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Abstract

The present paper deals with the use of simulated experiments to im-

prove the design of an actual mechanical test. The analysis focused on

the identification of the orthotropic properties of composites using the un-

notched Iosipescu test and a full-field optical technique, the grid method.

The experimental test was reproduced numerically by finite element analysis

and the recording of deformed grey level images by a CCD camera was sim-

ulated trying to take into account the most significant parameters that can

play a role during an actual test, e.g. the noise, the failure of the specimen,

the size of the grid printed on the surface, etc. The grid method then was

applied to the generated synthetic images in order to extract the displace-

ment and strain fields and the Virtual Fields Method was finally used to

identify the material properties and a cost function was devised to evaluate

the error in the identification. The developed procedure was used to study

different features of the test such as the aspect ratio and the fibre orientation

of the specimen, the use of smoothing functions in the strain reconstruction

from noisy data, the influence of missing data on the identification. Four

different composite materials were considered and, for each of them, a set of

optimized design variables was found by minimization of the cost function.
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1. Introduction

The characterization of the mechanical properties of materials by exper-

imental tests is one of the important issues in engineering. Depending on

the type of material and the property to determine, many different tests

have been devised during the years, some of which have become standards

in industrial practice. Looking at mechanical properties, such as elastic

modulus, Poisson’s ratio, yield strength, toughness, damage, etc., the ex-

perimental procedure usually consists in submitting a specimen to different

loading conditions and measuring the applied force and specimen deforma-

tion. Examples of this kind of experiments are tensile tests, upsetting tests,

shear tests, punch tests, bulge tests, etc. When the material behaviour is

more complex and several parameters must be identified in the constitutive

equation, as occurs for instance in composites, anisotropic metals or rub-

bers, the characterization becomes more difficult and multiple tests have to

be used.

Recently, the improvement in full-field measurement techniques and digi-

tal camera performances has led to the design of novel test procedures (Avril

et al., 2008a; Grédiac, 2004). The idea is to use a test configuration that

induces heterogeneous stress and strain fields in the specimen so that more

parameters of the material constitutive equations can be activated at the

same time. The full-field measurement technique is employed to measure

the displacement field of the specimen surface. At this point, the measured

2



data are used to identify the material properties by inverse approaches,

e.g. the finite element updating method (Cooreman et al., 2008; Lecompte

et al., 2007; Le Magorou et al., 2002; Meuwissen et al., 1998; Kajberg and

Lindkvist, 2004), the constitutive equation gap method (Latourte et al.,

2008; Geymonat and Pagano, 2003), the equilibrium gap method (Claire

et al., 2004), the reciprocity gap method (Bui et al., 2004) or other tech-

niques (Rossi et al., 2008).

An alternative is the Virtual Fields Method (VFM) which is a well es-

tablished technique to characterize the material properties directly from

full-field measurements (Grédiac et al., 2006). A number of different ap-

plications have already been considered in past studies, e.g. the elastic

stiffness of composites (Grédiac and Vautrin, 1990; Moulart et al., 2006),

damping measurements on vibrating plates (Giraudeau and Pierron, 2005),

elasto-plasticity (Grédiac and Pierron, 2006) etc.

The pattern of the displacement field generated by the experiment and

the optical technique adopted to measure it play an important role in the

final identification of the parameters. The intention of this paper is to

develop a procedure to design an optimized test configuration for a given

class of materials and type of test. This has scarcely been addressed in the

literature (Le Magorou et al., 2002; Pierron et al., 2007; Syed-Muhammad

et al., 2009) and a lot of improvements can still be made in this field.

The best configuration comes from the minimization of a cost function

that represents the average error in the identification as a function of the

design variables. It is not practically feasible to use real experiments in the

optimization process because of the great amount of different configurations

that have to be tested and the difficulty of controlling the experimental

conditions. For this reason the experiments have been simulated using a
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combination of FE models and data post-processing. A great attention is

necessary on reproducing real experiments to avoid the presence of numerical

artifacts that could lead to unexpected results. Similar procedures were

already used, for instance, to assess the error in digital image correlation

measurements with simulated white-light speckle patterns (Bornert et al.,

2009).

In this paper, the study focused on the unnotched Iosipescu test (Pier-

ron and Grédiac, 2000) used to determine the constitutive parameters of

orthotropic materials such as carbon or glass epoxy composites. The four in-

plane stiffness components can be determined from one test using the VFM.

A first attempt to optimize the test configuration of a Iosipescu test was

addressed in a previous paper by Pierron et al. (2007) where the sensitivity

to noise was used as the variable to minimize a cost function. Although an

improvement in the quality of the identification was obtained, some limita-

tions were noticed in such an approach. Mainly, the optimization procedure

did not include the effect of the spatial resolution of the measurement tech-

nique, besides, only one source of error was considered, the uncorrelated

white noise on the strain field.

The present work represents a continuation and an extension of that

study. In order to overcome the mentioned limitations, the intent here is try-

ing to numerically reproduce the whole measurement process as accurately

as possible. Synthetic images were generated to simulate a real acquisition

with a CCD camera and the noise was applied directly to the grey level im-

ages. A full-field technique, the grid method, was used to extract the strain

field from the images and the data were used to identify the parameters with

the VFM. In this way the effect of the spatial resolution is introduced and

the influence of noise is more realistic.
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The developed procedure gives a versatile tool to study and optimize an

experimental setup and several practical aspects can be efficiently evaluated,

for instance the effect of smoothing procedures to derive the strains from the

displacements or the influence of missing data, two very important practical

features. Moreover the same procedure could be easily extended to take into

account other important aspects like the existence of optical distortions or

the pixel fill factor.

To the best knowledge of the authors, this is the first time that the whole

measurement and identification chain is simulated and used to optimize a

test configuration.

2. Description of the techniques used in the simulated experi-

ments

The identification process is based on two specific techniques, the grid

method, used to measure a two-dimensional displacement field on a loaded

specimen, and the Virtual Fields Method, used to identify the material prop-

erties from full-field measurements. An in-depth treatment of the subject

can be found in the cited references, nevertheless a brief description of the

methods is given below to provide a background for the reader and produce

a better understanding of the following sections.

2.1. The grid method

The grid method is a full-field optical technique that allows to measure

the displacement field on a specimen surface with a high resolution and

therefore it is particularly suitable for the small displacements obtained in

the elastic range (Avril et al., 2004a,c; Surrel, 1994).
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A grid pattern is printed onto the surface of the specimen using appro-

priate techniques (Piro and Grédiac, 2004) and a digital image of the surface

is achieved using a CCD camera. The intensity of the digitized light at a

given pixel M0, that corresponds to the material point determined by the

position vector
−→
R (x, y) in the reference cartesian frame, can be expressed

by:

I
(−→
R
)
= I0

{
1 + γfrng

[
2π

−→
F ·

−→
R
]}

(1)

where

• I0 is the local intensity bias,

• γ is the contrast,

• frng is a 2π-periodic continuous function,

• 2π
−→
F ·

−→
R is the phase of function frng,

•
−→
F is the spatial frequency vector. It is orthogonal to the grid lines

and its amplitude is the spatial frequency of the grid. If the grid lines

are vertical (parallel to the y-axis), the spatial frequency vector writes
−→
F (f0, 0). If the grid lines are horizontal, the spatial frequency vector

writes
−→
F (0, f0).

