale parameterization. In this sec-

tion we show how we calculate N and we discuss some

of the potential issues we encountered when the deep

ocean becomes weakly density stratified.

The mean buoyancy frequency can be calculated in

different ways. We chose to calculate the mean buoy-

ancy frequency
〈
N2
〉

in the strain expression using a

second order least-square fit to N2 over the length of

each segment (320m), instead of the physically more

elegant method of adiabatic levelling [Bray and Fo-

fonoff, 1981]. The motivation for this simplification

is the significantly lower computational cost (O(100)

times faster) and the fact that we observe a low impact

on the dissipation estimates.

The dissipation parameterization depends on strain

through the integrated strain variance in the shear/strain
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ratio. Figure 3.1 compares strain variance obtained

from a simple quadratic fit to N2 and adiabatic lev-

elling. The agreement of both estimates is reasonable

throughout the water column, which we observe sim-

ilarly for other hydrographic stations. Moreover it

should be noted that the shear/strain parameteriza-

tion depends only weakly on strain variance.

There is however one point of concern when us-

ing a simple fit to estimate the mean buoyancy fre-

quency. It works fine for estimating the deviation

from the mean state in the numerator of the strain

expression, but cannot be used for the denominator,

as
〈
N2
〉

may be zero. Negative
〈
N2
〉

(and therefore

zero-crossings) occur because there are negative N2

values, mostly due to noise in temperature and salin-

ity measurements and perhaps also due to real density

overturns. The simplest way to suppress noise is av-

eraging and we chose to use the segment mean N2, so

that ξz = (N2(z)− < N2(z) >)/N2.

One more point of caution is the risk of N2 becom-

ing prohibitively small, that is indistinguishable from

zero. Monte Carlo simulations with WOCE standard

errors of 0.001◦C for temperature and 0.003 for salin-

ity gives a standard error of 2× 10−10 rad s−1 for the

segment mean buoyancy frequency N2. We use this

value as a lower bound for N2 and discard segments

with a smaller mean buoyancy frequency.

3.2.5 Shear-to-strain ratio

The shear-to-strain ratio is related to the dominant

frequency of a broadband internal wave field, because,

R =
(ω2 + f2)(N2 − ω2)

N2(ω2 − f2)
, (3.14)

for a single, linear wave [Polzin, 1995]. Linear wave

theory also predicts that the interaction rate of single
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Figure 3.1: Buoyancy frequency and strain. Left: Comparison of the mean
buoyancy frequency from a 2nd order fit 〈N2〉simple and from adiabatic lev-
elling 〈N2〉adia. The buoyancy frequency is calculated by first differencing
of 2m density bins. Right: Comparison of strain variance calculated using
〈N2〉simple and 〈N2〉adia.
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model feature configuration

data segments bottom-up and 320m long
Fourier window 10% sin2

buoyancy frequency N2 > f and N2 > 8× 10−8 rad s−1

shear integration limits 150–320m
strain integration limits λ0–150m, where λ0 = 10m or the shortest

wavelength for which
∫ 150m
λ0

S[ξz](λ) dλ ≤ 0.1.

shear-to-strain ratio minimum value set to R = 1.01 as in [Kunze
et al., 2002]; and we use R = 7 if only strain is
available or when strain is too noisy.

Table 3.1: Model configuration

wave with a background wave field is proportional to,[
(ω2 − f2)

(N2 − ω2)

]1/2

. (3.15)

Combining these relations gives an estimate of the ex-

pected interaction rate in terms of R, which can be

used to improve the HWF-scaling in non-GM condi-

tions [Polzin, 1995]. We use the ω � N approxima-

tion of the shear-to-strain scaling factor h1(R), refer to

(3.4), as in [Kunze et al., 2006]. Note that this factor

is 1 for a GM wave field, because RGM = 3.

3.2.6 Summary of model configuration

The main features of our model configuration are sum-

marized in Table 3.1. The criterion for the integra-

tion range of strain variance, as well as the choice of

the shear integration bandwidth is taken from [Kunze

et al., 2006]. The use of different integration ranges

aims to avoid small scales where LADCP data be-

come noisy and large scales where strain variance is

less likely to originate from internal waves.

With regard to the buoyancy frequency and the

calculation of strain we choose a relatively straightfor-

ward approach (refer to Section 3.2.4). The buoyancy
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frequency N(z) is calculated using sw_bfrq, a routine

in CSIRO SEAWATER library for MATLAB1. The

‘background’ mean buoyancy frequency is calculated

by a simple quadratic fit to N(z) within a segment, in-

stead of using the more elaborate method of adiabatic

levelling [Bray and Fofonoff, 1981] as was preferred by

[Polzin, 1995], [Naveira-Garabato et al., 2004b], and

[Naveira-Garabato et al., 2004a].

Another omitted configuration option is averag-

ing shear and strain variance over several segments at

the same depth from neighbouring hydrographic sta-

tions. Averaging of spectra reduces the statistical un-

certainty. Instead of spectral averaging over segments

at the same depth we choose to average over segments

at the same density.

3.3 Data

The fine scale parameterization for turbulent dissi-

pation or diffusivity requires information about the

density gradient and the vertical variance of the hor-

izontal flow velocity. This information can be col-

lected through simultaneous CTD and LADCP pro-

filing. The required CTD quality standard and the

need for LADCP measurements limits the available

data sets to the WOCE and post-WOCE era. Table

3.2 gives an overview of the data sets used in this study

and Fig. 3.2 shows the locations of the measurements.

A reformulation of the G89 parameterization in

terms of strain variance instead of shear variance makes

it possible to infer mixing from CTD data only. The

validity of this method is less established, and appears

to underestimate the dissipation rate below 3000m (re-

fer to Section 3.4.2). Nevertheless we added a number

of CTD only hydrographic casts to our analysis (again

1http://www.cmar.csiro.au/datacentre/ext docs/seawater.htm
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Figure 3.2: Locations of hydrographic stations used for the estimation of
turbulent dissipation. Open circles/diamonds indicate depth profiles with
CTD and LADCP data and the plus signs mark the locations of CTD only
measurements.

refer to Table 3.2) to improve the spatial coverage.

The total number of CTD and LADCP casts used in

this study is 1545 plus 453 CTD only casts. For some

hydrographic sections we have access to both down-

cast LADCP data and the mean of the up– and the

down-cast. These sections are marked with an asterisk

in Table 3.2.

3.4 Results

3.4.1 Shear and strain spectra

The methods discussed in this chapter rely critically

on our ability to estimate the energy density of the

internal wave field. Estimation of the energy content
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no. dataset chief scientist year/month ∆z # casts

1 I09N* A.L. Gordon 1995/1 20.0 129
2 ISS01/10* H.L. Bryden 1995/2 20.0 15
3 IR03 A. Ffield 1995/3 10.0 114
4 IR01W R. Molinari 1995/5 10.0 93
5 I4-I5W-I7C* J. Toole 1995/6 20.0 134
6 I01W J.M. Morrison 1995/8 20.0 105
7 I01E H.L. Bryden 1995/9 20.0 53
8 IR04 R. Molinari 1995/9 10.0 92
9 I10 N. Bray 1995/11 20.0 61
10 I02* B. Warren 1995/12 20.0 168
11 ACSEX1 H. Ridderinkhof 2000/3 19.5 55
12 ACSEX2 H.M. van Aken 2001/3 19.4 63
13 ACSEX3 H. Ridderinkhof 2001/3 19.6 79
14 I05 H.L. Bryden 2002/3 19.5 133
15 I03/I04 M. Fukasawa 2003/12 20.0 141
16 I09N 2007 J. Sprintall 2007/3 8.4 110

I nioz – – – 80
II sismer – – – 196
III nodc – – – 177

Table 3.2: Hydrographic sections used for estimation of turbulent dissipa-
tion. The LADCP bin size is given in the ∆z column and the asterisk
means that both up– and mean cast data are available. All sections prior
to 1998 are part of the World Ocean Circulation Experiment (WOCE) and
later sections fall under the Climate Variability and Predictability (CLI-
VAR) program, except for the ACSEX series, which was organised and
funded by the Netherlands Institute for Sea Research (NIOZ). The data
sets I, II and III contain additional CTD-only profiles from NIOZ, Systèmes
d’Informations Scientifiques pour la Mer (SISMER), and the United States
National Oceanographic Data Center (NODC).
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is commonly done in spectral space, using spectral fil-

tering to discriminate between internal wave motions

and other motions, where the latter are referred to as

‘noise’. Noise characteristics of shear and strain dif-

fer because of differences in the spatial sampling fre-

quency (typically 20m for shear and 2m for strain) and

instrument differences (LADCP for shear and CTD for

strain measurement) [Polzin et al., 2002].

The spectra shown in Fig. 3.3 represent the me-

dian spectral level in the proximity of a given density

level. Both the spectral variance of vertical shear nor-

malized by buoyancy frequency and the spectral vari-

ance of strain are shown. These spectra are calculated

as discussed in Section 3.2.2 and corrected for finite

differencing and smoothing (refer to Section 3.2.3).

It is obvious from Fig. 3.3 that the observed spec-

tra are not strikingly GM-like. Similarity to the GM-

spectrum generally deteriorates towards the lowest den-

sity levels and is generally not convincing for the shear

spectra. Strain spectra are often GM-like, that is flat,

within the integration limits, but the shear spectra

have steeper slopes. The ‘blueness’ of the shear spec-

tra gives us the impression that the loss of variance is

over-compensated when we apply spectral corrections

(3.10)–(3.13).

3.4.2 Comparison of shear and strain vari-

ance

Both shear variance and strain variance have been used

in various studies to infer the energy density of the

internal wave field, see [Gregg, 1989] and [Kunze et al.,

1990] for some pioneering studies. In this section we

explore the relation between shear and strain in our

observations.

Figure 3.4 shows the quantile–quantile plots of the

logarithm of the shear spectral level versus the loga-
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Figure 3.3: Median level of shear (red) and strain (blue) variance at given
density. Dotted spectra indicate the GM spectral levels. Vertical lines corre-
spond to wavelengths of 320, 150 and 10m (from left to right). The number
between brackets is the number of spectral estimates at the given density
level.
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rithm of the strain spectral level for all such estimates

available at a given density. The spectral level is the

spectrum integrated over a given wave band normal-

ized by the GM-spectrum integrated over the same

wave band. The integration wavelengths are typically

150–320m for shear and 10–150m for strain (refer to

Table 3.1 for details). The integrated quantity ex-

presses the energy density of the internal wave field

in units of GM energy density.

The quantile–quantile plots give us information on

how the distributions differ. Focussing on density lev-

els denser than 26.64 we can make a few general ob-

servations: (i) There is a shift in location, and strain

generally becomes smaller at higher densities; (ii) The

plots are somewhat S-shaped, which means that the

shear distribution has heavier tails and/or strain is

truncated; (iii) The quantiles are quasi-linear within

the interquartile range, indicating similar distributional

shapes within this range; (iv) The slope of the line

connecting the first and the third quartile is generally

slightly less than 45◦, indicating a different scaling,

with shear being more dispersed than strain.

A comparison of shear-and-strain dissipation esti-

mates and strain-only dissipation estimates is shown

in Figures 3.5 and 3.14. Figure 3.5 is a scatter plot of

strain only versus shear-and-strain at different density

levels. Figure 3.14 displays the depth-mean dissipation

profile for section I02 and shows that, below 3000m,

strain-only estimates are up to 2 orders of magnitude

smaller than shear-and-strain estimates.

The shear-to-strain ratio is used to estimate the

dominant frequency of the internal wave field (refer

to Section 3.2.5). Figure 3.6 displays the shear-to-

strain ratio versus the GM-normalized shear variance

at different density levels. Noisy strain estimates are

avoided by omitting R ≤ 1.01, the ‘hard-coded’ lower
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Figure 3.4: Quantile–quantile plots of the logarithm of the shear spectral
level versus the logarithm of the strain spectral level at different density lev-
els. Both the shear and the strain spectra are normalized by their respective
GM spectral values. The red dashed line joins the first and third quartiles
of each distribution.



CHAPTER 3. FINE SCALE OBSERVATIONS 68

Figure 3.5: Scatter plots of the logarithm of shear-and-strain dissipation
estimates (horizontal axis) versus the logarithm of strain only dissipation
estimates (vertical axis). The red lines indicate the range of factor three
difference.
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limit, and R = 7, the value we use when the integrated

strain exceeds 0.1 when integrated over the lowest two

wave numbers. The plots show a positive correlation,

that is larger shear-to-strain ratios for higher shear

levels, which implies that strain does not scale pro-

portionally to shear. The shift towards larger R also

implies a shift towards lower, more inertial frequencies.

In Fig. 3.6 we also address the question whether

R = 7 is a good choice for the deep ocean, when shear

is not available. Each plot gives the median shear-to-

strain ratio, < R >, and we see that < R > increases

towards higher density levels, from < R >= 2.5 at

γ = 24.47, to < R >= 8.4 at γ = 28.15.

We find that shear-to-strain ratios are even higher

for N > Nerr = 4.5× 10−4 rad s−1 and have a median

value of 19. This suggests that the canonical value

of R = 7 for N < Nerr, as used by [Kunze et al.,

2006], is on the low side. Choosing R = 19, instead of

R = 7, would increase the [Kunze et al., 2006] strain-

only dissipation estimates, for N < Nerr, by a factor

of 3.9 (refer to Fig. 3.7).

3.4.3 ADCP noise

This section discusses ADCP noise in relation to con-

cerns raised by [Kunze et al., 2006] about the qual-

ity of shear estimates in the deep ocean. The typical

accuracy of a single-ping ADCP velocity estimate is,

∆v = 3.2 × 10−2 ms−1. Averaging will reduce the

standard deviation of the velocity error by the square

root of the number of pings if the ping-to-ping error is

uncorrelated. The noise spectrum for u2 +v2 is ‘white’

and given by,

S[V ] =
2 ∆v2 ∆zt
πNp

, (3.16)
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Figure 3.6: Shear-to-strain ratio versus GM-normalized shear variance. Note
that we have excluded R ≤ 1.01 and R = 7 from the ensemble and that
< R > denotes the median value.
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Figure 3.7: Shear-to-strain dependence, h1(R) (3.4) in the shear-based pa-
rameterization (3.3), and h2(R) (3.8) in strain-only parameterization.
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Figure 3.8: Number of acoustical pings going into a LADCP bin-average
for the I02 section. Left: average number of pings for each depth level.
Right: number of pings (vertical axis) versus bin-averaged buoyancy fre-
quency (horizontal axis).

with Np the number of pings, and ∆zt the transmitted

sound pulse length projected on the vertical. The ver-

tical shear spectrum is obtained by multiplying (3.16)

by the vertical wave number kz, that is,

S[Vz] = kzS[V ]. (3.17)

The number of pings going into an ensemble aver-

age depends on the presence of small scale suspended

matter, capable of refracting the sound signal. The

abundance of acoustical scatterers in the ocean typi-

cally decreases towards the bottom, as the left panel

of Fig. 3.8 shows.

The choice to discard shear estimates at low strat-

ification, as preferred by [Kunze et al., 2006], is based
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Figure 3.9: Observed vertical shear variance at section I02 and estimated
ADCP noise spectra. The blue solid line is the mean spectrum for data
segments at low stratification, with N < Nerr, and the blue dotted line is
based on data in the depth range from 1340m to 1660m. The red lines are
estimated ADCP noise levels for different number of pings. The number of
pings going into a velocity estimate determines its accuracy and depends on
the local abundance of acoustical scatterers.

on concerns about scatterers. In Fig. 3.9 we com-

pare the observed shear variance at section I02 with

the estimated ADCP noise spectrum (3.17). The fig-

ure shows that the expected noise spectrum may in-

deed exceed the observed spectrum in the deep ocean

where N < Nerr, if less than 20 pings are available for

averaging.

The right panel of Fig. 3.8 however shows that

there is no clear correlation between the number of

pings and the stratification. For section I02 we find

LADCP bins with less than 20 pings for a large range

of buoyancy frequencies, between 7×10−5 and 1×10−2
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rad s−1. We note that the vast majority of the ‘low

ping’ bins has a mean buoyancy frequency larger than

Nerr = 4.5×10−4 rad s−1 and that most LADCP bins

with N < Nerr are averaged over more than 20 bins.

