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Abstract. In this study, tensile loading experiments are performed on notched steel bars at an 
average applied strain rate of 1s-1. Displacement fields are measured across the specimen by coupling 
digital image correlation (DIC) with imaging using high speed CCD cameras (4796 fps). Results 
from the experiments indicate the presence of local strain rates ranging from 0.1 to 10s-1 in the 
notched specimens. The heterogeneity of the strain rate fields provides suitable conditions for 
determining simultaneously all the elasto-visco-plastic constitutive parameters governing the 
material behavior. For that, the whole stress fields are reconstructed in the specimen using the full-
field deformation measurements. This reconstruction is repeated with different constitutive 
parameters until the average stress in the specimen matches the one measured with the load cell 
response. Perzyna’s model is firstly considered for the reconstruction of stresses but it is shown to be 
unsuited for providing the drop in the average stress that is systematically detected at the onset of 
plasticity by the load cell. This drop is attributed to the sudden occurrence of plasticity in the 
material due to Lüders effect. A modified model for elasto-visco-plasticity taking account of Lüders 
behavior in the material is considered afterwards. It yields a better agreement between the 
reconstructed stresses and the load cell response, and a more accurate identification of the parameters 
driving the visco-plastic model. Eventually, it is shown how to use DIC measurements for replacing 
the load cell measurements when the transient effects in the test reach the resonance frequency of the 
load cell. 
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1. Introduction 

Stresses due to inelastic deformation of materials are generally sensitive to strain rate; it is well 

known that the yield stress of metals increases with strain rate. Knowledge of strain rate sensitivity is 

necessary for accurate simulation in such situations (e.g., plastic forming, cutting, crashworthiness). 

Appropriate visco-plastic constitutive models describing the mechanical behavior of materials 

sensitive to strain rates are employed for achieving these simulations [1]. 

 

Since experiments are needed to determine the constitutive parameters of these models, simple 

mechanical tests (i.e., tension and/or compression of prismatic specimens; torsion of thin tubes) may 

be carried out. For experiments performed under quasi static conditions, the specimens generally 

have relatively uniform stress and strain distribution in the gage area of the specimen. By increasing 

the velocity of the applied displacement/loading, resulting in strain rate increases within the 

specimen, material parameters governing the visco-plastic behavior can be identified. For example, 

by plotting the different values of yield stress obtained at different strain rates, an appropriate yield 

stress versus strain rate model can be defined. 

 

Though simple in concept, this experimental approach has two main drawbacks. First it requires a 

large number of experiments performed at different strain rates. Second, the assumption of uniform 

strain and stress distribution is only satisfied under quasi-static conditions; for strain rates greater 

than 1 s-1, transient strain localization effects cannot be avoided in the specimen [2]. Thus it is not 

possible to ensure that the strain rate and the stress are constant in the gage length of the specimen. 

Localization effects can even occur at low strain rates in presence of Lüders effects [3] or Portevin-

LeChatelier effects [4]. 

 

It will be shown in this study that localization effects can be used as an asset if the spatially and 

temporally varying displacement fields are measured at appropriate time intervals throughout the 

specimen. Indeed, heterogeneity of strain rate implies that different strain rates occur at different 

positions in the same specimen, which implies that the measured displacement fields may provide 

sufficient information for identifying the constitutive parameters governing the elasto-visco-plastic 

behavior of the material over a certain range of strain rates. 

 



The measurement of displacement fields, even at moderately high strain rates, is feasible today with 

modern high speed camera systems [2]. The widespread use of digital image correlation [4,5], 

denoted DIC, and its coupling with the technology of high-speed cameras, can provide the desired 

displacement fields. However, the data processing towards the final aim of identifying material 

constitutive parameters remains an issue. The solution of the inverse problem may be found by 

minimizing an objective function which compares experimental and simulated data with one another. 

In this context, uniqueness and stability of the inverse solution affect in particular the identification 

process. Moreover, simulated data can only be obtained by solving the associated non-linear 

boundary and initial problem, which is somehow tedious. 

 

Pioneers in the identification of elasto-plastic behavior from full-field measurements were 

Meuwissen and his coworkers [6]. They suggested performing experiments leading to non uniform 

stress states, with the idea of retrieving more parameters from a single, well-characterized 

experiment. The parameters were retrieved by calibrating a finite element (FE) model against the 

measured displacement fields. This approach is very powerful as the number of parameters identified 

in a single experiment can be much larger than in classical tensile or torsion loading experiments. 

Kajberg and his coworkers recently extended this approach to elasto-visco-plastic behavior [2, 7]. 

However, one of the main drawbacks is that FE computation is time consuming; estimating a few 

parameters from experimental data can easily take more than 20 hours in some cases [8]. 

 

A much more computationally efficient approach for identifying elasto-plastic constitutive 

parameters from full-field measurements, which does not require any FE computations, has been 

suggested recently. Originally developed for the identification of elastic properties [9,10,11], the 

virtual fields method (VFM) has been validated for the identification of elasto-plastic constitutive 

parameters on simulated data by Grédiac and Pierron [12] and then on experimental data by Pannier 

et al. [13,14] and Avril et al. [15]. The principle of the VFM for estimating elasto-plastic material 

parameters is the following: the measured displacement fields are used to quantify the stress 

components across the specimen. Since the resulting stresses depend upon parameters in the 

constitutive model via the stress-strain relationships, by requiring the stresses to satisfy equilibrium 

constraints (via the principle of virtual work), the input material parameters are updated until the 

equilibrium is satisfied. 