When a load is applied, the material and consequently the grid are de-

formed. The phase of the function frng at pixel M0 varies of −2π
−→
F · −→u (

−→
R )

from the undeformed to the deformed state, where −→u (
−→
R ) is the displace-

ment vector. The ux (x, y) and uy (x, y) displacement components relative

to the unloaded reference condition are calculated from the respective phase
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differences ∆ϕx (for vertical lines) and ∆ϕy (for horizontal lines) introduced

by the deformation:

ux (x, y) = − p

2π
∆ϕx (x, y) (2)

uy (x, y) = − p

2π
∆ϕy (x, y) (3)

with p equal to the pitch size of the grid. It has to be pointed out that the

grid method and the computation of the displacement using Eq. 2 and 3 is

valid only under the hypothesis of small displacement. The strain field is

obtained consequently by a differentiation of the displacement field:

εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
; i, j ∈ [1− 3] (4)

Routines to extract the phase fields by using the spatial phase shifting

method, i. e. the Windowed Discrete Fourier Transform (WDTF) algo-

rithm with a triangular window, have been already implemented in Matlab

and can be directly applied to the digital images (Surrel, 1996, 1997). Con-

sidering the first harmonic of function frng, Eq. 1 has three unknowns, so

a minimum sampling of 3 pixels per period is necessary. The practical ex-

perience demonstrated that a good compromise is to have the period p of

the grid sampled by about five pixels. Increasing the number of pixels per

period will reduce the spatial resolution while going under five pixels will

start to deteriorate the phase detection.

Another practical issue is the minimum size of the grid which is possible

to print on the specimen. Although microgrids have been successfully used

for measurements at the microscale (Moulart et al., 2007, 2009), in applica-

tions at the macroscale level the minimum grid pitch is around 100 µm (Piro
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and Grédiac, 2004), which is the value adopted here. Most of the full-field

optical techniques have similar problems, for example, using digital image

correlation on white light speckles the ultimate spatial resolution is equal

to the size of the correlation subset (Bornert et al., 2009), however, prac-

tically, the size of the correlation subset is limited by the minimum size of

the speckles painted onto the specimen surface.

2.2. The virtual fields method (VFM)

The VFM is based on the principle of virtual work that, for a solid

of any shape of volume V and boundary surface ∂V , in the case of small

perturbations and absence of body forces, can be written as:

∫
V
σ : ε∗dV =

∫
∂V

−→
F ·

−→
u∗dS (5)

where σ is the stress tensor,
−→
F the surface forces acting at the boundary,

−→
u∗ a kinematically admissible virtual field and ε∗ the corresponding virtual

strain field. In the case of an in-plane test, if t is the constant thickness

of the volume V and S the planar surface, the problem reduces to a 2-D

situation and Eq. 5 becomes:

t

∫
S
σ : ε∗dS = t

∫
∂S

−→
F ·

−→
u∗dl (6)

The constitutive equation for linear orthotropic materials, using the con-

ventional notation for contracted indices xx → x, yy → y, xy → s, writes:


σx

σy

σs

 =


Qxx Qxy 0

Qxy Qyy 0

0 0 Qss




εx

εy

εs

 (7)
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Q is the in-plane stiffness matrix and the four independent components are

the parameters to be identified. The stress tensor in Eq. 6 can be rewritten

in terms of the strain tensor using Eq. 7:

Qxx

∫
S
εxε

∗
xdS +Qyy

∫
S
εyε

∗
ydS +Qxy

∫
S

(
εxε

∗
y + εyε

∗
x

)
dS+

Qss

∫
S
εsε

∗
sdS =

∫
∂S

Fxu
∗
xdl +

∫
∂S

Fyu
∗
ydl (8)

At this point, introducing four independent virtual fields in Eq. 8, four

linear equations are obtained that can be used to identify directly the four

unknown parameters Qxx, Qyy, Qxy and Qss. The strain components εx,

εy and εs are measured on the specimen surface using a full-field optical

technique, and in order to solve the system, the virtual displacements have

to be chosen in such a way that the only information involved in the second

term of Eq. 8 is the global load measured by the load cell of the experimental

equipment.

In the specific case of the unnotched Iosipescu test, the area S of Eq. 8

is the dashed area in the schematic view of Figure 1. The virtual fields have

to fulfil the following virtual boundary conditions:

 u∗x = 0

u∗y = 0

∣∣∣∣∣∣
x=0

and

 u∗x = 0

u∗y = c

∣∣∣∣∣∣
x=L

(9)

where c is a constant. Under these conditions, the only boundary force

involved in the second term of Eq. 8 becomes Fy when x = L, multiplied by

a constant. The constant c can be taken out of the integral and the integral

of Fy along ∂S returns the total force F applied to the moving clamp divided

by the thickness. The total force can be experimentally measured by a load

cell. More details are given in Pierron and Grédiac (2000).
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Moving clamp

Figure 1: Schematic view of the unnotched Iosipescu test.

An infinite number of virtual fields which satisfy the boundary conditions

can be found. The choice of appropriate virtual fields is one of the critical

points of the method and has been discussed in several papers (Grédiac

et al., 2002a,b). In the present work the approach proposed by Avril et al.

(2004b) is used, where a set of optimized virtual fields can be automatically

generated by minimizing the sensitivity to noise.

3. Simulated experiments

The simulated experiment is the unnotched Iosipescu test, performed ac-

cording to the experimental configuration described in Pierron et al. (2007)

and Chalal et al. (2006). A finite element model of this test was developed

and the computed displacement field was used to reconstruct synthetic im-

ages that simulate an actual acquisition with a CCD camera. The whole

process will be discussed in details.
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3.1. Finite elements simulations

A parametric model was built up using ABAQUS Standard and Python

routines, all the simulations can be run in background under a Matlab en-

vironment and easily inserted in optimization programs.

L23mm 15mm

Area of measurement

H

UY
0

UY
0 Material orientation 

at the element

a X

Yy

x
Fiber 

orientation

Figure 2: FEM model of the unnotched Iosipescu test, mesh size, boundary conditions,

material coordinate system at the element.

The model is illustrated in Figure 2, 2-D quadratic elements, named

CPS4, were used to simulate the specimen deformation under plane stress

condition while the clamps were simulated using four rigid contact bodies,

two at each side. The specimen can be divided in three parts, at the sides

there are the zones held by the clamps and at the center there is the area

of measurement, where the displacement field is supposed to be measured

with the full-field optical technique. A fixed 0.33 mm mesh size was adopted

in each configuration. The reason why only the middle part of the speci-

men is considered for the measurement is that the two other parts (in the

clamps) undergo little deformation. Also, measuring over the whole length

will deteriorate the spatial resolution because of the large aspect ratio of the

specimen.

The rigid bodies on the left side are fixed while a vertical displacement

U0
Y is given to the rigid bodies on the right to simulate the shear loading.
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A friction coefficient µ = 0.05 is used in the contact properties to prevent

sliding in the horizontal direction. The applied force F is obtained as sum

of the vertical reactions of the rigid bodies at the right.

