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AHISOTROPT AND MAGNETOSTRICTION OF GdAl_ AND RELATED COMPOUNDS 
d. 

by John Ferris Burd 

Single crystals of the binary and pseudobinary compoimds RAlg and 

R^R^ ^Alg, where R and r' are rare-earth metals, have been grown by the 

Czochralski technique. Measurements of the magnetostrictions and aniso-

tropies of disc-shaped samples of the compounds GdAlg, Gd^ Tbg 

Gdg g^Tbg Alg have been made between 4.2K and their Curie temperatures 

in applied magnetic fields up to 2.5T« 

Anisotropy constants were measured by means of a torque magnetometer. 

The methods by which anisotropy constants can be derived from torque curves 

were investigated using a well-documented single crystal of cobalt and the 

conclusions drawn were applied to the measurements on the rare-earth alloys. 

The derived values of the first two anisotropy constants of GdAl^ were 

= (-2.8 + 0.1) X 10^ J m~^ and = (-1-4 + 0.2) x lO"^ J m~^ at 0 K. 

Magnetostriction measurements were performed using resistive strain gauges 

and a precision D. C. Wheat stone bridge circuit. The values of the first 

two magnetostriction constants of GdAl_ are h. = (6.0 + 0.2) x 10 ^ 

hg = (-25.1 + 0.2) X 10 at 4'2K. 

The dilute alloys were measured in the same way and derived values of 

their anisotropies and magnetostrictions were used to determine the 

anisotropy constant and the first two magnetostriction constants of TbAl^. 

The values are = - 2 x 10^ + 10^ J m~^ ; h^ = I4OO x 10 ^ ; 

hg = 920 X 10 The method used to derive these values and a 

theoretical model developed to test its validity is also discussed-
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IMTRODUCTION 

The compounds EAl^ where R is a rare-earth metal have been studied 

extensively in. polyciystalline form. The recently developed techniques 

by which single crystals have been produced have provided the opportunity 

to study the directional properties of these materials. A review of 

previous work and a general introduction to these congounds is presented 

in chapter 2. 

The measurements with which this work was concerned were those of 

the magnetic anisotropy and magnetostriction in these compounds which 

have a single magnetic sub-lattice. The theories of anisotropy and 

magnetostriction are described in chapters 5 and 4 respectively. 

Initially, the project involved the growing of these materials in 

single crystal form, subsequently experimental measurements of the 

magnetic anisotropy using a torque magnetometer, and the magnetostriction, 

using a sensitive strain gauge bridge were performed. 

The apparatus used in these three parts of the experimental work is 

described in the three parts of chapter 5* 

The methods by which anisotropy constants can be derived from torque 

curves were investigated in some detail and, from some measurements on a 

single crystal of cobalt, conclusions were drawn as to the methods most 

appropriate for particular field and temperature regimes. 

Torque curves were measured for GdAlg and, because of the small values 

of the anisotropy constants together with its high Curie temperature, this 

material was used as a host for diluting the highly anisotropic properties 

of TbAlg. Further measurements were made of the anisotropy of single 

crystals grown from GdAl^ containing 2% and /̂q TbAl^. All the torque 



resTilts are given in chapter 6. 

Magnetostriction measurements were also made on the single crystal 

samples described above and these are reported in chapter 7* 

In addition to the measurements on the dilute alloys, a theoretical 

model was developed to determine the means by which the measurements 

could be extrapolated to IOO96 TbAlg* This model, along with some 

con5)uter calculations, is described in chapter 8. 



CHAPTER 2 

2. THE INTERMETAllIC COMPOIMDS RAl^ 

2.!• Introduction 

The compounds of stoichiometric composition EAl^ , where 

R is a rare earth, will form for all the lanthanide series (l) 

and crystallise in the cubic McGu^ - type C15 Laves phase (2) • 

They all have melting points at around 1500°C and examination of the 

phase diagrams of the R - A1 systems (3) reveals a congruent melting 

point at composition RAl^ . Most of the series are ferromagnetic 

(4) with GdAlg having the hi^est Curie temperature of approximately 

170 E. The bulk magnetic properties of these materials, in 

polycrystalline form, have been extensively investigated. Early 

measurements were performed by Williams et al (4) on all the rare 

earth dialuminides except La» Eu and Y. More recently the possibi-

lity of producing single crystals of these compounds has been reali-

sed (5,6) and experiments involving neutron diffraction and magneti-

sation on single crystals have been performed (7-IO)• 

Structural investigations (ll) have reported the lattice 

parameters for all RAl^ compounds as well as showing that the CI5 

phase exists, for most combinations of rare earths, in the ternary 

form R^ r'^ ^ Al^ (12). However, substitution on the transition 

metal lattice with Pe, Co or Hi introduces a modification of the cubic 

CI5 structure to hexagonal CI4 (15» 14) at intermediate congo sit ions. 

From single crystal measurements (s) the magnetocrystalline 

anisotropy has been explained in terms of the crystalline electric 

field and exchange interactions and a successful agreement between 

theory and experiment obtained. 



Subsequent sections in this chapter will discuss previous 

work on these compounds with particular reference to properties 

relevant to this work and concentrating on the two compounds 

GdAlg and TbAl^ . 

2.2- Structure and Lattice Parameters 

The cubic Laves CI5 structure contains 32 atoms per unit 

cell which, for RAlg , is eight formula units- The rare earth 

lattice is a simple diamond structure (i.e< F. C.C. and F- C. C. + /̂4> 

/4 , /4 ) and the aluminium atoms occupy the vertices of tetrahedra 

which are linked, forming an interpenetrating lattice. This is shown 

in fig. (2.1). The lattice parameter determinations, using X-rays, 

for the EAlg and the related ECOg compounds were performed by Harris 

et al (11) who gave values of J. 903 & for GdAl^ and 7* 867 S. for TbAl^. 

2. 3. Magnetic Measurements 

The magnetic behaviour of these compounds has been the 

subject of considerable investigation. Early work by Williams et al 

(4) showed that the compounds were ferromagnetic, as were some solid-

solution ternaries with substitution on the rare earth lattice. 

These results were consistent with the earlier investigations of 

Jaccarino et al (15) who used ITMR to determine the magnitude and sign 

of the conduction electron polarisation. 

More extensive determinations of the Curie temperatures and 

magnetisations of the EAl^ series were made by Bus chow et al (l6), 

who also made measurements on alloys substituted on the rsire earth 

lattice with Y, La and Th thus diluting the magnetic properties with 

the non-magnetic ions. 



FIG. 2.1 The CIS Cubic Laves Phase Crystal Structure 

Rare Earth : Large Spheres 

Transition Metal : Small Spheres 



The temperature dependence of the spontaneous magnetisation 

of GdAlg is given "by several authors (4,16,17'18) and is illustrated 

in fig. (2.2). Absolute determinations of the saturation moments at 

low temperature have given 9* 0 Tb^* (7> 8) and 7- 0 M^Gd^"*" (15' 16) 

for TtAlg and GdAlg respectively. 

The magnetic anisotropy of these compounds was first invest-

27 

igated using HXffl at the A1 sites in several rare earth dialuminides 

(19). This gave the easy directions of magnetisation for the first 

time ( < lll> in both GdAl^ and TbAl^) and also examined the isotropic 

E K U (20) exchange parameters identifying a small anisotropic con-

tribution to the exchange (approximately-10^. 

With the availability of large single crystals of the EAl^ 

compounds (5,6) further studies were made of the magnetic anisotropy 

and crystal field effects in these materials (7>10)• Neutron 

diffraction measurements both elastic (21) and inelastic (22,23) were 

also performed, mainly using TbAl^ , to determine magnetic moments, 

and magnon dispersion relations which may be accounted for in terms of 

long range oscillatory exchange. Millhouse et al (21) give a value 

for the saturation moment of TbAlg of (9* 17 + 0* 04 M̂ g/̂ 'b̂ "'' ) which has 

been used in this work. Unfortunately gadolinium has a large neutron 

absorbtion cross-section and neutron diffraction experiments using th.e 

GdAlg compound have not been possible- • 

2.4. Other Measurements 

Resistivity measurements on these compounds have also been 

reported (24) which viece made in an attempt to clarify the interaction 

mechanism between the localised rare earth spins and the conduction 

electrons. 
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More importantly for this work single crystal elastic 

constants have been determined for both GdAl^ (25) and TbAl^ (26). 

The values of the three independent constants for these cubic 

materials, determined by ultrasonic techniques are given in Table 

(2.1). 



TABLE 2.1 - THE ELASTIC CONSTANTS OF SOME R.A& 2 COMPOUNDS (x 10" N 

4.2K 300K 

Cll ^12 -44 Cll Cl2 C44 

La 1.48 0.32 0.44 1.44 0.32 0.43 

Y A&2 1.76 0.34 0.58 1.71 0.34 0.56 

Gd AKg 1.69 0.35 0.65 1.61 0.37 0.59 

Tb A& 1.52 0.35 0.67 1.44 0.33 0.68 



CHAPTER 5 5 

5. MAGNETIC MISOTROPY 

5.1. Introduction 

The direction of magnetisation of a single crystal of 

magnetic material is often observed to prefer to lie in a particu-

lar crystallographic direction (the easy direction) • This is 

interpreted as a term in the free-energy expansion for the crystal 

which depends on the direction of the spontaneous magnetisation. 

This cong)onent will he a minimum when the magnetisation is parallel 

to an easy direction. This ani sot ropy will generally reflect the 

symmetry of the crystal lattice and is known as magnetocrystalline 

anisotropy. 

Further contributions to the total magnetic anisotropy 

may arise due to the shape, state of stress and previous thermal or 

magnetic history of the sample. These are known as extrinsic or 

induced anisotropies- In this chapter only the intrinsic anisotropic 

properties of the ciystals will be considered-

3.2. Phenomenology 

When a crystal is saturated the direction of magnetisation 

may be specified by the direction cosines , ag , . The 

anisotropy energy is then expanded as a power series in the ajs -

it can be shown (see for example Darby and Isaac,ref. 1.) that for a 

cubic crystal, to sixth order in the direction cosines, the anisotropy 

energy Eg. is :-

_ y / 2 2 2 2 2 2 \ ~ / 2 2 2 \ 
E^ — \ 0 ^ 2 ^2 2 1 ^2 * * \3* 1/ 



TOiere and Kg are the first two anisotropy constants and are 

characteristic of the material. 

Di the case of a hexagonal crystal, it is customary to 

write the anisotropy energy as a function of the polar angle ( 9 , 9 ) , 

where the angl^ 6 is the angle between the magnetisation (Mg) 

and the c-direction and cp the angle between Mg and an a-direction 

in the basal plane. Eg is then given by;-

Eg = sin^e + Eg sin^e + sin^G + ain^6 cos 69 •••(5*2) , 

The easy directions of the crystals, in both cases, are obtained by 

minimisation of Eg with respect to the angiilar position of Mg and 

therefore depend on the signs and relative magnitudes of the K's. 

Conditions for easy axes are given in refs. 2 and 3 and table 5*1 

shows the conditions, ignoring and K. (after reference 4)* 
2 4 

Another method of expressing equations (3*1) and (3*2) is 

to expand Eg in terms of an orthonormal set of functions, usually 

related to the spherical harmonics , (e.g. Zener ref. 6 or Turov 

and Mitsek ref. 5), such that:-

00 +& 
E = Z Z k™ Y™ (8 , *) ...(3.3) 

jl=o m- -H Z Z 

A discussion of the advantages of this type of expansion, especially 

when higher order terms need to be taken into account, in terms of 

the anisotropy coefficients is given by Birss and Keeler (?) • 

However, in the case where only the first two constants are to be 

determined there is little advantage in using the above method 

especially when Fourier analysis is used to separate the components 

of the torque curve and the sine expansion is most convenient. 



TABLE 3.1 - CONDITIONS FOR PARTICULAR EASY DIRECTIONS IN CUBIC CRYSTALS 

^1 
+ + + - - -

+ 0 0 t o -9K^/4 -9*1 - o o t o 9|KJ/4 9|Kll 

-9K^/4 t o - 9 K ^ t o - 0 0 9|KJ/4 t o 9lKj t o + 0 0 

EASY [lOO] [100] [111] [ m l [110] [110] 

MEDIUM [110] [111] [100] [110] [111] [100] 

HARD [111] [110] [110] [100] [100] [111] 



3' 3' Microscopic Origins 

The spin-spin exchange coupling is inherently isotropic, 

since its form contains no terms which relate to the orientation 

of the spins with respect to the lattice. However, the electronic 

orbits are strongly coupled to the lattice and the spins, throu^ 

spin-orbit coupling, are able to register the influence of the 

crystalline environment. Thus the relative strengths of the 

exchange, the spin-orbit coupling, and the crystalline electric field 

determine the nature of the anisotropy (8) • The single-ion model of 

anisotropy (9) assumes that the total anisotropy may be determined from 

the quantum states of a single ion only. 

In the rare earth metals, because the 4f-electrons 

responsible for the magnetic properties are localised and shielded from 

electrostatic interactions, and as the f shell implies large angular 

momentum, the spin-orbit coupling is strong and J becomes a good 

quantum number. Therefore an applied magnetic field will rotate the J 

vector and change the energy of the crystal through the crystalline 

electric field. The energy equations determined from crystal field 

calculations and the phenomenological equations (3'1) and (3.2) may 

be congiared to determine single-ion anisotropy constants. 

Therefore, with the exception of Gd, the single-ion aniso-

tropies are large and can be shown to dominate all other mechanisms. 

Because Gd is an S-state ion the crystal field interaction is zero, 

the orbital part of J, L = 0; and a different mechanism must be used 

to explain anisotropic properties. 

Such a mechanism might be thou^t to be the magnetic dipole-

dipole interaction, but, for cubic symmetry, this will give no aniso-

tropy to first order. This 'pair-model' considers the coupling of 



pairs of spin s^ and s^ by a dipolar interaction which leads to an 

energy term, , of the form:-

Ejj = ~ 3 ' rij)(Sj • fij) j ...(3.4) 

Where E. . are the dipolar coupling constants. However this form 
1J 

gives far too small values for the anisotropy and empirical constants 

of greater magnitude, along with pseudo-quadrupolar terms of the form:-

EQ ~ i< j ...(3.5) 

have been suggested (lO). Further arguments (11,12) using a gener-
/ 

alised interaction between a pair of spins, have predicted further 

pseudo-dipolar interactions which can be thoughtof as representing an 

anisotropic exchange coupling (see for example ref.l)• 

5-4* Temperature Dependence of Anisotropy 

The assumption that, in the bulk material, all the spins are 

aligned along an easy direction is only true at absolute zero. At 

a finite temperature, T, the spins will fluctuate about the easy 

direction due to thermal motion. This will result in the reduction 

of the spontaneous magnetisation and also the ani sot ropy energy. 