This leads us to conclude that the [Kunze et al., 2006]

criterion to select ‘bad’ LADCP bins with insufficient

pings is unfit. For this reason, and because we do not

have information on the number of pings for most hy-

drographic sections, we choose to use shear throughout

the water column.

3.4.4 Inferred dissipation patterns

Internal waves are omnipresent in the ocean, but not

uniformly distributed as for example the Garrett-Munk

model assumes. Although the internal wave field in-

deed tends to relax to a steady state that is adequately

described by the GM model, there is still plenty of

reason to expect spatial and temporal variability, be-

cause both forcing (mostly tides and wind) and sinks

(mean flow and topography) are non-uniform and non-

stationary. For example over the past 15 years it

has been demonstrated that steep topographic features

lead to intensified internal wave breaking and turbu-

lent dissipation [Ferron et al., 1998; Ledwell et al.,

2000; Mauritzen et al., 2002].

Figure 3.10 shows the dissipation profile inferred

from the main zonal hydrographic sections in the In-

dian Ocean. The main topographic features of interest

in the Indian Ocean are the Southwest Indian Ridge

(SWIR), the Central Indian Ridge (CIR) and the Nine-

tyeast Ridge (NER). These features are labelled in

the figure and all sections show elevated dissipation

rates above the SWIR and the CIR, but not above the

NER. Other locations of elevated dissipation are the

Andaman-Nicobar Ridge (refer to hydrographic sec-

tion I01E), off the continental shelf, and near islands
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and seamounts. In particular Madagascar (I02) and

Mauritius (I03/I04) appear to radiate internal wave

beams. Similar features are visible off the west flank

of Mozambique Plateau and Madagascar Ridge. There

is also elevated dissipation between the plateau and

the ridge, which perhaps could be explained by wave

trapping [Maas et al., 1997].

The meridional sections displayed in Figure 3.11

show fewer dissipation features and also less obvious

correlation to the bottom topography. The Seychelles

in section I07 is perhaps an exception to this general

observation. The most clear pattern in the meridional

sections is the east–west divide, with generally higher

dissipation rates in the west. Again, one could ar-

gue that this is correlated to the more abundant and

steeper topography in the western part of the basin.

Indeed, the Ganges sediment cone supports the gen-

eral notion that weak mixing is to be expected above

smooth topography.

3.4.5 Comparison with previously published

estimates

This section discusses a discrepancy between dissipa-

tion estimates by Kunze et al. at the University of

Victoria (UVic) and Naveira-Garabato at al. the Na-

tional Oceanography Centre, Southampton (NOCS).

Andreas Thurnherr (personal communication) com-

pared the depth mean dissipation rate for section I02

as estimated by [Kunze et al., 2006] with estimates

by [Palmer et al., 2007] (refer to their Fig. 2) and

noticed a difference of about one order of magnitude

in the upper 4000m and several orders of magnitude

below that depth. This difference is disconcertingly

large because both authors used an incarnation of the

G03 parameterization [Gregg et al., 2003]. Hereafter

we will refer to the [Kunze et al., 2006] dissipation
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Figure 3.10: Dissipation estimates for zonal sections. The color scale is
logarithmic. White spaces indicate missing data or noisy data.
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Figure 3.11: Dissipation estimates for meridional sections. The color scale
is logarithmic. White spaces indicate missing or noisy data.
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estimates as ‘UVic’ and to the [Palmer et al., 2007]

estimates as ‘NOCSvI’.

The diffusivity estimates by UVic and NOCS for

section I02dn are shown in Fig. 3.12, where ‘dn’ stands

for downcast. We use the downcast because strain

from upcasts is often contaminated by the CTD wake.

The color coding in the figure is the same used by

[Kunze et al., 2006] for easy comparison with their

Fig. 6. The reproduced NOCSvI estimates are almost

identical to the results published by [Palmer et al.,

2007] and the NOCSvII parameterization is based on

[Kunze et al., 2006], and has the form of (3.3). The

colored diffusivity patterns clearly show the discrep-

ancy between NOCSvI and UVic as pointed out by A.

Thurnherr.

To allow for comparison with the large scale dissi-

pation estimates obtained in Chapter 2 we have con-

verted the previously published diffusivity estimates

to dissipation rates using the Osborn relation [Osborn,

1980]. NOCSvI and UVic dissipation rates and buoy-

ancy frequencies are plotted against each other in Fig.

3.13. The comparison of buoyancy frequencies is re-

assuring in the sense that it gives a tight one-to-one

relation. The dissipation rates however scatter over

multiple orders of magnitude. The NOCSvI estimates

are biased high compared to the UVic estimates, espe-

cially towards the bottom. The different scaling with

depth becomes very pronounced below 3000 m, where

NOCSvI estimates increase over 2 orders of magnitude,

whereas the UVic dissipation rates remain more or less

constant.

The NOCSvII parameterization is the result of an

attempt to reproduce the UVic results by rebuilding

the model from scratch following [Kunze et al., 2006]

and guidelines personally communicated by E. Kunze.

The most distinct feature of the UVic parameteriza-
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a)

b)

c)

Figure 3.12: Comparison of UVic and NOCS diffusivity estimates based
on the Dec 1995 to Jan 1996 WOCE occupation of the I02 hydrographic
section. Top: station positions. (a) UVic estimates [Kunze et al., 2006]. (b)
NOCSvI estimates [Palmer et al., 2007]. (c) New NOCSvII estimates.
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Figure 3.13: Comparison of UVic and NOCSvI. Left: comparison of 320m
segment mean buoyancy frequency. Right: comparison of dissipation es-
timates for the same segments. Both scatter plots compare data with a
difference in position of less than one second and segments depths differ by
at most 80m (the segment overlap will not be perfect as UVic segments go
bottom-up and NOCSvI goes top-down).

tion, that is the use of only strain at low stratification,

is not incorporated in NOCSvII, but has been eval-

uated in model test runs. Other features, that have

been incorporated, and differ from NOCSvI include

different integration bandwidths for shear and strain,

and the use of the shear-to-strain ratio. The configu-

ration of the NOCSvII model is summarized in Table

3.1.

The new result is presented in Fig. 3.14, where the

NOCSvII depth mean dissipation rate is compared to

UVic and NOCSvI. We see that the new NOCSvII

estimates agree with the NOCSvI estimates to within

a factor of 3, except in the bottom bin where the old

NOCSvI estimates are about an order of magnitude

larger. This result means that the discrepancy with

the UVic estimates remains unresolved. In test runs

we found that the new estimates converge towards the

UVic values if we use strain-only when N > Nerr, but

we have not been able to reproduce the shear based

estimates.

Both NOCSvI and NOCSvII give dissipation esti-
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Figure 3.14: Depth mean dissipation rates in 500m bins.

mates that are about one order of magnitude larger

than the UVic estimates. The fact that both NOCS

models were independently developed, and the fact

that the NOCS estimates are of the same order of

magnitude as the dissipation rate predicted by the GM

model, give us reasons to believe that UVic systemat-

ically underestimates the dissipation.

3.5 Discussion

Two decades of fine scale parameterization of ocean

turbulence have resulted in a recipe that still appears

to require substantial ‘cooking skills’. In this section

we discuss some of the applicability limitations dis-

cussed in the literature and the issues we encountered

ourselves.

Extensions to the original G89 parameterization
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have improved its performance in non-GM conditions

[Polzin, 1995; Gregg et al., 2003], but have not re-

sulted in a foolproof recipe that works anywhere, any-

time, because the physics incorporated in the model

remains limited. Several studies have explored the

break-down point, for example, (i) [Kunze et al., 2002]

report factor 30 underestimation of dissipation in Mon-

terrey Canyon, (ii) [Finnigan et al., 2002] find that

strain variance underestimates mixing in regions of

weak stratification compared to mixing estimates based

on Thorpe scale analysis and budget methods, and

(iii) [MacKinnon and Gregg, 2003] conclude that the

Gregg–Henyey scaling fails on the continental shelf.

However, at many other sites the method has proven

to be accurate to within a factor 2–3 compared to

micro-structure measurements, e.g. [Polzin, 1995]. This

makes the method a powerful tool to reveal mixing

patterns, as demonstrated by [Naveira-Garabato et al.,

2004a,b; Kunze et al., 2006].

The main issue discussed in this chapter is the dis-

crepancy between published diffusivity estimates for

the I02 section in the Indian Ocean by [Kunze et al.,

2006] and [Palmer et al., 2007]. It is a case of: same

method, same data, different answer. And the differ-

ence is much larger than the widely reported accuracy

of factor 2–3.

This disconcerting discrepancy has motivated our

attempt to reproduce the [Kunze et al., 2006] result,

first by iterative modification of our existing routine,

and later by totally rebuilding of the code from scratch.

This effort has increased our appreciation of some flavour

differences, such as different ways of dealing with noise

at low stratification. Every flavour has its own bias

and we conclude that the different scaling behaviour in

the deep ocean appears to be attributable to the use of

strain variance instead of shear variance as preferred



CHAPTER 3. FINE SCALE OBSERVATIONS 83

by [Kunze et al., 2006]. We found that using strain

variance, limited to an integrated value of 0.1, pro-

duces much lower mean dissipation rates below 3500m,

compared to estimates based on shear variance.

We do not share concerns expressed by [Kunze et al.,

2006] about excessive noise contamination of the LADCP

data at low N and therefore chose to use shear vari-

ance throughout the water column. On the contrary,

we find that the buoyancy frequency, and thus also

strain, may be seriously affected by noise at low strat-

ification. To us, it appears that strain in weakly strat-

ified waters may be more affected by noise than shear.

The NOCSvII model configuration, as used in this

study, is preferred over the NOCSvI model, as used by

[Palmer et al., 2007], for the following reasons:

1. NOCSvI does not use the shear-to-strain ratio,

2. NOCSvI segments the data starting at the surface,

whereas NOCSvII segments start at the bottom,

which ensures optimal use of the bottom data,

3. NOCSvI uses variable shear integration limits based

on the number of ADCP pings going into a data

bin, this information however is often not available

and therefore not used in NOCSvII.

3.6 Summary and conclusion

In this chapter we discussed the details of the param-

eterization we used to infer dissipation from fine scale

vertical shear and strain.

A comparison with previously published estimates

by [Kunze et al., 2006] and [Palmer et al., 2007] shows

that we reproduce the latter to within the uncertainty

of the method, except in the bottom 500m, where our

estimates are about one order of magnitude smaller,

due to segmenting from bottom and the use of the

shear-to-strain ratio. The [Kunze et al., 2006] esti-
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mates are smaller than our estimates, by about one

order of magnitude in the upper 4000m, and up to

almost three orders of magnitude below this depth.

Based on our inability to reproduce the [Kunze et al.,

2006] results we conclude that their dissipation esti-

mates are suspiciously small.

Another indication that the [Kunze et al., 2006]

dissipation estimates may be biased low is the fact

that they are systematically smaller than the canoni-

cal Garrett-Munk dissipation value (refer to Fig. 3.14).

Moreover, [Nikurashin and Ferrari, 2009] find that their

simulations of internal wave radiation and dissipation

in Drake Passage and the Scotia Sea (Southern Ocean)

are larger than dissipation estimates inferred from ob-

servations by [Kunze et al., 2006] and agree with [Naveira-

Garabato et al., 2004a].

The dissipation estimates discussed in this chap-

ter will be compared to the box-model estimates from

Chapter 2 in Chapter 4.



Chapter 4

Comparison of large

scale and fine scale

dissipation estimates

4.1 Introduction

In this chapter we test the hypothesis that the Indian

Ocean MOC can be sustained by internal wave break-

ing. We test this hypothesis by comparing the MOC

energy budget we discussed in Chapter 2 with the in-

situ estimates of internal wave dissipation as presented

in Chapter 3.

The fine scale method to estimate in-situ dissipa-

tion rates (refer to Chapter 3) is designed to parame-

terize turbulent dissipation due to internal wave break-

ing and is based on the assumption that elevated inter-

nal wave energy density leads to elevated dissipation.

Away from internal wave energy sources or sinks we ex-

pect GM-like energy levels (we discuss the GM model

in Section 5.4.3). Under non-GM conditions, for ex-

ample at generation sites and at places of increased

nonlinear interaction we expect higher energy levels.

Such sites are often related to bottom topography, be-

cause internal tides may be generated at super critical

85
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slopes and waves are scattered by rugged topography

(see for example [Nycander, 2005] and [Polzin et al.,

1997]).

Non-linear interactions among internal waves cause

a net transfer of energy to smaller scales which will

eventually lead to wave breaking and turbulent dis-

sipation. Internal wave–wave interaction depends on

latitude through the inertial frequency (f). Indepen-

dent of topography we expect internal wave dissipa-

tion to drop close to the equator, because the rate at

which waves are Doppler shifted is smaller for smaller

f [Gregg et al., 2003] and we expect elevated wave–

wave interaction close to 28.9◦, because of increased

parametric subharmonic instability at this latitude [MacK-

innon and Winters, 2005].

The dissipation rate is highly variable, both in time

and space. In this study we focus on the spatial vari-

ability associated with topography, but we will touch

on temporal variability in Section 4.3.4. Section 4.3.3

discusses sites of extremely elevated dissipation rates,

the so called ‘mixing hotspots’. The dissipation rate at

these sites is typically a factor 100 to 1000 higher than

the background value. To obtain any useful statistic

it is therefore essential that hotspots are well repre-

sented in the data set, that is the magnitude of the

dissipation rate should be approximately right and the

number of sampled hotspots should be representative

for the basin wide distribution. If these conditions are

not met we might end up comparing ‘applesauce and

oranges’ as [Munk and Wunsch, 1998] have warned

against.

Whether our set of measurements is adequate to

estimate the mean dissipation rate depends on our

ability to model the statistical nature of ocean tur-

bulence. In this chapter we investigate a number of

potential biases with regard to the spatial distribution
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of the measurements.

4.2 Null hypothesis

In chapter 2 we use a one dimensional box-model in

density space to estimate the basin-wide mean dissipa-

tion rate. In chapter 3 we use a parameterization to in-

fer dissipation rate from fine structure measurements.

The resulting in-situ dissipation estimates are inter-

polated onto density levels using linear interpolation.

Section 4.5 discusses the way we calculate the Indian

Ocean mean dissipation rate and its uncertainty.

In this chapter we assess whether there is enough

energy in the internal wave field to support the Indian

Ocean MOC. More specifically we will compare the

fine scale dissipation estimates with five hydrography

based estimates of the Indian Ocean MOC. This means

that we test the null hypothesis,

H0 : µ ≥ L against H1 : µ < L, (4.1)

with µ the mean fine scale dissipation rate and L the

large scale dissipation rate. We reject the null hypoth-

esis H0 when the upper confidence level of µ is smaller

than L.

4.3 Exploratory statistics

4.3.1 Ensemble statistics

This section discusses the basic statistics of the ensem-

ble of all fine scale dissipation estimates. The ensemble

of observations includes only single occupations. Only

data from LADCP down casts is used if up– and down

cast data are separately available. In case of multiple

occupation of the same section we use the data col-
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lected closest to 19951 to minimize temporal spread

in the ensemble. In order to achieve better spatial

coverage we also include CTD-only estimates in the

ensemble.

The probability density distribution of the dissi-

pation rates is shown in Fig 4.1. The range of dis-

sipation rates is between 3.1 × 10−14 and 1.5 × 10−6

m2s−3 with most measurements close to the median,

i.e. 1.6×10−10 m2s−3. Negative dissipation rates have

no physical meaning and the probability distribution is

therefore strongly skewed to the right, with a skewness

of 37. Another difference in comparison to the Gaus-

sian distribution is the fact that the observed probabil-

ity density is more peaked. This property is expressed

by the high kurtosis value of 1640, much larger than

the ‘normal’ value of 3.

The asymmetry (skew) and peakiness (kurtosis) of

the distribution make its mean sensitive to values in

the high-end tail. This is best illustrated by a simple

example. Suppose we have systematically underesti-

mated/undersampled the mixing hotspots by factor

10, and we correct for this by multiplying the high-

est 1% of the data by factor 10. This correction, to

only 1% of the data in the thin high-end tail, has a

large impact on the mean2 and results in a 6.9 times

higher value (from 2.14× 10−9 to 1.48× 10−8m2s−3).

