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D L2 distance

Er error function, the number of erroneous estimated shape elements

d distance between gait cycles based on ~α

Vi ith vectorised gait cycle

d̂ distance between gait cycles based on ~β

DE minimum Euclidean distance

p(x, y) reference shape

q(x, y) observed shape

B boundary of the shape

IB interior of the shape

s scaling factor

θ rotation angle

Tx translation along the x-axis

Ty translation along the y-axis

E distance term of the registration problem

Rθ conventional 2D rotation matrix

rx x-axis element of the centroid of any shape, r

ry y-axis element of the centroid of any shape, r

ρ radius element of the polar coordinates

ω angle element of the polar coordinates

φ̂ centralised shape SDF φ
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φ̃ shape φ̂ in polar coordinates with ρ marginalised out

φ̄ normalised φ

β̃ scale factor as a function of rotation angle

ψ Fourier transform of a polar coordinates shape

Mm mth radial moment

Es distance term E with respect to s only

És linearised Es

ŝ log s

ζ̃ scale factor as a function of translation

Θ Fourier transform of a Cartesian coordinates shape

RBC red blood cell

C3 3rd cervical vertebra

DFT discrete Fourier transform

MAP maximum a posteriori

φPr prior shape SDF

Eprior prior energy

Etotal total energy

γ1 weight of the data energy

γ2 weight of the prior shape energy

ǫ́ quality of segmentation measure

SNR signal to noise ratio

Strain classifier training set

M total number of cycle in Strain

c the average number of frames in Strain

Stest classifier testing set

r the average number of cycles per subject in Stest

MDA multiple discriminant analysis

GEI gait energy image

DM Mahalanobis distance

CCR correct classification rate
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by Muayed S. Al-Huseiny

Performing a high level vision is usually based on features extracted at low and

intermediate levels of the process of perception of a visual scene.

Segmentation and matching are instrumental tasks in producing comparable fea-

tures in applications such as medical imaging, mining and oil extraction, gaming

consoles, face, ear and gait biometrics, and etc.

The ultimate goal of this study is to develop a fully functional prior aided segmen-

tation framework to extract deformable shapes over a sequence of frames. This

thesis acknowledges the demand by these applications for a robust and flexible

approach which is particularly designed to extract deformable timely shape se-

quences. It is also recognised that existing methods are either too general, and

thus inaccurate, or too specific, thereby limited in usability.

This thesis suggests a learning model for gait synthesis with the ability to ex-

trapolate to novel data. It involves computing comparable features from multiple

sources. We show that these features which we formulate as continuous functions

can be modeled by linear PCA.

This thesis also proposes a new fast and robust shape registration algorithm to

match shapes from different sources in the proposed framework. This algorithm is

based on linear orthogonal transformations and shape moments. The registration

parameters are computed directly by analysing the signed distance functions of
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2 NOMENCLATURE

the shapes. This is in-line with the level sets based prior shape segmentation

framework adopted here.

The segmentation is performed in a balanced framework between the data in

the given images on one hand and the prior induced by the shape model and

the registration algorithm proposed here on the other hand. This configuration

ensures more control for the shape force over the overall shape geometry. Thus,

favouring shapes familiar to the learned knowledge.



Chapter 1

Introduction

1.1 Context

Computer vision aims to mimic the basic principles of human visual perception.

The process of vision involves the acquisition and analysis of a natural scene. Image

analysis and computer vision relies on two main operations: feature extraction, and

feature analysis. Feature extraction processes the captured image to extract a set

of values or functions known as features, for example, by adopting image processing

techniques. These features, are then analysed by using machine intelligence and

learning algorithms to mediate understanding the sensed image.

This study is dedicated to techniques related to the extraction of visual features.

Feature extraction can be performed in various ways. Segmentation, for instance,

partitions an image domain into parts, each corresponding to a distinct object or

region within the image. Detection can also be performed to find automatically

the location of a known object within an image with minimal user intervention.

Tracking on the other hand is the detection of an object in successive frames

within temporally sequenced images such as videos. One other important opera-

tion is registration which aligns various shapes/images for comparison and further

analysis.

3
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To elaborate, segmentation seeks to define a boundary surrounding pixels with

similar properties and features. This boundary represents the shape of a region of

interest. An important issue is the segmentation of deformable shapes over time.

The notion of shape deformation over time implies the continuous change of the

region of interest. Therefore, instead of specifying one class of objects, there is a

need to define a large set of classes in order to account for shape variation of the

object over a period of time.

Researchers have also focussed on the use of human gait as a biometric. Recogni-

tion approaches are mostly founded on utilising sequences of the extracted shapes

of walking subjects. The extraction is achieved either by manual segmentation or

by background subtraction: the former is non automatic and the latter fails to

concentrate on the moving subject alone, but extracts all moving objects. Also,

very recently, some algorithms such as those enabling cars to avoid collision with

pedestrians, or algorithms implemented in gaming consoles that help recognise

human action have been proposed. The fact that these algorithms are built (in

one way or another) on the assumption that the timely shape, location and pose

of an objects at a scene are known, explains the need for reliably functional gait

segmentation methodologies.