Because of symmetry considerations it is sufficient to use the pheno-

menological relations (5«l) or (3* 2) for the anisotropy energy but 

introducing temperature dependent K's; for the cubic case:-

2 2 2 2 2 2 2 2 2 
E^(T) = K^(T) (=1=2 + =2 =3 + =3 ) + ^2(1) (=1 =2 ®3 ••.•(3.6) 



The initial derivation of the form of the temperature dependence 

was made by Akulov (13) in I936, who showed using a simple classical 

argument that, in the cubic case:-

E^CP) . n(T)10 ••• (5-7) 

where m(T) is the reduced magnetisation (Mg(T) / Mg(0) )• The proof 

assumes an array of independent classical spins which at a finite 

temperature have a distribution of directions about the easy axis, but 

have individual energies defined by Eg(o) where the a's are replaced 

by the individual spin direction cosines. Thus the anisotropy at 

temperature T is then the statistical average over all the spin directions-

In contrast to this single-ion classical approach Van 

Vleck (10) employed a quantum theory and the pseudo-dipolar and pseudo-

quadrupolar interactions described above to derive power laws for the 

variation of anisotropy with temperature. However the initial analysis 

led to a second power law for the dipolar part and a 6th power law for 

the quadrupolar part which reduced to a 5th power law at higher tem-

peratures, which is in substantial disagreement with Akulov's result. 

The 10th power law was generalised by Zener (6) who showed 

that if the expansion in terms of spherical harmonics (section 3'2) was 

used, where the coefficients k (T) are used to replace the k (of 
a Z 

eq. 3.3) then: 

k,, (I) , i U * 1) /2 , , 

This result was derived using a random spin distribution within a 

small volume element of the crystal. 



10 

The resolution of the difference "between these two theories 

was achieved by Keffer (I4) in 1955* He demonstrated that the mole-

cular field approach of Van Yleck ignored the spin correlation; he 

used a cluster theory and derived the 10th power law for the pseudo-

quadrupolar terms at lower temperatures which changed to the 6th 

power of the reduced magnetisation as the temperature rose destroying 

the spin correlations. He also gave a general proof of the 

(& + 1)£/2 power law for single-ion and pseudo-quadrupolar terms. 

The same power law for the pseudo-dipolar terms, using spin wave 

theory, was derived by Keffer and Oguchi (15) in I96O. At the 

same time Van Vleck (I6) had used symmetry arguments to give a general 

proof of the (l + l)l/2 power law. Callen and Callen (17) also 

demonstrated a more explicit proof of this law showing that it is a 

consequence of the symmetry of the spin system, may be generalised to 

other crystal symmetries and is virtually model independent in the 

single-ion case. 

The theory predicts that for cubic symmetry; 

•••(5-9) 

and for hexagonal symmetry;-

k°(0) k°(0) k°(0) k^^O) 

In a torque experiment the anisotropy constants (K_) are measured but 

the coefficients may be determined from linear combinations given 



11 

"by Birss (18) • In the cubic case this leads to the temperature 

relations 

K^(T) = I^K^(O) EgCo) J mCrfO ; = E^Co) •.•(5.11) 

- -jL K^(o)m. ( I } 

Experimentally, disagreements have been observed between the measurements 

and theory for Hi and Co (19)* However, the 5<i transition metals 

do not have localised spins. Carr (20) has fitted the results for 

cobalt to a thermal expansion dependent anisotropy and has used a 

fitting parameter for nickel. The rare earths which have local-

ised spins give experimental results in good agreement with the 

theory (e.g. Tb, Dy (21,22) ) but, for Gd which is an s-state ion, 

two-ion effects are significant and the ten^jerature dependence is 

not correctly predicted (23 - 26). 

5* 5' Other contributions to anisotropy 

As mentioned in the introduction to this chapter there are 

a number of other contributions to the anisotropy of a crystal. 

The first to be considered is the shape anisotropy simply due to 

the difference in magnetostatic energies of the sample in different 

directions- The experimental samples used in this work were of 

the form of discs, which may be approximated to an oblate spheroid. 

However as both semi-major axes in the plane of measurement were almost 

equal the shape anisotropy constant can be considered to be 

negligible, from;-

•••(3.12) 

Where the N's are the demagnetising factor in the respective directions. 
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The second contribution to the anisotropy is the magneto-

elastic contribution. The anisotropy constants as defined in the 

previous section are defined at constant (zero) strain, whereas 

the measuremaits are made at constant stress. Thus there is a 

contribution to the measured anisotropy constants due to magneto- ; 

elastic effects. This contribution has been calculated (27) and 

can be written in terms of the magnetostriction constants and the 

elastic constants of the crystal. In the special case of cubic 

symmetry the differences in AK^, AKg may be written; 

- Oij) - =44 - + ZClg)* (5.13a) 

M g = + ...(3.13b) 

These values may be calculated if the h^ and the elastic constants 

^11 ' ^12 ^14 known and in most cases are found to be small. 

An explicit relation for hexagonal crystals is given by Mason (28). 



CHAPTER 4 13 

4. MGHETOSTRICTIOIT 

4« !• Introduction 

When a magnetic crystal is magnetised it undergoes a 

lattice deformation. This effect is called maignetostriction 

and may be measured by a fractional change in length ^ which 

is usually of the order 10 This strain is a function of 

magnetic field and reaches a limiting value known as the satura-

tion magnetostriction. The magnetisation process proceeds by 

domain wall motion and domain rotation, the bulk magnetostriction 

being the vectorial sum of the spontaneous magnetostrictions within 

the domains. V/hen all the domain magnetisations are aligned the 

magnetostriction reaches it saturation value. The formal origin 

of the spontaneous magnetostriction is a strain dependence of the 

magnetic energy of the crystal such that appropriate deformations 

will occur to decrease the magnetic energy, which will be counter-

acted by the normal elastic energy due to the strains. Hence 

equilibrium strains may be determined by considering the balance 

between the magnetoelastic forces and the elastic forces. A further 

contribution to the total magnetostriction is a volime magneto-

striction which is an isotropic effect and will add to the longitu-

dinal magnetostriction at saturation. This may also be called 

forced magnetostriction and is due to an increase in spin order at 

h i ^ fields. This is a small effect (A& approximately 10 per 

Tesla) and may be either positive or negative. Another contribution 

is the form effect which is due to the change of shape of the crystal 

with the deformation changing the magnetostatic energy density of 

the bulk. 
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4' 2. tfeLgnetostriction in Cubic Crystals 

If a magnetostrictive strain tensor e- • is employed 
J-J 

to describe the deformation when a stress a.. is applied, the 
^ J 

pairs of congonents are linearly related by a generalised Hookes 

law: 

- °ijkl ®kl •••(4-1) 

•Where the are the elastic stiffness constants. The elastic 

energy density associated with these strain components is; 

- 2 °ijkl ®io ® kl •" 

If a Maclaurin expansion is used to expand the magnetic energy 

density B as a function of the strains then the relation 
mag 

E ̂mag = + ®ij ®ij + ®ijkl ®ij ®kl + (4'^) 

is obtained. In this expansion the first term, E°, is identified 

with the magnetic energy for zero strain (i.e. the magnetocrystalline 

anisotropy). The second term E°. . e. . gives the interaction between 
10 1J 

the magnetocrystalline anisotropy and the strain and is called the 

magnetoelastic energy density. The final term E°^ 

the same form as equation (4« 2) and is interpreted as the magneto-

strictive contributions to the elastic stiffness constants Ĉ  , 

however this effect will be normally very small and in any case 

has already been taken into account if the C. , have been determined 
1 jJzj. 
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below the Curie temperature. It must be noted however, that 

the E°, and are defined in equation (4.3) at zero magne-

tostrictive strain, whereas measurements (e.g- of E°, the magneto-

crystalline anisotropy energy) are performed at constant stress. 

This difference is discussed in section 3* 5 and by Carr • 

(ref.1), but for this work is was found to be a negligible correction 

and will be neglected. 

The equilibrium strain e! . , is found from the preceeding 
^ J 

equations by minimising the sum of .E^^ and with respect to the 

strains 

e. . = — ^^1 •••(4*4) 
i j p 

Ijkl 

If the magnetostriction in a particular direction defined by the 

direction cosines p., |3 . is denoted by X then;-
^ J 

,0 
A. = " % e. 9, •••(4-5) 

=ijkl ' 

This may then be reduced by considering the symmetry of the cubic 

crystal where there are only three independent 

CT- = C. . .. and C.. = C. .. . (i, j = 1,2,3; i / j) and all tlje others 
12 iijj 44 ijij ^ ^ 

are zero (12). 

Using symmetry arguments phenomenological expressions 

linking the E^^ to the direction cosines of the magnetisation 

vector (a^, ) via magnetoelastic coupling constants, have 

been obtained (3) such that the solution of (4* 5) to second powers in 

a is given by:-
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2 2 
A = S(a^ ) + 2hg ...(4.6) 

where S indicates a cyclic permutation of the suffices of a, (3 and 

the h's are given in terms of the elastic stiffness constants and the 

magnetoelastic coupling constants. The explicit form for these 

together with the five constant derivation of equation 4* 6 is given 

by Birss and Isaac in reference (4) • A subtraction of the magneto-

striction from the ideal demagnetised state, leads to the more 

usual form of the magnetostriction (5) which to second order (as above) 

gives 

A - Ao = hi [ ) - Y ] + Zhg [ SfaiCgPiPg) ] •'' (4- 7) 

where h^ and h^ are the first two magnetostriction constants 

(h^ ~ ^/2 ^100 ' ̂ 2 ~ ^/2 ^111)' corresponding magnetoelastic 

coupling constants corresponding to this two constant expression are:-

^2 = - (C^i ~ ^12 ^ ...(4'8a) 

bg = - Zhg • • • (4' 

Similar arguments starting with equation (4.5) may be used to determine 

the relations for other classes of crystal, and many of these (6,7) 

include up to nine constants. In this work, magnetostriction 

measurements were performed on cubic crystals where the two constant 

expression ,is believed to be sufficient so further extensions of this 

argument (see for example reference l) have been omitted! here. 
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4- 5 Microscopic Origins of Magnetostriction 

The origin of magnetostriction is inherently linked with 

the magnetic anisotropy since it arises from a strain dependence 

of the anisotropy energy. Hence the mechanisms which are 

responsible for the anisotropy will, in turn, throu^ any strain 

dependence produce magnetostriction. But with magnetostriction, 

unlike anisotropy (sec.5* Si the calculation of the magnetostric-

tive properties of a real material is more complex since first 

derivatives, to first order in strain, of the energy densities 

are involved. Furthermore a knowledge of the ordinary elastic 

constants is necessary. Detailed calculations, however, have been 

attempted for certain rare earth materials (for example Gd refs. 8,9) 

and also for Ni (lO) and the Oo^ ion in spinels (Slonczewskir ref. 11) 

In a similar way to the magnetocrystalline anisotropy, the 

origins of the magnetostriction are considered to be both single-ion 

and two-ion and as mentioned above their derivatives with respect to 

the strain must be included. Following the notation of ref. (4) 

the Hamiltonian, in terms of spin operators, is written;-

a 

+ H- S. . ( ).S, + i ...(4.9) 

where is the appropriate elastic constant for the strain, • 

A suitable combination of ( S jy ̂  ̂  ) and ( 9D/ ) will correspond 
1 

a 
to the magnetoelastic coupling constants b^ , b^ (4* 8) above. 
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The terms of equation (4* 9)> in order, are the two-ion 

exchange and its strain dependence, the single-ion anisotropy and 

its strain dependence and finally the elastic energy term. The 

forms of 3j. ./ 9e and 9D/ 3e have been tabulated in the 
ij a a 

literature (12,15) and the origins of the two-ion interactions 

discussed further by Kanamori ( I4) and Wolf(l5). 

4.5.1. Bipole-Dipole Interactions 

This was first investigated by Becker in 1950 (16) in this 

case the strain dependence of the dipolar energy of the lattice was 

determined. The dipolar interaction is: 

E, = Z 
D • • 

IJ 
"i "i . 3 (Mi • " l i X u i • "li) 

TIL "IJ 

.. (4.10) 

where the are the moments on the i and j lattice points, and 

r^j the vector joining the ionic moments. When the lattice is allowed 

to deform homogeneously the dipole energy changes and Becker shows that 

the effect of all homogeneous distortions can be expressed in terms of 

a single lattice sum:. 

^ ^ ^ 1 ^ 1 7 ) ••• (4-11) 

This original method was further extended by Powell in 1931 (l?) and a 

further clarification of the problem was given by McKeehan in 1933 (I8) 

It was then possible to calculate magnetoelastic coupling constants 
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from this mechanism which has been attempted more recently (19) 

using a summing method due to Komfeld (20). However the fit to 

experimental results is so far poor (ref. 4> P-305) and the dipole-

dipole mechanism appears only to account for a fraction of the 

observed effects. 

4« 5* 2. Single-ion model 

In this case the exchange is considered to be isotropic 

and the magnetostriction is considered to arise from the perturbation 

to the single-ion by the strain derivative of the crystal field poten-

tial- The separate effects then taken to appropriate order will 

introduce a linear strain dependent perturbation to the single-ion 

Hamiltonian. 