Two systems of cartesian coordinates are introduced, the reference global

coordinate system (0,
−→
X ,

−→
Y ), fixed, and the material coordinate system

(0,−→x ,−→y ) in which the x-axis is aligned with the fibre orientation. The angle

α measures the rotation of the material coordinate system with respect to

the global one and is the first design variable. The second is the free length

of the specimen L, illustrated in Figure 2.

All the other geometric parameters are kept constants, the height H is

set equal to 20 mm and the part of the specimen grabbed by the clamps mea-

sures 23 mm. The reason for this choice is that the fixture can only accom-

modate a fixed width whereas it can be used for different free lengths (Pier-

ron, 1994).

It is worth noting that although only two parameters of the test con-

figuration have been taken into consideration, L and α respectively, their

variation modifies the stress and strain fields inside the measurement area in

a non trivial way. Indeed, the stress state in the unnotched Iosipescu test is

a composition of compression, bending and shear as illustrated in Figure 3.

Looking at the stress components expressed in the global coordinate system,

in the Y -direction the normal stress is mainly compressive and concentrated

near the contact zones; in the X-direction the stress state is due to bending

and exhibits both tension and compression; shear stresses are also present,

as expected from such a shear test. The relationship between the three com-

ponents strongly depends on the specimen aspect ratio and stiffness which

are functions of the chosen design variables.

The thickness of the specimen is set to 3 mm. However, because of
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Compressive stress in the Y-direction

Bending stress in the X-direction

Shear stress

Y

X

Y

X

Y

X

σY (MPa)

σX (MPa)

σS (MPa)

Figure 3: Stress state in the Iosipescu test (global coordinate system): compression stress

near the contact zones in the Y -direction, stress due to bending in the X-direction, shear

stress. The specimen has a free length L = 30 mm and a fibre angle α = 30◦, the material

is glass/epoxy UD and the applied force 100 N.
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the plane stress assumption, this value does not influence the identification

though in practice, thick specimens are very difficult to load in plane (Pier-

ron, 1998).

3.2. Force and displacement scaling

In an actual measurement, the magnitude of the measured displacement

field impacts directly the signal to noise ratio. In general, the scatter of

the identified parameters decreases as the maximum displacement (or the

applied load) increases. This has been observed, for instance, in some ex-

perimental results obtained for similar applications (Xavier et al., 2007).

In order to compare different specimen configurations, which exhibit

different stiffness, a normalization procedure is necessary. For example,

in Syed-Muhammad et al. (2009), where different test configurations have

been studied to identify the bending rigidities of an anisotropic plate, the

minimization criterion was normalized with respect to the maximum deflec-

tion.

In this work, the normalization was performed during the computation

of the displacement field. For each evaluated configuration, the displace-

ment field is the one that corresponds to the maximum force that can be

applied to the specimen. The maximum allowable force can be determined

using a failure criterion. In practical experiments, the load is limited by the

premature fracture of the specimen or by the deviation from linear elastic

behaviour.

Many theories are available to predict failure in composites, a good re-

view and a comparison between different approaches can be found in Soden

et al. (1998, 2004). The Maximum Stress failure criterion was adopted here

for the sake of simplicity. It states that the material is undamaged when

14



the following conditions are fulfilled:

S−x 6 σx 6 S+x, S−y 6 σy 6 S+y, |τs| 6 Ss (10)

where S+x and S+y are the maximum allowable tensile stresses along and

transverse to the fibre directions, respectively, S−x and S−y are the max-

imum allowable compressive stresses and Ss is the ultimate in-plane shear

stress. Obviously, the stress tensor is computed in the material coordinate

system.

Although this assumption is quite simplistic, the model is widely used

in practice and even more complex theories utilize it to restrict the elastic

range where no damage is observed (Zinoviev et al., 1998, 2002). Here it is

just used to provide a more physical normalization of the stress and strain

levels.

Under the assumption of small displacement and linear elastic behaviour,

the stress and strain fields are proportional to the applied force. If F is the

force computed by the FEM as the vertical resultant of the imposed fixed

displacement U0
y on the right part of the fixture, the maximum allowable

force, according to the failure criterion, is obtained by scaling the FE reac-

tion force by a factor k, with

k = min
[
max

(
σi
x

S+x

)
,max

(
σi
x

S−x

)
,max

(
σi
y

S+y

)
,max

(
σi
y

S−y

)
,max

(
τ i
s

Ss

)]
(11)

and σi
x, σi

y and τ is the stress components at each ith Gauss point of the

numerical model and max(•) is the maximum over all the Gauss points.

In the same way, the displacement field corresponding to the maximum

allowable force is then obtained by the same scaling factor k.
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Glass/epoxy Carbon/epoxy Glass/epoxy Carbon/epoxy

UD UD 0/90◦ 0/90◦

Exx (GPa) 40 135 25 70

Eyy (GPa) 10 10 25 70

Gxy (GPa) 4 5 4 5

νxy 0.3 0.3 0.2 0.1

S+x (MPa) 1000 1500 440 600

S−x (MPa) -600 -1200 -425 -570

S+y (MPa) 40 50 440 600

S−y (MPa) -100 -250 -425 -570

Ss (MPa) 40 70 40 90

Table 1: Reference properties for four composite materials. Data from www.performance-

composites.com (2010). For the glass/epoxy unidirectional, data from Tsai and Hahn

(1980).
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Two different composites have been investigated, glass/epoxy and car-

bon/epoxy, looking at two different fibre configurations, unidirectional (UD)

and 0◦/90◦, for a total of four materials. Typical properties for the materials

can be found in various technical or commercial catalogues, the values used

in this work are listed in Table 1. The idea here was to explore the effect of

anisotropy on the optimal configuration.

3.3. Synthetic images

Analytically, a black and white image can be described as a continuous

function I(
−→
R ) of the grey level, where

−→
R is the position vector of Section 2.1

defined over a spatial domain that represents the image size. Let us consider

Ir(
−→
R ) as the grey level function for the reference image and Id(

−→
R ) that of the

deformed image, distorted according to a given material transformation ΦM .

The two functions can be put in relation using the optical flow conservation:

Id

(−→
R
)
= Ir

(
Φ−1
M

(−→
R
))

(12)

In the general case of a displacement field −→u the transformation function

becomes:

ΦM =
−→
R +−→u

(−→
R
)

(13)

The function Ir(
−→
R ) represents, in terms of grey levels, the pattern

printed in the specimen surface before deformation starts. For instance,

using digital image correlation, the pattern will be a series of speckles with

random size. An example of speckle simulation can be found in Orteu et al.

(2006). Working with the grid method, the reference image is an equispaced

grid which can be described by the following analytical function:
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Ir

(−→
R
)
= I0

{
1 + γ

[
cos
(
2πX
p

)
+ cos

(
2πY
p

)
−
∣∣∣cos(2πX

p

)
− cos

(
2πY
p

)∣∣∣]} (14)

where I0 and γ are the quantities defined in Eq. 1 and
−→
R = (X,Y ) is

expressed in the global coordinate system, |•| is the absolute value. The

analytical function for the deformed image is obtained using Eq. 12, ΦM is

computed from Eq. 13 using the displacement from the FE model, scaled

according to the normalization proposed in Section 3.2.