Figure 4.1 shows the frequency histogram of the

dissipation rate (left panel) and the density histogram

of the logarithm of the same dissipation estimates (right

panel). A maximum likelihood fit of a standard nor-

mal distribution to the pdf of log(ε) shows that the

data is approximately lognormally distributed. This

suggests that the logmean of the dissipation estimates

11995 is a year with many Indian Ocean WOCE observations.
2Strictly speaking we should increase the number of elements by 1% when accounting

for undersampling, but this makes a minor difference.
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Figure 4.1: Basic statistics of all estimated values for the dissipation rate.
Left: frequency histogram. Right: logarithmic density histogram. The red
line is a normal distribution with fit parameters µ̂ = −9.74 ± 0.01 and
σ̂ = 0.77± 0.01. The range indicates 95% confidence intervals.

is less sensitive to outliers, and therefore a more robust

statistic, than the arithmic mean.

4.3.2 Isopycnal statistics

We interpolate the dissipation estimates onto density

surfaces to enable comparison with the large scale MOC

energy budget as discussed Chapter 2. This transfor-

mation to density space is possible because there is

an one-to-one relation between the vertical coordinate

(parallel to gravity) and the density γ of a (stably)

stratified fluid.

Table 4.1 shows some basic dissipation statistics at

the large scale density levels defined in Chapter 2. The

inferred fine scale dissipation rates are interpolated

onto the density levels using linear interpolation. The

table shows that the median value is smaller than the

mean for all density levels. This is consistent with a

right-skewed distribution and we indeed find a positive
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skewness for each of the isopycnal ensembles, as shown

in the second column from the right. The scaling of

the mean and median dissipation rate with depth cor-

responds to the dissipation patterns shown in Fig. 3.10

and Fig. 3.11. These figures generally show high dissi-

pation rates in the upper 1000m, smaller values of or-

der 10−10 m2s−3 at intermediate depth, and elevated

dissipation towards the bottom. The bottom intensifi-

cation in the table is not very pronounced because we

do not regard densities larger than 28.15 kg m−3. Fig-

ure 2.4 shows that this isopycnal lingers around 3800m

at 32◦S, which is still about 1km from the bottom.

4.3.3 Mixing hotspots

Mixing rates in the upper ocean interior are typically

of order 1×10−5 m2s−1 [Gregg, 1989]. That is about a

factor 10 smaller than the mixing rate required to sus-

tain the global MOC [Munk, 1966]. This observation

has led to the conjecture that most mixing takes place

in relatively few vigorous mixing regions. Such ‘mixing

hotspots’, with mixing rates up to 1000 times higher

than the open ocean value, have indeed been identi-

fied over the past 15 years. Sites of elevated mixing

include rough topography (ridges, seamounts, conti-

nental slopes etc.) [Polzin et al., 1997; Ledwell et al.,

2000] and submarine canyons [Thurnherr et al., 2005].

In this section we look for sites with high dissipa-

tion rates. We identify hotspots using the criterion

that the local dissipation rate at a density level is

higher than the median value of the large scale dis-

sipation estimates from Chapter 2. Figure 4.2 shows

the locations of these sites for five different density

levels.

The general picture arising from Fig. 4.2 is that all

hotspots are located south of the equator and that

there are more hotspots in the western half of the
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ID DPTH DENS N MEAN MEDIAN STD SKEW KURT
1 0 22.42 0 – – – – –
2 42 23.56 0 – – – – –
3 87 24.47 0 – – – – –
4 137 25.21 16 1.2e-007 7.8e-009 3.8e-007 4 14
5 192 25.79 60 9.1e-008 5.8e-009 2.5e-007 4 16
6 257 26.26 183 4.3e-008 4.1e-009 1.2e-007 5 30
7 349 26.64 615 2.0e-008 2.2e-009 6.6e-008 7 59
8 543 26.94 1294 6.8e-009 8.6e-010 2.8e-008 10 113
9 765 27.18 1631 1.6e-009 4.6e-010 4.2e-009 8 104
10 930 27.37 1629 1.1e-009 3.4e-010 2.4e-009 5 40
11 1100 27.53 1594 8.7e-010 2.8e-010 1.9e-009 6 45
12 1285 27.65 1546 6.6e-010 2.2e-010 1.6e-009 9 123
13 1466 27.75 1490 6.3e-010 1.9e-010 2.9e-009 27 899
14 1639 27.83 1457 4.7e-010 1.7e-010 1.1e-009 8 115
15 1808 27.89 1395 3.6e-010 1.4e-010 7.2e-010 6 54
16 1971 27.94 1286 2.9e-010 1.2e-010 5.3e-010 5 31
17 2146 27.99 1191 2.5e-010 9.5e-011 5.7e-010 8 90
18 2335 28.02 1142 2.3e-010 8.2e-011 9.7e-010 26 769
19 2537 28.04 1091 2.0e-010 7.9e-011 3.7e-010 5 38
20 2756 28.07 1016 1.8e-010 8.2e-011 3.3e-010 5 32
21 2965 28.08 932 2.0e-010 8.9e-011 3.7e-010 6 62
22 3154 28.10 848 2.1e-010 8.7e-011 3.6e-010 4 26
23 3322 28.11 774 2.2e-010 9.3e-011 4.8e-010 9 120
24 3466 28.12 703 2.4e-010 9.7e-011 6.7e-010 16 323
25 4058 28.15 448 4.3e-010 1.3e-010 1.5e-009 10 129

all – – 22341 2.12e-009 1.75e-010 2.46e-008 34 1551

Table 4.1: Statistics of the dissipation rate interpolated onto neutral density
levels.
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Figure 4.2: Dissipation hotspots red circles at four different density levels.
The hotspots are marked with red circles and defined as locations where
the fine scale dissipation rate is larger than the median of the large scale
basin wide estimates. Grey circles indicate locations that do not satisfy this
criterion. Depth contours are drawn every 750m.

basin. The density of hotspots appears particularly

high in the Southwest Indian Ridge (refer to Fig. 2.4

for a map with labelled topography), close to the south-

western tip of Madagascar, around the Amirante Pas-

sage (between the Mascarene– and Somali Basin), and

in the Madagascar Basin. In the eastern half of the

basin, east of Ninety East Ridge (NER), we find a

cluster of hotspots around 20◦S and a single hotspot at

about 10◦S, which might be related to a saddle point in

the NER at this latitude [Warren and Johnson, 2002].

We also find a few scattered hotspots at the continen-

tal shelf break south of Indonesia.
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4.3.4 Temporal variability

We explore the temporal variability of the dissipation

rate by comparing the January 1995 and March 2007

occupation of section I09N. The top left panel of Fig.

4.3 shows that the 2007 cruise has not occupied all the

1995 stations. In the comparison however we only use

stations that are less than 600m apart.

The top right panel of Fig. 4.3 compares the depth

mean dissipation rate in 500m depth bins. The means

are the means of the logarithm of the dissipation rate

which is close to the geometric mean (i.e. median) for a

quasi-lognormal distribution. Assuming lognormality

we may perform a paired T-test and find that mean

values are not significantly different at all depth levels.

The bottom panel of Fig. 4.3 compares the geo-

metric means per station for all stations with at least

5 dissipation estimates. We observe similar patterns

for 1995 and 2007 and when applying a T-test to the

logged dissipation estimates we again find that the

mean has not changed significantly for most stations.

The observed general similarity between the station

mean and depth mean dissipation rates is consistent

with a quasi-steady dissipation climate on decadal time

scales. Based on this result we assume that isopycnal

mean dissipation rates, based on observations in dif-

ferent years, may be put together in a single statistical

ensemble.

4.4 Sampling biases

4.4.1 Latitude

The parameterization used to infer dissipation (3.3)

depends on latitude through L(f,N) ∝ f acosh(N/f),

with f ∝ sin(lat) the inertial frequency and N the

buoyancy frequency. The latitudinal function L(f,N)
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Figure 4.3: Comparison of dissipation estimates inferred from the 1995 and
2007 occupation of I09N. Top left: station track with 500m depth contours.
Top right: depth mean dissipation rate. Bottom: station mean dissipation
rate. The number at the top of the grey bars indicate whether the means of
log10(ε) are different (1 means different) at 0.05 significance.
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Figure 4.4: Estimated probability density P(lat) for station locations and
random locations in the Indian Ocean between 45◦S and 30◦N.

is zero at the equator and close to one for latitudes

larger than 10◦. We therefore expect that the sam-

ple distribution with respect to latitude matters for

the mean dissipation rate. Oversampling in equatorial

waters, for example, would lead to underestimation of

the mean dissipation rate.

The distribution of hydrographic stations is not

likely to be random with respect to latitude, because of

the WOCE sampling strategy with zonal sections. In-

deed, the histogram of station probability densities, as

shown in Fig. 4.4, shows higher probabilities around

the latitudes of the zonal sections (nominally: 30◦S,

20◦S, 10◦S, 0◦, 10◦N). The probability of a truly ran-

dom sample scales with the width of the basin and is

also shown in Fig. 4.4.

The latitudinal sampling bias can be corrected for
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distribution 〈ε〉 [10−9 m2s−3]

uniform (all latitudes have same probability) 2.28
observational (latitudes of hydrographic stations) 1.97
random (latitudes scales with basin width) 2.45

Table 4.2: Latitudinal bias estimates. The mean dissipation rate 〈ε〉 is based
on (3.5).

by applying weights to the dissipation estimates. The

effect of such a correction may be considerable if the

dissipation rate indeed scales as L(f,N). We estimate

this bias by comparing three spatial distributions, (i)

uniform: all latitudes have the same probability, (ii)

random: latitudes are distributed according to the

basin shape, and (iii) observational: latitudes of hy-

drographic stations.

Table 4.2 compares the mean dissipation rate within

the latitude band from −45◦S to 30◦N for these lat-

itude distributions. The results are obtained by cal-

culating the average of, ε = ε0L(f,N) (refer to (3.5)),

for the each latitude distribution. This simple exam-

ple shows that the observed mean dissipation rate may

be biased low by about 25%.

Figure 4.5 shows the observed dissipation rate be-

tween 500m and 1000m versus latitude and the average

dissipation rate in 1◦ latitude bins. The scaling with

latitude of the dissipation estimates looks flatter than

L(f,N), with a less pronounced dip at the equator

than prescribed by L(f,N). This observation is consis-

tent with lower shear-to-strain ratios close to the equa-

tor, that is higher h1(R) values, due to the propagation

of near-inertial waves to lower latitudes. The impact

of non-random sampling would be less pronounced, if

the dependency on latitude is indeed weaker, and the

25% bias is therefore likely an upper bound.
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Figure 4.5: Upper ocean dissipation estimates (1000m≤z<500m) versus lati-
tude (blue dots) and averaged over 1◦ latitude bins (red line). The analytical
dissipation rate ε0 × L(f,N) is also shown for reference (black dots).
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4.4.2 Bottom roughness

Roughness of bottom topography is a measure for the

variance of the bathymetry (refer to App. B). Most

variance is associated with the larger topographic struc-

tures and those are mostly found in the western half

of the Indian Ocean. Many areas of high roughness

are easily identifiable when we overly Fig. 4.6 and Fig.

2.4. We observe that roughness is associated with fea-

tures such as the Southwest Indian Ridge, the Central

Indian Ridge, the Owen Fracture Zone, the Carlsberg

Ridge (i.e. the northern extension of the Central In-

dian Ridge), the Mascarene Plateau (northeast of the

Mascarene Basin), and the Chagos-Loccadive Ridge

(meridionally oriented around 72◦E, just south of In-

dia). The eastern basin has generally smaller topo-

graphic features with little roughness. Most rough-

ness in the east is associated with the Southeast Indian

Ridge, Broken Plateau, the Lost Dutchmen Ridge (be-

tween Broken Plateau and Australia), and generally in

the North Australia Basin, including Java Ridge. The

Ninetyeast Ridge is an example of a large topographic

feature with little roughness.

Scattering and generation of internal waves at rough

topography explains the generally observed positive

correlation between roughness and turbulent dissipa-

tion [Polzin et al., 1997; Ledwell et al., 2000]. Our

dissipation estimates are also weakly correlated with

roughness (refer to Fig. 4.7). Under– or over sampling

of areas with high roughness may therefore bias the

mean dissipation rate. Rejection of the null hypothe-

sis, locations of hydrographic stations are random with

respect to roughness, means that a roughness bias is to

be expected.

We test the null hypothesis by comparing the em-

pirical probability density distribution of roughness at

all Indian Ocean grid points with the distribution of
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Figure 4.6: Square-root of bottom roughness and hydrographic stations in
red. The roughness is calculated in 0.5×0.5 degree non-overlapping grid
cells (refer to App. B).

Figure 4.7: Scatter plot of the logarithm of the roughness parameter r ver-
sus the logarithm of the dissipation rate ε. The parameter ρ is the linear
correlation coefficient.
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Figure 4.8: Comparison of roughness at all Indian Ocean grid points with
roughness at the location of hydrographic stations. Left panel: empirical
probability density histogram. Right panel: empirical cumulative density
function.

roughness at the station locations. Roughness at sta-

tion locations is estimated from the roughness grid

cells by triangle-based linear interpolation. The left

panel of Fig. 4.8 shows the probability distribution

of all grid cells and the roughness at station loca-

tions. Both distributions look similar, suggesting ran-

dom sampling. This notion is enforced by comparing

the cumulative density functions and applying a two-

sample Kolmogorov-Smirnov test. The test confirms

that the samples are from the same underlying popula-

tion with 95% likelihood. We therefore accept the null

hypothesis and conclude that there is no significant

roughness bias.

4.4.3 Internal tides

The energy flux from the M2 tide to internal waves

can be estimated as a function of the tidal velocity, the

bottom roughness and the buoyancy frequency. Figure

4.9 shows the Indian Ocean segment of the global map

based on linear theory [Bell, 1975], as presented by

[Nycander, 2005] (refer to Fig. 5), which is based on

Smith and Sandwell bathymetry, the TPXO.6 tidal
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Figure 4.9: Energy conversion to internal tides [Wm−2] for one third degree
grid cells and with a logarithmic colour scale (courtesy J. Nycander). Red
circles indicate hydrographic stations.

velocity field, and the SAC3 hydrographic climatology.

We estimate the sampling bias with respect to the

distribution of tidal energy conversion by comparing

the energy flux at all grid cells with the energy flux at

station locations. This is directly analogous to the es-

timation of the roughness bias in Section 4.4.2. Figure

4.10 shows the histogram of both distributions. As

with roughness we again find that the Kolmogorov-

Smirnov test accepts the hypothesis that the stations

are sampled randomly with respect to internal tides.

We therefore expect no significant tidal bias.

3World Hydrographic Program Special Analysis Centre
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Figure 4.10: Empirical probability density histogram of the energy flux to
internal tides at all Indian Ocean grid cells and at station locations (tidal
conversion rates from J. Nycander).

4.5 Hypothesis testing

4.5.1 Perfect data assumption

In Section 4.3.1 we saw that the distribution of dissipa-

tion rates has a heavy right tail. This makes the mean

of the distribution sensitive to outliers. However, the

mean is still a robust statistic in the absence of out-

liers, that is when all values, including the extreme

ones in the tail can be trusted to accurately represent

the real dissipation rate.

We will consider the data perfect when all esti-

mates are 100% accurate and randomly sampled from

the real ocean dissipation field. Under these ideal-

ized conditions there is no reason to suspect the mean

value for a sufficiently large sample set. In Table 4.3

we compare the simple arithmetic mean of the inferred

dissipation with the large scale dissipation estimates.

In order to either accept or reject the null hypoth-

esis (i.e. internal waves can sustain the Indian Ocean

MOC) we will need an estimate of the statistical un-
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certainty. Avoiding strong parametric assumptions, in

particular the obviously unfit assumption of normality

that is inherent to the standard deviation, we chose

to use bootstrap resampling (refer to App. C) to esti-

mate the uncertainty. Bootstrap estimates of the mean

and its standard deviation are given in Table 4.3 for a

resampling frequency of 1000. The null hypothesis is

rejected when the mean plus three standard deviations

is smaller than the large scale value.