Investigatiors have been made by Tsuya (19) for various 

compounds and in Cu ferrite where S = ly^ and crystal field effects 

vanish, observed a coupling which appeared to be dominated by dipole-

dipole effects. Other work using the single-ion approach by 

Slonczewski (ll) Claxke I966 (21) is described in reference (4)* 

4* 4" The Temperature Dependence of Magnetostriction 

The approach to the teng)erature dependence of the, magneto-

striction is identical to that employed for the anisotropy (section 3'4)' 

The spontaneous magnetisation, Mg, is reduced by its thermal spread 

around its preferred direction. In this case it is the E° and E?^ 

of equation (4. 3) which are assumed to have their 0 K magnitudes but 

the spread of directions. Since the E?. are only products of the 
^ J 

magnetoelastic coupling constants with , the direction cosines, the 

temperature dependence of the magnetoelastic coupling constants, and 

throu^ them the magnetostriction constants, may be obtained. 
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In a similar way to the derivation of the anisotropy 

constants, the E. . are expanded in terms of spherical harmonics, 

) =-

o ^ 
I 

2=o m=-£ 
G ij ' ^ V " - •> ••• (4-11) 

Where the are the magnetoelastic coupling coefficients 

(c.f. anisotropy coefficients, equation 3*3) and are related to the 

magnetoelastic coupling constants. The temperature dependence can 

then he derived in a similar fashion to the anisotropycoefficients, 

(for details of the calculation see references 3 and 4) so that:-

. *(?) * W + L ) / 2 ...(4.12) 

(0) 

where m(T) is the reduced magnetisation (M^Ct) / ]ŷ (0) ). The 

temperature dependence of the magnetoelastic coupling constants may 

then be determined from the set of . In the cubic case, for the 

simple two constant expression (4.7) the two coupling constants b^ 

and bg (4.8) are given by;-

3 
b^ (T) = b^O) [ m(T)] . . . ( 4 . 1 3 a ) 

bg (T) = ̂ (0) [ m(T) ] ̂  ... (4.13b) 

This relation may also be determined generally for all other, higher 

order, magnetoelastic coupling constants using the single-ion approach 
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(Callen and Callen ref • 22) • This argument has also been 

extended to cover other crystal symmetries and to include possible 

two-ion effects (25)• 

4' 5 Volume Magnetostriction 

In the expansion for the magnetostriction is is usual to 

include a term h^ which represents the isotropic volume change due to 

the change of magnetisation of the sample. Thus the expression for 

the spontaneous magnetostriction for cubic crystals is;-

A = H ^ + H^ + A^|3^ - "I) +2HG 

+ A^A^3^3^)+ ... (4* 14) 

Although rotation of the magnetisation introduces no volume 

change to first order, (i. e- to ), the term h^ has a temperature 

dependence and the appearance of magnetic order at the Curie temper-

ature results in a spontaneous volume strain which will give rise to 

the anomalous thermal expansion. The isotropic volume change AY^ 

will be equal to the sum of the three orthogonal cubic strains. 

Hence, for this case; 

4- 6 Forced Magnetostriction 

In the above section we have considered the change in 

magnetostriction due to the change in magnetisation with temperature* 

A change in the constant may also be produced by increasing field above 

saturation, which increases the alignment of the thermally agitated 
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spins, sometimes known as the paraprooess. 

Since in high fields the magnetisation is parallel to the 

field, the forced magnetostriction has the same symmetry as the 

spontaneous magnetostriction and may thus be written, for a cubic 

crystal, in the same way as equation (4. 7) 

= H ^ + H^ + (A^ (3^ + PG + ~ 5^ ^^2 ^"L"2'^L'^2"'' 

A^A^(3^P^)+ (4" 16) 

Where the h! are the forced magnetostriction constants and are 

9h^/ 3H. The h^ is usually dominant and hence the forced magneto-

striction is often referred to as a "volume" effect (cf. equation 4*15)' 

However, measurements have been performed to determine h^ and h^ for 

several metals and alloys of Ni and Pe (10,24,25)' The temperature 

dependence of the forced magnetostriction is expected to follow the 

temperature dependence of the magnetisation which has been observed to 

be true for Gd (26). 

4. 7 The Form Effect 

The shape of a sample may also influence the volume magneto-

striction because the magnetostatic energy density E° in equation (4* 5) 

will have a volume dependence due to the volume independence of the 

demagnetising factor. Analysis shows that a feature of this effect 

is that it increases as and reaches a saturation value at 

(ref 27) of; 

2 

[41 = . . . (4.17) 
2(C^^+ 20^2) 
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The form effect will also give rise to linear magneto-

strictions due to the shape derivatives of the demagnetising factors. 

This effect has been treated in detail by Gersdorf (28) for both a 

uniform strain appsroximation and also taking a non-uniform strain,. 

demonstrated by Brown (29),into account. He has observed that the 

non-uniform strain effect is not small for a spherical sample, by 

comparison of some experimental work (jO) with the theory. 
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CHAPTER 5 

5. EXPEEIIMEHTAL 

This chapter is divided into three main sections-

The first describes the procedures used in preparing the single-crystal 

samples used in this work. The major part of the preparation 

of these samples was performed at the Centre for Materials 

Science, University of Birmingham. The second section is a 

description of the torque magnetometer used for measurements of the 

magnetocrystalline anisotropy of these samples and the final section 

describes the apparatus used for the magnetostriction measurements. 

The work described in the last two section was undertaken at 

Southampton University. 
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5*1" Single Crystal Preparation 

5"1'1. Introduction 

In this section is described the methods employed in the 

preparation and growth of single crystals of the compounds of the 

type EAlg, an& their subsequent alignment cutting and characteriza-

tion. These compounds have congruent melting points at approximately 

1500°C and a Czochralski method was employed similar to that described 

by Purwins et al (l,2) using equipment available at the Centre for 

Materials Science, University of Birmin^am. Most of the character-

isation work which included metallographic analysis and X-ray micro-

probe and powder photography was also undertaken at the Centre. 

5.1.2. Metallurgical Aspects 

The rare earth dialaminides although having the same C15 

cubic Laves structure (3) as the BFeg, Mig and RCo^ compounds with 

rare earths are different in that they are congruent melting (4) .i.e. 

the compound exists at all temperatures upto its melting point, which 

is a maximum in the phase diagram (see fig. 5* !• l) • This peak in the 

liquidus line means that any variation of the composition EAl^ in the 

liquid state brings about a lowering of the melting point. Hence 

the first crystallisation is of the precise composition EAlg . Thus 

a crystal growth technique involving slow solidification can be parti-

cularly successful especially where the production of any second phase 

is to be avoided. 

The Czochralski method (5) used in this case utilised a Bridgman 

265 (6) apparatus (produced by Metals Research Ltd.) which had been 

modified for crystal pulling. The apparatus consists of a silica tube 

which could be evacuated or filled with an inert gas surrounded by a 

jacket. Radio frequency heating was employed using a 55 kW R. P. 

generator. 
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The temperatures employed mean that the molten material, 

which consists of the rare earth and A1 previously melted in stoich-

iometric composition in an arc furnace, must he within an inert 

atmosphere- The partial vapour pressure of the A1 and in some 

cases, that of the rare earth precludes the use of an evacuated tube. 

An over pressure of one atmosphere of ultra h i ^ purity argon gas 

(via a purifier) was used to provide an inert atmosphere and some 

reduction in the rate of loss of the melt. 

A second major problem is containment. The rare earth 

metals themselves are extremely reactive, even at room temperature, 

and at the elevated temperatures associated with the molten compound, 

these effects are even more pronounced. Most refractory oxides are 

reduced in the presence of rare earth metals and boron nitride is 

also seriously affected- The only remaining materials are the 

refractory metals, and tungsten, - in spite of machining problems, is 

the most suitable having very limited solubility in the rare earths, 

(ref. 7) • However the tungsten crucibles used proved to have a very 

limited lifetime and had to be annealed at 1000°C for several hours 

before use. However the tungstaitums out to be an extremely good 

susceptor for the radio frequency eddy current heating field and hence 

its efficiency is good-

5-1-3- Compound Preparation 

This section is written with specific reference to the 

compound GdAl^; however the process involved in producing the other 

samples was essentially the same-

The compound was initially prepared from 4̂ f aluminium 

(Johnson Matthey Ltd) and nominally JN Gd (Rare Earth Products Ltd), 

by melting together weighed amounts of the stoichiometric composition 
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in an argon arc furnace under approximately l/2 atmosphere of argon 

on a water cooled copper hearth. After initial melting of the two 

constituents the reaction was seen to proceed exothermically. The 

melted "button was then inverted and remelted to ensure homogeneity. 

Test weights of material were melted by this method and : 

then re-weighed, the loss of material in this stage of the process 

was found to be negligible. 

5* 1.4* Crystal Growth Ap-paratus 

The crystal pulling apparatus used was an already existing 

Bridgman 265 (Metals Research Ltd) with a Czochralski pulling 

attachment. The system has an inner furnace tube of silica glass 

and an outer one of pyrex , the intervening space being filled with 

water flowing at 3 litres/minute. The apparatus also has a vacuum 

system and facilities for filling the furnace tube with inert gas. 

The spun tungsten crucible rests on a silica glass or 

tantalum support on the water cooled base of the furnace tube. 

The pulling system consists of a threaded outer rod with a rotatable 

stainless steel inner, the speed of rotation and pull being controlled 

by means of two continuously variable speed, operator controlled, 

electric motors. 

Power input to the system is by means of a seven turn 

induction heating coil formed from 3/8" copper tube which is water 

cooled, wound around the outside of the outer furnace tube. Radio 

frequency power input is provided by a 35 kW Stanelco Radio Frequency 

generator. The R. P. field set up within the coil produces eddy current 

heating in the tungsten crucible and temperatures up to 2000°C could 
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be obtained with this system. A small single tiim copper coil 

attached to a rectifier and chart recorder sitiiated near the power 

coil was used to give a record of power levels throughout the process. 

The temperature of the crucible contents was monitored using an 

optical pyrometer. A diagram of the apparatus is given in figure 

5" 1* 2« 

5* 1. 5' Crystal Pulling Procedure 

After annealing the tungsten crucible and heating it to a 

h i ^ tenq)erature (approximately 1000°C) to remove the oxide coating, 

the prepared compound (sec. 5'1'3) was loaded into the crucible in the 

furnace tube and the system evacuated to approximately 10~^ torr. 

The crucible and contents were then outgassed at an intermediate 

temperature determined by the volatility of the components. 

After cooling the furnace was flushed with the high purity 

argon used as the inert atmosphere during the pulling process. This 

was supplied from a British Oxygen Company type RGP Ar/He purifier 

running on industrially pure Ar. The ultimate impurities in the 

argon after secondary purification are quoted to be less than 2 

volumes per million total impurities (8). 

The system was then sealed and the argon pressure reduced 

to approximately 2/3 atmosphere. The E. F. heating was started slowly 

to avoid thermal shock to the crucible. After the molten-state was 

achieved the 'seed' rod (also of tungsten and attached to the end of 

the pulling rod) was lowered into the melt and then withdrawn. The 

small amount of material acts as a polycrystalline seed and the sub-

sequent pulling procedure is designed to promote the growth of one 

particular grain. The temperature of the furance was maintained such 
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that the polycrystalline seed grows into a long 'neck' so that one 

grain only was finally selected. The forming "boule was then 

thickened by reducing the furnace temperature slightly and growth 

continued. Although attempts have been made to control boule 

thickness automatically (ref. 8a ) constant adjustment using visual 

observations was found to be satisfactory in this case. Once a 

sufficiently large san^le had been obtained the boule was pulled clear 

from the melt and the furnace slowly cooled to prevent thermal shock 

to both crucible and sample material. 

The boule size appears not to be critically dependent on the 

rates of pull or rotation. The boule is rotated to provide a thermal 

gradient which is cylindrically symmetric with its axis in the pulling 

direction. By fax the most sensitive control is furnace temperature 

which directly affects the thermal gradient, which must be such that 

the lowest temperature in the molten system (i. e the solid-liquid 

interface) is at the base of the seed. 

5'1.6. Sample characterization 

Characterization falls into two categories, crystallographic 

and compositional. Firstly we wish to know if the material is single-

crystal and if so what its structure / orientation is, and ̂ secondly, 

we wish to know whether it contains a significant amount of impurities 

and whether it is actually of the correct stoichiometry. 

(a) The initial procedure after the boule had been removed from the 

furnace involved back reflection Laue X-ray photographs taken across the 

surface of the sample. Where the material was single-ciystal ident-

cal patterns were obtained from points along the boule length separated 

by several centimetres. When this test was successful a more intensive 
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investigation of the whole surface was undertaken to determine the 

extent and quality of the crystal. For the first GdAlg crystal the 

growth direction was found to be nearly a [lOO] direction. The two 

ends of the boule were then usually removed by spark machining, the 

top being polycrystalline (see necking procedure 5-1* 5) and the lower 

end where the sample had been pulled away was often rough; and, if 

the melt had been almost exhausted, of uncertain composition. The 

exposed faces were then also X-ray photographed to check that the crystal 

extended across the diameter of the boule. 

The Laue patterns were used also to determine the orientation 

of the crystal and during final cutting further exposures were taken 

(see section $.1.7). 

(b) in the compositional characterization another X-ray method was used, 

that of Debye-Scherrer powder photography which is particularly useful 

for determining the presence of second phase and also gives an accurate 

value for the lattice parameter. In this work the parts of the sample 

to be analysed were ground to a fine powder, placed in a glass capillary 

and attached to the camera. The resultant films, after exposures 

of several hours, showed a series of lines, all except one faint line 

being identified with the Laves phase structure and corresponding to the 

lattice parameters shown in table ($.1.1). The faint line, was identi-

fied with the glass capillary material in a separate experiment using 

an en^ty capillary. The lattice parameters determined from the d-

spacings obtained from the lines were subjected to a Eelson-Eeilly 

extrapolation least squares fitted by computer program to arrive at 

accurate values. 
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Further characterization procedures undertaken involved 

optical and S-B-M- microscopy of surfaces lapped with 2[i diamond paste 

and etched with dilute HGl which showed no evidence of second phase or 

grain boundaries in the case of single-crystals. X-ray microprobe 

and chemical analyses were also undertaken. The results of the 

chemical analysis for the GdAl^ sample were 75* 70 wt96 Gd and 25.56 wt% 

A1 and included 0.16 Tungsten; this gives a Al' to Gd ratio of 

2.005 : 1 which is within measuring accuracy of the ideal ratio. The 

microprobe examination confimed some crucible contamination of the 

sample, which appeared as localised dendritic growths of some uniden-

tified ternary with tungsten at the extreme lower end of the boule 

(Pig. 5-1- 5) • 

5.1.7- Crystal Orientation and Sample cutting 

The pieces of crystal from which samples were to be cut were 

firstly mounted on a three circle goniometer on the laue X-ray apparatus. 