At this point, two synthetic images are generated digitizing the image

functions Ir(
−→
R ) and Id(

−→
R ). The intent is to reproduce the acquisition pro-

cess of a digital camera. In a digital camera, an image is projected through

a lens onto the photoactive region, which is usually a matrix of CCD sen-

sors. Every pixel of the recorded image corresponds to a CCD sensor of the

camera. A CCD sensor is a device able to accumulate an electric charge

proportional to the light intensity.

Let us consider a pixel M and the area AM which represents the portion

of the grid imaged by that pixel. The digital value stored in M is an integer

proportional to the average light intensity inside the area AM . The area

AM represents the sensitive part of the pixel and could be varied to simulate

different fill factors. In the present case, the light intensity is represented

by an analytical function I(
−→
R ), so the digital recorded value P (M) can be

computed as follows:

P (M) =

⌊
1

AM

∫
AM

I
(−→
R
)
dS

⌉
(15)

where ⌊•⌉ is the nearest integer to the value computed inside.
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Analytical function Reconstructed image

Reconstructed image
 with noise

Grid taken from
 a real measurement

Figure 4: Generation of synthetic images: starting from the analytical function (Eq. 14)

a synthetic image is generated using pixel supersampling and noise is added to the grey

level. In the final plot a real grid coming from experiments is shown as a comparison.

The integral in Eq. 15 is numerically computed using pixel supersam-

pling. The function I(
−→
R ) is evaluated at Np points inside the pixel area AM

and P (M) is computed as an average value:

P (M) =

 1

Np

Np∑
i=1

I
(−→
R i

) (16)

The generation process of a synthetic image of a grid starting from the

analytical function is illustrated in Figure 4, a comparison with a grid taken

from an actual measurement is also shown.

The approximation due to the numerical integration and the quanti-

zation which occurs at the pixel level influences the phase detection and

consequently the measurement precision. To have an idea of such effect a

simple test is conducted, two synthetic images are created in order to re-
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produce a small uniform stretch in the X-direction equal to 5 · 10−4, then

the grid method is used to extract the displacement and compute the strain.

The image size is 500× 200 pixels and the grid pitch is 5 pixel. Two differ-

ent dynamic ranges have been considered, 8-bit (256 grey levels) and 12-bit

(4096 grey levels) respectively, furthermore three different distributions of

the resampling points inside the pixels have been evaluated, the results are

illustrated in Figure 5. The obtained strain maps are not constant and a

variation is observed from the reference value of 5 · 10−4. Using an 8-bit dy-

namic range, the error has a high frequency and it is not influenced by the

resampling points, it is mainly due to the quantization error. Using a 12-bit

dynamic range, the quantization error is reduced but the WDTF algorithm

is disturbed by the high spatial frequencies due to the horizontal lines of

the grid. The effect is influenced by the number of resampling points and

it disappears if only vertical lines are used to compute the displacement in

the horizontal direction instead of a grid.

The synthetic images used in this work simulate the acquisition of a CCD

camera with a resolution of 1360× 1024 pixels and a grey level range of 12

bit. A matrix of 5 × 5 sampling points was used to compute the grey level

value at each pixel. In this case the errors coming from the digitization are

of much lower amplitude than the errors due to the noise.

The noise is simulated by adding a standard Gaussian white noise to the

grey level value of each pixel. The mean of the introduced noise is zero,

the standard deviation can be varied to simulate different noise levels in the

measurements.

The amount of noise in actual measurements depends on several factors

(camera, lighting. . . ) and varies largely for different experimental set-ups.

It can be measured by recording two pictures of the same reference image
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4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5
x 10

−3

Position of the sampling points inside the pixel

12−bit Dynamic range (4096 grey levels) − vertical lines

12−bit Dynamic range (4096 grey levels) − grid

8−bit Dynamic range (256 grey levels) − grid

Figure 5: Strain fields obtained from synthetic images which reproduce an uniform stretch

equal to 5 · 10−4. The image size is 500 × 200 pixel and the grid pitch is 5 pixels. Two

dynamic ranges are evaluated, 8-bit and 12-bit, and different sampling points are chosen.

No noise is introduced, the observed oscillations are caused by the quantization error and

the high spatial frequencies of the square grid which disturb the phase detection.
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and calculating the corresponding displacement which should be zero in all

pixels, if no noise was present. To quantify the noise level, the standard

deviation of this “displacement” can be taken (Surrel, 1999; Chalal et al.,

2006).

Here a simple test was performed just to estimate a reasonable noise level,

in terms of grey levels, to input in the simulation routine. Two pictures of

the same reference image were recorded and the noise level was computed

as the standard deviation of the difference of the grey levels at each pixel,

divided by
√
2 to get the standard deviation of the noise in a single image.

Using a 12-bit camera, which has 4096 grey levels, the obtained standard

deviation in different tests ranged from 20 to 25 grey levels, 0.5÷0.6% of the

dynamic range. It would correspond to 1 to 2 grey levels for an 8-bit camera.

This value can largely change according to the experimental conditions but

the test gives an idea of the order of magnitude.

3.4. Number of measurement points

In full-field optical techniques, displacements are measured at a certain

number of points over the surface. With the grid method it is possible to

have an independent measurement for each line of the grid. The number

of points influences the spatial resolution of the measurement, that is the

minimum distance between two independent measurement points. Clearly,

a higher spatial resolution will also produce a better identification of the

constitutive parameters. Nevertheless, it should be pointed out that a con-

verged FE model has usually at least one order of magnitude less elements

than pixels on a standard CCD chip. Therefore, increasing the spatial res-

olution is mainly necessary for noise filtering purposes.

The number of available measurement points depends also on the shape
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of the framed area. As explained in Figure 6, the window of the digital

camera is fixed, therefore, when a surface is framed, there are some pixels

that are not involved in the measurement process, unless the specimen area

has the exact aspect ratio of the CCD chip.

Measurement 

area and grid

Window of the CCD camera

Unused pixels

Free length L of the specimen

Figure 6: Full-field measurement: the number of pixels that can be really used during the

measurement depends on the aspect ratio of the CCD chip and the aspect ratio of the

specimen area to be framed.

In other words, this means that it is not convenient to use specimens

with too large aspect ratios, because it will decrease the spatial resolution

of the measurement. It is important to introduce this aspect to compare

the effectiveness of different specimen configurations. This was the main

limitation of the approach proposed in Pierron et al. (2007) where only the

sensitivity to noise was used in the cost function. In that case it was noticed

that the optimization is not very sensitive to the variation of the free length

of the specimen. In fact, specimens with a very long or very short free length

can still exhibit a low sensitivity to noise. In a real experiment, however,

such kind of specimens will lead to a poor identification because their aspect

ratio is far from the aspect ratio of the CCD chip.

In order to take this effect into account, a procedure has been developed

which finds the configuration that maximizes the number of measurement

points, for each specimen geometry. First the orientation of the camera is
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set to maximize the framed area. The camera can be used in a vertical or

horizontal position. Once the best orientation has been defined, the grid

pitch is chosen in order to have a period every five pixels in the undeformed

image.