Focussing on layers relevant to the deep MOC,

which we choose to be layers denser than 27.00, we

see that the fine scale inferred mean dissipation rate is

sufficient to support the large scale estimates for a few

layers only. The energy in the internal wave field is

sufficient to support the MCD solution for γ = 27.18

kg m−3 and γ = 27.37 kg m−3, the BRY solution for

γ = 28.12 kg m−3 and γ = 28.15 kg m−3, and the SLO

solution for γ = 28.15 kg m−3. Based on this compar-

ison we conclude that the estimated internal wave dis-

sipation falls short to support the Indian Ocean MOC

at all other density levels.

4.5.2 Lognormal assumption

In Section 4.3.1 we saw that the probability density

function (pdf) of the logged dissipation estimates re-

sembles the bell-shape of the standard normal pdf.

The pdf of a truly lognormal ε-distribution can be writ-

ten as,

f(ε|µ, σ) =
1

εσ
√

2π
exp

(
−(log(ε)− µ)2

2σ2

)
, (4.2)

with ‘logmean’ µ and ‘logvariance’ σ2 and expected

value exp(µ + 1
2σ

2). In Fig. 4.11 we compare the log-

arithm of the fine scale expected value, i.e. µ + 1
2σ

2,

and the logarithm of the large scale expected value.

Assuming lognormality we use µ = mean(log(ε)) and
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ID DENS MEAN STD MCD GAN FER BRY SLO

1 22.42 – – – – – – –
2 23.56 – – – – – – –
3 24.47 – – – – – – –
4 25.21 1.23e-007 8.83e-008 0 0 0 0 0
5 25.79 9.23e-008 3.11e-008 0 0 0 0 0
6 26.26 4.26e-008 9.12e-009 0 0 0 0 0
7 26.64 1.97e-008 2.78e-009 0 0 0 0 0
8 26.94 6.82e-009 8.07e-010 0 0 1 1 1
9 27.18 1.60e-009 1.01e-010 0 1 1 1 1
10 27.37 1.09e-009 5.93e-011 0 1 1 1 1
11 27.53 8.67e-010 4.88e-011 1 1 1 1 1
12 27.65 6.62e-010 4.05e-011 1 1 1 1 1
13 27.75 6.26e-010 7.48e-011 1 1 1 1 1
14 27.83 4.69e-010 2.89e-011 1 1 1 1 1
15 27.89 3.65e-010 1.82e-011 1 1 1 1 1
16 27.94 2.93e-010 1.50e-011 1 1 1 1 1
17 27.99 2.49e-010 1.55e-011 1 1 1 1 1
18 28.02 2.33e-010 2.81e-011 1 1 1 1 1
19 28.04 1.96e-010 1.04e-011 1 1 1 1 1
20 28.07 1.85e-010 1.04e-011 1 1 1 1 1
21 28.08 1.97e-010 1.19e-011 1 1 1 1 1
22 28.10 2.06e-010 1.22e-011 1 1 1 1 1
23 28.11 2.22e-010 1.71e-011 1 1 1 1 1
24 28.12 2.36e-010 2.43e-011 1 1 1 0 1
25 28.15 4.23e-010 7.13e-011 1 1 1 0 0

Table 4.3: Bootstrap estimates of the mean dissipation rate and the standard
deviation with B = 1000 for the number of bootstrap replicates (refer to
App. C). The logical in the last five columns indicates whether the null
hypothesis is rejected (1 means rejection).
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σ2 = var(log(ε)).

The bars in Fig. 4.11 represent the basin-wide isopy-

cnal dissipation rates with fine scale estimates in red.

Green-blue-ish bars represent the fine scale expected

value under the assumption of lognormality.

Assuming lognormality we can perform a T-test to

check whether the logged data are a random sample

from a normal distribution with a given mean. We use

the one-sample T-test to check whether the mean of

the logged data is larger or equal to the large scale (LS)

logmean. The large scale logmean can be calculated

from the expected value when we assume that the vari-

ance is similar to the fine scale (FS) variance. Writing

E[ε] for the large scale expected value and assuming

lognormality so that log(E[ε]) ≈ µLS + 1
2σ

2
LS , we find

the large scale logmean by assuming σ2
LS ≈ σ2

FS .

Table 4.4 shows whether the T-test has accepted

the null hypothesis (4.1) for all density layers and all

large scale expected values. The null hypothesis is

rejected for all large scale expected values at densities

between γ = 26.94 kg m−3 and γ = 28.12 kg m−3.

Disregarding surface layers we conclude that the null

hypothesis is only accepted for the [Bryden and Beal,

2001] and [Sloyan and Rintoul, 2001] solution at the

densest level.

This result is in qualitative agreement with the

bootstrap comparison in Table 4.3. The apparent sim-

ilarity of mean and logmean values seems to indicate

that the fine scale mean is not significantly contami-

nated by outliers. We conclude that assuming lognor-

mality does not appreciably change the findings from

the previous section. In other words, the shortfall of

energy in the internal wave field to support the Indian

Ocean MOC persists under the assumption of lognor-

mality.
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Figure 4.11: Logmean of the fine scale dissipation estimates (red) and the
largescale dissipation estimates for the various overturning solutions con-
sidered in this study. The Garret-Munk background dissipation rate ε0 is
plotted for reference. Refer to Table 4.1 for the layer densities and to Table
2.1 for the meaning of the large scale abbreviations.
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ID DENSITY LOGMEAN MCD GAN FER BRY SLO

1 22.42 – – – – – –
2 23.56 – – – – – –
3 24.47 – – – – – –
4 25.21 1.06e-008 – 0 0 0 0
5 25.79 8.58e-009 – 0 0 0 0
6 26.26 5.81e-009 – 0 0 0 0
7 26.64 2.85e-009 – 0 1 0 0
8 26.94 1.06e-009 – 1 1 1 1
9 27.18 4.94e-010 – 1 1 1 1
10 27.37 3.71e-010 – 1 1 1 1
11 27.53 2.99e-010 1 1 1 1 1
12 27.65 2.32e-010 1 1 1 1 1
13 27.75 1.96e-010 1 1 1 1 1
14 27.83 1.70e-010 1 1 1 1 1
15 27.89 1.41e-010 1 1 1 1 1
16 27.94 1.18e-010 1 1 1 1 1
17 27.99 9.53e-011 1 1 1 1 1
18 28.02 8.59e-011 1 1 1 1 1
19 28.04 8.19e-011 1 1 1 1 1
20 28.07 8.11e-011 1 1 1 1 1
21 28.08 8.64e-011 1 1 1 1 1
22 28.10 8.97e-011 1 1 1 1 1
23 28.11 9.29e-011 1 1 1 1 1
24 28.12 9.86e-011 1 1 1 1 1
25 28.15 1.38e-010 1 1 1 0 0

Table 4.4: T-test of the hypothesis that the logged fine scale dissipation
estimates come from a distribution with a mean given by the large scale
expected value minus the variance of the logged fine scale estimates. Out-
come ’1’ means that null hypothesis (4.1) is rejected under the assumption
of lognormality at a 0.05 significance level.
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Figure 4.12: Quantile–quantile plot of the logarithm of the ensemble of all
dissipation estimates versus the standard normal distribution. Q1 and Q3
are the first and third quartile value of log10(ε).

4.5.3 Parametric bias

The parametric assumption about the lognormality of

the dissipation rate is useful to estimate confidence

intervals for purposes of comparison, but may also

introduce bias when the underlying distribution dif-

fers. Here we discuss differences between the data set

and the lognormal distribution based on the quantile–

quantile plot in Fig. 4.12.

The plot shows that dissipation estimates are close

to normally distributed in the range 10−11 < ε < 10−9

m2s−3. Low and high dissipation rates outside this

range are biased by over an order of magnitude.

When using the T-test in Section 4.5.2 we assume

lognormality and we expect the test to be reasonably

robust under small departures from normality for suf-
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Figure 4.13: Ratio of the mean of log10(ε) and mean of the interquartile
range at a given density layer. Note that we only display layers with a
density larger than 27.00.

ficiently large sample sizes. The T-test compares the

mean value of a supposedly normally distributed data

set x with a given value µ0 using the statistic,

t =
x− µ0

s/
√
n
, (4.3)

where x is the sample mean, s the variance and n the

number of elements.

Figure 4.12 shows that the data is close to lognor-

mal within the interquartile range. We estimate the

effect of the heavy tails by comparing the mean of x =

log(ε) with the mean in the interquartile range xIQR.

Figure 4.13 shows that the ratio x/xIQR is within 20%

difference for denser layers, with γ ≥ 27.18. From this

plot we conclude that the logmean is hardly biased

by the heavy tails when compared to the lognormal

distribution.

The variance of the observed distribution is larger

than the variance of a distribution with lighter, lognor-

mal tails. The statistic t (refer to (4.3)) could therefore

overestimate the probability of x having mean value

µ0. In our case this means that the few cases where

the T-test has accepted the null hypothesis (4.1) might

still be rejected at the 95% level when we correct for
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this bias. This enforces our conclusion that the en-

ergy in the internal wave field falls short to support

the investigated Indian Ocean MOC solutions.

4.6 Discussion

The main result of this chapter is graphically displayed

in Fig. 4.11. The figure shows the basin-wide fine scale

and large scale dissipation estimates at 25 density lev-

els. Disregarding the top 10 levels, corresponding to

shallow depths below ∼1000m, and the lowest density,

i.e. the 28.15 kg m−3 isopycnal, we find that the fine

scale estimates are always smaller than all the large

scale estimates. The gap between fine– and large scale

estimates is considerable, more than one order of mag-

nitude at most density levels, and much larger than the

spread among the large scale estimates.

The statistical comparison of the fine scale and

large scale estimates discussed in this chapter accounts

for uncertainty due to undersampling, but does not ex-

plicitly discuss the uncertainty of the estimates them-

selves. Inverse model errors are discussed in Section

2.4.1, but error estimates are not available for all the

inverse solutions discussed in this work. Alternatively,

we interpret the spread among the various inverse solu-

tions as a measure for the uncertainty about the Indian

Ocean MOC.

The fine scale parameterization is shown to be ac-

curate to within a factor 2–3 when compared to micro-

structure dissipation estimates. In principle we do not

believe that this level of accuracy is compromised by

the previously discussed discrepancy between our esti-

mates and estimates published by [Kunze et al., 2006]

(see Section 3.4.5), because we have reason to believe

that this difference is due unintentional biases intro-

duced by their implementation of the model [Polzin
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et al., 2010].

Assuming that our fine scale method produces rea-

sonably reliable estimates of internal wave dissipation

leads to the question whether the MOC can be closed

by other mixing processes that are not captured by

the fine scale parameterization. Previous studies have

identified mixing processes in canyons as potentially

important, possibly even dominant, in the abyssal ocean

[Bryden and Nurser, 2003; Thurnherr et al., 2005; Thorpe,

2007]. These studies explain the observed high mixing

rates in canyons by hydraulically controlled mixing at

sill overflows, a process that is not captured by the fine

scale parameterization.

Another mixing process that is not well captured

by the fine scale parameterization is critical layer inter-

action with a sheared mean flow. In Chapter 5 we ex-

plore this process numerically. Observations in the At-

lantis II FZ suggest that this process may be relevant

to water mass transformation in this canyon [MacKin-

non et al., 2008]. The contribution of this process to

the Indian Ocean deep mixing budget may be consid-

erable, because most bottom and deep waters appear

to enter the basin through the Atlantis II FZ and the

Melville FZ in the Southwest Indian Ridge [Warren,

1978; MacKinnon et al., 2008] or as deep boundary

currents east of South Africa and east of Madagascar

[Donohue and Toole, 2003; Bryden and Beal, 2001].

4.7 Summary and conclusion

The statistical exploration of fine scale dissipation es-

timates in this section discusses temporal variability

and potential spatial biases. The ultimate aim of this

section is to answer the question whether the Indian

Ocean MOC, as inferred from large scale inverse mod-

els, can be sustained by internal wave breaking.



CHAPTER 4. RECONCILIATION OF SCALES 112

When comparing the 1996 and 2007 occupation

of section I09N we found little variability, which sug-

gests a more or less steady dissipation climate on a

decadal time scale. The combination of measurements

from different years, and perhaps also different sea-

sons, seems therefore permissible.

Spatial biases may be significant when measure-

ments are scarce or not randomly sampled with re-

spect to the environmental variables that influence the

internal wave field. We have investigated three such

variables: latitude, bottom roughness, and energy con-

version into internal tides. The sample set does not

appear to be biased with respect to the latter two and

we have estimated that the mean dissipation rate is

biased low by at most 25% due to the latitudinal dis-

tribution of measurements.

The ultimate question, that is the hypothesis that

the Indian Ocean MOC is sustained by internal wave

breaking, is not supported by our analysis. We find

that the energy in the internal wave field falls short.

This result suggests that the closure of the Indian

Ocean MOC needs other mixing processes that are

not captured by the fine scale parameterization. One

such process, that we think deserves special attention,

is mixing in the numerous fracture zones by internal

wave mean flow interaction.
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Chapter 5

Dissipation of

internal waves in a

sheared mean flow

5.1 Introduction

This work is motivated by the observation of a strong

and persistent jet flow through the Atlantis II Fracture

Zone (AFZ) in the South West Indian Ridge (Fig. 5.1)

[MacKinnon et al., 2008]. The jet flows northward

through a submarine canyon with a typical width of

20 km and a length of about 200 km and has a max-

imum flow speed of about 0.4 ms−1. The transport

rate is about 3 × 106m3s−1 and the water masses in

the jet flow are identified as North Atlantic Deep Wa-

ter, Circumpolar Deep Water and Antarctic Bottom

Water.

A comparison of water properties at the entrance

and exit of the canyon shows that water masses are

mixed during the transit. The observed water mass

transformation requires a mixing rate of about Kρ =

1×10−2 m2s−1 below 2000m [MacKinnon et al., 2008],

a factor 1000 larger than the generic open ocean value.

This image of vigorous mixing of deep– and bottom

114
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Figure 5.1: Location and bathymetry of Atlantis II Fracture Zone (AFZ).
Left: map of the South-west Indian Ocean with a red square around the
area of the AFZ and 1000m depth contours. Right: multi-beam bathymetry
of the AFZ.



CHAPTER 5. WAVE MEAN FLOW INTERACTION 116

water is corroborated by the observation of large den-

sity overturns and high levels of shear variance.

The combination of large transport and vigorous

mixing makes this site, and similar environments, po-

tentially important for the Indian Ocean MOC. The

estimated basin wide diapycnal transport in the Indian

Ocean is about 10 Sv across an isopycnal in the range

27.5–28.0 [McDonagh et al., 2008; Bryden and Beal,

2001; Ganachaud and Wunsch, 2000]. The diapycnal

transport in the AFZ is limited by the short residence

time and the narrow extent of the canyon and has

an estimated value of only 0.002 Sv across the 28.11

isopycnal [MacKinnon et al., 2008]. Canyons however

are very numerous in the Indian Ocean. Collectively

they could explain why much of the deep mixing in

the global MOC appears to take place in the Indian

Ocean.

Observations of turbulence and vertical diffusion

in other abyssal passageways [Polzin et al., 1996; Fer-

ron et al., 1998; St Laurent and Thurnherr, 2007] have

led to speculation that much of the energy needed for

deep ocean mixing is drawn from the mean flow by hy-

draulically controlled sill overflows [Thurnherr et al.,

2005; Thorpe, 2007]. Here we explore an alternative

explanation: internal wave instability due to interac-

tion with the mean flow.

Internal wave breaking is a likely mixing mecha-

nism in the AFZ, because the mean flow appears sta-

ble, Ri =
〈
N2
〉
/
〈
U2
z

〉
∼ 10, and not hydraulically

controlled. Hydraulic jumps may occur downstream

of sills if the flow has a Froude number close to one

or larger. The typical Froude number for the jet in

the AFZ is a factor 10 smaller than the critical value,

Fr = 〈U〉 / 〈N〉 /H ∼ 0.1. The geometry of the AFZ

is not favourable to hydraulic jumps either, because

there are only two sills, one at the entrance and one



CHAPTER 5. WAVE MEAN FLOW INTERACTION 117

at the exit. Hydraulic turbulence could be generated

downstream of the entrance sill, but is not expected

to dominate the mixing budget, because of the low

Froude number [MacKinnon et al., 2008].