A stereographic pojection method was used to identify a particular 

orystallographic direction (lO) and the goniometer adjusted to bring the 

required axis into line with the beam direction. Further photographs 

were taken and any adjustments continued until alignment was obtained 

(estimated + l/2°). The goniometer was then transferred directly to a 

spark erosion cutting machine (Cambridge Instruments Servomet) • Methods 

of cutting cylindrical and spherical samples are illustrated in figure 

5.1.4 • 



FIG. 5.1.3 Dendritic Second Phase (light areas) of an Unidentified 
Ternary with tungsten In GdAlg (x2250) 
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5*1* 8- SUMMARY 

The Czochralski Method has been, used in this work to success-

fully produce some binary and pseudobinary RAl^ compounds and a number 

of techniques have been used to produce the final samples. The 

samples produced so far, relevant to this work, are summarised in 

Table (5.1.2) along with measurements arising from the metallographic 

studies. This apparatus has also been employed at the Centre for 

Materials Science, Birmingham University, for producing other rare 

earth intermetallic compounds by the Czochralski Method (ref. ll) • 



TABLE 5.1.1 

Sample 

Lattice Parameter (X) Theoretical Density 

(10^ kgm 

Pyknometric Density 

(10^ kgm 

Sample 

(This Work) (Reference 9) 

Theoretical Density 

(10^ kgm 

Pyknometric Density 

(10^ kgm 

Gd At 7.902 ± 0.001 7.901 5.686 5.65 ± 0.07 

Tb AAg 7.861 ± 0.002 7.864 5 . 818 

Ho A&2 7.817 ± 0.001 7.818 6.086 



TABLE 5.1.2 

Sample Material 
Orientation 
and Shape 

Dimensions 

Gd M 100 Disc 5.54 mm dia X 1.10 mm thick 

Gd AA 110 Disc 5.50 mm dia X 0.97 mm thick 

Gd At Sphere 2.90 mm dia 

Tb At Sphere 3.10 mm dia 

^^0.02 G^O.GS A*-; 
110 Disc 4.90 mm dia X 1.59 mm thick 

^^0.05 G^O.GS '"'2 110 Disc 3.80 mm dia X 1.33 mm thick 

VN 
VX 
P> 
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5- 2. MeasTirement of Anisotropy Constants 

5.2.1. Introduction 

The measurement of anisotropy constants "by means of a torque 

magnetometer has become an established technique and has several advan-

tages over other methods such as magnetisation curves, ferromagnetic 

resonance and singular point detection. The magnetisation curve 

method (12) necessitates accurate alignment of the single-crystal 

materials and inaccuracies are unavoidable in the assumption that the 

magnetisation is fully reversible- Furthermore, it may be difficult to 

separate individual contributions to a particular anisotropy. Ferro-

magnetic resonance techniques determine an anisotropy field H^. The 

resonant condition occurs at a total field which is the sum of the 

external field and . Singular point detection (13) relies on the 

appearance in a particular derivative of the M (msignetisation) vs. B 

curve of a discontinuity which is attributed to B = , the anisotropy 

field. The major disadvantage of this method is that, for successively 

higher values of n , becomes extremely difficult to detect. The 
dB 

method can successfully be used on polycrystalline samples because only 

one particular orientation of crystallite will produce the singular 

point. 

The principle of a torque magnetometer is that if^a single-

crystal is suspended in a magnetic field the magnetisation will prefer 

to take up a particular orientation with respect to the crystal axes. 

If the crystal is not free to rotate then the crystal will experience 

a torque > which is dependent on the anisotropy energy Eg.(9). The angle 

6 is the direction of the magnetisation vector with respect to the easy 

axis in the plane of rotation, and the torque, L, experienced by the 

cr^Valis given by:-

. . . ( 5 . 1 ) 
d 0 
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Thus, for a particular anisotropy energy expression a 

measurement of the variation of torque with applied field direction 

after suitable manipulation will yield the anisotropy constants 

K. It will be shown in a subsequent chapter that the analysis of 

torque curves is far from strai^tforward, and in some cases the 

extraction of anisotropy constants from torque curves may be inapp-

ropriate. However, in the cases where it can be determined that 

the necessary conditions have been satisfied, torque magnetometry 

proves to be a powerful method by which all the anisotropy constants 

of a particular sample may be reliably determined-

5- 2-2- The torque magnetometer 

Anisotropy measurements vexe made using the torque magne-

tometer designed and built at Southampton by Huq (14)• This apparatus 

is similar to that described by Aldenkamp (15) which has a major 

advantage over the more traditional torsion fibre magnetometers 

(refs-16-20) in that the transducer has great lateral rigidity coupled 

with a h i ^ sensitivity to applied torque- Differences exist in the 

recording system in that whereas Aldenkamp used a differential trans-

former and automatic recording, in this work the detector is an optical 

lever and measurements are made at intervals of field rotation. The 

torque magnetometer can be used over the range of temperatures from 

4-2K to 36OK and the D. C. electromagnet used is capable of fields up 

to 2.04 T. An overall diagram of the apparatus is given in Fig. 5.2.1. 

5* 2.3- The torque transducer and its calibration 

The transducers consist of two circular Dural discs 

approximately 6 cms and 4* 5 cms in diameter. The glass rod used to 

support the sample holder is attached to the lower (small) disc. The 

two discs are joined by three similar springs made of hard phosphor 



Lamp 

Scale 

Fig. 521 Torque Magnetometer 
Apparatus 

Top Cap 

Levelling Jacks & Springs 

—Trolley 
y —Main Frame 

Window 
Mirror 

Transducer 

Cryostat 
Liquid Nitrogen Dewar 

Electromagnet 

Specimen Holder 



36 

bronze mounted at 120° to each other. These springs are etched 

from sheet material to avoid the edge distortion involved in 

cutting. 

One transducer used was that described and calibrated 

by Huq (ref. 14) • For the measurements on GdAlg a second, more 

sensitive transducer was assembled using the same technique. in 

attempt was made to arrive at some theoretical model which could 

aid the determination of the spring dimensions and this is dis-

cussed in appendix A. 

The upper disc is mounted rigidly to the frame of the 

apparatus via a trolley which has levelling screws and a sliding 

plate so that the specimen rod may be vertical and central with 

respect to the pole pieces of the magnet. The disc has a clearance 

hole in its centre so that the rod which supports the mirror for the 

optical lever may protrude into the transparent section of the 

apparatus. The transducer assembly is shown in fig. $.2.2. 

The procedure used for calibration is similar to that 

described in reference (14)* A search coil of approximately 100 

turns was wound from 40 s-w. g. wire on a square former which was 

2 

about 1 cm . The coil was used in place of the sample on the end 

of the san^le rod. The deflection was maximised by rotating the 

magnet keeping the search coil current constant. 

For a current i flowing in a coil in a field B (Tesla) the 

torque L (N m) is given by:-

L = B (An) i cos 6 •••(5'2) 

where 9 is the angle between the field direction and the plane of the 
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coil and An the mimber of turns multiplied by the coil area. 

The ttims-area product of the coil was independently 

determined by rotating it at 50 Hz in a N.M. R. calibrated magnetic 

field Bo. The e«m.f. produced in the coil was taken off by means 

of carbon brushes and slip rings and integrated using a Tektronix' 

type 0 unit, the peak-peak voltage could then be determined from; 

J 
V = g— Bo (An) cos wt .. • (5* 3) 

for the integrated signal: 

¥ out = ^ V dt ••• (5'4) 

where EC is the time constant of the integrator which, for reliable 

•"2 

integration must be «wjji this case EC = 10~ • This gave a value 

for the ttims-area product of (l. 30 + 0.02) x 10~ m . 

This calibration in turn gave the sensitivities of the two 

transducers after deflection vs coil current at constant field had 

been determined for each transducer. Deflections were measured for both 

positive and negative torques and both transducers were found to have 

a high degree of linearity up to large deflections. The sensitivi-

ties were, for transducer one, used for cobalt and the dilute alloys 

(l. 08 + 0.02) X 10 ̂  Nm (mm deflection)"^ and for transducer two, 

used for GdAl^ measurements (8.40 + 0.0$) x 10~^ Nm (mm deflection) ^ . 
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5.2.4" The sample holder 

The sample holder was similar to that described in reference 

(14) consisting of a hollow copper cylinder which was attached 

to the lower end of the sample rod. The disc-shaped single-crystal 

samples were -cemented to a cork spacer which was cemented to the sample 

holder. Durofix was used having been found to provide satisfactory 

bonding down to the lowest temperatures used. The holder had wound 

around it a bifilar-wound heating coil of constantan having a resist-

ance of approximately 5OQ. The temperature of the sample was 

measured by means of a copper-constantan thermocouple cemented to the 

sample itself using an ice-point reference. The sample temperature 

is estimated to be accurate to + 0.5K. 

5.2.5' The temperature sensors and controller 

The temperature sensors were initially a non-inductively 

wound coil of 48 s. w. g. enamelled copper wire and subsequently an 

Allen-Bradley carbon l/8¥ resistor both attached to the sample holder. 

The use of two sensors gave reliable performance over the whole tem-

perature range. The copper coil was used from room temperature down 

to liquid nitrogen (77K) and the Allen-Bradley resistor below 772. 

Their individual temperature characteristics are shown in ̂ figure 5'2.5* 

The sensors could be independently connected to the input of 

a simple proportional temperature controller. The controller was 

used successfully above 77K but some difficulty was experienced in 

stabilisation at lower temperatures, especially between 4" 2E and 5OE. 

Some improvement is expected if a more sophisticated controller were 
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to be used. The mode of operation, shown in block form in 

figure 5* 2* 4* is that the external sensor is in one arm of a bridge 

network which is compared to the set resistor in the opposite arm. 

The out-of-balan.ce voltage determines whether an operational 

amplifier has +ve or -ve feedback; if -ve the output switches off, 

and if +ve the oscillation is rectified and amplified to produce 

heater current proportional to the out-of-balance signal. 

5.2.6. The vacuum system 

The vacuum system was of conventional design with 

facilities for evacuating each section of the apparatus and cryostat 

independently. It is also possible to admit inert exchange gas 

(helium) to the system. A block diagram of the system is shown in 

figure 5* 2. 5-

5-2.7' The helium cryostat 

The helium cryostat was of the conventional three-wall type 

with a long tailpiece, external diameter 26 mm to enable it to be 

placed between the magnet poles. It was constructed in the Physics 

department workshop and design details are given in reference 14* 

An outer glass dewar was mounted around the cryostat to contain 

liquid nitrogen when liquid helium was to be used. Without the dewar 

temperatures down to 55K (by pumping) could be obtained with liquid 

nitrogen in the helium can. 



•^=-00-

+12V 
f 

iransTormer 

Mains 
N 

Recti 
anc 

Regu 

ier 

ation OV 
1 

12 V 
1 

Feedback Loop 

AC Bridge 

Sensor 

HF Trans 
-former 
and 
Rectifier 

Current 

Amplification 

Heater 
Load 

X 

Fig. 5 2 4 Block Diagram of the Temperature Controder 



Gas Inlet Pirani 
Gauge 

Sample 
Space 

renning r-i 
Gauge M He. 

Return He. Exhaust 

Pirani 
-CD 

^ Gauge 

Vacuum 
Space 

Diffusion 
Pump 

Roughing 
Valve Rotary Pump Cryostat 

Backing 

Valve 
Rotary Pump 

Gas 
Meter 

Fig. 5-2-5 Torque Magnetometer Vacuum System 



40 

5'2.8. The Electromagnet 

The magnet used in this part of the work was an 8" Newport 

type D. The majcimum field available (40 Amp. per coil) was 2.04T 

with a pole gap of 38mm. The magnet was on a rotatable base with 

scale markings in degrees and a vernier to allow angular position^ to 

be determined to an accuracy of 0.1 degrees. 

The magnet was calibrated using a Newport Magnetometer 

type J, calibrated against HMH standard, also for the work using a 

cobalt single-crystal a low field calibration was performed using 

a Hirst EM70 Sail Probe fluxmeter. 

The calibration curves are shown in figure 5* 2.6. 

5* 3- The Magnetostriction Measurements 

5.3'!' The Magnetostriction Apparatus 

Considerable investigation of the behaviour of resistive 

strain gauges has been undertaken in these laboratories in recent 

years. The outcome has been that standardisation and some degree 

of understanding of their low temperature and magnetic behaviour 

has been achieved. With this knowledge a number of experiments have 

been made using resistive gauges supplied by Micro Measurements (type 

SK-09-O3IDE-350). (refs. 21-24). 

In this work strain gauges have been used to measure the 

magnetostriction at temperatures down to liquid helium of single-

crystals of GdAlg and its related ternaries produced by substituting 

small percentages of Tb. The apparatus employs a D. C. Wheatstone 

bridge circuit of h i ^ sensitivity, two arms of which are resistive 
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strain gauges in the experimental space - one of which is mounted 

in a particular crystallographic direction on the sample and the 

other compensating gauge on a dummy material which exhibits no mag-

netostriction. The advantages of this method are elucidated in 

reference 21. 

The apparatus used is similar to that used by Asgar (21) 

and subsequently by Pourarian (22) and has been extensively described 

in both these zreferences. The salient details are as follows; 

5'3* 2. The strain gauge bridge 

The bridge circuit was a h i ^ sensitivity D. C-Viheat stone 

bridge which used the out-of-balance voltage in the strain indication 

stage by the use of a D. C. amplifier (Keithley n Voltmeter), the output 

of which was indicated on a chart recorder (Eikadenki,B-202). Analysis 

of the bridge circuit shown in Pig. 5*5*1 gives; 

^ = I "out •••(5-5) 

where — is fractional change in resistance/unit-resistance and E 

and are the supply and detected voltages respectively. Equation 

5" 5' assumes that no current flows through the detector sta^. As the 

impedance of the detector is of the order of 1 MQ this is a good 

approximation. A second approximation that is small is also true; 
Jx 

in this work never exceeding 10 The bridge was balanced by changing 

the variable resistors shown in the circuit diagram. These and the 

standard resistances were allowed to reach a steady temperature within a 
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thermally insulated box. All soldered joints were made using low 

thermal e.m.f. solder to minimise thermally generated e. m. f's in 

the bridge. As measurements were made of differential strain between 

two field orientations or two temperatures the variable resistances 

were used merely as a zeroing device. However a long time, usually 

several hours was allowed after switching on the supply to the bridge 

for thermal stabilisation- The energising voltage was two volts and 

the gauge factor approximately 2. The sensitivity attainable during 

most of this work was of the order 10 ® in strain equivalent. 