 



This study is an extension of the VFM to elasto-visco-plasticity. A tensile loading experiment on a 

double-notched specimen has been specifically designed to give rise to heterogeneous stresses and 

strain rates during a single test. The investigated material is mild steel (very sensitive to strain rate). 

In the following sections, the experiments are described. The principle for identifying the elasto-

visco-plastic constitutive parameters and for characterizing a model of Lüders effect is presented and 

validated with the experimental data. Eventually, it is shown how to use DIC measurements for 

replacing the load cell measurements when the transient effects in the test reach the resonance 

frequency of the load cell. 

 

2. Standard tensile characterization of elasto-visco-plasticity 

The material used in the experiments is mild steel with 99.5% pure iron. It is supplied as 2 mm thick 

rolled sheets from which specimens are cut. Therefore, the material is used in its hardened state and 

no annealing is considered during this study. A chemical characterization revealed less than 0.02% 

carbon in the material. Metallography showed a uniform grain size of about 20 µm in average [14]. 

The grains were mostly composed of ferrite, though grain boundary cementite was locally observed. 

In order to achieve a standard uniaxial tensile characterization of this material, 18 specimens were 

machined into a dog-bone shape, with straight edges over a gage length of 60 mm. All of the 

specimens were cut in the rolling direction of one single rolled sheet so as to avoid a variation of 

mechanical properties due to the anisotropy induced by rolling. Data for a tensile loading experiment 

performed at a strain rate of 2×10-4 s-1 indicates that the material properties in the transverse and 

rolling directions are similar, suggesting isotropy in material response is a reasonable approximation 

[14].  

 

In order to provide reference values for the elasto-visco-plastic constitutive parameters, the material 

was characterized at different strain rates (2×10-4 s-1, 4×10-2 s-1, 1.05×10-1 s-1, 2.5×10-1 s-1,  

4.2×10-1 s-1 and 1.05 s-1) by standard tensile uniaxial loading experiments on coupons, using 3 

samples for each strain rate.  

 

The stress-strain curves obtained from the standard tensile loading experiments are linear before 

yielding. Young’s modulus E = 199 GPa was deduced from the slope of the curves and was 

independent of strain rate. Poisson’s ratio ν = 0.28 was assumed independent of strain rate within the 



range of strain rates considered in this study. It was characterized only at 2×10-4 s-1 using strain gage 

rosette measurements. 

 

Let us define the Von Mises effective stress, denoted σ, such as: 
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where s is the deviatoric stress tensor with components sij defined such as ∑−=
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The stress-strain curves after yielding are non linear (Fig. 1). Conventional models based on the 

Von Mises yield function will be used in this study to model the elastic domain evolution of the 

material [1]. The Von Mises yield function, denoted f, may be written: 

 f(σ) = σ - σs (2) 

where σs is the yield stress. The behavior is assumed isotropic and kinematic hardening internal 

stresses are neglected. The Von Mises yield surface, which defines the elastic domain for a material 

under multiaxial loading, contains all stress components such as f(σ) = 0.  

In order to take isotropic hardening into account, the yield stress σs may be linked to the effective 

plastic strain, denoted p, and defined as: 
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where  is the plastic strain rate tensor, with components , and t is the time. pε& p
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In a standard tensile loading experiment along the x axis, before the occurrence of necking and 

providing that localization effects are avoided, the loading path is proportional [1]. Thus, the 

effective plastic strain may be approximated according to: 
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where x is the direction of tension and F is the measured resultant load. 

 

Only isotropic hardening is considered in this study. Using the experimental uniaxial tensile loading 

results for the present material, the relationship between yield stress σs and effective plastic strain can 

be written: 

 )()( 0 pHYps +=σ  (5) 



where Y0 is the initial yield stress and H(p) is the hardening function, such as H(0)=0. Different 

functions may be considered for H(p) [1]. Only its initial slope, denoted Et, was investigated here. It 

is defined as:  

 )0( == p
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Y0 was identified from the stress/strain curves by detecting the stress for which there is a sudden 

change of slope at the end of elasticity (Fig. 1). Et was identified by fitting linearly in the least 

squares sense the stress/strain curves after the onset of plasticity within the limit εyy<0.03. 

 

It can clearly be seen from the curves plotted in Fig. 1 and from the results of Tab. 1 that Et and Y0 

both depend on the strain rate. 