The fact that non-synthetic real-world images are often complex, cluttered, noisy

and sometimes occluded makes the achievement of robust segmentation a serious

challenge. Further, the segmentation of human gait is an even more challenging

task due to the fact that scenes containing shapes of walking persons are prone to

the kinds of distortions mentioned above, in addition to the presence of persistent

occlusion and deformation.

Prior knowledge is known to provide better and more reliable results, due to its

capability to compensate for missing or misleading information (Cremers et al.

(2002), Rousson and Deriche (2003), Nixon and Aguado (2008)). This led the

thinking towards the inclusion of prior knowledge in segmentation models. In the

case of gait, this involves the prediction of shapes (by a prior shape model) and

matching them to the detected data. However, the achievement of a reliable gait
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(a)

(b) (c) (d) (e)

Figure 1.1: (a) An of image of a walking subject, (b-e) A sequence of images
of a walking subject

shape model is not straightforward due to the fact that the deformation of shapes

is non-Gaussian (Cremers et al., 2006; Mahmoodi, 2009) (see Figure (1.2) and

Section (4.3)), which exacerbates the difficulty. On the other hand, the periodicity

and correlation of shapes over time can give clues on the shape and location in a

dynamic fashion.

To explore the prospects of segmentation, consider for example, the scene in Figure

(1.1(a)). It is formed of many objects (each with sub-objects), some of them are

salient and others are less so, some objects are obstructed by other objects or by

other parts of the same object. One approach to understand the scene is to segment

all the objects in this image and then to identify those extracted objects. This

(rather idealistic) approach assumes that perfect segmentation can be achieved,

which is rarely the case due to the difficulties raised above.

Another approach is to decide beforehand what the scene should contain and then
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to attempt to extract it. This (more realistic) procedure reduces the search space

significantly and allows for incomplete or incorrect information in the data to be

accommodated for.

In other words, the first approach phrases the problem as: given a detected (seg-

mented) object, what is it? The issues here are, how reliable are the given features

and how feasible is the search within all the modalities of objects and their possible

variances? One more issue is the reliability of the segmentation of each individual

object. The second approach states the problem as: given an identified object in

an image, how to detect this object in this image. An issue here is, how likely

is that such an object exists in the scene. This can be decided by a particular

application. Another issue is that, whether the detection is feasibly and reliably

achievable. Surely, the detection of a known object is likely to require less compu-

tational effort than the detection of all (probably unknown) objects. Hence, this

thesis adopts the second approach.

By inspecting Figure 1.1(b-e), and assuming that the goal is to extract the walking

person in these images. The segmentation of these images then according to the

former approach is done by considering each image as a separate problem, and is

solved by segmenting each object (perfectly). This is started over each time. The

latter approach, however, can be taken by building knowledge gained by solving

one problem. The solution is obtained by matching the most probable guess to

the data. This solution is then used to predict a potential solution to the next

problem (next frame).

Some authors suggest the use of kernel density (Cremers et al., 2004) to model the

modes of deformation of gait shapes. The problem, however, with this approach is

that the accuracy of estimation depends on the (empirically) chosen kernel band-

width, also, the density is characterised by its high dimensionality. Furthermore,

this method assumes that the data is independent and identically distributed (iid),

whilst gait data actually expresses a high degree of correlation manifested by the

time coherence of successive shapes.
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Figure 1.2: Density estimated for a 3D projection of 100 silhouettes (Courtesy
of Cremers et al. (2006))

Another approach uses traditional linear PCA to reduce the dimensionality, while

the temporally dependent deformation will be handled by some mechanism. Cre-

mers (2006), as a leading example in this direction, have developed a gait seg-

mentation model based on Autoregressive (AR) systems as the mechanism to

synthesise new shapes. This model, though, has some issues: the algorithm mem-

orises the current and previous frames’ optimal segmentations, therefore, in the

case when incorrect decision (segmentation) is made this would not be corrected

at later stages of processing (Schmidt and Cremers, 2009). Such an approach

therefore, results in removal of the temporal coherence of the shapes produced by

the prior. The generation of shapes out of order with regard to their predecessor

shapes would definitely degrade the quality of segmentation. Additionally, this

algorithm can only be trained by using data from a single source, as no suggestion

is made on how to synchronise and join data from different sources. Furthermore,

the segmentation algorithm built on this model does not offer a scaling parame-

ter between the template and data. This limits the usability of the algorithm to

images of subjects with a similar size to that of the training set.