In this chapter we explore the dynamics of a broad

band internal wave field in the presence of a mean flow

by numerical integration of the fully nonlinear Navier-

Stokes equations. We run a series of unforced ini-

tial value problems in 2D and 3D with simple bound-

ary conditions, a constant density stratification, and

a mean flow with a high bulk Richardson number and

a low Froude number. We focus on the energy trans-

fer rate to smaller scales and assume that the energy

transferred to the smallest numerical scales is repre-

sentative of the dissipation rate.

5.2 Conceptual model

In this section we review a few elementary concepts

with regard to wave–mean flow interactions. The the-

ory presented here is based on lecture notes from E.

Kunze [Kunze, 2000]. It is assumed that the fast-scales

and slow-scales can be treated as independent vari-

ables in the sense of the WKB ray-tracing approxi-

mation. This approximation is valid when the back-

ground mean flow has a large wavelength and a low

frequency in comparison to the internal waves.

Suppose there is a steady mean flow with velocity

U = (U, 0, 0) and a single plane wave with velocity u =

û exp[i(k · x− ωit)], with û a vector with the velocity

amplitudes in the three spatial directions, k = (k, l,m)

the wave vector, and ωi the intrinsic frequency. The

intrinsic frequency is the frequency of the wave in a

frame of reference that moves with the mean flow and

does not change when the mean flow changes. On the

contrary, the frequency in a fixed frame of reference,
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that is the Eulerian frequency ωE , is Doppler shifted

when the wave is advected.

The Doppler relation can be derived using the total

derivative of the velocity, Dt(u + U) = [∂t + (u + U) ·
∇](u+U). Ignoring self-advection of waves, u·∇u = 0,

wave advection of the mean flow, u·∇U = 0, and using

∂tU = 0 and U · ∇U = 0, gives the Doppler relation,

ωi = ωE + kU(z) = constant, (5.1)

with k the horizontal wave number.

Suppose a wave propagates into a mean flow (i.e.

the vertical wave number m and the vertical gradient

of the mean flow Uz have the same sign). The hori-

zontal wavenumber of this wave is either be directed

in the direction of the flow or against the flow. The

sign of the horizontal wave number k matters for the

‘direction’ of the Doppler shift of ωE (5.1) and below

we discuss how the Doppler shift affects the vertical

wave number and vertical group velocity.

Wave propagates with the flow (kU > 0) The

relation between the Eulerian frequency and the wave

numbers for linear internal waves is given by the dis-

persion relation (5.16). Substitution of the Doppler

relation (5.1) into (5.16) and re-ordering terms, gives,

m2 =
N2k2 − (ωi − kU)2k2

(ωi − kU)2 − f2
. (5.2)

This relation for the vertical wave number is singular

for (ωi − kU)2 − f2 = 0 or U = Ucrit = (ωi − f)/k. In

other words, the vertical wave number blows up when

the wave reaches a critical level in the mean flow.

Using the definition of the horizontal phase speed,
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c ≡ ωi/k, we find,

Ucrit = c− f

k
. (5.3)

Because both f > 0 and kU > 0 we note that a critical

level exists when the horizontal phase speed is smaller

than the maximum flow speed.

The vertical wave length, λz = 2π/m, goes to zero,

when m → ∞. This means that the energy of a wave

approaching a critical layer becomes concentrated in

increasingly smaller-scale vertical motions. The high

vertical shear associated with these small-scale mo-

tions would lead to strong damping by molecular dissi-

pation in a viscous fluid. Conceptually, we may there-

fore regard a critical layer as a sink for internal waves.

It is also instructive to see what happens to the

vertical group velocity, ∂ωE
∂m when m → ∞. The dis-

persion relation (5.16) can be approximated by ω2
E ≈

f2 +N2K2/m2 when m� k, and we find,

∂ωE
∂m

≈ −N
2k2

fm3
, (5.4)

for the vertical group velocity. Clearly, limm→∞
∂ωE
∂m =

0, that is the wave stalls when approaching a critical

level.

Summary: There is a critical level for a wave prop-

agating into a the mean flow, when (i) the wave prop-

agates in the same direction as the mean flow, and (ii)

the horizontal phase speed is smaller than the maxi-

mum mean flow speed. The fate of a wave approaching

a critical layer is catastrophic in the sense that it stalls

and dissipates its energy, and thus ceases to exist.

Wave propagates against the flow (kU < 0) The

Doppler shift of ωE is towards higher frequencies when

kU < 0 (refer to (5.1)). The dispersion relation (5.16)
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shows that high frequency internal waves have a large

aspect ratio, that is k � m. In this limit we may ap-

proximate the dispersion relation by, ω2
E ≈ f2m2/k2 +

N2 or

m2 ≈ k2

f2
((ωi − kU)2 −N2), (5.5)

after substitution of the Doppler relation. This equa-

tion has no singularities, but becomes zero and changes

sign for increasing mean flow speed, U . We find m = 0

for (ωi − kU)2 −N2 = 0 and define the turning point

as,

Uturn = c− N

k
, (5.6)

In analogy to the critical layer we note that a turning

point exists for a wave propagating against the flow

with a horizontal phase speed smaller than the maxi-

mum flow speed.

The vertical group velocity in the k � m limit is,

∂ωE
∂m

≈ f2

Nk2
m. (5.7)

Thus, we find limm→0
∂ωE
∂m = 0, that is the vertical

group velocity goes to zero when a wave reaches the

turning point. The wave energy is conserved, because

the vertical shear decreases (since m→ 0). Note that

further propagation of the wave energy can only be

directed in the opposite direction, towards lower mean

flow speeds.

Summary: There is a turning point for a wave

propagating into a the mean flow, when (i) the wave

propagates in the opposite direction of the mean flow,

and (ii) the horizontal phase speed is smaller than the

maximum mean flow speed. A wave approaching a

turning point reverses its vertical direction of propa-

gation without loss of energy.
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Discussion This basic theory on wave–mean flow in-

teraction does not represent all the physics of a real

fluid, but captures the essential behaviour. The pre-

dicted singularities at the critical level and turning

point are obviously unphysical and emerge because

the theory lacks a dissipation mechanism. The the-

ory breaks down when scales are not separable, for

example when the internal wave lengths are similar to

the length scale of the mean flow. Some phenomena

are not captured at all, such as partial reflection and

transmission (tunneling) at a critical level.

5.3 Numerical model

5.3.1 Model equations

The numerical model used in this study is a pseudo-

spectral algorithm for finding approximate solutions

to the Navier–Stokes equations for an incompressible,

density stratified fluid on a f-plane. Decomposing the

density field into a reference value, a background field,

and a fluctuating component, ρ = ρ0+ρ̄(z)+ρ′(x, y, z, t),

and invoking the Boussinesq approximation1 we obtain

1The Boussinesq approximation assumes that inertial density fluctuations can be ne-
glected (and replaced with the reference value ρ0). However, fluctuations of the gravita-
tional density are dynamically important and remain unaffected in this approximation.
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the following form for equations of motion,

Du

Dt
= − 1

ρ0

∂p

∂x
+ fv −Du (zonal momentum)

(5.8)

Dv

Dt
= − 1

ρ0

∂p

∂y
− fu−Dv (meridional momentum)

(5.9)

Dw

Dt
= − 1

ρ0

∂p

∂z
+ b−Dw (vertical momentum)

(5.10)

Db

Dt
= −N2w −Db (buoyancy)

(5.11)

∇ · u = 0 (continuity)

(5.12)

where we used D/Dt as a shorthand for the ‘material

derivative’ along the fluid parcel trajectory, for exam-

ple Du/Dt = ∂u/∂t+u ·∇u. The buoyancy frequency

squared is defined as N2 = −gρ−1
0 ρ̄z and the sym-

bol D represents diffusion of momentum / buoyancy

(refer to Section 5.3.2), where buoyancy is defined as

b = −gρ−1
0 ρ′.

The algorithm Fourier transforms the momentum

equations and calculates the derivatives in spectral

space. This is efficient and accurate for simple bound-

ary conditions2, because differentiation reduces to scalar

multiplication in spectral space, (∂x, ∂y, ∂z)→ (ik, il, im).

More details about the model can be found in [Winters

et al., 2004].

5.3.2 Numerical viscosity

Kinetic energy in the ocean cascades to smaller scales

and ultimately to internal energy (i.e. heat) through

2Boundary conditions are either triple periodic or double periodic with a rigid lid and
flat bottom.
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molecular viscosity. Scales at which energy is dissi-

pated are of the order of the Kolmogorov length scale,

which is typically orders of magnitude smaller than the

numerical grid spacing. This poses a numerical prob-

lem, because transfer of energy to sub grid-size length

scales leads to numerical instability.

This problem is solved by damping momentum and

buoyancy at high wavenumbers close to the numerical

cut-off. Selective damping of high wavenumbers, with-

out affecting the dynamics at larger scales, is achieved

by a higher order viscosity operator,

D =

[
νx

∂p

∂xp
+ νy

∂p

∂yp
+ νz

∂p

∂zp

]
. (5.13)

This operator reduces to Newtonian viscosity for p =

2 (and ν = 10−6 m2 s−1 for water), but becomes a

‘hyperviscosity’ with higher order derivatives, with p >

2. In the model we use p = 10.

The wavenumber range at which hyperviscosity be-

comes dynamically important can be tuned with the

value chosen for the viscosity coefficient ν [mp s−1].

The actual tuning parameter in the model is the char-

acteristic damping timescale at the Nyquist wavenum-

ber, Tdiss = ν−1
x Lxπ

−1n−1
x , with nx the number of grid

points and Lx the horizontal domain size.

Figure 5.2 shows the magnitude of the hypervis-

cosity term in the non-dimensionalized Fourier trans-

formed equations of motion, νU−1
0 L−p+1kp. The plot

shows that hyperviscosity acts on higher wavenumbers

for increasing Tdiss. Viscosity becomes dynamically

important when it reaches the magnitude of the Cori-

olis acceleration, which in its nondimensionalized form

is the inverse Rossby number, as indicated in the fig-

ure. The dynamics at smaller wavenumbers are es-

sentially inviscid / nondiffusive, because of the strong

scale dependency of the hyperviscosity operator.
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Figure 5.2: Magnitude of the hyperviscosity term in the non-dimensionalized
Fourier transformed equations of motion, with characteristic units Lz =
4000m and U0 = 0.1ms−1, and hyperviscosity order p = 10, and vari-
ous values for Tdiss. For reference are also plotted the Newtonian viscos-
ity, νU−1

0 L−1
z k2 (with ν = 10−6 m2 s−1), and the inverse Rossby number,

Ro−1 = fLzU
−1
0 .
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The hyperviscosity operator has the sole purpose

of taking energy out of the system at the smallest nu-

merical scales and works indiscriminately on momen-

tum (kinetic energy) and buoyancy (potential energy).

Damping of buoyancy means that density perturba-

tions are not allowed to develop at high wavenum-

ber, because b = −gρ−1
0 ρ′, but the molecular diffusion

of the background density field is in fact retained in

the model equations. In other words there is a term

−κ∂2ρ̄/∂z2 in the density equation. This term how-

ever is zero for the experiments discussed here because

the stratification is constant (refer to Section 5.7 for a

discussion about internal wave breaking and mixing).

The hyperviscosity is ad hoc in the sense that it

does not describe actual physics. However, the rep-

resentation of internal dissipation by hyperviscosity is

justified under the assumption that (i) upscale transfer

of energy is negligible [McComas and Müller, 1981],

and (ii) internal waves break locally. The validity

of the first assumption was demonstrated for vertical

wavelengths of 5m by [McComas and Müller, 1981]

and the second assumption relies on the observation

that the product of the internal wave interaction time

scales and the group velocity is small.

5.4 Initial conditions

5.4.1 Linear plane waves

The temporal and spatial oscillation of a single plane

wave with wave vector k = (k, l,m) and frequency ωi

is prescribed by,

[u, v, w, p, b](x, y, z, t) = [û, v̂, ŵ, p̂, b̂]ei(k·x−ωit),

(5.14)

where (u, v, w) is the full velocity, p pressure and b

buoyancy. This wave is a solution to the linearized,
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rotating, density stratified, incompressible, inviscid,

Boussinesq equations of motion, that is (5.8)–(5.12)

with D = 0 and u · ∇u = 0, when the polarization

relations are satisfied. The polarization relations are

obtained by plugging (5.14) into the equations of mo-

tions (5.8)–(5.12), giving a set of homogeneous linear

equations,

Mv =


−iωE −f 0 ik 0

f −iωE 0 il 0

0 0 −iωE im −1

0 0 N2 0 −iωE
ik il im 0 0




û

v̂

ŵ

P̂

b̂

 = 0,

(5.15)

where P̂ = ρ0p̂.

Gaussian elimination shows that a non-trivial so-

lution exists and that there is one independent vari-

able. This means that we may eliminate all property

amplitudes except for example ŵ. The existence of a

non-trivial solution also implies that the determinant

must be equal to zero. Solving det(M) = 0 gives the

internal wave dispersion relation [Kunze, 2000],

ω2
E(k,m) =

f2m2 +N2(k2 + l2)

k2 + l2 +m2
. (5.16)

5.4.2 Boundary conditions

The boundary conditions we used are periodic in both

horizontal directions. This means that all discrete

wave numbers smaller than the Nyquist wave num-

ber fit in the domain, that is, (k, l) = (i/Lx, j/Ly)2π

with i ∈ [0, 1, 2, . . . , nx/2], and j ∈ [0, 1, 2, . . . , ny/2].

At the top and bottom of the domain we impose ‘rigid

lid’ and ’free slip’ conditions,

w(z = 0, Lz) = b(z = 0, Lz) = 0, (5.17)
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and from continuity follows, uz(z = 0, Lz) = vz(z =

0, Lz) = 0. The non-zero horizontal flow is assumed to

slip freely (i.e. frictionless) along the boundaries.

The vertical boundary conditions are met by verti-

cally standing modes. These modes can be constructed

by subtracting identical waves that differ only by the

direction of vertical propagation (so only the sign of

m differs). Introducing a localization function F (z),

we obtain the following solution for a free slip linear

wave in a frame of reference with arbitrary horizontal

directions (and m parallel to z),

u = ξ̂ω

(
km

k2
H

)[
cos(kx+ ly − ωt)−

(
l

k

)(
f

ω

)
sin(kx+ ly − ωt)

]
G(z),

(5.18)

v = ξ̂ω

(
lm

k2
H

)[
cos(kx+ ly − ωt)−

(
k

l

)(
f

ω

)
sin(kx+ ly − ωt)

]
G(z),

(5.19)

w = ξ̂ω sin(kx+ ly − ωt)F sin(mz), (5.20)

ξ = ξ̂ cos(kx+ ly − ωt)F sin(mz), (5.21)

with ξ̂ the wave displacement amplitude, kH =
√
k2 + l2

is the horizontal wave number andG(z) = [F cos(mz)+
F ′

m sin(mz)].

5.4.3 GM76 wave amplitudes

The GM76 spectrum

The Garret-Munk spectrum [Garrett and Munk, 1972,

1975] assumes that spectral energy dependency on fre-

quency and vertical mode number is separable,

E(ω, j) dω dj = E0B(ω)dωH(j)dj [dimensionless],

(5.22)

with vertical mode number j and frequency ω. The

model is a power law fit to ocean observations con-
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sistent with linear internal wave theory. Time and

length scales are non-dimensionalized using an ide-

alized buoyancy frequency profile, N(z) = N0e
−z/d,

with N0 = 3cph= 5.2 10−3rad s−1 and fall-off scale

d = 1300m. Multiplication of (5.22) by N2
0d

2 gives the

dimensional spectrum in Joules per kg (i.e. m2s−2).

Model constants, such as the energy level, E0 = 6.3 10−5,

and the frequency and modal scaling are obtained from

a least square fit to observational data.

The frequency dependency is proportional to 1/ω2

for high frequencies (ω � f) and peaks around the in-

ertial frequency (with a singularity at ω = f) [Garrett

and Munk, 1975],

B(ω) =
2

π

f

ω(ω2 − f2)1/2
[s]. (5.23)

This representation of the internal wave field captures

the general frequency dependency as it is observed in

the ocean, but lacks more detailed features such as the

spectral peaks at tidal frequencies. The normalization

is chosen such that
∫ N
f B(ω)dω ≈ 1.