As explained in Section 3.1, the height of the specimen is kept constant

while the free length is varied. As the length decreases, the measurement

area is reduced too. A magnification has to be performed to frame the

whole area with the camera. As consequence, the pitch of the grid has

to be reduced in order to keep a period each five pixels of the image. In

actual applications, the grid size can not be reduced under a certain level,

see Section 2.1. Here the minimum allowable grid pitch is assumed to be

100 µm (Piro and Grédiac, 2004), below this limit the magnification is kept

constant in order to preserve a period every five pixels and the camera does

not frame the whole measurement area.
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Measurement points

Figure 7: Grid pitch size and percentage of the available measurement points as a function

of the gauge length L. The aspect ratio of the camera is fixed and equal to 1.328. The

camera magnification is adjusted in order to have a period of the grid every 5 pixels.

The results obtained with the proposed procedure are summarized in
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Figure 7. The measurement points and the grid pitch size are plotted as

a function of the free length L. The measurement points are given as a

percentage of the maximum number of available measurement points. The

maximum number of available measurement points depends on the type of

camera. Using a CCD camera with a resolution of 1360× 1024 pixels, if all

the pixels are involved in the measurement and a measurement point can

be obtained every five pixels, theoretically it is possible to have 272 × 204

measurement points.

The maximum number of measurement points in the simulated experi-

ment is reached for L ≃ 27 mm. In this case the aspect ratio of the mea-

surement area approaches the aspect ratio of the CCD chip. Here, it also

corresponds to the minimum of the grid pitch.

4. Results and discussions

Simulated experiments were then employed to study in detail the un-

notched Iosipescu test. The design variables that lead to the best identifi-

cation were evaluated using a cost function. Different materials have been

taken into consideration to study the effect of anisotropy. Besides, other

practical aspects have been analyzed: the effect of smoothing and the influ-

ence of missing data.

4.1. Cost function

A cost function has to be defined to compare different configurations and

find out which one provides the best identification of the material param-

eters. For a given set of design variables, the cost function represents the

error in the identification averaged over Ne simulated experiments, it writes:
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Φ(L,α) =
1

Ne

Ne∑
k=1

√√√√√∑
ij

wij

(
1−

Q
(k)
ij

Q
(0)
ij

)2

with ij = [xx, yy, xy, ss] (17)

Q
(0)
ij are the reference parameters to be identified, Q

(k)
ij are the parameters

identified at the kth simulated test and wij is a weighting parameter that can

be varied to give more or less importance to a particular stiffness component

during the optimization process.

A Matlab routine has been implemented to compute the cost function

automatically and it is summarized in the flow chart in Figure 8. The

input data are the material properties, the design variables, the spatial res-

olution and dynamic range of the CCD camera and the amount of noise.

The program generates automatically the FE model, computes the max-

imum allowable load for the current configuration and the corresponding

displacement field in the measurement area. According to the CCD camera

characteristics two synthetic images are generated, for the reference and the

deformed configuration, respectively. The noise is added to the images and

subsequently they are processed using the grid method in order to extract

the displacement and the strain fields. If the introduced level of noise is

particularly high, it is possible to utilize smoothing functions to compute

the strain. The constitutive parameters are identified using the optimized

VFM (see Section 2.2) and the cost function Φ is evaluated.

4.2. Parameter identification for a glass/epoxy unidirectional composite

A first analysis was conducted on a glass/epoxy unidirectional composite

since experimental data are available for this material (Pierron et al., 2007).

The free length L was varied from 10 to 60 mm with a step of 2 mm while
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size: 

 

camera orientation

X active pixels
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the reference 
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Generation of 

the deformed 

image
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field
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Smoothing 

(if required)

VFM
Identified 

parameters

Cost 

function

Input data:

:Material properties (Qxx,Qyy,Qxy,Qss,S+x,S-x,S+y,S-y ,Ss )

 Design varibles (L,D)

 CCD camera characteristics (spatial resolution, dynamic range)

 Level of noise (VI ), number of repetitions 

Applied Load 

Syntetic images 

Simulated experiment

FEM

Scaling 

procedure

Figure 8: Flow chart of the Matlab routine used to compute the cost function.

the fibre angle α was varied from 0◦ to 90◦ with a step of 5◦. The standard

deviation of the added noise is equal to 30 grey levels, which corresponds to

0.7% of the total dynamic range. The strain field was computed using di-

rect differentiation and no smoothing. For each configuration, 30 simulated

experiments were run.

At the end of the simulation process, the identified parameters are used

to evaluate the cost function by Eq. 17. The cost function can be plotted

as a contour map in the plane of the design variables L and α, Figure 9.

In this map, the cost function is computed using the same weight for each

parameter, wij = 0.25, so that it represents an average of the identification

error. The function itself is somewhat noisy because of the random nature of

the processed information and the limited number of trials (30). Therefore

a Gaussian filter was applied, using a standard convolution method, in order

to get a smoother function that can be minimized more easily (Haddad and

Akansu, 1991). The convolution matrix involves 5× 5 measurement points
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and it is computed using a Gaussian function with a 0.75 standard deviation

and 1 as normalized distance between two measurement points. Another

option could have been to increase the number of simulated experiments,

but it would have increased the computational time too much .
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Figure 9: Cost function evaluated for glass/epoxy UD. Standard deviation of noise: 30

grey levels, 30 repetitions for each configuration. In the second plot a Gaussian filter is

applied to have a smoother result.

The best identification is obtained when the free length is between 20

and 35 mm and the angle between 50◦ and 75◦. The cost function for each

stiffness can be studied separately by respectively setting wij = 1 for one

value of ij and wij = 0 for the others, Figure 10.
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Looking at the scale of the contours parameter Qss is the easiest to

identify and parameter Qxy is the most difficult as expected from Pierron

et al. (2007). The identification of parameters Qxx and Qyy principally

depends on the fibre angle orientation, this is not surprising since the two

parameters represent respectively the stiffness on the x and y directions,

therefore the best situation is when the fibers are aligned with the main

direction of the bending stress, 0◦ forQxx and 90◦ forQyy. The identification

of Qss is better when the fibre angle is around 0◦ or 90◦ where the shear

stress is predominant in the material coordinate system. For parameter

Qxy, the best situation occurs for an angle α ≃ 60o and a length L ≃ 20 to

35 mm. All these considerations are in agreement with what was already

found in previous studies using different approaches (Pierron et al., 2007;

Xavier et al., 2005).

