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We demonstrate UV poling of a pure fused silica sample by applying to it an electric field of 200
kV/cm and irradiating it with high-intensitys,40 GW/cm2d femtoseconds220 fsd laser pulses at
264 nm. ©2005 American Institute of Physics. fDOI: 10.1063/1.1868075g

The possibility of inducing a second-order nonlinearity
in glass by poling has some very intriguing possibilities for
fiber optics in particular and photonics in general, as it has
opened the way for creating different built-in devices in a
standard telecom fiber; amongst them modulators, switches,
and harmonic generators. The method of UV poling, first
realized by Fujiwaraet al.,1 consists of the irradiation of
highly Ge-dopeds15.7 mol %d fused silica glass by nanosec-
ond 193 nm laser pulses in the presence of an applied electric
field of 100–300 kV/cm. Fujiwaraet al. reported the induc-
tion of a nonlinear second-order coefficient as high as 3.4
pm/V. Despite his following publications on this subject,2–4

there is growing skepticism about these results in scientific
literature,5,6 as they are not reproduciblesmaybe due to a
special nature of the sample used by himd. In this investiga-
tion, we tried to repeat Fujiwara’s experiments using a high-
intensity UV femtosecond laser source and undoped fused
silica samples, excited by a two-photon mechanism.7,8 After
irradiation, we observed a strong second-harmonicsSHd sig-
nal in the areas of the sample that had been subjected both to
the electric field and to the UV light.

The experimental setup is shown in Fig. 1. The fused
silica samples used for poling were made from Herasil 1
glass sHeraeus Quarzglas GmbHd and had dimensions 37
31130.5 mm3. All the sides of the samples were polished
and aluminum electrodes, 1135 mm2, were deposited on
both plane sides of the samples in such a way that the edges
of each electrode were at a distance of about 3 mm from the
end of the plate and side edgesssee Fig. 1d.

For sample irradiation, we used the UV pulses from a
femtosecond Nd:glass lasersTwinkle, Light Conversion Ltd.,
Vilnius, Lithuaniad9 with the following parameters: the pulse
energy,«p, is around 200mJ; the wavelength,l, is 264 nm;
the pulse duration,t, is 220 fsffull width at half maximum
sFWHMdg; the beam diameter,w, is 0.3 cmsFWHMd; and
the repetition rate,Df, is 27 Hz. The UV radiation was fo-
cused into the narrow side of the sample by a cylindrical lens
with focal length 21.8 cm. The sample was placed at a dis-
tance of 21 cm from the lens. The laser beam size at the
entrance of the sample was about 330.15 mm2 sat FWHMd.
A high voltage block FC30P4sGlassman High Voltage, Inc.d
was used to create an electric field of about 200 kV/cm
through the sample.

The peak beam intensity and the incident fluence were
calculated from the following:8
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where«p is the pulse energy incident on the sample;F is the
focal distance of the lens at 264 nm;S is the distance be-
tween the lens and the samplesmore precisely, between the
principal plane of the lens and the sampled; andN is the total
number of pulses incident on the sample. With the high volt-
age applied across the sample, the sample was irradiated with
the high-intensity UV laser light for approximately 3 hstotal
incident fluence of around 8 kJ/cm2d with peak incident in-
tensity of around 200 GW/cm2 sat the narrow edge of the
sampled. Using our experimental values on the two-photon
absorption coefficient for Herasil glass,7 we can estimate the
light intensity value entering the volume inside the sample
under high voltage as 40 GW/cm2 sthe pulse energy, enter-
ing the poling volume, is about 40mJd. The total irradiation
fluence regarding the poling volume was about 2 kJ/cm2.