The dependency on vertical modes also scales with

the inverse square for large modes (j � j∗), but is

flattened for modes close to the modal scale number,

j∗ = 3,

H(j) =
(j2 + j∗2)−1∑jmax

j=1 (j2 + j∗2)−1
[dimensionless]. (5.24)

The j−2 scaling for large j was proposed by [Cairns

and Williams, 1976] differs from the j5/2 scaling in

[Garrett and Munk, 1975]. This form for H(j) to-

gether with (5.22) is referred to as GM76.
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Transformation to wave number space

The GM76 spectrum is originally formulated in frequency–

mode number space, but can be transformed to wave

number–mode number space using the dispersion re-

lation. The energy in (k, j) space is related to the

GM76 spectrum through E(k, j) = E(ω, j) dω dk−1,

so that the total energy is the same in both spaces,∫
dω
∑

j E(ω, j) =
∫
dk
∑

j E(k, j). Using the linear

dispersion relation (5.16) in the ω � N approxima-

tion gives,

E(k, j) dk dj = E(ω, j)
N(ω2 − f2)1/2

mω
dk dj, [dimensionless],

(5.25)

with m = j π
Lz

, and Lz the vertical domain size [Flatté

et al., 1979].

Wave amplitudes

The polarization relations (5.18)–(5.21) and b̂ = −N2ξ̂

allow to write the amplitudes of all wave property am-

plitudes in terms of the displacement amplitude. This

means that the displacement amplitude for a set of

wave numbers (k, l,m) can be solved for a given spec-

tral energy level. Kinetic wave energy is contained in

motion of water parcels and potential energy in the

displacement of isopycnals,

Ek =
1

2
[û2 + v̂2 + ŵ2] [m2s−2], (5.26)

Ep =
1

2
ξ̂2N2 [m2s−2], (5.27)

where the hatted quantities, (û, v̂, ŵ), are velocity am-

plitudes and ξ̂ the displacement amplitude. A generic

open ocean value for the spectral energy density [m2s−2]

is provided by (5.25) multiplied by N2
0 b

2. Plugging

the polarization relations into (5.26) and (5.27) and
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rewriting using the dispersion relation gives,

ξ̂(k, j) =

√
E(k, j) dk dj N2

0 b
2

ω

(
ω2 − f2

N2 − f2

) 1
2

[m],

(5.28)

for the displacement amplitude in meters.

5.4.4 Ambient shear flow

The ambient shear flow flows in the x-direction, is uni-

form in the y-direction and has a hypertangent profile

in the z-direction (parallel to gravity),

U(z) =
U0

2
[tanh(

2

d
(−z +

Lz
3

)) + 1], (5.29)

with U0 the maximum mean flow speed, d the vertical

scale length, and Lz the vertical domain size. This an-

alytical form has a number of desirable characteristics,

among which are satisfaction of the no-slip boundary

condition, Uz(0) ≈ 0 and Uz(Lz) ≈ 0, and a single,

well defined shear region.

The maximum flow velocity is U0. All waves with

horizontal group velocities smaller than U0 will even-

tually meet a critical layer and either stall or reflect.

These encounters take place mostly in the bottom half

of the domain because the maximum vertical shear is

at Lz/3. Waves in the upper half of the domain are

hardly affected by the mean flow.

The vertical scale parameter d determines the ex-

tent of shear zone and needs to be smaller than ∼
Lz/3 to satisfy the boundary conditions. The pa-

rameter d determines the predominant shear of the

mean flow. In fact, the shear is U0/d in the vicin-

ity of the depth of maximum shear, i.e. Lz/3, as

can be seen from expanding U(z) around this depth,

U(z′) = U0/2− (U0/d)z′ −O(z′2).

The shear is U0/d or less and the stratification is
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constant (N = 5.2 10−3 rad s−1), which means that the

Richardson number is larger than N2d2/U2
0 . To avoid

mean flow shear instabilities we choose Ri> 0.25, or

equivalently d/U0 >
√

0.25/N > 96. We also check the

stability of the mean flow more directly by initializing

the model with the mean flow only, without internal

waves (refer to Section 5.6.1).

This study focusses on the effect of the mean shear

flow on internal waves. In this context we prefer a

steady mean flow and consider effects of rotation un-

desirable. Therefore we envision a non-rotating mean

flow as if it were confined by the walls of a straight

canyon in the x-direction. In a canyon the Coriolis

force would have been balanced by a pressure gradi-

ent, but this cannot be done in 2D experiments and it

is not easily set up in 3D either when using a spectral

model.

Therefore we choose to disable rotation for the back-

ground flow only by disallowing temporal evolution of

k = 0 and m = 0 terms in the Fourier transformed

equations of motion. This means that we also prohibit

changes in the mean flow due to momentum trans-

fer from the wave field, which we again justify by our

aim of studying the effect of the mean flow on internal

waves. Note however that the dynamics of the internal

waves are unaffected because all wave numbers larger

than zero evolve according to the full momentum equa-

tions with rotation.
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5.5 Diagnostics

5.5.1 Energetics

A useful bulk diagnostic is the total energy in the in-

ternal wave field,

E =Ek + Ep, [m2s−2] (5.30)

Ek =
1

2

1

V

∫
(u− U)2 + v2 + w2 dV, (5.31)

Ep =
1

2

1

V

∫
N2ξ2 dV, (5.32)

with V = Lx×Ly ×Lz the domain volume, U = U(z)

the mean flow speed, (u, v, w) the full internal wave

velocity, and ξ the wave displacement. The potential

energy (Ep) is the available potential energy in the in-

ternal wave field due to the displacement of isopycnals.

We derive the displacement from the perturbation den-

sity, ξ = ρ′/ρz, which is almost exact for the virtually

mixing free problems discussed here (refer to Section

5.7). Available potential energy can be calculated for

problems with mixing by introducing the concept of

background potential energy [Winters et al., 1995].

5.5.2 Hyperdissipation

Hyperdissipation is the local irreversible loss of kinetic

energy due to hyperviscosity (refer to Section 5.3.2).

The rate of kinetic energy loss can be derived from

the momentum equation (5.8)–(5.12) by taking the in-

product with velocity, Et = ut ·u. A hyperviscosity of

the form (5.13) gives a dissipation rate [MacKinnon,

2003],

ε =
∑
i

∑
j

νj

[
∂

∂xj

p/2

ui

]2

. (5.33)

The hyperdissipation rate is conveniently calculated

in Fourier space, where taking the spatial derivative
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Figure 5.3: Comparison of hyperdissipation (5.33) and the loss rate of total
energy dE/dt (refer to (5.31) and (5.32)). The simulation is initialized with
a broadband GM-like wave field without a mean flow.

becomes multiplication by wave number. Figure 5.3

compares the dissipation rate calculated directly from

the total energy, ε = dE/dt ≈ ∆E/∆t, and the hyper-

dissipation rate.

5.6 Numerical experiments

5.6.1 Mean flow stability

In this study we look at the transfer of internal wave

energy to dissipative scales in the presence of a mean

shear flow. The mean flow itself is designed to be

stable, in the sense that shear instabilities are suffi-

ciently suppressed by the density stratification so that

the flow is essentially laminar. The design criterion is

Ri = N2/U2
z > 0.25. To test the usefulness of this cri-

terion we simulate the temporal evolution of the mean

flow only, without internal waves.

We use the numerical dissipation rate to diagnose

the stability of the mean flow and we compare three

different mean shear flows. Each model run is ini-

tialized with a hypertangent mean flow profile, as de-

scribed in Section 5.4.4, and numerically integrated

over 10 days. The dissipation rate is averaged along

the horizontal dimension and over time from day 9
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Figure 5.4: Horizontally averaged dissipation profiles for three different
mean flows without internal waves. The maximum flow speed is 0.5 ms−1

for all three cases, but the shear differs, and therefore also the bulk Richard-
son number Ri = N2/U2

z ≈ d2N2/U2
0 . The straight blue line is a reference

showing the GM dissipation level for free waves.

until 10.

Figure 5.4 compares the dissipation profile for flows

with identical maximum flow speeds of U0 = 0.5 ms−1

and different vertical sales. For reference we recall

that the dissipation rate of the generic Garrett–Munk

internal wave field is ε0 = 6.73 × 10−10 m2s−3. The

dissipation rate of the mean flow is orders of magni-

tude smaller than this value, even for the flow with

the largest vertical shear and a Richardson number of

order 1.
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I II

Lx 35000 1700 m Domain size, x direction
Ly 0 0 Domain size, y direction
Lz 4000 4000 m Domain size, z direction
k 2× 2π

Lx
[2,±3]× 2π

Lx
rad m−1 Wave number, x direction

l – – Wave number, y direction
m 8× 2π

Lz
[8,12]× 2π

Lz
rad m−1 Wave number, z direction

N 0.0052 0.0052 rad s−1 Buoyancy frequencya

f 1.3× 10−5 1.3× 10−5 rad s−1 Inertial frequencyb

nx 64 64 Grid points, x direction
ny 1 1 Grid points, y direction
nz 64 64 Grid points, z direction
∆t 10 1 s Integration time step
tend 12.5 12.5 hr Integration time
p 10 10 Hyperviscosity coefficient
Tdiss 100 100 s Hyperviscosity time scale

Table 5.1: Model parameters for single wave (I) and two wave (II) simula-
tions.

a Buoyancy frequency is the canonical GM value of 3 cycles per hour.
b Inertial frequency corresponds to a latitude of 33◦.

5.6.2 Single wave

This simulation provides some basic insight into the

dissipation of a single wave approaching a critical level.

The mean shear flow is expected to compress the verti-

cal length scale until the wave has dissipated its energy

due to numerical viscosity. We assess how the vertical

dissipation profile is affected by the amplitude of the

wave and the shear of the mean flow.

The parameters for the single wave experiment,

which we refer to as ‘simulation I’, are listed in Ta-

ble 5.1. The initial wave packet is confined to the

top of the domain using an exponential envelope func-

tion F (z) = exp[−(z − Lz)2/d2] with fall-off scale d =

Lz/10. Figure 5.5 shows snapshots of the free evo-

lution of the wave packet without a mean flow. The

vertical velocity is shown in the top four panels and

the bottom panels show the vertical velocity spectrum.
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Note that the vertical mode number counts the num-

ber of half wave lengths that fit into the domain and

the horizontal mode number the number of full wave

lengths.

The evolution of the modal spectrum differs for

both modal directions. The energy remains in the

2nd horizontal mode during the 12.5 hr evolution, but

there is energy exchange between the vertical modes.

At t = 0 the energy is spread out over many ver-

tical modes with a maximum around the 13-th ver-

tical mode, although the initial vertical mode is 16.

This can be explained by the spatial localization of

the initial wave. After four hours of free wave propa-

gation we see that vertical mode 16, and neighbouring

modes, indeed contain most energy. The snapshot af-

ter eight hours shows two distinct spectral peaks at

vertical mode 12 and 17 and after 12 hours the bulk

of the energy has moved to vertical mode 14. Energy

transfer between modes can occur when a wave inter-

acts with its own reflection from the top and bottom

of the domain.

Figure 5.6 shows the time evolution of single wave

in the presence of a mean flow, refer to simulation

I in Table 5.1. The wave propagates freely until it

encounters the mean shear flow in the bottom half of

the domain. The top panels of Fig. 5.6 show that the

wave hardly propagates below the critical level, which

is the white line in the figure. The critical level is

the depth where the mean flow speed equals, Uc =

(ωi − f)/k = 0.38 ms−1.

The spectral picture at the bottom of Fig. 5.6 shows

that the energy gradually moves towards higher verti-

cal modes when the wave approaches the critical level.

Waves are numerically damped when the vertical length

scale becomes sufficiently small. This effect is demon-

strated in the right panel of Fig. 5.7, which shows the
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Figure 5.5: Time evolution of a single wave packet without a mean flow.
The wave is initialized with modes [ik, im] = [2, 8], displacement amplitude
ξ = 10m. Top row: four snapshots of the vertical velocity with a variable
colour scale in mms−1. Bottom row: vertical velocity spectrum. The time
interval between each snapshot is 4 hours.
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Figure 5.6: Time evolution of a single wave packet with a mean flow
and a critical layer. The wave is initialized with modes [ik, im] = [2, 8],
with displacement amplitude ξ = 10m and the mean flow parameters are
U0 = 0.8ms−1, and d = 400m. Top row: four snapshots of the vertical ve-
locity with a variable colour scale in mms−1. Bottom row: vertical velocity
spectrum. The time interval between each snapshot is 4 hours. The white
line indicates the critical level for the initial wave (refer to Table 5.1).
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Figure 5.7: Vertical profiles of velocity and dissipation for the single wave
simulation. Left panel: mean shear flow (thick) and wave velocity (thin)
at t=0. Right panel: dissipation spatially averaged in the x-direction and
temporally averaged over 11 hours (thick), and the ‘half maximum’ value
as defined in Section 5.6.2 (dotted). The wave amplitude is 20 m and the
shear parameters are U0 = 0.8 m s−1 d = 600 m.

spatially and temporally averaged dissipation rate for

a simulation similar to the one shown in Fig. 5.7, but

with d = 600m instead of d = 400m. The right panel

of Fig. 5.7 shows how the mean shear increases the

dissipation rate until it reaches a maximum at some

distance above the critical level.

Most wave energy is dissipated in the mean shear

region with maximum dissipation rates at a distance

of a few hundred meters above the critical level. The

magnitude of the maximum depends on the energy of

the initial wave and scales quadratically with the dis-

placement amplitude as one would expect from (5.28).

However, the left panel of figure 5.8 shows the scaling
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Figure 5.8: Exploration of the single wave parameter space. Dissipation
rates are averaged over the entire spatial domain and in time between 5.6
and 12.5 hr. Left: dissipation/energy scaling (E ∝ ξ2), with mean flow
parameters: U0 = 0.8ms−1, and d = 600m. Middle: dissipation versus mean
flow shear, with ξ = 20m, and U0 = 0.8 m s−1. Right: width of dissipation
peak versus mean flow shear, with ξ = 20m, and U0 = 0.8ms−1.

becomes smaller than quadratic for very large ampli-

tudes, which we attribute to non-linearity of the free

wave and loss of energy before it reaches the mean

shear zone.

The fact that the dissipation peak is above the crit-

ical layer can be explained by the finite dissipation

length scale of both real and numerical waves. The

critical level value is obtained from WKB ray trac-

ing theory and predicts the unphysical value of zero

for the wavelength at the critical level. Real waves be-

come unstable at scales of order 1 meter and numerical

waves are dissipated at scales close to the Nyquist wave

length, which is typically 30m for the experiments dis-

cussed here.

The dashed line in the right panel of Fig. 5.8 shows

that the distance from the dissipation maximum to the

critical level scales almost linearly with the shear scal-

ing parameter d and increases for larger values of d.

This behaviour can be explained by the quasi-linearity
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of the hyper-tangent profile in the proximity of U0/2.

Numerical waves dissipate at some finite wave length

at some distance from the critical level, and this dis-

tance scales quasi-linearly with the mean flow inverse-

shear parameter d.

Most energy is dissipated above the critical level,

but some energy makes it past this level (again refer to

right panel of Fig. 5.8) and shows that total stalling,

as predicted by ray tracing theory, is not a reality. The

dissipation peak is surprisingly symmetric around its

maximum. This allows us to define the width of the

dissipation peak. We define the Full Width at Half

Maximum (FWHM) with the ‘half maximum’ given by

(εmax−〈ε(z)〉)/2, and 〈.〉 the vertical average operator.

Figure 5.8 shows the FWHM of the dissipation peak

versus shear parameter d and reveals a quasi-linear

relation.

5.6.3 Two waves

In this simulation we investigate the basic effect of

non-linearity on wave dissipation. We compare the

dissipation of two separately evolving waves with a

simulation initialized with two waves with the same

wave numbers. The wave– and numerical parameters

for this experiment are summarized in column II of

Table 5.1.

We have run two simulations initialized with two

waves localized at the top of the domain. The wave

numbers for one simulation are chosen so that there is

a critical level for each of them. The other simulation

has a critical level for the wave propagating with the

flow and a turning point for the wave going against the

flow. The critical flow velocity and the turning velocity

for the initial waves are given by, Ucrit = (ωi − f)/k

and Uturn = (N − ωi)/k, and fall within the range of

quasi-linear mean flow shear (refer to Section 5.4.4).
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Two critical waves The time evolution of two crit-

ical waves is shown in Fig. 5.9. The top panels show

snapshots of the vertical velocity and the bottom pan-

els show the evolution of the modal spectrum. The

total kinetic energy, Ek, is also shown in the bottom

panels as a percentage of the energy at t = 0 and shows

that more than 80% of the energy is dissipated in the

course of the 12 hour experiment.