 

The hardening modulus Et decreases when the strain rate increases (Tab. 1). By looking closely at the 

curves in Fig. 1, one can notice the existence of a plateau just after the onset of plasticity for strain 

rates 0.42 s-1 and 1.05 s-1. This plateau almost does not exist for strain rates 0.04 s-1 and 0.1 s-1. This 

may indicate the development of Lüders behavior for this material when the strain rate becomes 

large, which is quite common for mild steel [3,16,17]. Lüders behavior exists in annealed mild steel 

specimens at any strain rate, but also in hardened mild steel specimens (like the ones investigated 

here) at high strain rates. This phenomenon results from the rapid multiplication of mobile 

dislocations and the stress-dependence of dislocation velocity at the microstructural scale. It induces 

the initiation of bands at the shoulder corners of dogbone shaped specimens. After their initiation, the 

bands move towards the center of the specimen and eventually the strain recovers its uniformity. 

During the propagation of Lüders band, the stress remains almost constant. Then, hardening is 

negligible (sometimes even considered negative [1]), which explains why Et is lower for the highest 

strain rate in Tab. 1. However, for engineering strains larger than 0.05, all the curves in Fig. 1 are 

parallel, which means that the hardening function H(p) is only affected by the strain rate for small p 

but is independent of the strain rate for larger p (superior to 0.05). It can be concluded that the effect 

of strain rate on the hardening of our material disappears when Lüders effect disappears. 

 

Before considering Lüders behavior through appropriate equations (see Section 6), let us focus only 

on the initial yield stress Y0. It is also very sensitive to the strain rate, showing that the investigated 

material has a visco-plastic behavior. The rate dependent model chosen here for coupling Y0 and the 

strain rate is an additive one suggested by Lemaitre and Chaboche [1]: 
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where σ0 is the quasi-static initial yield stress (the “drag” stress [3]), Ka is the stress rate sensitivity 

factor and n is the strain rate sensitivity exponent (thus 1/n is the stress rate sensitivity exponent). 

The values deduced for this model using the data from Tab. 1 are: σ0 = 140 MPa, Ka = 153 MPa.s-1/n 

and n = 8.  

For simulating numerically the behavior of metals, models giving the plastic strain rate in function of 

the yield stress are required instead of models such as Eq. (7) that give the yield stress in function of 

the plastic strain rate. Perzyna’s model [2] fulfils this requirement for instance. Perzyna’s model is 

deduced from Eq. (7) by a mere inversion. Accordingly, the equivalent plastic strain rate is deduced 

from the yield stress using the following equation: 
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where z  = z if z > 0, z  = 0 otherwise. Eq. (8) is only satisfied when f(σ) = 0, i.e. when σ = σs (the 

yield stress equals the effective stress). Otherwise, the material is in the elastic range (σ < σs) and 

consequently, .  0=p&

 

Parameter γ, which is the strain rate sensitivity factor and has the dimension of strain rate, is defined 

such as:  
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The value deduced for this parameter using the data from Tab. 1 is γ = 0.5 .s-1.  

 

3. Novel approach for identifying elasto-visco-plastic constitutive parameters 

3.1 Experiment and specimen 
A tensile loading experiment was specifically designed to give rise to heterogeneous distributions of 

stresses and strain rates across a flat thin specimen with notches. Fig. 2 shows the notched bar tensile 

specimen. The displacement ramp rate is about 61 mm/s. The data sampling rate for recording the 

resultant load applied by the MTS tensile machine is 1 kHz. Two high speed cameras were used for 

synchronized recording of images of the front and back surfaces of a nominally planar specimen; 

images of each surface are required so that data measured on both sides could be compared to detect 



possible parasitic effects of out-of-plane motion on the deformation measurements [13]. The imaging 

was performed at 4796 frames per second with a full resolution of 800×600 pixels.  

 

Experiments were performed with two specimens. The resultant load measured during both tests has 

been plotted in Fig. 3, showing a good repeatability. 

 

The deformation of the specimens during loading was analyzed by the DIC technique with the help 

of the VIC-2D software [18] using a 21×21 pixel correlation window and a step size of 5 pixels 

between subset centers. The measurements have been estimated to have a positional error of about 

10-2 pixel. For filtering purposes, the measured displacement fields were projected on a basis of 

piecewise linear functions, denoted fk [11]. The geometry of the specimen in the measurement area 

was meshed using triangles with a mesh size of about 4 mm (Fig. 2). Each function fk equals one at a 

given node of the mesh and zero at all the other nodes (shape functions). The reconstructed 

displacement fields can be written: 
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where ak and bk were obtained by regression in the least squares sense. Then, the displacement fields 

reconstructed with the basis functions were used to deduce the strain fields required for the 

identification, with an estimated resolution (least detectable strain, characterized from two different 

images of the undeformed specimen) of 2.10-5 and a spatial resolution (least distance between two 

uncorrelated strain values derived from the measurements) of 4 mm. The maps of strain component 

εyy are shown in Fig. 4. Localization of strains at the center of the specimen is evident. 

 

Differentiating the strain fields with time provides maps of the strain rate, as for instance dεyy/dt in 

Fig. 5. The maps shown in Fig. 5 were obtained without any further filtering than the reconstruction 

according to Eq. (10). As the strain resolution is 2.10-5 and the acquisition frequency is 4796 images 

per second, the strain rate resolution is about 4796×2.10-5 ≈ 0.1s-1, with a spatial resolution of 4 mm 

again and a time resolution of 0.2 ms (=1/4796). Such a short time resolution makes possible the 

detection of very short-duration phenomena in the response of the specimen. Interestingly, the strain 

rate fields are heterogeneous, varying by nearly two decades within the same image, between 0.1 s-1 

(strain rate resolution) and 8 s-1, even though the average strain rate is held constant throughout the 

experiment by prescribing a constant speed to the cross head. Since the same phenomenon was 

observed for the two tested specimens, the following discussion is provided. 