To better address gait segmentation, we propose a new approach to deal with this

problem, the main aspects of the proposed framework are discussed in the next

section.
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1.2 Contributions

This thesis proposes a shape model which builds on the previous approach and

overcomes some of the reported difficulties by using a better interpretation of

the gait data. Also presented here is a powerful registration approach to match

shapes to each other for the training of the shape model. The shape model and

the registration technique are used to drive a region based segmentation model

towards extracting successive shapes of human gait.

This work uses the segmentation model proposed by Chan and Vese (2001) to drive

the data term of the segmentation energy. The shape and the data are matched

by using the registration algorithm suggested in this thesis.

The proposed model dictates that entire gait cycles rather than individual shapes

are modelled. Our model is based on using PCA, first to extract compatible

individuals features, and then to model these features linearly. This is built on

exploiting the quasi-periodic behaviour of the eigenmodes of a gait cycle which

enables the automatic identification and extraction of a single period as a single

cycle for each individual. These extracted cycles are then aligned and modeled

together.

In this thesis, it is accepted that the deformation of shapes in a gait cycle along

the time axis is non-Gaussian (Cremers, 2006). However, it is recognised that the

deformation of corresponding shapes from different cycles can be approximated by

a Gaussian distribution as explained in Section (4.3) (see Figure (1.3)). Then, the

problem of non-Gaussian shape deformation is reduced into a simpler problem of

Gaussian feature modelling. The non-Gaussianity of the deformation of the shapes

is encapsulated in these features. This on one hand preserves the periodicity

and time coherence of the data. On the other hand, it facilitates the automatic

alignment of different gait cycles in order to model corresponding shapes together.

Therefore, by using this configuration, we assumes an instantaneous Gaussian

model at each time instant over the corresponding shape variations (Al-Huseiny

et al., 2010).
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Figure 1.3: A set of different gait cycles synchronised chronologically. Yellow
stripe: non Gaussian deformation of the shapes from the same cycle over time.
Green stripe: Gaussian deformation of the corresponding shapes from different

cycle

Another crucial component in this context is registration. In this thesis, a robust

and non iterative shape registration algorithm is proposed. This technique employs

the Fourier transform to factor out the phase shift between two signals (shapes

to be registered). These shapes are mapped to appropriate domains in order to

redefine the respective transformation parameters as a shifts. This framework is

a novel adaptation and employment of these techniques using level sets.

The scale parameter, which describes the difference in size between the shapes, is

computed by employing a new formulation to factorise the scale difference between

two shapes from their corresponding radial moments. The definition of a signed

distance function is also altered to suit the properties of the techniques used to

compute the registration parameters.

The framework of the prior knowledge segmentation of gait shapes is achieved

by the balancing between the analysis of image data and the estimated shape.



10 Chapter 1 Introduction

The proposed segmentation algorithm is formulated such that the shape term is

the deciding force of the topology and geometry. The data driven term, on the

other hand, acts locally around the evolving boundary to fine tune the result. This

structure ensures robustness against distortions and relies on good shape estimates

provided by the proposed shape model.
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Chapter 2

Active Contour Segmentation

2.1 Summary

This chapter introduces the topic of image segmentation and discusses in particu-

lar the active contour without edges model. The subsequent sections describe the

mathematical formulation of this model. Also, the assumptions made regarding

the scenes included in the images are provided. The experimental results demon-

strated in this chapter show the points of strength in this well established model,

particularly, in segmenting bimodal images. The outcomes of applying this model

to real-world image segmentation problems are also investigated.

2.2 Introduction

Segmentation is the process by which an image is divided into plausible (homo-

geneous) regions: an object and a background. These regions are characterised

by visual consistency. Segmentation is an essential step for some high level vision

tasks such as shape analysis, medical imaging, remote sensing, tracking, detection,

and recognition.

13
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One of the earliest segmentation models was introduced by Yuille (1991) who

used a flexible template to find facial features specifically the eye. This approach

requires the maximisation of a functional that gives a template which matches the

edge points of the eye (Nixon and Aguado, 2008). This approach is limited in its

application and is expensive to compute.

An important development in the field of segmentation has been achieved by intro-

ducing active contour or simply the snake by Kass et al. (1988). Snakes introduce

spatial regularity into the pixel-wise edge detection operation (Chan and Shen,

2005). The active contour model is more flexible compared to the flexible tem-

plate and is based on variational optimisation to ensure that the snake moves

to a local minimum. However, detecting a change in topology requires special

mechanisms (often heuristic). This approach is also non-intrinsic, since the energy

depends on the parametrization of the curve and is not directly related to the

objects geometry (Caselles et al., 1997).

The representation of the evolving contour received a new impetus when Osher

and Sethian (1988) proposed the level set method to implicitly advance the con-

tours. Level sets offer parameter free tool to characterise the shapes. Evolving the

embedding function allows us to elegantly model topological changes of the bound-

ary such as splitting and merging (Cremers, 2006). The fact that level sets are

monotonically smooth functions with continuous derivatives makes them favorite

for optimisation procedures.