Based on the theory presented in Section 5.2 we

expect spectral transfer of energy to higher vertical

modes when the waves approach the critical layers. In-

deed, the critical wave with [ik1, im1] = [2, 16] quickly

transfers energy to higher vertical modes around im =

22. This wave has dissipated almost all its energy after

8 hours. The modal evolution of the other wave, with

[ik2, im2] = [3, 24], looks different. For example, the

energy is still concentrated in the initial vertical mode

after 4 hours of free evolution. It looks like the wave

has not reached the mean flow by this time, which

can be explained by the lower vertical group veloc-

ity of waves with higher vertical wave numbers (refer

to (5.4)). However, after 8 hours there is hardly any

energy left in the ik = 3 horizontal mode, which we

ascribe to the effect of critical layer interaction.

Energy transfer among horizontal modes is initially

to the second harmonics, 2ik1 and 2ik2, and in partic-

ular to the sum of the initial wave numbers, ik1 + ik2.

Subsequently, energy is spread out between the lowest

six horizontal modes, with higher levels in mode 4 and

5.

One critical and one turning wave The wave

packet with a critical wave, [ik1, im1] = [2, 16], and

a turning wave, [ik2, im2] = [−3, 24], is shown in Fig.

5.10. In the top four panels we observe that wave en-

ergy initially propagates downward in the first half of
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Figure 5.9: Time evolution of wave packet with two critical waves,
[ik1, im1] = [2, 16] and [ik2, im2] = [3, 24]. Top row: four snapshots of
the vertical velocity with a variable colour scale in mms−1. Bottom row:
vertical velocity spectrum. The white lines indicate the critical level for
each of the waves (lower level corresponds to wave 1). All waves have equal
displacement amplitudes, ξ = 40 m, and the mean flow parameters are,
U0 = 0.7 ms−1, and d = 600 m.
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the simulation and upward in the second half. This

is consistent with the expected reflection of the turn-

ing wave at the turning point. The reflection of wave

energy is also reflected in the slower decline rate of

total kinetic energy compared to the simulation with

two critical waves. More than 60% of the initial ki-

netic energy is still in the system at the end of the

simulation.

The spectral energy distribution also develops dif-

ferently. Energy quickly concentrates around vertical

mode 22 for both waves. This agrees with the pre-

vious experiment where we also found that the en-

ergy in the wave with initial modes [2, 16] transfers

to [2,∼ 22] after 4h. The turning wave is initialized

with a higher vertical mode number, im = 24, and has

not reached the mean flow after 4h. After 8h we find

that the critical wave (ik = 2) has dissipated almost

completely and that some of the energy in the turning

wave (ik = −3) has been transferred to slightly lower

vertical modes, as expected based on (5.5). More re-

markably, we also observe a significant transfer of en-

ergy to waves with low vertical modes and horizontal

mode number ik = 4.

Nonlinear effects Figure 5.11 compares dissipation

rate for two separately evolving waves and two waves

evolving together. One of the waves is critical and the

other is a turning wave. The dissipation rate is aver-

aged along the horizontal spatial dimension and plot-

ted against the vertical coordinate and time. The ver-

tical dissipation profile for two initial waves 〈ε(k1 + k2)〉 (z)
has a larger peak in the mean shear zone compared to

the summed dissipation rates of the two single wave

simulations 〈ε(k1) + ε(k2)〉 (z). In the mean shear zone

we observe that dissipation rates are more than 1.5

times larger for the two waves case compared the lin-
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Figure 5.10: Time evolution of wave packet with one critical and one turning
wave, [ik1, im1] = [2, 16] and [ik2, im2] = [−3, 24]. Top row: four snapshots
of the vertical velocity with a variable colour scale in mms−1. Bottom row:
vertical velocity spectrum. The white line indicates the critical level for each
of the waves and the black line indicates the turning level. All waves have
equal displacement amplitudes, ξ = 40 m, and the mean flow parameters
are, U0 = 0.7 ms−1, and d = 600 m.
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Figure 5.11: Horizontally averaged dissipation profile versus time for two
waves: one critical and one turning. Top left: critical wave. Top right:
turning wave. Bottom left: critical and turning wave together. Bottom
right: dissipation anomaly, i.e. the difference between two waves together
and the sum of single waves, δε = ε(k1 + k2)− (ε(k1) + ε(k2)) (refer to Table
5.1 for the used wave numbers). The white line indicates the critical level
and the black line the turning point.

ear superposition of the single wave experiments.

Figure 5.12 is comparable to Fig. 5.11, but shows

dissipation rate for two critical waves. This figure

shows that the dissipation anomaly in the mean shear

zone is less pronounced and of opposite sign, compared

to the previous case with one critical and one turning

wave. This suggests that the net effect of nonlinear

interactions among two critical waves is to transfer

energy into other, non-critical waves. This means that

the waves have lost some energy when they reach the

critical layer and dissipate. The individually propagat-

ing waves have no other waves to interact with, and
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Figure 5.12: Horizontally averaged dissipation profile versus time for two
critical waves. Bottom left: two critical waves. Bottom right: dissipation
anomaly, δε = ε(k1 + k2) − (ε(k1) + ε(k2)), refer to Table 5.1 for the used
wave numbers. The white lines indicate the critical levels.

therefore we expect them to dissipate close to all their

initial energy when they reach the critical level.

This experiment demonstrates a significantly larger

energy transfer rate to smaller scales by internal wave

– mean flow interactions when we allow for wave–wave

interactions. The nonlinear coupling between waves is

directly evaluated in our model, based on (5.8)–(5.12),

without any further assumptions. We will use this

advantage of direct numerical simulation to investigate

the dynamics of a broad band internal wave field in a

mean shear flow.

5.6.4 The broadband wave field

The two-dimensional initial wave field is a superposi-

tion of left– and right propagating waves in the x− z-
plane. Initially, energy and phase propagate horizon-

tally, because of the rigid boundaries at the top and

bottom of the domain (refer to Section 5.4.2). The

energy in each wave is derived from the GM76 spec-

trum (refer to Section 5.4.3) and distributed normally

among right and left propagating waves (with µ = 0.5

and σ = 0.2 and at least 1% of the total energy going
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Figure 5.13: Modal spectrum. Left: initial state. Right: spectrum after 1
day evolution.

in either direction). The initial wavefield contains all

combinations of the 30 lowest modes (except zero) in

both spatial directions, including negative horizontal

modes.

Figure 5.13 shows the modal spectrum of the initial

wavefield. The spectrum has the general GM energy

distribution, with most energy in the lowest horizon-

tal modes, but is not as smooth. We interpret the

speckles in the spectra as a result of the interference

of left- and right propagating modes. The offset from

the GM spectrum differs for each wave number, be-

cause all waves have a different energy and different

phase. The right panel of Fig. 5.13 shows that energy

quickly spreads to higher wave numbers up to the point

where the energy is dissipated by hyperviscosity (refer

to Section 5.5.2).

The left panel of Figure 5.14 shows the filling of

frequency space. The large horizontal extent of the do-

main accommodates near-inertial waves with frequen-

cies close to f . Pure gravity waves exist in the limit

k →∞ and are limited by the horizontal Nyquist wave

number. Each frequency represents an unique aspect

ratio k
m , which explains the existence of multiple pairs



CHAPTER 5. WAVE MEAN FLOW INTERACTION 149

Figure 5.14: Broadband initial state with all combinations of the 30 lowest
horizontal and vertical modes. Left: frequency spectrum. Right: frequencies
per horizontal mode.

of modes (k,m) per frequency.

Figure 5.15 compares the velocity and shear spec-

trum with the GM model. Integrating the GM model

(5.22) over all frequencies between f and N and us-

ing the polarization relations to write V 2 = u2 + v2

in terms of the vertical mode number j gives veloc-

ity spectrum S[V ](j) = 3E0b
3N2

0 (2j∗π)−1(1+j/j∗)−2.

The buoyancy frequency normalized shear can be de-

rived from the velocity spectrum by vertical differ-

entiation, S[Vz/N
2](j) = N−2m2S[V ](j), with m =

jπL−1
z .

5.6.5 Dissipation versus mean flow shear

In a series of numerical experiments we explore the re-

lation between internal wave dissipation and the shear

of the mean flow. All the experiments are initialized

with the same internal wave field with an energy den-

sity of 0.89EGM . The mean flow has the same ampli-

tude, U0 = 0.5 m/s, but a different shear length scale,

d ∈ [200, 400, 600, 800, 1000] m (refer to Section 5.4.4).

Figure 5.16 shows the temporal evolution of the

dissipation rate for the simulation with lowest shear

(d = 1000m) and Fig. 5.17 shows the result of the
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Figure 5.15: Velocity and shear spectrum as calculated from the initial
velocity field and after 1 and 10 days of free evolution (no mean flow).
The dashed red line indicates the GM76 spectral level.
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Figure 5.16: Weakly sheared mean flow with d = 1000m and a GM-like
wavefield. Top left: initial wave field. Top right: mean flow. Middle:
horizontally averaged dissipation rate of waves plus mean flow normalized
by dissipation rate of waves only. Bottom: dissipation rate averaged in
horizontal direction and between z = 1000m and z = 2000m for waves only
and waves plus mean flow (labeled as ‘mean flow’).

simulation with highest shear (d = 200m). The middle

panel displays the dissipation rate normalized by the

dissipation of free waves without a mean flow, and

hence shows how much the dissipation is amplified by

mean flow interaction. The maximum amplification

of the background dissipation rate due to wave–mean

flow interaction is up to 55 times in the low shear case

and more than factor 400 in the high shear case.

Interestingly, the bottom panel of Fig. 5.16 and

5.17 shows that the dissipation rate in the shear zone

(defined as the vertical range 1000 < z ≤ 2000m) is

more or less the same for both shears after an initial

ramp up time. Figure 5.18 shows that this is also the
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Figure 5.17: Strongly sheared mean flow d = 200m and a GM-like wavefield.
Top left: initial wave field. Top right: mean flow. Middle: horizontally
averaged dissipation rate of waves plus mean flow normalized by dissipation
rate of waves only. Bottom: dissipation rate averaged in horizontal direction
and between z = 1000m and z = 2000m for waves only and waves plus mean
flow (labeled as ‘mean flow’).
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Figure 5.18: Dissipation versus mean flow shear, U0/d, with U0 = 0.5 ms−1.
The dissipation rate is spatially averaged along the horizontal dimension and
between z = 1000 and z = 2000m in the vertical and temporally between
day 9 and 10.

case for other values of the shear parameter d. This

suggests that the energy transfer rate to smaller scales

is not sensitive to the exact location of the critical

layers nor to the spacing between these layers.

The ramp up time however is different for different

shears. The low shear case gives a long ramp up time

of almost two days and the high shear case ramps up

quickly in less than half a day.

The dissipation in the shear zone reaches a rate of

about 10−10 m2s−3 after the ramp up and stays almost

exactly at this level for the duration of the experiment.

This suggests that nonlinear wave–wave and wave–

mean flow interactions supply ‘critical waves’ (here

defined as waves for which a critical layer exists) at
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a more or less constant rate during the 10 day evolu-

tion.

Critical waves however are not merely supplied by

nonlinear interactions. Figure 5.22 shows that a frac-

tion of the initial waves is critical and thus directly

available for critical layer interaction.

We have constructed a simple model to predict the

dissipation rate in the shear zone due to initial crit-

ical waves only. We define a single critical layer at

z = Lz/3 and assume that all waves with a horizontal

phase speed smaller than U0 will eventually dissipate

when encountering this level. We assume a GM-like

wave field and estimate the amount of energy reaching

this level using the vertical group velocity,

Cgz ≡ ∂ω/∂m =
m

(f2m2 +N2k2)
1
2

[
f2

(k2 +m2)
1
2

− (f2m2 +N2k2)

(k2 +m2)
3
2

]
.

(5.34)

At time interval [t, t + ∆t] we expect waves from dis-

tance range Cgz × [t, t + ∆t] to arrive at the critical

layer. The permissible distance range is limited by the

dimensions of the computational domain and multi-

plied by factor 2 when smaller than Lz/3 to account for

waves travelling towards the critical layer from above

and below.

Assuming uniform spatial distribution of the initial

waves we estimate the energy of wave (k,m) arriving

at the critical layer at time t as,

E(t, k,m) =
Cgz(k,m)∆t

Lz
EGM (k,m). (5.35)

The energy arriving at the layer is dissipated when

the vertical wave number gets close to the Nyquist

wave number, mnyq = nzπ/Lz, because the numerical

viscosity damps these motions out (refer to Section

5.3.2).

The rate of change of the vertical wave number
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in the presence of a mean flow is proportional to the

shear, dm/dt = −kUz, according to WKB ray-tracing

theory [Kunze, 2000]. For our mean flow profile we

approximate dm/dt = kU0/d, where the minus sign

has dropped out because k > 0 and U0 > 0 and k and

U0 have equal signs for a critical layer (refer to Section

5.2) and Uz < 0 for z positive upward. The additional

time for a wave (k,m) to reach the dissipation scale is,

t′ =
mnyq −m
dm/dt

. (5.36)

Adding t + t′ gives the time when E(t, k,m) is dissi-

pated and we define the dissipation rate as E(t, k,m)/(t+

t′). Binning the dissipation rates for all waves in time

bins gives the dissipation time series in Fig. 5.19.

From Fig. 5.19 we learn that different ramp up

times can be explained by the dependence of the trans-

fer rate to small scales on the magnitude of the shear.

We also observe that the dissipation rate decreases af-

ter reaching its maximum value, in contrast to the

numerical calculations (refer to Fig. 5.16, Fig. 5.17 or

Fig. 5.19). The results from our simple model seems to

indicate that the energy in the critical waves present

at t = 0 is quickly depleted and insufficient to explain

the magnitude and steadiness of the dissipation rate

in the numerical experiments. We therefore conclude

that the bulk of the energy at critical wavelengths is

supplied through nonlinear interactions.

5.6.6 Dissipation versus mean flow strength

We explore the dependence of the internal wave dis-

sipation on the strength of the mean flow by varying

the mean flow amplitude U0 and keeping the shear

constant at a value of U0/d = 0.001 s−1. Figure 5.20

shows the temporal evolution of the mean dissipation

in the range 1000m< z < 2000m for three values for
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Figure 5.19: Dissipation rate based on a simple model (solid lines) compared
to full simulations (dotted lines). The model treats all wave modes as non-
interacting except at the critical layer where they transform to smaller scales
at a rate, dm/dt = kU0/d, until they dissipate close to the given Nyquist
wave number.
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U0: 0.05, 0.25 and 0.5 ms−1. Note that the evolu-

tion of the dissipation rate looks remarkably similar

for U0 = 0.25 ms−1 and U0 = 0.5 ms−1.

Figure 5.21 shows the average dissipation rate in

the shear zone. The spatial averaging range is be-

tween z = 1000 m and z = 2000 m vertically and the

horizontal domain size. We allow some time for inter-

actions between the internal waves and the mean flow

to develop by choosing the temporal averaging win-

dow between day 9 and 10. For U0 > 0.2 ms−1 we

see that the dissipation rate is more or less constant,

whereas U0 < 0.2 ms−1 shows a collapse towards free

wave dissipation rates.

A weak mean flow provides a critical level for waves

with high wave numbers, as is shown in Fig. 5.22.

These small scale, high wave number waves contain rel-

atively little energy because energy in the initial GM

wave field is concentrated in the lower modes. More-

over, the bit of energy that is available at high wave

numbers is also viscously damped, as hyperdissipation

becomes more important at high wave numbers. We

explain the collapse of the dissipation rate at low mean

flow strength by the combination of these two effects.

The dissipation plateau for large amplitude mean

flows, with U0 > 0.2 ms−1, seems to imply that the

replenishment rate of dissipated waves is more or less

constant when sufficiently many, lower wave number

waves are critical. Whether this presumption can be

backed by internal wave theory is subject of ongoing

research.