The cost function represents an average of the identification error and

takes into account both the bias and the standard deviation. It could be

interesting to evaluate the error distribution for single configurations. In

Figure 11 a histogram is plotted with the identification of the single pa-

rameter Qxx for two specimen configurations, L = 36mm, α = 50◦ and

L = 16mm, α = 15◦ respectively. In Figure 11(a) simulated images have

been used to obtain the strain field. A level of noise of 30 grey levels and

100 test repetitions have been used. The same test is then repeated with-

out simulating the measurement process but simply introducing a similar

amount of noise in the strain fields computed by FEM, Figure 11(b), in this

case the only source of error is the noise itself. For the first configuration

the results are very similar, but in the second configuration which represents

a non optimal solution (see the cost function plot in Figure 9) a bias is ob-

served when synthetic images are used to compute the strain fields and not

29



Length

A
ng

le

Parameter Q
xx

 w
ij
=[1 0 0 0]

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.005

0.01

0.015

0.02

0.025

Length

A
ng

le

Parameter Q
yy

 w
ij
=[0 1 0 0]

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.005

0.01

0.015

0.02

0.025

Length

A
ng

le

Parameter Q
xy

 w
ij
=[0 0 1 0]

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.016

0.032

0.048

0.064

0.08

Length

A
ng

le

Parameter Q
ss

 w
ij
=[0 0 0 1]

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.002

0.005

0.008

0.011

 0.014

Figure 10: Cost function evaluated separately for each parameter of the constitutive equa-

tion, glass/epoxy UD. Standard deviation of noise: 30 grey levels, 30 repetitions for each

configuration.
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when the FEM strain data are used. Probably the bias is due to the lower

spatial resolution obtained in the second configuration where a non optimal

aspect ratio is used, for this reason the measurement technique is not able

to correctly measure the strain in the zones of the specimen with a high

strain gradient. To be sure that the error is not related to the strain com-

putation, another test has been performed and illustrated in Figure 11(c).

Here the noise was applied to the displacement field obtained from the FEM

and then the same strain computation procedure adopted as in the first case

was used to compute the strain field. No bias is observed in this case either,

confirming that the bias comes from spatial resolution issues related to the

full-field measurement itself.

The analysis highlights that errors are hidden in the acquisition process

itself and they end up influencing in some way the identification. The ad-

vantage (and novelty) of the proposed approach is that all these errors are

embedded in the procedure and are implicitly introduced in the evaluation

of the cost function.

The importance of the number of measurement points in the identifica-

tion can be proved by simulating a camera with a different CCD chip aspect

ratio. A hypothetical camera with a resolution of 1360×512 pixels was used.

As illustrated in Figure 12, the shape of the cost function is now totally dif-

ferent and it can be directly related to the number of measurement points

which is plotted below the cost function maps as a function of the specimen

length L. The lowest values of the cost function are obtained where the

number of measurement points is maximum. Besides in the second case the

average value of the cost function is two times larger as the size of the CCD

chip is decreased by a half. This clearly indicates the effect of the spatial

resolution that the present procedure simulates efficiently.
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(a) Simulation of synthetic images
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(b) Noised strain field

39.5 40 40.5 41 41.5 42 42.5
0

10

20

30

40

50
L = 36mm  α = 50° (FEM − displacement)

Q
xx

 [GPa]

N
um

be
r 

of
 r

ep
et

iti
on

s

Q
xx
0

39.5 40 40.5 41 41.5 42 42.5
0

10

20

30

40

50
L = 16mm  α = 15° (FEM − displacement)

Q
xx

 [GPa]

N
um

be
r 

of
 r

ep
et

iti
on

s

Q
xx
0

(c) Noised displacement field

Figure 11: Histograms of the identified parameter Qxx for two specimen configuration,

L = 36, α = 50◦ and L = 16, α = 15◦ respectively. A level of noise equal to 30 grey levels

and 100 repetitions have been used. Subsequently, the same tests are reproduced without

simulating the images, but simply introducing a similar amount of noise directly on the

strain field or on the displacement field computed by the FEM.
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Figure 12: Effect of the number of measurement points. The size of the CCD chip changes

the shape of the cost function. The lowest values are observed where the number of

measurement points is maximum.

33



It is beyond the purpose of this paper to give an experimental validation

of the proposed technique, an extended experimental study will be conducted

in the future. Nevertheless a first check can be made using the results

obtained by Pierron et al. (2007) using the unnotched Iosipescu test on the

same material, glass/epoxy UD.

In this study, the unnotched Iosipescu test was performed on two types

of specimen, the first with L = 30 mm and α = 0o (5 repetitions) and the

second with L = 40 mm and α = 25o (6 repetitions). The cost function Φ

can be computed from the experimental data using Eq. 17 and compared

with the cost function obtained using simulated experiments with the same

geometry and fibre orientation. The reference values Q
(0)
ij for the experi-

ments are taken as the average of the values measured at each test.

Actually, it is still not possible to compare directly the cost functions

because the level of noise in the experiments is not known, therefore a nor-

malized cost function is introduced. First the cost function was evaluated

separately for each parameters as seen before, then these values were nor-

malized by the average error which is obtained with wij = 0.25. The same

procedure was repeated for both the experimental and the simulated data.

The comparison is illustrated in the bar plot of Figure 13.

A mismatch is normal because of the low number of repetitions available

in the experimental tests. However the simulated procedure is able to repro-

duce qualitatively the trend observed in the experiments. Parameter Qxx

is identified with good accuracy in both configurations. The identification

of Qyy however is much better in the 25◦ configuration. Qss has a good

identification in both cases but the 0◦ configuration gives the best outcome.

About Qxy, which is the most difficult parameter to identify, more scatter

is expected, nevertheless the experiments show a better identification in the
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Figure 13: Comparison between simulated and actual experiments from Pierron et al.

(2007). The cost function was normalized dividing by the average error, two configurations

were evaluated.
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0◦ configuration and the same trend is obtained using the simulated data.

This is only a first analysis, more experimental tests are needed. How-

ever the developed procedure seems to be reliable in comparing different

configurations.

4.3. Sensitivity to scaling

The scaling procedure introduced in Section 3.2 influences the cost func-

tion. The adopted failure criterion is quite simplistic and the limit stresses

listed in Table 1 are generic values for a class of material. In order to have

reliable results in the optimization, it is important to verify that the cost

function is not strongly dependent on these parameters.

A sensitivity study was conducted on glass/epoxy UD. According to the

Maximum Stress criterion, for each configuration, only one of the five limit

stresses will be involved in the scaling procedure, see Eq. 11. The first plot

of Figure 14 shows the parameters driving the scaling for glass/epoxy UD.

This scaling is mainly driven by the maximum stresses in the transverse

direction (S−y and S+y). In order to assess the sensitivity of the proposed

procedure to the scaling parameters, the cost function was evaluated using

the same test conditions but increasing the failure stresses S−y and S−y by

50%.

The comparison of the cost functions obtained with the increased values

and the reference one is also illustrated in Figure 14. The plots look similar,

no remarkable changes are produced by increasing the limit stress. This

check suggests that the procedure will return similar results if the material

properties are chosen within a reasonably wide range.