Caselles et al. (1997) developed a level set based geometric active contour in which

a geodesic term (derived form the image data) is included to give the contour its

elasticity and smoothness. Although the geodesic active contours model imple-

mented in the level set framework has many improvements over classic snakes,

these improvements come at higher computational cost, which renders its utiliza-

tion for time-critical applications problematic (Papandreou and Maragos, 2004).

The above mentioned active contour models have been developed considering that

objects could be segmented by using edges gradients (Chan and Shen, 2005). This
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notion is not always valid, in particular, in the case of low or even no gradient at

some place of the edge the contour leaks and collapses.

Chan and Vese (2001) proposed a region based active contour as a special case

of the Mumford-Shah functional (Mumford and Shah, 1989) to address the issue

of weak and diffuse edges. As far as a pure segmentation task (using synthetic

images) is concerned, this model may be one of the best to solve many of the

problems associated with the active contours approach (such as initialisation, pa-

rameterisation, and contour leakage). This contour is implemented by using level

set methods. This should facilitate the split and merge of the contour as it evolves

implicitly (Chan and Vese, 2001).

The problem of snake evolution is solved via the employment of variational meth-

ods (Brechtken-Manderscheid, 1991). These optimisation approach define a quan-

tity (energy) that reaches an optimum (maxima or minima) when the solution is

reached. The process is accomplished iteratively by finding successive variations

of the energy with respect to some parameters (the contour). Energy reduction is

conducted numerically by applying the gradient descent technique.

2.3 Active Contour without Edges (ACWE)

This model is proposed by Chan and Vese (2001). It is a level set region based

model, built on the Mumford-Shah functional (Mumford and Shah, 1989). This

model assumes a bimodal image dominated by two Gaussian distributions rep-

resenting the target and the background. Statistical properties are computed to

drive the separation of the different regions. While the original model consid-

ers only the mean inside the regions, an extended version (Rousson and Deriche,

2003) includes regions’ variances. By avoiding the use of edge gradients, this model

achieves resistance to boundary leakage and contour collapse. This model hence

has the ability to find objects when the boundary is weak or diffuse (Nixon and

Aguado, 2008).
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2.3.1 Model Description

Let Ω be the image domain (a bounded open subset of R2) and Γ be the evolving

curve which is the boundary of the region ̟ ⊂ Ω, where Γ = ∂̟. Also inside(Γ)

represents the region ̟ and outside(Γ) represents the region Ω\̟ (Chan and Vese,

2001).

Let u0 be an image formed by two regions of approximately piecewise-constant

intensities with values ui0 and uo0. Assume further that the object to be detected

is represented by the region with the value ui0 and its boundary Γ0. This leads

to u0 ≈ ui0 inside the object i.e., inside Γ0, and u0 ≈ uo0 outside the object i.e.,

outside Γ0.

Now consider the following fitting term:

F (Γ) =

∫

inside(Γ)

(u0(x, y)− c1)
2 dxdy +

∫

outside(Γ)

(u0(x, y)− c2)
2 dxdy, (2.1)

where the constants c1 and c2 (depending on Γ) are the averages of u0 inside and

outside Γ respectively (Chan and Shen, 2005).

In this case Γ0 is the minimiser of the fitting term F (Γ). These two terms are

functionally equivalent to the external force of the classical snake models (Kass

et al., 1988), with the distinction that the stopping criteria here is region based

rather than edge based.

A length term is included in the snake functional for the purpose of spatial reg-

ularisation and to remove excessive contours, an area term can be added as well.

These two terms resemble the contour internal force seen in the models of the

classical snakes (Nixon and Aguado, 2008).

The model functional is then defined as:

F (c1, c2,Γ) = µ · |Γ| + λ1 ·
∫

inside(Γ)

(u0(x, y)− c1)
2 dxdy

+ λ2 ·
∫

outside(Γ)

(u0(x, y)− c2)
2 dxdy, (2.2)
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where µ ≥ 0 and λ1, λ2 > 0, are fixed parameters.

In level set formulation, Γ ⊂ Ω is embedded as the zero level set of the function

φ : Ω → R such that:



















Γ = ∂̟ = {(x, y) ∈ Ω : φ(x, y) = 0} ,
inside(Γ) = ̟ = (x, y) : {(x, y) ∈ Ω : φ(x, y) > 0} ,
outside(Γ) = Ω\̟ = (x, y) : {(x, y) ∈ Ω : φ(x, y) < 0} .



















(2.3)

Hence, Γ is replaced by φ in the model functional, also the Heaviside function, H,

and the Dirac function, δ, are employed. These are defined in Eq. (2.4) and Eq.