A digital oscilloscope LT372sLeCroyd was used to mea-
sure the photoelectric current induced in the sample. Imme-
diately, at the start of the irradiation, a strong photocurrent
pulse with an amplitude of up to a 20 V appeared, which
corresponded to a conductivity value ofs=2
310−9 cm−1 V−1 sresistivity valuer=53108 cmV, which
is about ten orders less than the standard reference value for
room temperaturer=1018 cmV10d. The calculated initial
quantum yield of charged particles between the electrodes
was about 2310−6, if we presume that the time resolution of
our oscilloscope was 50 ns. During the irradiation, the pulse
amplitude value degraded rather quicklysduring some sec-
ondsd to a level of some voltssFig. 2d. A horizontal move-
ment of the sample with respect to the laser beam led to a
revival of the photocurrent signal. After switching off the
applied voltage, the photocurrent pulse changed its polarity
and continued to degrade. No current was observed in the
absence of high-intensity UV light. The observed photocur-
rent behavior is qualitatively consistent with the one induced
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in earlier experiments on the two-step ionizationS0→S1
→SN of oxygen deficient fused silica by KrF excimer laser
radiation withl=248 nm andt=25 ns.11

After poling and removal of the electrodessby etchingd,
the sample was tested for evidence of second-harmonic gen-
eration. As a source of fundamental radiation, a mode-locked
and Q-switched Nd:YAG laser was usedsl=1064 nmd. For
the Maker’s fringe measurement,12 the sample was placed on
a rotation stage and the laser beam was focused on the poled
area, with the polarization parallel to the plane of incidence.
The generated SH light was detected with a photomultplier.
The measurement of the periodicity of the fringes in the
Maker’s fringe pattern allows us to determine the thickness
of the poled region in the sample. The fit to the experimental
data sFig. 3d reveals that the region with an inducedxs2d

nonlinearity corresponds to the whole bulk volume between
the two electrodes. The comparison of the SH signal value
with that obtained from the reference samplescrystalline
quartzd with a knownxs2d value of 0.6 pm/V,13 allowed us to
estimate the maximum value of the induced second-order
nonlinearity as about 0.02 pm/V. A rectification model14

gives for the induced second-order nonlinearity a value of

xs2d = 3xs3dEdc, s3d

wherexs3d is the third-order nonlinear susceptibility, equal to
4310−22 m2 V−2 for fused silica,15 and Edc is the applied
electric field. If we takeEdc equal to 200 kV/cm, we will

obtain a predictedxs2d value of 0.024 pm/V, which is in
remarkable agreement with the measured one. If the same
experiment is performed in twin-hole fibers,16 where the
maximum applied field would be only limited by the dielec-
tric strength of silica at room temperatures.33108 V/m,17

,73108 V/m,18 .109 V/m16d, we can tentatively predict a
value ofxs2d, reaching 1 pm/V.

We also scanned the pump beam across the surface of
the sample to test the distribution of the second-order non-
linearity, using the setup described in our earlier work19 sFig.
4d. The geometry was the same as for the Maker’s fringe
measurements described earlier. The angle of incidence was
chosen to be close to normal incidences10°d to reduce the
effects of nonuniformities. A stronger SH signal is observed
near the side where the laser beam entered the sample which
could be explained by the decrease of UV intensity caused
by two-photon absorption in the glass. During the inscription
procedure, we poled several regions under the electrodes by

FIG. 1. Schematic of UV poling experiment with induced photocurrent
measurement.

FIG. 2. Oscillogram of an induced photocurrent signal together with fem-
tosecond UV pulse.

FIG. 3. Maker’s fringe pattern registered in the poled sample of Herasil
glass.

FIG. 4. The two-dimensional distribution of the second-harmonic signal in
the poled fused silica sample. The sample geometry is marked by the black
lines and the area covered by the electrodes is marked by the white lines.
The UV beam entered the sample from the left.
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translating the sample. It is clearly seen that the second-
harmonic signal is observedonly in the area under the elec-
trodes illuminated by the UV light beam, indicating that the
poling takes place only under the simultaneous action of both
UV light and the applied electric field.

In conclusion, using high-intensitys,40 GW/cm2d fem-
tosecond UV light combined with a high electric fields200
kV/cmd we were able to induce a second-order nonlinearity
of 0.02 pm/V in undoped fused silica.
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