 

High values of strain rate are clearly observed in the center of the specimen about 7 ms after 

itiating the displacement ramp (see Fig. 5). The plastic strain rate in the central part of the 

3.2 The VFM in the elastic range 
The global equilibrium of a solid with neither body nor acceleration forces acting on it can be written 

in

specimen overtakes the local prescribed strain rate that occurred during the elastic stage, inducing a 

redistribution of strains and also a decrease of the measured resultant load (see Fig. 3). The large 

strain rates in the center of the specimen are compensated by a quasi-zero strain rate away from the 

center. Therefore, for the same ramping rate of the tensile machine, much larger strain rates could be 

reached because only a localized part of the specimen continues to be deformed. The transition from 

a quasi-uniform (within measurement uncertainty) strain rate distribution during the elastic behavior 

to a localized strain rate distribution after the onset of plasticity provides conditions for 

characterizing the visco-plastic behavior in a single experiment. The following sections show how 

the strain fields can be processed to retrieve the constitutive parameters governing this behavior. 

 

as: 
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his equation is referred to as the “principle of virtual work”

tensor across the volume of the solid (denoted V), the Ti are the components of a vector figuring the 

 investigated specimen is in a plane stress state. This is relevant due to the 

inness of the plate, its constant thickness (denoted h in the following) and to the applied loading 

behavior range lasts about 6ms), the material is elastic and isotropic. 

uring this time, the stress components can be expressed as a linear function of the strain 

components (using the convention of contracted indices (xx→x, yy→y, xy→s): 

T . The σij are the component of the stress 

surface density of the traction applied over the external surface of the solid (denoted ∂V), the ui
* are 

the components of a vectorial test function which only has to be continuous across the solid. This test 

function is named “virtual displacement field” and the εij
* are the components of the virtual strain 

tensor derived from it. 

 

Let us assume that the

th

(in-plane tension). Thus the stress can be assumed homogeneous across the thickness, along with the 

strain and the deformation.  

 

Before yielding (the elastic 
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Thanks to the measurement of the displacement fields and their projection on the basis of piecewise 

near function shown in Eq. (10), the in-plane strain fields ar

in the specimen. Writing Eq. (11) over this area, one has: 
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The latter equation is satisfied with any virtual field ui
* [9]. Poisson’s ratio is identified by using a 

irtual field that figures a lateral shrinking deformation and for which the 

resultant load is cancelled. This virtual field is chosen so as to maximize the identifiability of 

rtual field can be written in the form, 

v contribution of the 

Poisson’s ratio according to the theory developed in [11]. 

 

Young’s modulus is identified using: ux
* = 0 and uy

* = y, corresponding to the following virtual strain 

field: εxx
* = 0 and εyy

* = 1 and εxy
* = 0. Eq. (13) with this vi
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nd F is the measured load resultant. The area of the surface of

achieved is denoted S. 

a  interest where the measurement is 

 

Defining εx and εy as the average strains over S, one gets: 
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erage stress) versus [εYoung’s Modulus is identified by plotting F(tl)L/Sh (av x(tl) +ν εy(tl)]/(1-ν2) 

(dimensionless, like strains), for different times tl, all along the experiment (0<l<N). The obtained 

urve is eventually fitted by a linear curve in the elastic dom

or plasticity and visco-plasticity, Eq. (11) may be rewritten in a rate dependent form: 

  (16) 

c ain for estimating E. 

 

4. The VFM in the plastic range 
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where dtd /σσ =&  is the stress rate. The stress rate remains constant in linear elasticity, but it generally 

l [1]. The test 

considered in this study does not provide conditions of proportional loading. This is the reason why 

q. (16) must be used instead of Eq. (11) for identifying the vis

ntificatio

does not in plasticity and visco-plasticity except when the loading paths are proportiona

E co-plastic parameters. For addressing 

this ide n problem and compute the time integral in Eq. (16), the elasto-visco-plastic 

constitutive equations may be written as:  
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where g is a given vectorial function of the actual strain rate dtd /εε =& , of the actual stress σ and of 

the unknown constitutive parameters. The latter are denoted X when designated entirely and Xp when 

designated individually, 1≤p≤P, where P is the number of unknown constitutive parameters.  

he Von Mises yield surface was assumed relevant 
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T for the investigated material. Assuming volume 
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where sxx, syy, and sxy are the in-plane components of the deviatoric stress tensor and  is the 

quivalent plastic strain rate. For modeling the viscoplastic beh

according to Perzyna’s model [2]. Therefore, using Eq. (8), the constitutive equations may be written 

for this particular case:  
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Eq. (19) is a first order differential equation where function σ(x,y,t) is unknown. It can be recovered 

y solving this equation numerically with the Euler scheme. Time

corresponding to times for which measurements are achieved. Increment of σ(x,y,t) from one step to 

another are assessed according to: 

b  is discretized, each step 
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where ∆t is the time increment between two consecutive measurements. The first order 

approximation of the hardening function pEpH t≈)(  is assumed relevant. This assumption is justified 

 that 

q. (12) stands instead of Eq. (20) at the first iteration. A special attention is paid to the convergence 

e 

sess the suitability of the parameters σ0, n, γ, Et input into 

e algorithm. Parameters E and ν have been deduced from the strain fields measured before the 

by the small strains for which Eq. (20) will be applied further. It will be discussed in Section 6. 