(2.5) respectively,

H(φ) =







1, if φ ≥ 0

0, if φ < 0







, (2.4)

δ0(φ) =
d

dφ
H(φ). (2.5)

The energy functional in Eq.(2.2) is, accordingly, redefined in Eq. (2.6):

Ecv(c1, c2, φ) = µ

∫

Ω

δ0 (φ(x, y)) (∇φ(x, y)) dxdy

+ λ1

∫

Ω

(u0(x, y)− c1)
2H (φ(x, y)) dxdy

+ λ2

∫

Ω

(u0(x, y)− c2)
2 (1−H (φ(x, y))) dxdy (2.6)

Minimising Ecv(c1, c2, φ) with respect to c1 and c2 gives Eq. (2.7) and Eq. (2.8):

c1(φ) =

∫

Ω
u0(x, y)H (φ(x, y)) dxdy
∫

Ω
H (φ(x, y)) dxdy

, (2.7)

c2(φ) =

∫

Ω
u0(x, y) (1−H (φ(x, y))) dxdy
∫

Ω
(1−H (φ(x, y))) dxdy

. (2.8)
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The Euler-Lagrange equation for φ is derived by fixing c1 and c2 and minimising

Ecv(c1, c2, φ) with respect to φ (see Appendix A for further details), which gives

turn to Eq. (2.9):

∂φ

∂t
= δǫ

[

µ div

( ∇φ
|∇φ|

)

− λ1(u0 − c1)
2 + λ2(u0 − c2)

2

]

(2.9)

where t is the artificial time introduced to parameterise the contour evolution.

A generalised formulation of the Chan and Vese model is proposed by Rousson

and Deriche (2003) to better fit the distributions of the regions in the image. This

approach allows for the variance in addition to the mean to vary freely. This is

unlike the original setting which assumes unity variance in the image regions. The

extension suggested by Rousson and Deriche (2003) makes the model more robust

against random noise added to the scene.

Let the image u0 consist of two objects, target defined by parameters ~o1 and

background defined by parameters ~o2, we can define the conditional probability

density function P (~oi|u0). The optimisation of the hypotheses regarding each

object given the image and the prior probability pr is given in Eq. (2.10) and Eq.

(2.11) by using Bayes theorem:

P (~o1|u0) =
P (u0|~o1)pr(~o1)

p(u0)
, (2.10)

P (~o2|u0) =
P (u0|~o2)pr(~o2)

p(u0)
, (2.11)

where p(u0|~oi) is the likelihood that a pixel (x, y) is distributed according to ~oi.

By assuming that all partitions are equally likely, i.e., pr(~o1) = pr(~o2) = 1
2
, and

ignoring the normalisation factor, p(u0), the optimisation with respect to each

hypothesis is achieved by computing the a posteriori probability:

p(~o1|u0) = p(u0|~o1), (2.12)

p(~o2|u0) = p(u0|~o2). (2.13)
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The segmenting contour, therefore, is evolved by minimising the following energy

(assuming that pixels in the regions are independent):

F (Γ) =
2
∏

i=1

(

∏

Ω

p(~oi|u0)
)

. (2.14)

By employing a Gaussian distribution to represent the two regions and by using

maximum likelihood, the segmentation is accomplished by minimising the energy

in (2.15):

F (c1, c2, σ1, σ2,Γ) = µ.|Γ|

− λ1

∫

inside(Γ)

log

(

1√
2πσ1

e
−(u0−c1)

2

2σ2
1

)

dxdy

− λ2

∫

outside(Γ)

log

(

1√
2πσ2

e
−(u0−c1)

2

2σ2
2

)

dxdy, (2.15)

The functional in (2.15) is rewritten in Eq. (2.16) by using level sets representation:

Ẽcv(c1, c2, σ1, σ2, φ) = µ

∫

Ω

δ (φ(x, y)) |∇φ(x, y)| dxdy

+ λ1

∫

Ω

(

(u0 − c1)
2

2σ2
1

+ log(
√
2πσ1)

)

H (φ)

+ λ2

∫

Ω

(

(u0 − c2)
2

2σ2
2

+ log(
√
2πσ2)

)

(1−H (φ)) (2.16)

Similar to the procedure of minimising Ecv above, Ẽcv, is minimised with respect

to c1, c2, σ1 and σ2 as in Eq. (2.7), (2.8), (2.17) and (2.18) respectively:

σ1(φ) =

∫

Ω
(u0 − c1)

2H(φ)
∫

Ω
H(φ)

, (2.17)

σ2(φ) =

∫

Ω
(u0 − c2)

2(1−H(φ))
∫

Ω
(1−H(φ))

, (2.18)

The solution to the segmentation problem can be found by evolving Eq. (2.19)

with time (see Rousson and Deriche (2003) and the references therein for further
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details):

∂φ

∂t
= δǫ(φ)

[

µ div

( ∇φ
|∇φ|

)

+ log
σ2
σ1

− λ1

(

(u0 − c1)
2

2σ2
1

)

+ λ2

(

(u0 − c2)
2

2σ2
2

)]

(2.19)

2.4 Methodology and Experimentation

In order to realise the energy functional in Eq. (2.9), regularised forms of H and

δ0, namely Hǫ and δǫ are employed, with ǫ → 0 as the regularisation parameter.