36



Length

A
ng

le

Scaling driving parameters

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

Ss

S−y

S+y

Length

A
ng

le

Reference

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Length

A
ng

le

S
−y

 +50% (150 MPa)

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.01

0.015

0.02

0.025

0.03

Length

A
ng

le

S
+y

 +50% (60 MPa)

 

 

10 20 30 40 50 60
0

15

30

45

60

75

90

0.01

0.015

0.02

0.025

0.03

Figure 14: Sensitivity of the cost function to scaling. In the first plot the parameters

driving the scaling for the glass/epoxy UD are illustrated. Then the cost function was

evaluated increasing the maximum stresses in the transverse direction by 50% (S−y =

150 MPa and S+y = 60 MPa).
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4.4. Effect of anisotropy

The cost function described previously can be used to optimize the test

configuration. Indeed the best set of design variables can be considered as

the one that minimizes the cost function. The purpose of this section is to

study how this choice is influenced by the material anisotropy. Four different

composite materials were analyzed, the mechanical properties have already

been reported in Table 1.

The cost function was evaluated using the same weight (wij = 0.25)

for the four parameters. The test conditions are the same adopted for the

glass/epoxy UD, 30 repetitions per configuration, standard deviation of the

noise added to the images equal to 30 grey levels. The strain field was

computed by direct differentiation from the displacement data.
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Figure 15: Cost function evaluated for four materials as a function of the design variables.

Standard deviation of noise: 30 grey levels, 30 repetitions for each configuration.
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L(mm) α (degree) Φ

Glass/epoxy UD 24.3 62.4 0.0122

37.2 52.9 0.0125

Carbon/epoxy UD 23.0 50.8 0.0258

33.6 50.3 0.0289

Glass/epoxy 0◦/90◦ 31.2 48.6 0.0122

Carbon/epoxy 0◦/90◦ 31.3 43.6 0.0233

Table 2: Values of the design variables that minimize the cost function

The cost function for the different materials is plotted in Figure 15. For

each material, the best set of design variables is the one corresponding to

the lowest value of the cost function. Since the function has been evaluated

discretely (L = 10 : 2 : 60, α = 0 : 5 : 90), the minimum point was obtained

using a polynomial interpolation in the neighbourhood of the discrete min-

imum (Vanderplaats, 1984). The optimized design variables for the four

materials are reported in Table 2.

For the UD materials two local minima can be found where the cost

function is almost equal. In the 0◦/90◦ configuration the function Φ should

be theoretically symmetrical with respect to 45◦, but a small deviation from

this condition is observed because of the random noise.

As a general consideration, although the material properties are rather

different, the optimized solutions do not differ too much. A free gauge length

L = 30 to 35 mm gives good results in all cases. This fact is due to the

better spatial resolution gained thanks to the larger number of measurement

points available in this case. As rule of thumb, it can be concluded that a

good test will be such that the gauge area follows the aspect ratio of the

CCD camera.
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As for the fibre orientation, the optimum value for the 0◦/90◦ configu-

rations is α = 45o, while it is slightly higher (α = 50 to 60o) for the UD

configurations.

However, the anisotropy influences the quality of the identification. In-

deed, looking at the scale of the contour maps, it follows that the best

identification is obtained for the glass/epoxy composites that have a less

pronounced anisotropy than the carbon/epoxy composites. In particular

the most anisotropic material, the carbon UD, shows the worst identifica-

tion in terms of cost function.

The different levels of anisotropy also influence the shape of the cost

function in the two unidirectional composites. The identification of the

carbon/epoxy UD becomes particularly difficult when the fibre angle orien-

tation goes over 60◦. This problem is less evident in the glass/epoxy UD,

especially when the free length is less than 30 mm.

4.5. Effect of smoothing

The strain field is not directly obtained from the measurements but is

computed as a differentiation of the displacement field. A point to point

differentiation tends to magnify the effect of noise, for this reason smooth-

ing functions are commonly introduced to derive the strain field from the

displacement field. Using a simulated experiment the level of noise can be

controlled and the influence of the smoothing in the identification can be

studied in detail.

As an example, Figure 16 shows the component εY of the strain tensor

computed with different noise levels. The simulated specimen has a free

length of 30 mm and a fibre orientation of 50◦. On the left the strain

is obtained through direct differentiation, on the right using a smoothing
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function, namely second order polynomial diffuse approximation (PDA),

with a span radius of 12 pixels (Avril et al., 2010, 2008b). Three levels of

noise were considered: 10 grey levels (0.2% of the dynamic range), 30 grey

levels (0.7% of the dynamic range) and 150 grey levels (3.7% of the dynamic

range). The strain field computed with direct differentiation appears blurred

while the PDA supplies a fine strain reconstruction.
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Figure 16: Computation of the strain field from the measured displacement field: compar-

ison between the results obtained with and without smoothing, at different noise levels.

Component εY of the strain tensor. Smoothing performed with polynomial diffuse ap-

proximation with a span radius of 12 pixels (Avril et al., 2008b). Material: glass/epoxy

UD.

The effect of smoothing on the parameter identification is less straightfor-
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ward. A test was conducted on the same specimen configuration, L=30 mm

and α = 50◦, at different levels of noise. For each noise level, the strain was

computed using direct differentiation, PDA with a span radius of 12 pixels

and a global polynomial fitting with a 7th degree polynomial function. The

cost function was evaluated from the reconstructed strain data and plotted

as function of the noise level, Figure 17.

The graph shows that smoothing improves the identification only beyond

a certain value of noise. In the studied configuration, this noise threshold

is around 15 grey level for the PDA and 40 grey levels for the polynomial

fitting. After 60 grey levels the polynomial fitting returns the best identifi-

cation. This behaviour can be seen as surprising, since looking at the strain

maps of Figure 16, even with a noise standard deviation of 10 grey levels,

the strain field computed with smoothing looks qualitatively much better

compared to the one computed with direct differentiation.

An explanation can be given on the basis of the VFM theory, see Eq. 8.

To identify the parameters, the measured strain components are multiplied

by the virtual strain components, which can be viewed as weighting func-

tions, and integrated over the surface. The integration gives a first filtering

of the strain data. Furthermore, using smoothing, the perturbation error

due to the noise decreases but the approximation error increases because the

smoothing acts as a low-pass filter. The balance between these two recon-

struction errors makes the smoothing convenient only after a certain noise

threshold. The polynomial fitting, that provides strong smoothing of the

data, works well for high levels of noise but the reconstruction error is larger

for small noise level (bias).

This aspect has been studied more deeply using PDA. In fact, the smooth-

ing capability of PDA can be changed by varying the span radius R of the

42



0 50 100 150
0

0.05

0.1

0.15

Standard deviation of noise (in grey levels)

C
os

t f
un

ct
io

n

 

 

Direct differentiation
Diffuse approximation
Polynomial fitting

Figure 17: Effect of smoothing in the identification. The cost function was evaluated

as function of the noise level. Two smoothing functions are compared: PDA with a

span radius of 12 pixels and a polynomial fitting with a 7th degree polynomial function.

Material: glass/epoxy UD.

averaging function. The larger R the smoother the reconstructed strains,

since more points are used in the averaging. A series of tests were performed

keeping constant the noise level and varying the span radius of PDA. The re-

sults are illustrated in Figure 18 in terms of cost function and reconstruction

error. The reconstruction error is defined as the quadratic distance between

the reconstructed strain field and the exact one (Avril et al., 2008b):

eε =

⟨√
(εrecx − εexx )2 + 2 (εrecs − εexs )2 +

(
εrecy − εexy

)2⟩
Ωm

(18)

where ⟨•⟩Ωm
is the average of the data over region Ωm, the whole measure-

ment area.