 

The initial condition for launching the Euler scheme is that the behavior is elastic, meaning

E

of the Euler scheme. A slight mismatch between the computed stress and the actual yield stress 

occurs due to the approximations introduced in Eq. (20) by the time discretization and linearization 

of the stress increment from one step to another. This mismatch is corrected by the method of radial 

return, as explained by Sutton et al. [19] and as already used in elasto-plasticity by Avril et al. [15]. 

Therefore, from the available full-field measurements, and from a given set of constitutive 

parameters (σ0, n, γ, Et, E and ν), stress fields can be derived across the area of interest of th

specimen all along the test using Eq. (20). 

 

Using these stress fields, it is possible to as

th

onset of plasticity and therefore, one only needs to check the suitability of σ0, n, γ, Et during the post-

elastic deformation process. This is achieved simply by applying the principle of virtual work written 

in Eq. (16), with: ux
* = 0 and uy

* = y, corresponding to the following virtual strain field: εxx
* = 0 and 

εyy
* = 1 and εxy

* = 0. Accordingly, the following equation should be verified at each time t during the 

experiment: 
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ince experimental noise in the data will introduce errors 

repeatedly the stress fields from Eq. (20) and to update σ0, n, γ, Et until the minimum of the following 

S in Eq (21), the idea is to compute 

cost function is reached: 
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Eq. (22) gives the quadratic deviation between the average longitudinal stress computed from the 

measured displacement fields and the average longitudinal stress computed from the measured 

resultant load, summed up over the duration of the experiment. The evolution of both average 

stresses has been plotted in Fig. 6 at the minimum of the cost function. This minimum is generally 

reached in about 50 iterations by using a Nelder-Mead algorithm (about two minutes of time 

computation using a Pentium M, 1400 MHz). This represents a dramatic reduction of the 

computation time compared to the use of finite element model updating approaches that require 

several hours to obtain similar results [8]. 

 

5. Experimental results and discussion of Perzyna’s model 

The material parameters obtained using the approach presented in the previous sections are reported 

in Tab. 2. The estimated material parameters have been obtained for each specimen by using the two 

sets of data from separate high speed cameras on each side of the specimen to independently 

compute the parameters. The results are compared with the reference that was identified using 

standard tension test on the dogbone specimen. 

 

Regarding the elastic parameters, Young’s modulus identified on both sides of the two specimens are 

the same and in agreement with the reference. Since Young’s modulus is the same on both sides, it 

can be concluded that bending effects and out of plane parasitic motions discussed by Pannier et 

al. [13] are negligible in these experiments. Regarding Poisson’s ratio, they are also in good 

agreement with the reference. Variations exist between both sides of the same specimen (Tab. 2). It 

is conjectured that data scattering may be responsible for these variations. 

 

Regarding the visco-plastic parameters, Tab. 2 shows that there is a general agreement with the 

reference values for σ0 but deviations from the reference values remain large for parameters such as γ 

and n. The hardening modulus has no counter part in the reference experiments because the localized 

strain rates reached in the notched bar could not be reached in the dog-bone specimen. Nevertheless, 

it is noted that the values of Et identified in the notched bars are always lower than the ones 

identified in the dogbone specimens. This trend is in agreement with a reduction of hardening as 



strain rate increases, as shown in Tab. 1. It may indicate an amplification of Lüders effect in the 

double notched compared to the dogbone specimens. This will be discussed in Section 6. 

 

Deviations for γ and n may be explained by different reasons. The reference experiments cover only 

a few decades of strain rates, with only six different values. This may be insufficient to accurately 

estimate the three parameters in Perzyna’s model. Experiments carried out on the notched bars with a 

full-field measurement technique provide richer information, as each triangle defined in the 

measurement area (Fig. 2) corresponds to an independent measurement. Such a density of data can 

be used to assess the relevancy of Perzyna’s model when used to model the present material 

behavior. This was achieved by comparing the evolution of two stresses: 

1. the average stress deduced from the displacement fields, which is the first term of cost function 

F(σ0, n, γ, Et) in Eq. (22): 

 ∫ ∫=
S

t

tyltAV

l

dSdttyxEn
S

tEn
0

001 ),,,,,,(1),,,,( γσσγσσ &  (23) 

2. the average stress deduced from the resultant load, which is the second term of cost function F(σ0, 

n, γ, Et) in Eq. (22):  
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It can be deduced from Fig. 6a that, even for the parameters σ0, n, γ and Et that provide the minimum 

of cost function F, poor agreement exists between σAV1 and σAV2; the drop after the maximum and the 

oscillations of σAV2 could not be reproduced in σAV1 from the displacement fields. More detailed 

investigations by the authors indicated that no set of values could be found for σ0, n, γ, Et that would 

result in σAV1 where such oscillations occur. Accordingly, Perzyna’s model in Eq. (8) seems unsuited 

to model the observed behavior. 