These regularised functions are defined respectively in Eq.(2.20) and (2.21):

Hǫ(φ) =
1

2

(

1 +
2

π
arctan

(

φ

ǫ

))

, (2.20)

δǫ(φ) =
∂

∂φ
Hǫ(φ) =

ǫ

π (ǫ2 + φ2)
. (2.21)

Following Vese and Chan (2002), the energy functional of Eq. (2.9) is approxi-

mated for the purpose of numerical implementation into:

φn+1
i,j =

1

C
[ φn

i,j + m( c3 φ
n
i+1,j + c4 φ

n
i−1,j + c5 φ

n
i,j+1 + c6 φ

n
i,j−1)

+ △t δǫ(φi,j) (−λ1(u0 − c1)
2 + λ2(u0 − c2)

2 )], (2.22)

where △t is the time step parameter, c1 and c2 are computed as in Eq. (2.7) and

(2.8). The computations of c3, c4, c5, c6,m, and C are listed in Appendix B:

The above numerical approximation is used in this chapter to test this model. In

the following experiments the parameters are chosen as follows: λ1 = λ2 = 1, and

h = ǫ = 1. △t and µ are chosen differently in each experiment depending on the

image.
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Alternatively, Eq. (2.19) can be used in the segmentation. A numerical approxi-

mation of Ẽcv is, thus, given in Eq. (2.23):

φn+1
i,j =

1

C
[φn

i,j + m(c3φ
n
i+1,j + c4φ

n
i−1,j + c5φ

n
i,j+1 + c6φ

n
i,j−1)

+ △tδǫ(φi,j)− λ1

(

log σ1 +
(u0 − c1)

2

2σ2
1

)

+ λ2

(

log σ2 +
(u0 − c2)

2

2σ2
2

)

]. (2.23)

2.4.1 Synthetic Images

This experiment deals with the general (theoretical) problems of segmentation,

including contour initialisation, curvature handling, multiple objects, and weak

edge. By using the sort of bimodal images the assumption here is that the given

scene is formed of two regions. The intensities in these regions form two Gaussian

distributions with distinct parameters. The conclusion would be that the ACWE

model is best suited to deal with such problems as it fits with the formulation of

the model. The aim then of this experiment is to measure the compliance of the

model with the above anticipations.

For all the three tasks of this experiment, three contour initialisations are used:

inside (top rows), across (second rows) and outside (bottom rows) the object.

• The first task is to test the model behaviour when the object is acutely

concave. Figure (2.1) shows that this model copes very well with acute

corners. The figure also shows that with the choice of suitable value of µ

the unnecessary contours are absorbed under the influence of the contour

internal force. This is in particular attributed to the effect of elasticity term

in removing the unnecessary contours in the rows (b) and (c).

• The next task is to explore the effect of multiple objects on the final seg-

mentation by using this model. Figure (2.2) shows the benefit of using level

set representation of the evolving contour to solve the persistent complex

parameterisation problem associated with earlier active contours. In the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.1: The segmentation of a shape with acute corners (image taken
from Xie and Mirmehdi (2008)) by using ACWE. (a-e) inside initialisation:
after 5 iterations with △t = 50; (f-j) across initialisation: after 4 iterations with

△t = 50; (k-o) outside initialisation: after 4 iterations with △t = 50

current context the contour merges and splits implicitly as the embedding

level set function evolves.

In this example an image containing four discs is segmented. Very interesting

to notice here is that the contour splits automatically and the resulting new

contours act and evolve independently of each other.

• The last task is aimed to investigate the effect of diffuse or weak edges on

this model. This is also one of the points that distinguish this model from

the other approaches which are based on edge gradients in the sense that

there are no weak regions as opposed to weak edges. The expectation then

is that this model always stops at the likely edges of what constitutes a

homogeneous (or quasi-homogeneous) region.

Figure (2.3) shows that the contour stops at a sensible edge, avoiding leakage

inside or outside the object and consequently contour collapse. This example

demonstrates, clearly, the effectiveness of the region based stopping criterion
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.2: The segmentation of multiple objects image (image taken from
Xie and Mirmehdi (2008)) by using ACWE. (a-e) inside initialisation: after
5 iterations with △t = 50; (f-j) across initialisation: after 6 iterations with

△t = 50; (k-o) outside initialisation: after 6 iterations with △t = 50

in holding the contour on the most likely edges. A direct ramification to that

can be the deduction that this model with its less localised approach produces

a higher level vision in terms of the meaningfulness of the segmented data

in comparison to the more classical snakes.

2.4.2 Real World Images

The next set of experiments is conducted to address the sort of problems associated

with the segmentation of real-world images, such as the lighting conditions, the

presence of shadow, clutter, occlusion and etc.