5* 3* 3* Strain gauge application 

Once a particular crystallographic direction had been deter-

mined using X-ray back reflection photography it was necessary to bond 

the gauge onto the sam,ple using the standard technique (25) • The 

gauges were aligned with the prepared sample using the apparatus 

described in reference (22) • A thin coat of the M-Bond 600 adhesive 

was then applied and the gauge and sample clamped together and cured 

for several hours at approximately 85°G. Provided the surface prepara-

tion had been done carefully the bonds made were found to be reliable 

and give reproducible results even after temperature cycling. 

5'5*4* The sample holder, temperature measurement and control 

The sample holder was of the design described in references 

(21,22) , It is more massive than that described in section $. 2.4"? 

small fluctuations in temperature must be minimised because the magneto-

striction to be measured is so small. The, temperature controller and 
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sensors used, however, were similar to those used for the torque 

measurements leading to similar unsatisfactory temperature control 

at lower ten^eratures. The larger mass and the proximity of dumny 

and compensating gauge, separated only "by the cork spacers and 

con^letely enclosed (fig. 5* 3* 2) meant that changes due to temperature 

fluctuations were small. The cork spacers are used, in both this 

apparatus and the magnetometer, to give a flexible mounting. They 

allow the sample to expand but prevent rotation of the sample due to 

any torque which may be present- The mosaic structure of the cork is 

believed to give the best compromise for this application. The 

temperature was measured using a coppezr-constantan thermocouple mounted 

on the sample using an ice-point reference, as with the torque magneto-

meter and giving similar accuracy. 

5' 5* 5* The cryostat and vacuum system 

The cryostat and vacuum system used were the same as 

described in reference (22) • The cryostat was similar to that used 

with the torque magnetometer, the facilities and mode of operation 

being identical. A diagram of the vacuum system is given in figure 

5. 3" 3" atnd of the cryostat in figure 5- 3 4-

5.3"6. The electromagnet 

The electromagnet used for the magnetostriction measurements 

was an 11" Newport Type P powered from a rectified 3-ptiase supply 

capable of supplying up to 98 Amps. The maximum field available was 

2. 5 Tesla with a pole gap of 32 mm (l'̂  ) . The magnet has been 

calibrated using a Newport Magnetometer Type J as for the Type D 

electromagnet (section 5*2.8) and a calibration curve is shown in 

figure 5. 3. 5' 
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CHAPTER 6 

6. MEASUREMENT OF TORQUE CURVES OF COBALT, GdAl^ AUD THE 

MLOTE ALLOYS Gdp.gg Ibp.Qz Al^ and Al^ 

6.1' The analysis of torque curves 

The results of the torque experiments consisted of a 

series of values of torque at equally spaced angles of the field 

magnet, for each field and temperature. These results were plotted 

immediately to give an indication of the behaviour of the system. 

However to obtain numerical results these curves had to be corrected 

for a number of effects. As the magnetometer was not a null-

deflection device the curves were corrected for the finite rotation of 

the sample, which is easily calculated from the geometry of the measuring 

system. 

The torque L((p) was then obtained as a function of the angle 

cp that the applied field makes with the crystallographic axes-

If we consider the simplest energy relation 

Eg = sin^ 9 ...(6.1) 

which relates the anisotrcpy energy to only a single constant and the 

angle 9 between the magnetisation and the crystallographic axis, 

yielding the torque expression: 

L(9) = - sin 2 9 ...(6.2) 
d9 

L(9) and L(9) are not necessarily equivalent but are related by the 

expression 

9 = 9 - a ... (6. 3) 

where a is the angle that exists between the applied field and the 
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magnetisation. This non-collinearity produces a torque on the 

crystal which is in equilibrium with the anisotropy torque such 

that 

L(9) = M.3' sina . . . ( 6 . 4 ) 

The detailed solution of these equations introduces a field dependence 

to the apparent anisotropy constants which is dependent on the ratio 

of applied field to the anisotropy field and also to the approximations 

used in their analytical solution. This is described in more detail 

in the appendix of reference 1 for the two constant energy relation 

î Q J. V Eg. = sin e + Eg sin^G •••(^•5) 

It was concluded therefore that, in the case of highly anisotropic 

materials in fields such that a will be significant the derivation of 

the anisotropy constants is by no means a straightforward process and 

a reappraisal of existing methods was undertaken. 

The methods of torque curves analysis are based on four main 

methods: 

1) Extrapolation to infinite field (B~^ = O) 

2) Torque curve correction 

3) Torque n̂ ixima 

4) Behaviour of the torque curve near the easy direction. 
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6.2 Extrapolation to infinite field 

This relies on the fact that at infinite field, the angle 

"between (the magnetisation) and B (the applied field) becomes 

vanishingly small and that the torque will reach a limiting value. 

The most widely used method is to plot the torque values against B ^ 

to obtain a torque at infinite field- However some manipulation of 

equation (6.2) and equation (6-4) above shows that even in this case 

with only one anisotropy constant and the use of the approximation 

sin a = a. 

^ = (l - ̂  gf ) sin 2 9 - K sin 4 9 + ̂  sin 6 9 ... (6. 6) 

where K = — and B^ the anisotropy field = 2 

On examination of equation (6. 6) it is clear that the extra-

polation does not, in general, have a B dependence. The inclusion 

of hi^er order constants in the energy expansion will modify this 

conclusion slightly but it appears that the justification for this 

method is largely historical as discussed in reference 1. 

6.3- Correction of torque curves 

For each value of the torque curve 1(9) it is possible to 

calculate a value of a from equation (6.4) and subsequently to produce, 

by simple 9-axis correction, a curve as a function of 9. In principle, 

curves measured at different field strengths so corrected will then 

become superposed. In practice, some field dependence is often observed 

(reference 2) and extrapolation to infinite field is then employed on 

the apparent anisotropy constants which are derived from the corrected 
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torque curves by Fourier analysis-

That all spurious effects will disappear at infinite field, 

or that; if they do, they obey a B ^ dependence, is questionable. 

However this method has been justified in some cases. Aubert (reference 

3) found that his measurements on nickel could not be superimposed 

unless a value for the saturation magnetisation of nickel different 

from that accepted at the time was employed. Subsequent measurements 

(4) vindicated this conclusion. 

If however the field value is such that the san^le energetic-

ally favours a two-domain state, then the torque dependence on field 

becomes more con^lex. It has been shown (l) from equations given in 

(19) that the critical field Bg below which the two-domain region exists 

for a disc ^aaped sample is 

= 

r 1 2 
• . . (6 .7) 

where N is the demagnetising factor in the plane of the disc. 

The torque expression is then also a function of N and 

for fields below Bg (6) and it is clear that the correction a = sin ^ 

B longer valid. This precludes the use of this method to 
' s 

derive a complete torque curve in those cases where a two domain region 

exists over part of the range of field rotation. 



48 

6.4* Torque maxiTna. 

This method relies on the observation that, theoretically, 

as the field is decreased, the torque curve, although sheared by a, 

still retains its Tna,YiTm.iTn value. This will only be true up to 

9 + a s 90°, where 9 is the angle corresponding to the maximum 
THATC 103JC 

torque. In the single constant case 9^^^ = 45° then the applied 

field B ) B^/ /2~. For fields less than this value, the peak of 

the torque curve corresponds to points below the correct value of 

tnayjimm torque projected to the hard axis; this is illustrated in 

fig.(6.1)after reference (l). Obviously, in this case, if any 

field dependence of the maximum is observed it becomes impossible 

to determine to what portion of fig.(6.1) the values correspond and 

any extrapolation procedure would be erroneous. 

6.5* The intial slope 

If the applied field is such that B /g is small, the magne-
' A 

tisation will be in any easy direction and 8 will be small. It may 

then be shown that, for 9 small, in the single constant case: 

(2K^ + M B)a = 2K^9 ... (6. 8) 

and so the torque expression becomes 

L = M Ba = ^s^ CP . . . ( 6 . 9 ) 
® 2K. + M B 

1 s 

Hence 
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Thus if the reciprocal of the slope of the torque curve 

at the easy axis is plotted against reciprocal field the intercept at 

B ^ = 0 should be equal to l/2E^. This relation holds for a (lOO) 

easy direction for cubic symmetry, even when more than one constant 

is involved in the energy expression. Similar initial slope 

equations may be derived for other easy symmetry directions but they 

will normally contain more than one constant (see section 6.8). 

These relations will hold true as long as the sample remains 

single domain which, near the easy direction where costp -»• 1, means 

that, with reference to equation (6.7)> the applied field B > , a 

condition which is satisfied even when the external field is less than 

B^. This method must therefore be the best to use in such circumstances. 

6. 6. Torque measurements on a single crystal of cobalt 

The discussion in the preceding sections is mainly based on 

some theoretical predictions of Huq (5) using synthesised torque curves. 

These predictions were tested experimentally by performing measurements 

on a single crystal of cobalt, obtained from Metals Research Ltd., and 

nominally 99- 99% pure. 

The disc shaped sample 6mm in diameter and 0. 65mm thick was 

aligned with the c-axis in the plane of the disc. Laue back reflection 

X-ray photographs showed clear well-defined spots indicating a homo-

geneous strain-free crystal. All measurements were made at room tem-

perature using the torque magnetometer described in Ch. 5- 2. High field 

measurements at up to 2. OT were made, taking readings for angular 

positions of the magnet at 5° intervals, field values being chosen so 
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as to give equal spaced points on a reciprocal scale. The 

measurements were designed to give complete torque curves which 

could be used to derive 'true' anisotropy constants for the crystal 

in the manner of section (6.2). 

Further measurements below 0. 75T (approximately for Co) 

were made for points + 25° from the easy c-axis in anticipation of 

initial slope extrapolations. 

The recognised expansion for the anisotropy energy of 

cobalt in a plane containing the c-axis contains the two constants 

and K^: 

Eg. = sin^e + Eg sin^9 ...(6.11) 

Differentiating to obtain the torque expression; 

1(8) = - (K^ + Kg ) sin29 + ̂  sin4e ...(6.12) 

As mentioned previously (section 6.3), the torque relation 

L(e) equation (6.12) is a function of 6 which is the angle between the 

field and magnetisation directions- So, after correction for the 

finite rotation of the sample, the angular position 9 was ̂.corrected 

graphically using a. = sin ^ and 0 = 9 - a • A value of 

1.432 X 10^ A m ^ was used for the saturation magnetisation of cobalt 

at room temperature (Bamier et al, reference 6). The uncorrected 

curves for 0.9T and 2. OT are shown in figure (6.2). After correction, 

the curves for the high field measurements were found to almost super-

impose and Fourier analysis yielded consistent values of (K^ + Eg) and 

for the first components ( see equation 6.12 ) . These results 
2. 

are shown in figure (6. 3). Absolute values of (5-2 + 0^2) x 10^ Jm~^ 
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and (1.2 + 0.2) x 10 Jm were obtained for and Eg respectively. 

As expected, Fourier analysis of the uncorrected curves 

led to a strong field dependence of and • Extrapolation to 

B = 0 althou^ within experimental error, giving a linear regression 

for the 29 component, produced a value differing by some 10% from; 

that obtained from the corrected curves. The 46 component did not 

have a linear dependence on B ^ and could not be extrapolated to 

determine a reliable value for Kg" 

Initial slopes were also determined down to fields as low 

-1 dL 

as 0.IT; the extrapolation to B = 0 for ^ is shown in 

figures 6.4(a) and (b). Even at low field values the linearity is 

still quite good. However for the cobalt sample used,B^ ts approximately 

0.02T and thus there is some departure from the theoretical predictions. 

This is undoubtedly due to the differences between the'ideal' and the 

real crystal used in the experiment. At fields greater than the 

theoretical Bg local impurities or inclusions may pin domain walls, 

hence sustaining the multi-domain region and effectively reducing the 

value of the anisotropy torque. 

A review of the values for the anisotropy constants of cobalt, 

detezmined by various workers is given by Rayner (7) • The results 

obtained from the measurements reported above are in good^agreement 

with the historical trend which shows values increasing as sample 

purity and crystallinity have been improved. A summary of these 

results is shown in table 6.1. 
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TABLE 6.1 

Some published results for the anisotropy of cobalt. 

Reference Temp (K) K^/lO^Jm'^ 
5 3 

Kg/lO Jm 

W. Sucksmith and 
J.E. Thompson, Proc. Roy. 
Soc. A225, 362 (1954) 

97 
209 
293 

7.90 
6.44 
5.28 

1.04 
0.97 
0.95 

W. Sucksmith and 
J.E. Thompson, Proc. Roy. 
Soc. A225, 362 (1954) 

97 
209 
293 

6,80 
5.80 
4.20 

2.40 
2.20 
1.90 

Y. Barnier, R-Pauthenet-
and G. Rimet, Cobalt 15, 
14 (1962) 

0 
200 
300 

6.80 
6.00 
4.32 

1.70 
1.65 
1.50 

R.M. Bozorth, Phys. Rev. 

9£, 2 (1954) 
293 4.30 1.20 

K. Tajima and 

S. Chikazumi, Japan J. 

Appl. Phys. 897 (1967) 
293 4.60 -
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6.7« Torque curves of GdAlg 

Torque curves were measured for the single-crystal (llO) 

disc of GdAlg, produced as described in Ch.5.1. In this case the 

correction procedures as outlined in sections 6.1 to 6.3 (above) 

were unnecessary as the torque measured was so small. In fact a 

second transducer was constructed of increased sensitivity (approx-

imately 20X) in order to achieve detectable deflections on the 

optical scale-

Measurements were made for up to five different fields 

values at seven temperatures between 4'2K and the Curie temperature 

(approximately I7OE)« Complete torque curves were taken and for 

each case points were measured as the field was rotated throu^ 3^0° 

at intervals of 5°* 

A (110) plane in a cubic crystal contains all three 

symmetry directions 100,110 and 111 and the torque may be expressed by: 

L = = ^ = - p i sin2G - X + 2̂ 
de 14 8 1? 

sin4'? + ^^2 sin 69 (6.13) 

As explained above, the magnitudes of the corrections for 

rotation of the sample and for non-alignment of the magnetisation and 

field were extremely small, a worst-case calculation at 4* 2E and 0- 9T 

giving a value of a less than 2 x 10 ^ radian and a rotation correction 

of the same order of magnitude. 