 

The unsuitability of Perzyna’s model may account for errors obtained for exponent n in Tab. 2. 

Indeed, the cost function is only sensitive to this parameter at the onset of plasticity, between 6 ms 

and 9 ms, when the distribution of strain rates is the widest (varying between 0.1 s-1 and 8 s-1, 

according to the maps plotted in Fig. 5). As the model is unsuited during this part of the experiment 

(it cannot provide oscillations for σAV1), it is unlikely that the exponent n in Tab. 2 can be correctly 

estimated. For the same reason, values reported in Tab. 2 for Et are probably also affected. 

 



6. Results with an improved model taking account of Lüders behavior 

As shown in Fig. 6a, a rough agreement between σAV1 and σAV2 exists, except in the transient part 

when the drop and then oscillations occur in the load versus time curve (Fig. 3). To account for this 

particular behavior in the transient part, a model of Lüders behavior has to be introduced in the 

equations because Lüders effect becomes predominant during this part of the test due to the high 

strain rate. 

 

Indeed, the zone of localized strain rate in Fig. 5 may actually be viewed as a Lüders band. Lüders 

bands occur usually in annealed mild steel [16]. Sharp yield points, abrupt yield drops and 

subsequent plateau are generally noticed in the stress/strain curves of standard uniaxial tensile tests 

[3]. This can also occur in non-annealed mild steel at high strain rates, as this was observed for our 

material in the standard uniaxial tensile tests carried out on the dogbone specimens (Fig. 1). This 

phenomenon results from the rapid multiplication of mobile dislocations (like an avalanche) and the 

stress-dependence of dislocation velocity. It induces the initiation of bands at the shoulder corners of 

the standard dogbone specimens. Afterwards, the bands move towards the center of the specimen and 

eventually the strain recovers its uniformity. It is different in the double-notched specimen used here 

because, due to the specimen geometry, the Lüders bands are unable to escape from the notched zone 

[17]. Then, the Lüders bands just disappear when the dislocation multiplication ends. 

 

Lüders effects is actually independent of hardening properties [3, 16]. A hardening function such as 

 still provides satisfactory approximations of hardening for our study within the range of 

strains which are considered. Lüders effect is rather modelled as a variation of the initial yield stress 

Y

pEpH t=)(

0 in the literature [3, 16]. Indeed, in order to model this effect, one has to consider that γ in Eq. (13) 

or (14) depends on the cumulative plastic strain p [3, 16]; γ is the product of the number of 

dislocations by the elementary velocity of each dislocation (norm of the Burgers vector [1]). If the 

number of mobile dislocations changes, γ cannot be assumed as constant. A general model suited for 

Lüders behavior is the Yoshida’s model [3, 16]. It may be written:  

  (25) pe λγγγγ −
∞∞ −+= )( 0

 

Therefore, let us consider the following model as an extension of Perzyna’s model to loading 

configuration where the plastic strain increment may vary very fast: 
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where λ, γ0 and γ∞ are three constants to determine. If λ is close to zero, the material is almost not 

affected by the Lüders effect and Perzyna’s usual model is recovered, with γ = γ0. 

 

Accordingly, increments of σ(x,y,t) from one step to another are now assessed according 

to:
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Using Eq. (27) instead of Eq. (20) for deriving σAV1 from the measured displacements, one obtains 

improved agreement with σAV2 in the transient stage. For example, the curve deduced from 

displacement fields in Fig. 6b was obtained with parameters:  

σ0 = 134 MPa, γ0 = 0.007 s-1, γ∞ = 0.2 s-1, Et = 1.6 GPa, n = 5.4 and λ = 26. 

 

These parameters are the ones for which the best agreement between both curves in Fig. 6b is 

reached. Parameters identified for the other side of the specimen and for the other test are reported in 

Tab. 3. Discrepancies between parameters obtained on the same specimen but using the data from the 

two different cameras located on each side of the specimen gives an idea of the sensitivity to 

measurement errors of the approach. Indeed, similar parameters should be identified on both sides of 

the same specimen. Variations of parameters Et, σ0 and n from one side to another are less than 10%. 

These parameters are more stable than the parameters of Yoshida’s model γ0, γ∞, and λ, which are 

identified with variations reaching more than 50% from one side to the other in the same specimen. 

This indicates that the test is not really appropriate for characterizing the Lüders effect, which is 

more like a marginal effect here.  