Looking at the cost function, the span radius influences the identifica-

tions only when a large noise is introduced in the measurements. The same
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trend is not observed in the reconstruction error, in this case an increasing R

gives a better result also for low levels of noise. It can be concluded that the

reconstruction error measured on the whole area is not a reliable output to

evaluate the quality of the identification. Actually, the reconstruction error

gives the average error over the whole surface of the specimen. However,

some parts of this surface, for instance where the strains are low, do not

influence the identification and should not be taken into consideration. The

proposed cost function seems to be a more relevant tool to decide which

type of smoothing is convenient to use in a real measurement. Of course, all

these considerations are valid under the hypothesis of a Standard Gaussian

distribution of noise but it can be expected that trends will be the same for

other noise distributions.
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Figure 18: Effect of the span R on the strain reconstruction and on the identification using

the VFM, at different noise levels. Material: glass/epoxy UD.

Another issue is how the smoothing function influences the choice of the

design variables, or, in other words, if the optimized specimen configuration
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obtained for a given material in section 4.4 is still valid when a smoothing

function is applied.
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Figure 19: Cost function obtained introducing a high level of noise in the synthetic images

(standard deviation: 150 grey levels) and using the PDA algorithm, with a radius of 20

pixels, to compute the strain field. 10 repetitions for each test. Material glass/epoxy UD.

The reference plot corresponds to the cost function of Figure 9.

The same procedure used to determine the optimal design variables on

glass/epoxy UD was repeated using an increased level of noise (standard

deviation: 150 grey levels) and PDA to compute the strains, with a large

span radius of 20 pixel. Only 10 repetitions were used at each configuration

because of the long time required by the PDA algorithm. The results are

presented in Figure 19, the reference plot is the cost function evaluated for

the same material in Figure 9. Qualitatively, the two cost functions look

similar. In this case a minimum was found for L = 29.8 mm and α = 57.5o,

not too far from the values obtained previously and listed in Table 2. Clearly,

looking at the contour scales in the two cases, the average identification error

is higher when more noise is introduced. In order to prove the effectiveness

of the PDA in reconstructing the strain field it can be highlighted that,
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although the standard deviation of the noise was increased five times, from

30 to 150 grey levels, the average error in the identification increases only

by a factor of around two.

On the basis of these results, it seems reasonable to conclude that an

optimized configuration found using a low level of noise and no smoothing

will be effective also when a high level of noise is encountered. From a

practical point of view, the possibility of excluding the smoothing process in

the optimization algorithm, where the cost functions have to be evaluated

many times, allows to save a lot of computational time.

4.6. Influence of missing data

During a real test it is always difficult to measure the displacement at

the free edges of the specimen and some data are commonly lost. This is

particularly true for digital image correlation but also to a lesser extent

for the grid method where one line at least is lost (5 pixels) because of

the WDFT algorithm used to extract the phase (Surrel, 1996). The VFM

requires the measurement of the displacement field up to the free edges of

the specimen therefore, when data are missing on the top or on the bottom,

an error is inevitably introduced in the identification. In order to assess

the magnitude of this error, a test was conducted using a specimen with

L = 30 mm and α = 50◦ for which rows of data from the top and the

bottom of the specimen have been removed.

As illustrated in Figure 20, the identification is rather dependent on

missing data. For instance, if 25 pixels are removed at the two edges of

the measurement area the error in the identification is almost double. In

this specimen configuration, 25 pixels correspond to around 1 mm in metric

units. This strong dependence is probably due to the bending load in the

46



10 20 30 40 50
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of lost pixels

C
os

t f
un

ct
io

n

Figure 20: Identification error as a function of the pixels which are removed from the

edges of the specimen
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Figure 21: Cost function with five rows of measurement points missing at each edge,

material: glass/epoxy UD, standard deviation of noise: 30 grey levels. The reference plot

corresponds to the cost function of Figure 9.
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Iosipescu test which has maximum bending stress and strain at the edges of

the specimen.

Figure 21 shows the cost function for glass/epoxy UD when five rows of

points are removed from the top and the bottom of the measurement area.

In a similar way as to what was observed for the smoothing, the missing

data slightly influence the shape of the cost function with respect to the

design variables but principally increase the mean value of the error. The

average error is almost double compared to the reference plot, for the same

material and the same amount of noise. Comparing the two contour plots,

it can also be noticed that the missing data influence more the identification

when the fibre angle varies between 10◦ and 35◦.

In this case we considered only missing data at the edges of the spec-

imen. In actual experiments imperfections of the grid transfer onto the

sample surface could produces missing data also inside the measurement

area. Although such effect has not been taken into account in the present

study, it could be simulated using the same proposed procedure.

5. Conclusions

This paper has presented a procedure to simulate numerically a real

experiment, namely the unnotched Iosipescu test. The work is based on

the simulation of the experimental process by FEM and the reconstruction

of synthetic images simulating a CCD camera recording. The grid method

was used to evaluate the displacement and the strain field was obtained

by differentiation. The main objective was to reproduce as accurately as

possible all the features that characterize a real test. A failure criterion

was introduced to determine the maximum applicable load, the effect of
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the spatial resolution, the minimum grid size, the effect of noise and the

influence of missing data were taken into account.

Simulated experiments represent a powerful tool to design an optimal

experimental set-up, since all the characteristics can be easily varied. In the

present case they were used to optimize the free length and the fibre angle of

the specimen for four composite materials. The VFM was used to identify

the constitutive parameters and a cost function was introduced to evaluate

the error and find the best set of design variables.

The obtained results appear reasonable and in line with the experiments

conducted on similar materials with the Iosipescu test. This gives a first

confirmation of the effectiveness of the adopted procedure.

The main outcomes from the present study are as follows.

• It has been demonstrated that it is possible to numerically simulate,

in a realistic way, an experimental test which uses full-field measure-

ments to identify the material properties of composites. Simulated

experiments represent a useful tool to improve the design of actual

tests;

• the spatial resolution of the measurement technique plays an important

role in the parameter identification. In designing experiments, it is

advisable to use specimen shapes that approach the aspect ratio of

the CCD chip;

• a high anisotropy has a detrimental influence on the identification

in terms of global error, however it influences less the shape of the

cost function and the choice of the optimal design variables. As a

consequence, the same test configuration can be efficiently used to

test different types of composites;
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• the necessity of introducing smoothing in the identification depends

on the amount of noise. For a given specimen configuration, smooth-

ing becomes necessary beyond a certain noise threshold which can be

evaluated with the proposed procedure;

• using the unnotched Iosipescu test and the VFM, the data measured

close to the edges of the specimen bear a great importance in the

parameter identification. A measurement technique that allows to

reduce the missing data at the edges will considerably improve the

reliability of the identification.

In the future, the idea is to use the present procedure to design automati-

cally more complex specimen shapes, that, for example, will be less sensitive

to the missing data at the edges. Other full-field techniques, for instance dig-

ital image correlation, can be introduced in the procedure. Finally, to have

a definitive check of the effectiveness of the developed procedure, a thorough

experimental study is needed to validate the numerical optimization.
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