5.6.7 Sensitivity to the number of initial

modes

The majority of the energy in the Garrett-Munk field

resides in the lowest modes. For example, only the low-

est three vertical modes account for 52% of the total
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Figure 5.20: Dissipation versus mean flow strength. Top: U0 = 0.05 ms−1.
Middle: U0 = 0.25 ms−1. Bottom: U0 = 0.5 ms−1. The shear is the same
and has a value of 0.001 s−1.
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Figure 5.21: Dissipation versus mean flow strength with constant vertical
shear, U0/d = 0.001 s−1. The dissipation rate is averaged along the hori-
zontal direction and vertically between z = 1000 m and z = 2000 m and
temporally between day 9 and 10.

energy3. Although the bulk of the energy is contained

in the lowest modes we chose to initialize our model

with an additional number of higher modes. This puts

very little extra energy into the system but does pro-

vide more resonant wave triads for nonlinear interac-

tion and energy transfer towards dissipative scales.

Many experiments discussed in this chapter are ini-

tialized with all combinations of the lowest 30 vertical

and horizontal modes. Figure 5.23 compares the time

evolution of the dissipation rate for simulations with

202, 302, and 402 initial modes. The figure shows that

quadrupling the number of modes, from 202 to 402,

increases the dissipation rate by 700%, although the

total initial energy increases only 6%. This supports

the notion that the inclusion of higher modes facili-

tates the transfer of energy to small scales.

3The total energy is defined as the energy in the lowest 250 modes.
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Figure 5.22: Lowest critical wave numbers for a given mean flow amplitude.
The grey shaded area indicates the wave numbers for which the numerical
viscosity is smaller than the molecular viscosity of water.
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Figure 5.23: Time evolution of the spatially averaged dissipation rate for a
different number of initial modes. There is no mean flow in this simulation.
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Whether 302 initial modes is sufficient appears dis-

putable. Figure 5.3 shows that the dissipation rate

reaches its maximum after about 60 days when ini-

tialized with 302 modes. The maximum rate is about

2×10−10 m2s−3, which is about 30% of the GM steady

state dissipation rate. The dissipation rate after 10

days is only 12% of the GM value.

The simulation with 402 initial modes reaches a

dissipation level of 1× 10−10 m2s−3 after only one day

and increases only slightly over the next 9 days, which

could be regarded as a more adequate representation

of the dissipation of a steady and thus forced GM wave

field.

5.6.8 Sensitivity to the choice of viscosity

parameters

In this section we assess the effect of the choice of hy-

perviscosity parameters on the dissipation rate. Fig-

ure 5.24 shows the time evolution of the spatially av-

eraged dissipation rate for different hyperviscosity co-

efficients. The simulation is initialized with a GM-like

broad band wave field with 30 horizontal and 30 ver-

tical modes and a weakly sheared mean flow with d =

1000m (refer to Section 5.4.4). The figure shows three

simulations with hyperviscosity coefficients, [p, Tdiss] =

[8, 10000], [10, 1000] and [12, 100].

The simulations show that the dissipation rate is

higher for lower order hyperviscosities, that is smaller

p values. The dissipation time scale, Tdiss, is chosen

such that the hyperviscosity crosses the Newtonian vis-

cosity at approximately the same wave number (refer

Fig. 5.2). The viscous wave damping becomes signifi-

cant beyond this wave number, and this happens espe-

cially ‘quickly’ for higher p values. Thus, the p value

effectively determines how many higher wave number

are permitted in the system.
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Figure 5.24: Spatially averaged dissipation rate for different hyperviscosity
coefficients. Coefficients are chosen such that the wave number at which
hyperviscosity surpasses Newtonian viscosity remains more or less the same.
The coefficients used for the broadband simulations are p = 10 and Tdiss =
1000.
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This means that many of the high wave numbers

that partake in nonlinear interactions in the simulation

with p = 8 are non-existent in the simulation with

p = 12, because they have been damped out by the

hyperviscosity. Apparently, there is a higher net flux

of energy towards dissipative wave numbers if waves

with higher wave numbers are available for interaction

with the rest of the wave field.

5.7 Discussion

In this chapter we looked at the dissipation of a broad

band, Garret-Munk-like wave field in the presence of

a sheared mean flow. This problem was brought to

our attention by the observation of a strong jet flow

in the Atlantic II Fracture Zone, in the Southwest In-

dian Ridge [MacKinnon et al., 2008]. The discovery of

the jet led us to hypothesize that internal wave mean

flow interaction might be an alternative or comple-

menting mechanism to explain the generally observed

high dissipation rates in submarine canyons. Canyon

mixing has so far been associated mostly with ‘hy-

draulic jumps’, downstream of sills [Thurnherr et al.,

2005; Thurnherr, 2006; Thorpe, 2007].

Many important features of the upper atmosphere

are explained by internal wave mean flow interaction

[Lindzen, 1973] and this likely holds true for the deep

ocean as well. For example, [Muench and Kunze, 1999,

2000] show that the momentum flux divergence due

to internal wave critical layer interactions suffices to

maintain the equatorial deep jets. Internal waves are

also likely to cause momentum transfer and instabili-

ties in the vicinity of other persistent ocean currents,

such as the Antarctic Circumpolar Current, the Gulf-

stream and other western boundary currents, such as

the Agulhas– and the Kuroshio Current. The interac-
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tion between internal waves and deep flows is poten-

tially relevant to the deep MOC.

Interactions between the internal wave field and a

mean flow may be relevant to the Indian Ocean MOC

because it could cause mixing at places where it is

most needed. For example, the bulk of the inflow of

deep and bottom water into the Indian Ocean across

32◦S may be concentrated in jet-like flows through

the SWIR [MacKinnon et al., 2008] and deep western

boundary currents [Beal and Bryden, 1997]. Strong

mixing at the interface between these flows and the

lighter overlaying water masses appears advantageously

localized to transform the deep limb of the Indian

Ocean MOC. However, whether this leads to signifi-

cant mixing of deep water masses is not obvious, be-

cause of the limited contact area between the deep

water masses and the critical layers and also because

of the short transient times of deep water masses in

strong flows.

Our numerical results show an interesting relation

between wave dissipation and the strength of the mean

flow. As expected, we find higher dissipation rates

when we introduce a mean flow in the system. More

surprisingly, we also find that the dissipation rate reaches

a plateau value for mean flow amplitudes larger than

0.2 ms−1. At this point it is unclear whether this

threshold value is related to a fundamental property

of the internal wave field, such as the spectral replen-

ishment rate, or a numerical artefact. This issue is

subject of ongoing research.

Motions in the oceanic internal wave field span

length scales from the size of the basin to centimetres,

which makes it impossible to capture the full range in

a numerical model. We focus on ‘mid-range’ scales,

which means that largest, near-inertial motions, and

the smaller, sub-grid size, motions are not represented
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in the model. Therefore we rely on the assumption

that there is a negligible upscale energy transfer at

scales close to the numerical grid size or smaller.

In fact, we use a relatively coarse grid compared

to the displacement amplitude of the internal waves,

similar to the numerical setup used by [Winters and

D’Asaro, 1997]. This means that the dynamics of

wave-breaking are not resolved in our model, but that

does not mean that the dissipation rates calculated by

the model are unrealistic. Using essentially the same

model in a 3D setup, [Winters and D’Asaro, 1997] find

that a simulation initialized with a GM-like internal

wave field produces a GM-like dissipation rate. Based

on their result we believe that the results from our ide-

alized model are in principle comparable to the real

ocean when appropriately initialized.

Details of wave-instability near a critical level have

been studied using similar numerical methods for a

single wave packet in 2D [Winters and D’Asaro, 1989]

and in 3D [Winters and D’Asaro, 1994]. These stud-

ies focus on the development of shear– and convective

instabilities and find that convective instabilities need

the third dimension and some random noise to develop

vortical motions. It is shown that vortical motions

are important in the onset to turbulence, but we do

not expect that the two-dimensionality of our simula-

tions affects the dynamics of the scales resolved in our

model.

Plans for future research include: (i) more detailed

analysis of the spectral transfer of energy in the exper-

iments with a few waves only; (ii) further exploration

of how the dissipation rate depends on the initial wave

field; (iii) exploration of the relation between dissipa-

tion and the energy of the internal wave field, both in

2D and 3D; (iv) and, as mentioned above, a further

investigation of the relation between dissipation and
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mean flow strength.

5.8 Summary and conclusion

In this chapter we used a spectral numerical model

to study the interaction between internal waves and a

sheared mean flow. We did a number of numerical ex-

periments with increasing complexity, from one wave

and one critical layer to many waves with Garrett-

Munk wave amplitudes and various mean flow settings.

All simulations are unforced and initialized with a two-

dimensional flow field. The model equations however

are three-dimensional and fully nonlinear.

In all simulations we observed increased wave dissi-

pation in the presence of a mean flow, as compared to a

control run with internal waves only. This is consistent

with theory. More interestingly, we find that the dissi-

pation of kinetic energy in the system hardly depends

on the shear of the mean flow. The local intensity of

the dissipation however does depend on shear and is

higher for stronger shear. This is likely to be relevant

in the real ocean where wave dissipation is associated

with wave breaking and turbulent mixing.

We also found that the strength of the mean flow

only matters below a threshold value of 0.2 ms−1.

Larger mean flow amplitudes do not affect the mean

dissipation level as long as the mean flow itself remains

stable. The question whether this result is fundamen-

tal to internal waves or a numerical artefact is subject

of ongoing research.



Chapter 6

Conclusion

The main result of this dissertation is that turbulent

kinetic energy (TKE) production by internal waves

is not enough to sustain the deep meridional over-

turning circulation (MOC) in the subtropical Indian

Ocean. This result challenges the view expressed by

[Wunsch and Ferrari, 2004] that “Much, if not all, of

the mixing energy is bound up in the internal wave

field,[...]” (p.28). It looks like internal wave breaking

has been over-emphasized as a source of TKE in the

deep ocean, which implies that other viable processes,

such as drag on the general circulation in passageways,

deserve more attention.

The overturning circulation is a bulk carrier of ki-

netic energy to the deep ocean, but it is unclear how

much of this energy is converted to TKE. Hydraulic

jumps at sill overflows in narrow passageways provide

a mechanism to draw energy from the general circu-

lation and produce turbulence. This energy pathway

to TKE production has been explored in the Mid At-

lantic Ridge [Thurnherr et al., 2005; St Laurent and

Thurnherr, 2007] and may explain the observed ele-

vated mixing rates in Indian Ocean fracture zones and

passages [Barton and Hill, 1989; Johnson et al., 1998;

McCarthy et al., 1997].
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The deep northward limb of the Indian Ocean over-

turning may be sustained by mixing in the numer-

ous fracture zones, but this seems less likely for the

shallower, southward return flow. For example, the

27.18 kg m−3 density surface, which is the typical clos-

ing density for most overturning solutions, intersects

only with the Owen Fracture Zone and the Mascarene

Plateau. However, the [McDonagh et al., 2008] solu-

tion is based on newer observations and gives a sig-

nificantly deeper overturning cell that closes at about

27.75 kg m−3. A quick analysis shows that this density

surface intersects with almost all major topographic

formations in the Indian Ocean. In future research we

wish to address the question whether mixing in pas-

sages and canyons can close any of the overturning

energy budgets considered in this study.

Another source of TKE explored in this disserta-

tion is the dissipation of a broad band internal wave

field due to critical layer interactions in a sheared mean

flow. Enhanced internal wave dissipation due to mean

flow interaction may not be captured adequately by

the fine scale shear/strain parameterization of turbu-

lent dissipation. Elevated spectral levels of shear and

strain have been observed in the vicinity of mean flows,

for example close to equatorial jets in the Indian Ocean

by [Dengler and Quadfasel, 2002], but the accuracy

of the inferred dissipation rates in unknown in this

regime. It would be interesting to assess the perfor-

mance of the fine scale parameterization in a sheared

mean flow.



Appendices

170



Appendix A

Density resolution

advection–diffusion

model

This derivation shows that the choice of density levels

in the advection–diffusion model does not matter for

the turbulent mass transport at a given density level.

F at z1, one layer Let’s start with the single den-

sity layer in Fig. A.1a, with a hard bottom at z = 0,

a density interface at z = z1 with density ρ1 and ad-

vective mass transport
∫ z1

0 ρT dz through the left hand

side, where T =
∫
u(y, z) dy is the transport per unit

Figure A.1: Vertical cross-section of a box-volume with hard walls on three
sides and a hard bottom. Advective transport is allowed through the open
left-hand-side. Note that T is transport per unit depth.
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depth [m2s−1]. Assuming a balance between advec-

tion and diffusion we can solve for the turbulent mass

transport at z1,

F1 =

∫ z1

0
ρT dz − ρ1

∫ z1

0
T dz. (A.1)

F at z0, one layer Suppose we introduce a new

layer at z = z0, with 0 < z0 < z1, see Fig. A.1b. The

turbulent mass transport at z0 is,

F0 =

∫ z0

0
ρT dz − ρ0

∫ z0

0
T dz. (A.2)

F at z1, two layers Let’s now calculate the turbu-

lent mass transport at z1 based on the mass transport

into the layer between z0 and z1. Collecting all the

mass flux terms in Fig. A.1c we get,

F1 = F0 +

∫ z1

z0

ρT dz + ρ0

∫ z0

0
T dz − ρ1

∫ z1

0
T dz.

(A.3)

Substitution of (A.2) in (A.3) gives,

F1 =

∫ z0

0
ρT dz −

���
���

ρ0

∫ z0

0
T dz+∫ z1

z0

ρT dz +
���

���
ρ0

∫ z0

0
T dz − ρ1

∫ z1

0
T dz =∫ z1

0
ρT dz − ρ1

∫ z1

0
T dz, (A.4)

and we get the same expression as in the one layer

case, refer to (A.1).



Appendix B

Bottom roughness

We define bottom-roughness as the square root of the

mean square distance between a smooth polynomial

surface z̃(x, y) and the Smith and Sandwell bathymetry

zSS Smith and Sandwell [1997],

r(x, y) =

√
(zSS − z̃)2, (B.1)

where the overline denotes spatial averaging.

The 2D polynomial z̃(x, y) = c1x + c2x
2 + c3xy +

c4y + c5y
2 + c6 (same as in Morris et al. [2001]) is fit-

ted to one thirtieth degree bathymetry data in 0.5×0.5

degree, non-overlapping patches. For each patch A we

find the polynomial coefficients by solving, Mc = zSS ,

where the matrix M contains the polynomial terms

evaluated at the points (x, y) ∈ A, and c = (c1, c2, . . . , c6)

is a vector with the unknown polynomial coefficients.

In our particular case we deal with an overdetermined

set of equations (240 equations, 6 unknowns). We can

find a least-squares solution to this problem by solving

the normal equations,

(MTM)c = MT zSS , (B.2)

where MT is the transpose of M , and (MTM) is in-

vertible (in principle if M is full rank). The unique
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solution for the coefficients c gives a least-square fit of

z̃ to zSS .

The parabolic polynomial fits well to features of the

patch size, that is to length scales of about 50km. The

roughness parameter r is therefore a measure for the

abundance of smaller features. The lower limit of the

topographic length scale is set by the resolution of the

Smith and Sandwell bathymetry, which is 2π × depth
for the bulk of the bathymetry that is obtained from

satellite gravity anomaly measurements Morris et al.

[2001]. So we expect r(x, y) to reflect roughness at

15-50km length scales.



Appendix C

Bootstrap

resampling

The bootstrap method is a non-parametric method to

estimate the standard deviation of a statistic. The

method is based on a large number of random draws

with replacement from the data set, where ‘replace-

ment’ means that the same sample may be drawn mul-

tiple times. How bootstrap resampling can be used to

assess the robustness of a statistic is best illustrated

with an example. The bootstrap recipe to estimate

the standard deviation of for example the mean µ of

dataset X = [x1, x2, . . . , xN ] is,

1. randomly sample N elements x̂1, x̂2, . . . , x̂N from

X with replacement,

2. calculate the mean µ̂ of the bootstrap sample X̂,

3. repeat step 1 and 2 B times

4. calculate the standard deviation of µ̂1, µ̂2, . . . , µ̂B.

See for example Martinez and Martinez [2002] for a

more comprehensive discussion about bootstrapping.
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