A Fourier analysis computer program was developed which took 

an. arbitrary number of equally spaced points for the 2n rotation of 
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the field and derived a series of the form: 

F(8) = + Z A cos n 9 + I B. sin n 9 •••(6.14) 
T n ^ n ^ 

The sum was truncated for n >12; the constant term was usually non-

zero and gave an indication of the zero torque position on the optical 

scale. Both the sine and cosine coefficients were employed so that 

it was not necessary to arrange the zero angular displacement with 

the (100) direction of the crystal. If the (lOO) direction is 

displaced throu^ an angle e from the scale zero then the torque 

curve becomes, considering only even terms: 

L(9) = Z sin 2n(9 + e ) ... (6.15) 
n 

which, when expanded, becomes 

L(9) = E Q cos 2n€ sin 2 n 9 + Q, sin 2 ne cos 2 n 9 ...(6. 

Comparing this to equation (6.I4) we obtain 

^ (6.17a) 

e = tan ^ "̂ 2n ... (6.17b) 

®2n 

Although the signs of the are lost in (6.17a) they may be deter-

mined by inspection of the e's (6.17b). 
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In practice the analysis gave small values of the odd 

coefficients and the even coefficients for n > 8 were of the same 

order of magnitude. However, the sin 9 coefficient was large and 

very field-dependent- This was attributed to the axis of the magnet 

not bisecting the pole gap exactly (i. e- one pole piece was sli^tly 

nearer the sample). It was also found that the e values for the 

coefficients were consistent except for that of the first (sin 2 0) 

component. The magnitude of this component was also inconsistent 

with the anisotropy constants derived from the 4@ and 69 components. 

This effect was attributed to a spurious 20 component which 

added to the true value and was probably due to the axes of rotation 

of magnet and magnetometer not being exactly co-incident- Unfortunately 

this meant that by comparing equations (6-15) and (6-15) it was not 

possible to check consistency with three independent equations for 

, Kg- However, as Kg was small it was possible to determine K^ with 

some accuracy-

The consistency of the e values for the hi^er 2 n 9 components 

at all fields and temperatures (31-7 +0-4 degrees) was sufficient to 

justify the use of the 48 and 69 components to determine K^ (figure 6. 5) • 

In practice, some field dependence of the value of K^ was 

- 1 ^ 

found; extrapolation vs B was extremely linear and the variation 

of with temperature at B ^ = 0 is shown in figure (6-6)- This leads 

to an extrapolated value for K^ of GdAl^ at 0 K of -(2- 8 + 0-1) x 10^ 
-3 

J m - Unfortunately the errors in the determination of Kg are such 

that extrapolation to B ^ = 0 is not possible, but it may be deduced 

that Kg has a value in the range -( 1- 4 + 0. 2 ) x 10^ J m ^ at 0 K-





Temperature { K ) 
60 80 100 120 140 160 180 

Fig. 6 6 Temperature Dependence of the first 
Anisotropy Constant of GdAl? 
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The behavioTir of at low temperatures indicates that 

the magnitude of is decreasing in a similar way to that of Gd 

metal at low ten^eratures (reference 8) • Calculation of the change 

in due to magnetoelastic effects (9) yields a value much too 

small (approximately 3^ to account for this behaviour, even though 

the magnitude of the second magnetostriction constant hg is 

considerably greater than h^ (see Ch.7)• 

The derived constants, together with the angle e were 

used to extract the spurious torque from the 29 component. Although 

it was expected to be some geometrical function of the apparatus it 

proved difficult to quantify the effect- But, qualitatively, the 

spurious component may be said to increase both its magnitude and phase 

angle with increasing field and decreasing temperature- It was also 

found to change drastically in character each time the apparatus was 

dismantled and reassembled- This is strong evidence in favour of a 

position and magnetisation dependent effect. It must be stressed, 

however, that this, and the previously mentioned spurious sin 9 

con5)onent (resolved out by Fourier analysis) , were at the limit of 

resolution of the apparatus (an equivalent volume torque of 

approximately 10^ J m ^ ) and only became non-negligible when measure-

ments were made on the almost isotropic GdAl^ compound. v. 

6-8- Effective anisotropy constants of dilute alloys of Tb in GdAl^ 

As shown above, the compound GdAl^ was found to be almost 

isotropic (l[̂ (GdAlg) < 10 ^K^(Gd) ) and in the light of the discussion 

of field criteria for determination of anisotropy constants from torque 

curves, it was used as an isotropic host for the very anisotropic TbAl„ 
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confound. has an anisotropy field > lOT at 4. 2K. 

Torque measurements were then performed on single-crystals 

grown from material of nominal composition Gd^ Al^ and 

^0.98 ^^0.02 "̂ 2̂ ' expected that the Th will be substitued 

on the rare earth lattice. The crystals were oriented and two discs 

containing (llO) planes were cut. 

Measurements were made for each temperature for five 

different field intensities chosen to give equal spaced points on a 

reciprocal scale. Temperatures were held constant at 4.2,25,55,77 

100, 120 and I40 Kelvin- The less sensitive transducer (l. 08 z 10 ^ 

Nm/mm deflection) was used for most torque curves measured. However, 

for the 120K and I40K measurements on the 2% sample, the more sensitive 

transducer (8.40 x 10 ^ Nm/mm deflection) was used. Results were also 

duplicated for the 2P/o samples at 7JK and lOOK using both transducers. 

Derived values of the anisotropy constants at these two temperatures 

agreed, within experimental error, for the two transducers. 

It was found necessary to make an angular correction as des-

cribed in section 6. 2, for the torque curves below 77K for the 5^ 

sample. The curves a-corrected where necessary, were Fourier 

decomposed and the results are shown in figure 6.7* The two-constant 

relation for torque was identical to equation 6.13 which was used for 

GdAlg. 

In these measurements, as with those on cobalt, no signi-

ficant spurious torques were detected, the signal-to-noise ratio 

being considerably greater than for the measurements on GdAlg' 

Initial slope values were obtained from the torque curves 



Temperature ( K ) 
50 80 

2% Tb measured from initial slopesL_ 

X 2% Tb " " Fourier comps 

O 5% Tb •» " initial slopes 
D 5% Tb " " Fourier comps 

Fig. 6 7 Temperature Dependence of Apparent 
Anisotropy Constants of Dilute Alloys 
of Tb in GdAl') 
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for all three symmetn^ directions where L(<p) = 0 in the (llO) plane 

(i-e. 100, 110 ;8 111 type directions). 

These initial slopes however, are only related in the 

manner of section 6.5 to the first aoisotropy constant when the 

[lOO] direction is easy. In this case it is hard, and therefore the 

field dependence of is strong and, in any case, the value • 

of a in this direction is not necessarily small. Also it is possible 

that the value of the critical field (section 6. equation 6.7) 

is such that, at this angle, the two-domain state will be energetically 

favourable and then the analysis of section 6- 3 breaks down, but 

relations for the initial slope values in the two other symmetry 

directions (most importantly (ill) which is easy in these confounds 

(reference 10) ) were derived (see Appendix B) and values were obtained 

for and Eg from: 

For (111) symmetry * 5 5 ^ .••(618a) 

a M for (110) synnetiy ( ^ ) = g - r + •••(6 18b) 
a=0 1 2 s 

using extrapolation to B ^ = 0. 

The values at the intercept were then solved simultaneously 

to obtain the valuesfor and • Figure 6- 7 shows the values for 

which were obtained. Unfortunately, the errors in are such 

that a reliable temperature dependence could not be extracted from 

the data- but values of -(2.1 + 0.2) x 10^ J and - ( 4 . 9 + 0. 2) x 10^ 

J m ^ were obtained for at 0 E for the 2̂ 6 and 3% samples respectively. 
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6. 9« Determination of the anisotropy constant for ThAlg 

There is considerable difficulty in determining the means 

by which the anisotropic Tb ion contributes to the total anisotropy 

of the dilute alloy single-crystals. 

A simple theory, which assumes that the Tb ions are strongly 

exchange coupled to the Gd lattice such that the directions of Gd and 

Tb spins are the same at all orientations of the applied magnetic field 

leads to the conclusion that, since the contribution to the total mag^ 

netocrystalline anisotropy of the Gd ions is negligible (see section 

6* 7) r the effect of the GdAl^ is simply to dilute the magnitude of the 

anisotropy torque due to the TbAl^ • Hence, a scaling factor propor-

tional to concentration was employed to yield the results shown in 

figure 6. 8 for the first anisotropy constant of TbAl„. The value 
; x d. 

determined from the initial slopes at 0 K is -10^ J m ^ which is in 

fair agreement with the value of -7 x 10^ J m ^ reported by Barbara 

et al (ll) obtained from magnetisation measurements in fields up to 

I5T. obtained from the corrected torque curves is somewhat 

7 -3 

larger having a value of -2 x 10 J m at 0 K. 

The discrepancy between the two methods of determination of 

must be explained in terms of the model used because the scaling 

factors of 50 and 20 for the 2% and 5% samples give consistent values of 

for each method. The explanation must lie in the assumption that 

for the torque measurements, the Tb and Gd spins are at all times 

parallel. An examination of the relative magnitudes of the single-ion 

anisotropy energy and the nearest-neighbour exchange energy leads to the 

explanation used in the following section-
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6.10 Discussion 

The exchange parameter variation for nearest-nei^bour 

exchange in the rare earth dialiiminide series has been derived by 

Kaplan et al (lO) in terms of an exchange field, which scales 

across the rare earth series. An absolute value in terms of an 

exchange field for TbAlg is given by Purwins et al (12). An 

explanation of the variation of Curie ten^erature for the rare earth 

diosmiumides (Bozorth 15) also derives a value for the first exchange 

constant in the Laves phase. A consensus value is 0.91 meV for 

^ gjg. in the expression: 

= J (g.T-l) J- (ST' - 1) j' ...(6.19) 
ex Q sf 

where J and j' are the total angular momentum quantum numbers for the 

two rare earth neare st-neighbours. 

This leads to an exchange energy of the form; 

E = r cos Y ...(6.20) 

where Y is the angle between the spins. 

The value of r is 1.44 x 10~^ a J per ion pair for^Gd-Tb 

exchange interaction and 1. 51 x 10 a J per ion pair for Gd-Gd exchange. 

When this is compared to a value for the anisotropy energy 

per ion of 0- 265 x 10 ^ a J for Gd (K^ from this work) then the 

assumption of section 6. 9 is correct for the GdAlg as would be expected. 

However for TbAlg (from reference 11) leads to a value of 425 x 10 ^ 

a J per ion which is not a small perturbation on r , go that the Tb 

impurity spins will not always be exactly parallel to the Gd spins in 

the torque measurements. 
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However, in the case of the initial slope measurements, in an 

easy direction all the spins will be very nearly parallel provided 

that the anisotropies of the Gd and Tb ions are of the same sign; 

which is the case ( (ill) is easy in both GdAl^ and TbAlg) and 

thus the assumption of section 6. 9 may be justified. 

Hence, in the first analysis, the acceptance of the initial 

slope values for the first anisotropy constant of TbAlg was thought 

to be correct* Subsequently a computer program was developed for 

the numerical determination of the distribution of spin directions 

as one moves away from the impurity site through the host lattice. 

The method was in some respects similair to that used by KLLwa and 

others (references 14-1?) who used spin-wave notation to interpret 

the results of Chikazumi et al (18) on dilute alloys of rare earths 

in gadolinium metal. The strategy used in this work was to minimise 

the sum of anisotropic energies in the crystal, when a field was 

applied at an angle 9 to the easy axis, with respect to the angular 

positions of a series of spins- Preliminary results showed a 

perturbation of the spin directions of the host material by the 

anisotropic impurity spin, see diagram 6. 8. 

Further work should be able to determine theoretical torque curves 

for the assembly of spins which may be analysed in a simiî ar fashion 

to the experimental results above. Some difficulty is to be expected 

in reducing the number of adjustable parameters in the energy expression 

to obtain unique solutions. 

An outline of the method used and some results are presented in 

chapter 8. 



Easy Direction Impurity (Tb) 
Spin Direction 

1st n - n shell (Gd) 

B = 0.5T 

The spin deviation for shells of nearest 
neighbours from a 'hard' impurity site with 
a f ield of 0-5 T applied at an angle of 45° 

to the easy axis. 
(Theoretical Model = see Ch 8 ) 

Fig. 6 8 
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CHAPTER 7 

7. MEASUREMENT OF THE MGNETOSTRICTIOK CONSTAUTS OF GdAlg 

^0.98 ^^0.02 ̂ ^2 ^0.95 ^^0.05 ̂ 2 

7* 1. Introduction 

As shown in section 4.2 the semi-empirical relation 

involving the first two constants for the magnetostriction of a 

crystal with cubic symmetry is given by;-

— = h^ + h^ + ^2^2 ~ 3"̂"̂  ̂ 2^'^I'^2^1^2 

+ ... (7-1) 

where the a's and (3's are the direction cosines for the directions 

of the applied field and measurement respectively, and d£ / is 

related to the 'ideal' demagnetised state. Suitable choice of 

field direction and measurement directions makes it possible to 

determine the constants h^ and h^ independently. 