 

The initial purpose of this study was not to identify parameters governing a model of Lüders 

behavior. The initial purpose was to identify the visco-plastic parameters of Perzyna’s model and the 

Lüders effect in the model was only considered to improve this identification. This improvement has 

been reached as the identified values of σ0, γ∞, and n reported in Tab. 3 are in better agreement with 

the reference values compared to the values reported in Tab. 2. This can be checked in Fig. 7 where 



three curves representing the variation of Y0, according to Eq. (7) and (9), have been plotted in 

function of the strain rate (between 10-4 s-1 and 100s-1): 

- the curve using the parameters derived from the standard tests, i.e. the one that fits at best the 

data reported in Tab. 1, 

- the curve using the average values of σ0, γ, and n reported in Tab. 2, derived from the 

experiment on the double-notched specimens using the original Perzyna’s model, 

- the curve using the average values of σ0, γ∞, and n reported in Tab. 3, derived from the 

experiment on the double-notched specimens using the modified Perzyna’s model.  

 

A good agreement exists between the curve derived from the standard tests and the curve derived 

from the parameters reported in Tab. 3. However, the curve derived from the parameters reported in 

Tab. 2, i.e. identified with the VFM using the original Perzyna’s model, is, as expected, largely 

inaccurate. This proves that the consideration of the modified form of Perzyna’s model was required 

for a successful identification of the visco-plastic behavior using the double-notched specimens. 

 

Moreover, the hardening modulus Et reported in Tab. 3 is less scattered than in Tab. 2. Et is now 

independent of the strain rate because the effects of strain rates on hardening are modeled through 

Lüders behavior. This is why the hardening modulus value is now higher than the values reported in 

Tab. 2. Reference values for γ0, Et, and λ in the Tab. 3 are not reported because Lüders effect in the 

standard uniaxial tensile tests carried out on the dogbone specimens was not pronounced enough to 

identify these parameters. The reported reference value of γ∞ is the value of γ previously identified 

from Eq. (9). 

 

7. Addressing resonance issues in the load cell response using DIC measurements 

Even though the modified Perzyna’s model provides promising parameter values and a nice drop of 

σAV1 after the onset of plasticity in Fig. 6b, discrepancies remain: there is no oscillation of σAV1 after 

the drop whereas oscillations recorded by the load cell after the onset of plasticity still appear in the 

curve of σAV2. Actually, the oscillations recorded by the load cell are probably induced by vibrations 

in the tensile machine, affecting only the load cell data (far-field stress) but not the stresses across the 

field area. Indeed, a large energy release results from the occurrence of the Lüders band at the onset 

of plasticity. Significant accelerations (computed from the displacement fields by a double 

differentiation along the time) can be observed in the measurement area at this time (at 7 ms in 

Fig. 8). The bottom of the specimen has an acceleration of more than 2.5g (25 m/s2) and the top 



accelerates in the backward direction at about -1.5g (-15 m/s2). Vibrations are induced by this sudden 

acceleration and this results in a reverse acceleration field at 9 ms: the bottom now accelerates 

backward and the top forward, as if a shock wave was coming back after being reflected at the cross 

head of the tensile machine. These vibrations are amplified at the load cell due to the mass of the 

cross heads and other machine components. Indeed, if a mass of 40 kg was accelerated at 2.5g, the 

load would be amplified by 1000 N, and thus the average stress deduced from the resultant load 

would be amplified of 25 MPa. This is beyond the remaining discrepancy between both curves 

plotted in Fig. 6b. 

It is interesting to notice that the oscillations occurring in the load cell response have a repeatable 

frequency of about 200 Hz (Fig. 3). Similar oscillations were noticed, with the same frequency, in 

the standard tensile tests for the highest cross head speed (Fig. 1). This indicates that 200 Hz is the 

resonance frequency of the load cell itself or of the whole system, and that is the reason why the 

vibrations are amplified in the load cell response at this particular frequency. 

Therefore, the load cell data is not reliable during the transient zone of the test for deriving the σAV2 

stress required by our approach. Between 6 ms to 15 ms, there is a discrepancy between the far-field 

stresses (at the load cell location) and the stresses in the measurement area due to the amplified 

vibrations in the load cell. As σAV2 is not reliable, another way of calibrating σAV1 is needed. 

Fortunately, the cross section at the top of the measurement area (y=L) remains elastic during the 

whole duration of the transient effects (6 ms to 15 ms). Therefore, it can be used to provide a reliable 

estimate of the resultant load. Indeed, as E and ν were identified during the elastic range, they can be 

used to derive the following equation: 
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This equation provides a new estimate of σAV2, which may be written as:  
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The evolution of σAV2b is plotted in Fig. 9. As expected, there is a drop at the onset of plasticity, but 

no oscillation is visible. A good agreement with σAV1 is then recovered. Thus, the model given in 

Eq. (26) is relevant for the actual yield flow in the studied material. This application shows also 

through Eq. (28) that the requirement of using a load cell can be removed if the elastic properties of 

the material are known and if full-field deformation measurements are available. Indeed, the strains 

measured through a given cross section of the material can be used to derive the stresses through this 



cross section, and Eq. (28) can be used to deduce directly the resultant load through this cross 

section, which replaces the usual load cell. 

 

It is important to point out that the model which has been calibrated in this study takes account of 

strain localization transient effects induced at the onset of plasticity. This is only possible by 

coupling a full-field measurement technique and an inverse approach. Transient phenomena are 

usually not considered by authors who attempt calibration of visco-plastic constitutive models using 

global response data. By using full-field data, the present results confirm that the transient 

component of the visco-plastic constitutive response can be modeled so that an aspect of the actual 

visco-plastic behavior of metals that may be of importance at high strain rates can be adequately 

characterized.  