• The first task is the segmentation of white matter in human brain MRI

images. Figure (2.4) shows good results when there is a relatively clear

separable regions in the scene. This is a prime example of when this model
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.3: The segmentation of a shape with diffuse edge (image taken from
Xie and Mirmehdi (2008)) by using ACWE. (a-e) inside initialisation: after
5 iterations with △t = 50; (f-j) across initialisation: after 7 iterations with

△t = 50; (k-o) outside initialisation: after 6 iterations with △t = 50

works as good with real-world images as it does with the toy examples seen

before. For instance, the good handling of corners, the robustness on weak

edges and the ease with which the contour changes its topology is repeated

in this example.

• The second task is to segment the shape of a walking subject. This exam-

ple shown by Figure (2.5) demonstrates the difference between the previous

problems and the real-world challenges. In the previous examples the en-

closing characteristic is that the images have two distinct regions, foreground

(object) and background. In the current example the presence of shadow and

clutter diminishes the bimodal assumption necessary to separate the image

into a foreground and a background.

Figure (2.5) shows poor outcomes caused directly by the significant regions

of shadow and the cluttery patches in the background. These are the regions
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(a) (b)

(c) (d)

Figure 2.4: The segmentation of white matter in two brain MRI images by
using ACWE. (a) Initial contour appearing in the first MRI; (b) the final contour
appearing in the first MRI; (c) the original image of the second MRI; (d) the

final contour with the second MRI image

where in particular the results are unsatisfactory.

With the increase of scene complexity by incorporating, for example, some

sort of noise or occlusion to the image, increases the confusion of the ACWE

as how to extract the region of interest. This dilemma is one of the main

motives behind incorporating prior knowledge into the process of segmen-

tation. The segmentation of gait with the aid of the shape prior model is

discussed in details in Chapter 6.

2.5 Conclusions

In this chapter, the problem of segmentation is introduced along with a well known

image segmentation approach, the ACWE. The mathematical formulation of this
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(a) (b) (c)

Figure 2.5: The segmentation of an image with walking subject in the presence
of shadow and clutter. (a) The original image, (b) the initial contour, and (c)

the final segmentation contour(s)

model shows that this approach is best suited to segment images with well struc-

tured (statistically) foreground and background, or so called, bimodal images.

This model is successfully tested with toy images in classical problems such as

initialisation, curvature, object multiplicity, and in cases of weak edges. In all

these instances the experimental results showed matching between the outcomes

and the expectations. This gives an indication of the potential of this approach.

However, when it comes to segmenting real-world images, and due to the ambiguity

caused by conditions like shadow, clutter, noise, and occlusion, this model sees its

fundamental assumptions collapse and starts producing incorrect, less meaningful,

or meaningless regions.



Chapter 3

Gait Feature Analysis

3.1 Summary

This chapter is devoted to the shape features used to capture the deformation of

shapes in a sequence of gait images. The features used here are proposed previously

to describe shapes in other problems. Same features are also proposed to model

sequential gait shapes. The current framework is more accurate and carries more

potential in terms of shape estimation. The experimental results presented here

show that this approach generates more accurate reconstructions of the training

data. The method is capable of compensating for missing data and can also be

exploited in computing in-between frames which bears the potential to deal with

other problems like synchronising multiple cameras. This approach is also applied

successfully to identify pedestrian subjects based on their gait.

3.2 Introduction

Early work in shape modeling focused on creating a framework capable of gener-

ating shapes which are part of the class being modeled (Chen et al., 2002; Bresson

et al., 2006). This generative approach received a lot of support from many com-

puter vision applications due to their serious impact on recognition, segmentation,

27
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tracking, and etc. Most successful of shape models, are approaches using statistical

techniques. Frameworks built on assumptions that the data in the class being of

Gaussian distribution constitutes the majority of such successful models (Cootes

et al., 1995; Leventon et al., 2000; Tsai et al., 2003). The main attraction towards

such assumptions is the simplicity and the abundance of tools available to analyse

Gaussian data.

The modeling of human gait shapes is inherently more challenging, because the

deformation of shapes is non-Gaussian (Cremers et al., 2006; Mahmoodi, 2009)

and because gait shapes are self-occluding (Nixon and Carter, 2006). The shapes

in gait are also periodic, and as such temporally coherent. That’s to say shapes of

a walking subject are not equally likely at all times (Cremers, 2006). Two main

categories of statistical shape models have been suggested and employed so far in

order to deal with these issues.

An interesting approach to model deformable moving objects is to use linear PCA,

accompanied with some mechanism to synthesise new shapes. Meaning that the

PCA will be used to reduce the dimensionality, while the temporally dependent

deformation will be guided by this mechanism. In one early novel example, Cre-

mers (2006) has developed a gait segmentation model based on Autoregressive

(AR) systems as a mechanism to synthesise new shapes.