7.2. Measurements on GdAlg 

For these measurements the disc with a (lOO) plane was 

used. According to Asgar (l) this particular plane is convenient 

if only the first two constants are to be evaluated as this plane 

introduces the minimum error due to misalignments of gauge and 

misorientation of the plane. Also as the gauges were cemented on in 

symmetry directions, ( l i o ) and(lOO) ,no correction for the anisotropy 

was needed. 
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7-2.1DeterminatiorL of 

In this case the strain gauge was cemented to the disc 

using alignment marks under a microscope, in the (lOO) direction, 

previously determined from X-ray back reflection photographs- From 

equation 7* 1 the strain observed when the field is applied at an 

angle 9 in the plane is given by 

^ (e) = K (cos^e - % ) ...(7.2) 
a ^ ^ 

The strain value was then measured with the field both perpendicular 

and parallel to the gauge, (i. e. 8 = 0 and 9 = 90°) • The difference 

in these two values gave the value of h^ . Because this measurement 

involved two saturation magnetisation directions the initial demag-

netised state did not have to be considered. These measurements were 

performed at a series of temperatures between 4* 2K and approximately 

25OK for an applied field of 1.94 Tesla. Further measurements, at 

77K, were made for the maximum and minimum strain values as a function 

of field up to the maximum field available of 2.5T. The results 

obtained are plotted in figures 7«1 and 7-2a. The value of h^ 

extrapolated to 0 K is (0.9 + 0. l) x 10 

7.2.2. Determination of h^ 

The method used was similar to that used to obtain h^, in 

this case the strain gauge was cemented, to the opposite face of the 

disc from the (lOO) gauge , in a (llO) direction by the same method. 

If the appropriate values of the direction cosines are substituted 

into equation 7'1 for the field at an angle 9 to the (lOO)direction 
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in a(lOO)plane we obtain in this case: 

^ (e) = ^ h^ + h_ (cose sinG ) . . . ( 7 . 3 ) 
Z ^ 

For the field perpendicular and parallel to the gauge 

(9 = 45° and 6 = 135° ) the difference between these minimum and 

maxiimm values gave the value of h^ • As for the measurements of 

h^ these were repeated for the temperature range 4* 2K to 25OK for 

a constant applied field; and at TJK for the perpendicular and 

parallel directions with increasing field up to the maximum field 

available of 2.5T» The results obtained are plotted in figure 7*1 

and 7*2b. The value of h^ extrapolated to 0 K is (-26.1 +0.2) x 10 ^ . 

7.2.3' Discussion 

The teiigerature dependence of h^ and h^ (figure 7-1) will 

contain contributions from the form effect. These contributions were 

calculated in the uniform strain approximation using the equations 

21. 19 - 21 given by Carr (2) . The values of h^(f. e) = 0. 73 x 10 ^ 

and hg (f • e) = 0- 76 x 10 ^ at 4* 2K were then subtracted from the 

measured values. However a more important contribution was found to 

be from the dipole-dipole interaction. Since the form effect strains 

had been subtracted, the dipolar contribution corresponding to an infinite 

crystal was calculated using the formulae of Akulov (3) and the dipole-

sums of McKeehan (4) for the diamond lattice on which the Gd ions are 

situated. These formulae are; where and are related to the 

dipole sums of McKeehan. 
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h. (dip) = - 1 
16 -z ..•(7.4a) 

11 12 

h (dip) = - Sp 
i2 1_ ...(7.4%) 
°44 

Values of the elastic constants . C^o and C.. were taken 
11 12 44 

from the data of Schiltz and Smith (5), and the values of the magnetisa-

tion from the sources given for figure 2.2. At 4* 2K the dipolar 

contributions were calculated to be h^ (dip) = 5* 0 x 10~^ and 

hg (dip) = - 5' 3 X 10 The values of h^ and h^ with these contribu-

tions subtracted are also shown in figure (7.l). 

Therefore it can be seen that along with the anisotropy, 

the magnetostriction of GdAl^, although small, exhibits some unusual 

features. These are the unusual ten^serature dependence of and the 

small (almost negligible) value of h^ together with a comparatively 

large hg. The conclusion is, therefore, that there are two contributions 

to both the anisotropy and magnetostriction of GdAl^ which are of the 

same sign for hg but of opposite signs for and h^ . The temperature 

dependence may then be accounted for in terms of different temperature 

dependences of the contributions. 

In this compound the mechanisms involved in producing these 

effects must necessarily be of second order or hi^er because of the 

s-state of the gadolinium ion. Kaplan et al (6) have concluded that 

there is an anisotropic s-f exchange in GdAl^ and this is supported by 

the temperature dependences of and h^ (figures 6. 6 and 7-1 and also 
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reference (7)),which are expected to scale as the square of the 

reduced magnetisation or less. The agreement is quite good but the 

conclusion by no means certain-

Further contributions could arise from excited states of 

the Gd ion, but these states are so far above the groundstate in 

energy that the admixture of even the 1% of excited states necessary 

to account for the results seems unlikely. It seems more probable 

that the measured effects arise from some non-s-state character of 

the conduction bands. 

7. 3. Measurements on the dilute alloys Gdg gg Tbg^ Al^ 

^0.95 ^^0.05 "̂ 2̂ 

In this case, because only limited amounts of crystal were 

available the measurements were performed on the (llO) discs of the 

alloys used in the torque measurements (chapter 6) • As explained 

previously this plane is particularly useful as it contains all three 

main cubic symmetiy directions. In this case also gauges were cemented 

on in symmetry directions and hence no corrections to the magnetostriction 

for the ani sot ropy causing non-alignment of magnetization and field 

vectors was needed. For the two dilute alloys the procedures used to 

determine h^ and h^ were identical, for each crystal. 

7. 3-1' Determination of h^ 

As with GdAlg, the gauges were cemented to the crystals in 

(100) directions. Reference again to equation (7-1) gives the strain 
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observed in this direction when the field is applied at an angle 

9 in the (llO) plane: 

M (8) = K, (cos^e - % ) ...(7-5) 

this is identical to equation (7*2). The strain was then measured 

with the applied field parallel and perpendicular to the gauge, 

(i.e.6 = 0 and 9 = 90 )• The difference in the two saturated 

directions gave h^ ( as in section 7* 2.1 ). Measurements were 

performed at several temperatures between 4* 2K and 200K for an. applied 

field of 2.27T' Further measurements of 772 were also made for 

increasing field up to 2.5T of- the strain with the (lOO) gauge both 

parallel and perpendicular to the field direction. 

The results obtained, for both crystals, are given in figures . 

7. 5 and. 7" 2c • 

7.3.2. Determination of h^ 

In this case second gauges were cemented to the. opposite faces 

(to the (lOd)gauges) of the (llO) crystals in a <110> direction. 

Substituting the appropriate values of a's and p's into equation (7*1) 

leads to the relation 

^ (9) = ^ sin^9 - ) + hg ( ̂  sin^9 ) . . . ( 7 . 6 ) 

where the field is applied at 9 to the 100 direction. If the field is 

then rotated from parallel to perpendicular to the gauge (i.e. 9 = 90° 

and 9 = 0° respectively) then the strain difference is equal to 
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^ (h^ + hg )' Measurements were performed for constant applied field 

(2.27T) at several temperatures between 4* 2IC and 200K. The forced 

measurements at IJS. were also repeated. The results obtains, for 

both crystals, are given in figures 7'4 and 7'2d. 

The values of the observed components of the strain and the 

derived effective values of h^ and h^ for the dilute alloys is shown in 

table 7" 1* 

7'4« Ifeasurements of the thermal expansion of GdAl^, 

^0. 98 ̂ 0. 02 ̂ 2 '^0. 95 ̂ 0. 05 '^2 

Because of the oryostat and sajî le holder design it was found 

difficult to ensure small rates of temperature increase or decrease so 

that these measurements of thermal expansion described here and for the-

dilute alloys (section 7-5) sxe not expected to be accurate (see sample 

errors on figure 7- 5) • But during the course of determining the mag-

netostriction constants it was found possible to also measure the linear 

expansion of GdAl^ and the dilute alloys, between 77% and room temper-

ture by means of the strain gauges attached to them. The curves of 

dZy vs T were all found to be of a similar appearance exhibiting an 

invar-type anomaly below the ordering temperature. The curve for GdAlg 

is shown in figure 7* 5-

If we consider the definition of the linear thermal expansion 

coefficient a at a temperature T:-



20 40 60 80 100 120 140 150 180 200 
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TABLE 7.1 

Magnetostriction constants at 4.2K for GdA^ and the dilute alloys containing 2% and 5% Tb. 

Sample 

(meas) 

X 10"* 

hg (meas) 

X 10~^ 

1(h^ + h^) meas 

X 10"* 

h^ (derived) 

X 10~^ 

(derived) 

X IQ-G 

Gd A&2 0.9 -25.9 - 6.0 -25.1 

^0.98 ^^0.02 
33.9 — 13.6 - -

^^0.95 ^^0.05 ^^2 
75.8 - 48.4 - -

Tb Ail 2 - - - 1400.0 920.0 



I Typical Error 
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Fig. 7 5 Thermal Expansion of GdAl2 (with Au compensating 
nni inck 1 
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dSL 
and compare this to the definition of the slope of the /i vs.T. curves 

i.e 

slope = Lt fAZ 

• W T T [ zy \i J ...(7.8) 

^1 ^2 
(ST 

If the value of ̂  is referred to a length at a 
£ 

reference temperature T , Jl we know that : 

( 1 + «=T) ...(7.9) 

and that: 

[m] f 1 
[~)t; N 12 

^o 55, ...(7.10) 

where 6Jl = X - & 
1 2 

Hence the slope w becomes: 

*o I I 2 
[ i ] 0 2 I " ̂  I 0 

T L J 
Lt 6T + 0 

From (7.9) and (7.11) ; 

( 'T ) ...(7.11) 

1 + OCT 

...(7.12) 

As the value of <= is approximately 10 ^ the slope of the versus T 

curve may be taken as the thermal expansion coefficient « . The values 

of a for all three samples (5 gauge directions in total) are within 



69 

(the large) experimental error of each other so a composite curve 

of a, showing the anomaly below the ordering temperature was obtained 

and is given as figure 7* 6. It must be taken into account that, as 

the strain measuring system consisted of two gauges the active on 

GdAlg being con^ensated by a similar gauge cemented onto a gold dummy 

sample in close proximity to it, the value of a obtained from these 

measurements is, in fact, a (GdAl^) - a (Au) over the temperature range. 

The thermal expansion of gold is well documented (8) but due to the 

large errors involved this measurement can only be regarded as a 

qualitative one; 

7.5. Determination of the magnetostriction constants of TbAlg 

from the dilute alloy measurements 

For the dilute alloys it is possible, assuming a linear depen-

dence of the magnetostriction on terbium concentration to use the results 

on the two alloys to obtain values of h^ and h^ for both TbAlg and GdAl^* 

Because GdAl^ has a small magnetostriction (section 7'2) the measurements 

on the dilute alloys will give the magnetostriction constants for TbAl^ 

wheras measurements on 100% single crystal TbAlg would not be of any use 

because the large anisotropy (Chapter 6) would prevent the rotation of 

the magnetisation vector into the 'hard' (lOO) direction with the low 

fields available for this work. 

The magnetostriction arising from the TbAl^ has been calculated 

therefore from the magnetostrictions of the two dilute alloys using;-

('^0.95 ̂ 0.05 ^2) = 0-05 + 0.95x115 -"(7-134 

(=^0.98 '^0.02 ̂ 2) = 0.02 xhj, + 0.98 % hg •••(7-17b) 
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Where h^ , h^ and h^ are the particular magnetostriction constants 

(h^ or hg) of the measured sample, TbAlg and GdAl^ respectively. The 

two equations were then solved simultaneously, using the experimental 

results to obtain h^ and for both GdAl^ and TbAlg* The derived 

values for Gd^lg are compared with those obtained by direct measurement 

(section 7*2) in figure (7*7)' The values of h^ and h^ for TbAlg are 

shown in figure (7-8)• 

The values derived from the simultaneous solution for the 

dilute alloys are (at 4'2iC) for TbAl^ : h^ = I4OO x 10~^ , h^ = 920 x lO"^ 

and for GdAl^ ; h^ = 6.0 x 10 ^ , hg =-25.1 x 10 ^ . The larger derived 

value for h^ of GdAl^ compared with the direct.measurement at lower 

temperatures is attributed to anisotropy effects which allow the angle 

between the (lOO) direction and the magnetisation, a, to become finite 

in the dilute alloy case. This is illustrated in section 6.10 when 

discussing the torque measurements and occurs because even ^ substitution 

of Tb means that in the fields available the angle a becomes significant 

at the lower end of the temperature, range. In this case the effective 

measured h^ is reduced for the 59̂  sample- and this has the effect of 

increasing h^ (GdAl^) when solved simultaneously with the 2% measure-

ments, (figure 7-7)• Obviously for GdAlg the direct measurements are 

more reliable, but for the case of TbAl^ when only relatively small 

fields are available, the derivation of the magnetostriction constants 

from dilute alloy measurements is a valuable exercise. 
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8. A THEOEEPICAL CALCULATION FOR BILOTE ALLOY SYSTEMS 

8-1. Introduction 

To obtain insight into the behaviour of an alloy system 

containing two magnetic species, a computer program was developed to 

solve numerically for the equilibrium orientations of an array of spins-

Numerical values used for the parameters defining the problem were 

those for the system Tb in GdAl^ on which experimental measurements 

had been made (Chapter 6). 

The model used was a semi-classical one in which the spins 

interact with each other by a nearest-neighbour only isotropic 

exchange- The anisotropies of the spins were described by the single-

ion ani sot ropy constants obtained from bulk measurements on single 

species materials-

An initial approach which considered an equilibrium sum of 

torques within the crystal was discarded in favour of an energy sum 

which was minimised with respect to the spin orientations for each 

applied field direction, cp.- • Because the torque is then just the slope 

of, this energy function ( - d E ) it was then a simple matter to 

derive torque curve s-

The results show that it is often possible to analyse torque 

measurements on a dilute alloy system in terms of single bulk ani sot ropy 

constants which will have a connection to those of the two ̂magnetic 

species- Furthermore, in this case, where the GdAl^ contribution to 

the total torque is negligible, it is also possible to derive bulk 

anisotropy constants for the impurity material (TbAlg) • 

Similar systems, using dilute rare earths in gadolinium metal, 

have been investigated in some detail theoretically by Miwa and others 

(1,2, 5) to interpret the experimental results of Chikazumi (4) • 
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Chikazumi himself used a simple model involving only two spins whose 

properties were scaled in proportion to their concentrations. The 

extended calculations of Miwa use a spin-wave approach to the problem, 

but the calculations are extremely involved and it is difficult to,see 

the effect on the final result of approximations introduced during 

the calculation. In any case the spin-wave effect is necessarily a 

transverse one and it may not be applicable to a longitudinal perturba-

tion of the spin directions. However- the configuration used in these 

calculations stems from the idea of a spin direction deviation within 

the host material in the neighbourhood of the impurity, which was 

introduced by Asada and Miwa in reference (2) (figure 1 ), and is 

reproduced in figure (8.1). 