 

8. Conclusions 

In this paper, the identification of elasto-visco-plastic constitutive parameters from full-field 

deformation measurements was investigated. The shape of the specimen was selected in order to 

provide non uniform strain rate conditions within the specimen. Using the strain rate heterogeneity, 

strain fields measured on this single specimen have been shown to provide sufficient information to 

adequately characterize the elasto-visco-plastic behavior of a typical strain-rate sensitive material 

using a combination of the VFM with full-field deformation measurements. Specifically, the 

parameters identified with this approach were compared with the ones obtained using dog-bone 

specimens. Discrepancies were noticed for the Perzyna’s model, due to transient localization effects 

occurring at the onset of plasticity that were not adequately represented by Perzyna’s model. 

Promising results were obtained using the Yoshida’s model, which is a modified version of 

Perzyna’s functional form taking account of Lüders behavior. Eventually, it would be interesting to 

perform finite element simulations of our experiments, as shown in [20] for instance, for complete 

validation of the model. 

 

The procedure proposed herein for the quantification of elasto-visco-plastic model parameters, which 

requires a combination of full-field deformation measurements (with DIC) and an appropriate 

computational methodology (the VFM) to ensure overall equilibrium and satisfaction of boundary 

conditions, allowed the investigators to address the issue of transient strain localization at the onset 

of plasticity in tensile experiments carried out at a high strain rate. Extension to very high strain rates 

is one of the main prospects for this approach because the transient effects would be augmented. The 



recent drastic improvements in the technology of high-speed cameras will soon provide suitable 

conditions for these experiments. 
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Tab. 1. Reference values of the constitutive parameters at different strain rates. 
 

Loading rate 0.01 mm/s 2.54 mm/s 6.35 mm/s 15 mm/s 25.4 mm/s 63.5 mm/s 
Strain rate 2×10-4 s-1 4.2×10-2 s-1 0.105 s-1 0.25 s-1 0.42 s-1 1.05 s-1

Y0 190 MPa 249 MPa 255 MPa 267 MPa 279 MPa 296 MPa 
Et 2400 MPa 970 MPa 960 MPa 830 MPa 770 MPa 700 MPa 

 



 
 
Tab. 2. Elastic parameters and constitutive parameters of Perzyna’s model identified with the VFM. 
 
 

 E (GPa) ν σ0 (MPa) Et (GPa) γ (s-1) n 
Spec. 1, Cam. 1 203 0.27 156 0.40 0.16 19 
Spec. 1, Cam. 2 203 0.32 156 0.80 0.48 10.1 
Spec. 2, Cam. 1 198 0.30 145 0.38 0.15 10.4 
Spec. 2, Cam. 2 198 0.32 152 0.14 0.22 13.6 
Reference 199 ±5 0.28 ±0.03 140 x 0.5 8 

 



 
 
Tab. 3. Elastic parameters and constitutive parameters of modified Perzyna’s model identified with 
the VFM. 
 
 

 E  
(GPa) 

ν σ0 
(MPa) 

Et 
(GPa) 

n γ0  
(s-1) 

γ∞  
(s-1) 

λ 

Spec. 1, Cam. 1 203 0.27 134 1.6 5.4 0.007 0.2 26 
Spec. 1, Cam. 2 203 0.32 122 1.2 5.6 0.004 0.1 15 
Spec. 2, Cam. 1 198 0.30 140 1 10.2 0.007 0.17 29 
Spec. 2, Cam. 2 198 0.32 122 1.2 8.8 0.005 0.23 28 
Reference 199  

±5 
0.28 

±0.03 
140 x 8 x 0.5 x 
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Fig. 1. Stress/strain curves obtained at different strain rates in the standard uniaxial tensile tests on 
the dogbone specimens. 
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Fig. 2. Sketch of the non-standard specimens with the measurement area meshed using triangles for 

reconstruction of displacement fields  
 



 

 
 
 

Fig. 3: Measured resultant load F(t) during both experiments. 
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Fig. 4: Maps of strain component εyy during experiment (Specimen 2, Camera 1). 
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Fig. 5: Fields of strain rate during experiment (Specimen 2, Camera 1). 
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 (a) Raw Perzyna’s model  
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(b) Modified Perzyna’s model with Lüders behaviour 

 
 

Fig. 6: Curves of σAV1 (from displacement fields) and σAV2 (from resultant load) deduced for 
specimen 2. 



 
 
 

 
 

 
Fig. 7: Comparison of the viscoplastic models identified using the standard approach (dogbone 
specimen) or using the VFM (with the double notched specimen) with the two tested models 

(Perzyna and modified Perzyna). 
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Fig. 8: Field of vertical acceleration (Specimen 2, camera 1). 
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Fig. 9: Curves of σAV1 (from whole measurement area) and σAV2b (from elastic strains only) plotted up 
to 14 ms deduced for specimen 2. 

 
 
 