8.2. Physical Principles 

a) Geometric; In the cubic Laves phase structure of the RAlg 

compounds the magnetic rare earth ions lie on a diamond lattice with the 

tetrahedral axis in the (ill) cube direction. The aluminium sites are 

not considered in a magnetic analysis. Therefore the central ion of 

the system was taken to be Tb (in̂ jurity) which has four Gd (host) ions 

as nearest-nei^bours. The next nearest-nei^bours consist of three 

more Gd ions associated with the first four and in turn, these each have 

three more associated with them. Thus the calculation simply considered 

each shell of ions as having the same spin orientation and to be exchange 

coupled only to nearest-neighbours. The R-S nearest-neighbour separation 

for the cubic C15 Laves structure is the same for each successive shell 

and equal to a / 4 where a is the lattice parameter. 
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b) Ani sot ropy; The variables in the energy expression were chosen to be 

the angular positions 6̂^ of the successive shells of spins with respect 

to the easy axis defined by the anisotropy constants For the Tb-GdAlg 

case both TbAl^ and GdAl^ have <111> easy (which implies < O) but 

for the numerical calculation K^(Tb) and K^(Gd) were taken to be positive 

and I[g(Tb) and ^^(Gd) equal to zero. 

Thus the energy due to the anisotropy, E^, was written 

sin^e^ + (sin^B^ + 5 sin^G^ + 3^sin^e^ + ) ...(8.1) 

Where is for Tb and for Gd. The energy is thus the total 

energy of the array. 

c) Exchange; The ions are considered to interact only by nearest-nei^bour 

exchange where the form of the exchange energy for a single ion pair will be 

= ./ S...S, ... (8.2) 

Where ̂  is the single-ion exchange constant and are the two 

spins. Hence the interaction energy will have a cosine dependence on the 

angular variables 8j_;-

Eg^ = 4r cos (e^ - 8g) + 12r ̂  (cos(8g - e^) + 5 cos (e^ - e^)+ ...) ..(8.3) 

where r ̂  and are the exchange energies associated with (Tb-Gd) and(Gd-Gd) 

exchange. 
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d) MaiOgietic Field; When a magnetic field is applied in a direction 9 

then the spins will try to align themselves with the field. They will 

rotate imtil the anisotropy torque is equal and opposite to that produced 

by the field. For a single-ion the field energy is: 

E = ~ m . B ...(s. 4) 

which may be written as; 

E = - g j K g J B cos (e^ - 9 ) ... (8.5) 

where 0^ is the orientation of the spin J in field B applied at an 

angle 9, both with respect to the same axis. 

8. 3. The Numerical method 

This method employed N.A. G. library standard subroutine 

EO4GCF which is designed to minimise any arbitrary function with respect 

to any number of variables. It uses an iterative method which sets up 

a simplex of n + 1 points in n dimensional space (where n is the number 

of vsuriables), thus for two variables the simplex will be a triangle. 

The first vertex is entered as the first set of variables and the remainder 

of the system is generated by the subroutine. The procedure then elimina-

tes points which are largest and subsequently reduces the sides of the 

simplex to converge on the minimnm point. This method, due to Nelder 

and Mead (5) is slower than other methods but is robust and particularly 

suited for minimising complex functions. 
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The function was supplied in the form of the sum of terms for 

anisotropy, exchange and field energies above and the output of the 

equilibrium values of the 9^ was obtained for magnetic field orientations 

at 5° intervals for a 90° rotation. A flow chart for the operation of 

the program is given in figure (8.2). ' 

8.4' Input -parameters 

The energy function was calculated and minimised in terms of 

-•PA 
energy per ion. The units used were 10 ^ Joules (ppj). The single-

ion anisotropy constant was taken to be times the bulk anisotropy 

constants where a is the lattice parameter and n the number of atoms 

in the unit cell (in this case, il-S). This gave anisotropy energies, 

per ion, ignoring of 425 PPJ for the terbium ion in TbAl^ (6) and 

0.265 ppJ for the gadolinium ion in GdAl^ (this work). The energy 

contribution due to the magnetic field is calculated from the magnetic 

moment per ion (in Bohr magnetons). Values used were 7*0 p^Gd (7) 

and 9'2 (ig/Tb (8). Hence the energies in ppJT~^ per ion are 64* 9 and 

85.3 respectively. 

Finally values for the exchange interactions ( and 

equation (8.5) ) were determined using the known value of the exchange 

field for TbAlg (9) and the scaling factor for the rare earth series 

given in figure 5 of reference (lO) to determine • The assumption 

that, for Tb-Gd exchange, the exchange constant was the arithmetic mean 

of that for Gd and Tb was made in order to derive r • The calculation 
a 

finally gave values of I5IO ppJ and 1570 ppJ per ion pair for Gd-Tb 

and Gd-Gd exchange respectively. 
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The numerical minimisation was performed for field values 

from 0.5T to 3* OT in 0. 5T steps. At each field value the function was 

minimised for field directions at 5° intervals between 0 and 90° . 

The energy function itself consisted of a sum of terms like 

equations (8.1), (8. 5) and (8.5) in a number of variables. The most 

convenient case used was for four variables (i.e. terms up to 9^) • 

This corresponded to one terbium per 53 gadolinium ions, which is 

approximately 2^ atomic, and therefore a similar case to the first dilute 

alloy sample, (chapter 6). A further calculation with the central Tb 

replaced by Gd was undertaken to ascertain the orientation of the bulk 

material without impurity spin. An alternative approach, also employed, 

was to minimise with respect to ten variables (i.e. terms up to to 

determine how far from the ingurity spin its influence on the host 

became negligible. The ten variable case corresponds to a concentration 

of Tb ions of 1 ; 39 365. 

8. 3' Results and further analysis 

The primary result of the calculations was that the spin 

disturbance, which may be interpreted as a local variation of the 

magnetisation was extremely long range, for the system considered and 

significant at 3 or 6 nearest-neighbour distances (equivalent to (^a/4 ) 

from the impurity at low fields. Even at high field values the ten 

shell calculation showed that the disturbance to the spin directions was 

significant (approximately 0.1° ) for the fourth shell of Gd ions 

surrounding the anisotropic Tb impurity ion. This corresponds to one 

Tb for each I60 Gd ions, a concentration of less than 0. "]%• 
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It must be stressed that the system considered is rather extreme, 

but the same sort of effects must be expected for other dilute alloy 

systems. 

Once the extent of the spin disturbance had been derived it 

was thought necessary, in the li^t of the experimental results (Cl̂ apter 

6), to extend the calculation to detemine torque curves for the 

theoretical system. In this case the four spin calculation was employed 

because it corresponded approximately to the 2% alloy. The energy function 

was now known and could be tabulated as a function of the field direction 

9 • The slope of this curve ( - d E w a s then the value of the torque 

and torque curves could be plotted (figure 8- 5)• These theoretical 

curves were then analysed as if they were single species crystals using 

the method of peak hei^t, Fourier analysis of corrected curves and 

initial slope. (An explanation of these methods is given in chapter 6). 

Then using the derived value of for the crystal and assuming 

the contribution of the gadolinium to be negligible the results were 

scaled up to obtain a derived ani sot ropy for the terbium. Obviously 

this will be expected to be the input value used for the program 

(7 X 10^ J m ^ or 425 ppj/ion) . 

The results are rather surprising; both the peak height and 

Fourier transform methods give, within the rounding inaccuracies in the 

arithmetic, the value of 7 % 10^ + 1% J m ^ for the first anisotropy 

constant of TbAl^; but the initial slope method is subject to extremely 

large ( > 10^ inaccuracies, giving a consistently low value for the 

first anisotropy constant. It is also observed that the corrected torque 

curves which should be pure (sin 29), do not have a maximum at 45° but 

contain approximately 1C% (sin 48) and 1% (sin 68) components, (Table 8.1). 
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TABLE 8.1 

Fourier components of the corrected torque curves: 

L(0) = A^ sin 29 + A^ sin 49 + A^ sin 69 

Magnitude 

Component 
10"24 j.deg"^ 

(53 ions) 
10^ Jm"^ 

(normalised to 100% TbA&g) 

4 
7.616 7.07 

0.672 0.624 

0.069 0.064 
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8- 6 Discussion 

Some explanation of the discrepancies observed between the 

results in Chapter 6, for the dilute alloys of Tb-GdAl^ , may now be 

offered as well as an indication of the best method to be used for 

the analysis-' As expected, if it can be shown that the anisotropic 

in^urity may be rotated over the full range of 0^, (angle between 

the anisotropic spin and the crystal axis) then the method of correcting 

the torque curves and Fourier analysis is extremely useful. However, 

contrary to the case of the single-species crystal, determination of 

anisotropy constants from-torque curves by means of an initial slope 

extrapolation is not at all accurate. The explanation of this is not 

clear, but along with the additional component in the corrected torque 

curves these errors must be associated with the spin direction variation 

throu^ the crystal. 

The anisotropy constants of highly anisotropic materials may 

be obtained by torque measurements in laboratory fields if a suitable 

magnetically isotropic host can be found to supply a 'handle' which, 

via exchange coupling, may be used to rotate the anisotropic ions. 

These calculations have shown that the method of initial slope 

breaks down for the non-homogeneous magnetisation introduced by the 

impurity and therefore cannot be used with confidence for the dilute 

alloy case. 



APEEfTOIX A 

A theoretical analysis of the torque transducer system 

The overall construction of the transducer systems used in 

the experiments may be seen in figure 5* 2.2 of Chapter 5* 

The.assembly considered in this analysis is shown in 

figure Al. It consists of two parallel rigid plates connected by 

three spring strips of constant width x, thickness y and length z-

The strips are rigidly fixed perpendicular to the plates with their 

X dimension in a radial direction from the axis of the transducer and 

with their long axes (z) intersecting the plates on the circumference 

of a circle, radius r at 120° to each other. 

If one disc is rotated with respect to the other, about 

the central axis by an angle 9, then the strips will be bent as 

shown in figure A2. The restoring forces R will act on the disc and 

a total couple 3- R* r will be produced (figure A3)• 

Considering figure A2 it can be seen, by symmetry, that when 

the strips are bent they adopt the configuration of two cantilevers 

deflected by r 9 at their ends. 

Bending beam theory gives, for a virtual load H at the end of 

a beam length ^/2 rigidly fixed at its other end, the expression; 

5 
I r 9 = i H. ( I ) . ^ .... A (1) 

Where E is the Young's Modulus of the beam and I its Second Moment 

of Inertia. 

For a beam of width x and thickness y, the second moment 

of inertia I is given by; 
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q dA , where dA. = x. dq ....A (2) 

When evaluated this gives: 

I = z — A (3) 
12 

Re-arranging A(1) and siibstituting for I, the reaction on the 

support H is; 

R = H = r 6 E X • • • • A (4) 

Therefore the torque T produced "by the transducer per unit angular 

deflection is given by: 

T = 3' R' r« = Er^ x • A (5) 
.5 

This equation was used to predict the effect of spring dimension changes 

on transducer sensitivity- However only limited success was achieved 

because of variations of the Young's Modulus, E, of the spring material 

used (phosphor-bronze) • Therefore it is necessary to use the same 

batch of material, or that of constant quality unless a separate 

determination of the Young's Modulus of the springs is made, before 

employing equation A(5) • 



APPENDIX B 

Derivation of initial slope ex-pression for the symmetry directions 

of a [lip] plane in a cubic crystal 

The initial slope of a torque curve at a symmetry direction 

(where the torque is zero) may be related to the anisotropy constants 

and a term in reciprocal field C'/b) where B is the applied field. 

Thus an extrapolation of values obtained for the initial slopes against 

B ^ to B ^ = 0 will give the value of the anisotropy constant(s) 

involved. 

The expression for the torque of a crystal which has the 

[no ] plane as the plane of rotation is given by; (chapter 6, equation 

6.13) 

L = — '^1 < 
sin 29 - X < 

4 + 64 sin 29 - ^ 8 16 
sin 40 + — s i n 69 .. • B(1) 

Where the and are the anisotropy constants and 9 is the angle 

between the magnetisation and the [lOo] direction. 

However, as discussed in section 6.1, a finite angle will exist 

between the applied field and the magnetisation directions. The torque 

curve is then measured as a function of (9 + a) where a is given by the 

relation: 

from equation 6.4* 

Thus we need to derive the values of for 
3<p 

each of the symmetry directions [ lOo] , [lio] and [ llll where 

9 is the angle between the applied field and the < 100 > axiŝ  of the 

crystal i.e- 1(9) is the measured data. 



From equation B(1) 

9 L 
3 9 

= - 2 ' cos 2(cp - a). (1 - ) - 4 

cos 4(9 - a).(l - ^ 2 sin 6(9 - o:)'(l-|~) •••^(3) 
d9 64 . 

From equation B(2) , taking sin a = a if a small 

3_a 31 _ 1 
39 39 ' MB • • "2(4) 

For a ^ymmetly direction L = 0, i.e. a = 0 from equation B(2). 

Fikl = r-2 [ + f i ) COS28 - 4 Y fi) 
L JL=0 L 64/ L 8 + 16/ 

cos40 

+ K2 cos66 ...B(5) 

If we let the terms within the square brackets on the right hand side 

of equation B(5) be Q then suitable manipulation of equations B(4) and 

B(5) leads to: 

f9l,\ 1 + 
Q M.B 

..B(6) 

L=0 

This equation may then be evaluated by substituting the values of 6 of 

each symmetry direction into Q. Each of the directions has an exact 

fractional result and these are given in equations B(7)> B(8) and B(9) 

below. 



For the < 100 > direction, cos 29 = cos 46 = cos 69 = 1 

3L\ "1 1 1 . 

For the < 110 > direction, cos 29 = - cos 49 = cos 69 = -1 

3L\ 1 1 

- % ! - Zg MB 
+ i=- '"5(8) 

For the < 111 > direction, cos 29 = - y ; cos 49 = - ̂  ; cos 69 = ̂  

(^)m = .it .4k. " » 
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