Motivated by the above, this chapter describes another approach to shape recon-

struction which enjoys the simplicity of Gaussian models, and meanwhile leaves

the non-linearity and time coherence in the data to be handled separately by using

the interpolation cubic spline. This method is capable of reconstructing moving

shapes in image sequences and is successfully used in the estimation accurate

shapes in a human gait sequences.

So, in the rest of this chapter, Section (3.3) explains the computation of gait

features, Section (3.4) deals with the interpolating cubic spline, the outcomes of

this approach are presented and discussed in Section (3.5), and finally, conclusions

are drawn in Section (3.6).
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Figure 3.1: Example SDFs of four training shapes generated by using fast
marching (Sethian, 1996). Also projected beneath them the corresponding con-

tours that represent their zero level sets

3.3 Feature Computation

Following the lead by Leventon et al. (2000), the boundaries of n shapes with

Q = R×C pixels each (R is the number of rows and C is the number of columns),

constituting the training set, are embedded as the zero level set of n signed distance

functions (SDFs), φi, by using fast marching (Sethian, 1996) (see Figure 3.1).

Before feature extraction, the shapes need to be aligned. Since the shapes are rep-

resented as SDFs (level sets), shape registration algorithm is proposed in Chapter

5 to perform the alignment of SDFs. Having aligned the SDFs, they are augmented

into the set T = {φ1, φ2, · · · , φn}.

The mean shape (SDF), ū computed as ū = 1
n

∑n

i=1 φi is then subtracted from

the SDF’s φi to centralise these SDFs. The columns of each of the resulting mean-

offset maps φ́ are stacked lexicographically to form n column vectors, ~ui. These

vectors collectively define the shape-variability (Q× n) matrix V:

V = [~u1 ~u2 · · · ~un]. (3.1)

The decomposition of the Q×Q covariance matrix VVT/n to its eigenvectors Ψi

and eigenvalues υi as in Eq. (3.2) is numerically expensive.

Ψ υ ΨT =
1

Q
V VT . (3.2)
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In order to reduce the computational burden, the eigenvectors Ψ̀i of an n × n

(n << Q) kernel, 1
n
VTV are computed as in Eq. (3.3) by using SVD:

Ψ̀ υ Ψ̀T =
1

n
VT V. (3.3)

The set of eigenvectors of the matrix 1
Q

VVT mentioned in Eq. (3.2) are then

computed according to Eq. (3.4):

Ψ =
1√
υ
(V× Ψ̀). (3.4)

A set of eigenmodes ~αi (see Figure 3.2(a)) is computed to quantify the contribution

of each principal component to a certain shape:

~αi = ΨT ~ui. (3.5)

Accordingly an estimated valid shape vector ûi similar to those of the training set

~ui, can be computed by using k (k < n) principal components according to Eq.

(3.6):

ûi = Ψk ~αi (3.6)

The accuracy of the shape estimate is, obviously, a function of k, and there is a

trade off between the accuracy and the computational cost. For most applications

the first few components are sufficient and the rest may be regarded redundant.

The essence then of the ability of this approach to capture and reconstruct the

pattern of the successive shapes of the training set is to properly model the eigen-

modes, ~α.

In their novel work, Cremers (2006) suggested the use of AR system over the set

of eigenmodes ~α to capture the temporal coherence of the consecutive shapes. The

work presented here, however, proposes the use of the interpolating cubic spline to

model the behaviour of ~α, due to its smoothness and simplicity. Although splines

with other orders can be used to model the data, we expect a cubic spline would be
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(a) The original eigenmode vectors

(b) The Eigenmodes modeled by AR (c) The Eigenmodes modeled by the cubic spline

Figure 3.2: The first three eigenmode vectors of 38 training SDFs alongside
with their synthesised counterparts. (a) Original, (b) generated by AR, and (c)

generated by the cubic spline

suitable for modeling ~α due to the non-linearity of these features. The outcomes

of both approaches are compared, and further experiments are conducted to test

the reliability of the cubic spline employed in this context.

3.4 Interpolating Cubic Spline

The interpolating cubic spline (Press et al., 2007) is a piecewise continuous curve.

This curve passes through each of the values of a tabulated function (yi = y(xi), i =
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1 · · ·N) it is supposed to model. There is a separate cubic spline polynomial for

each interval, each with its own coefficients. For a single interval between xi and

xi+1 this polynomial is given by Eq. (3.7):

y = Ayi + Byi+1 + Cy′′i +Dy′′i+1 for x ∈ [xi, xi+1] (3.7)

where A = xi+1−x

xi+1−xi
, B = 1 − A , C = 1

6
(A3 − A)(xi+1 − xi)

2 and D = 1
6
(B3 −

B)(xi+1 − xi)
2. y′′i and y′′i+1 are the second derivatives of yi and yi+1 respectively.

These unknowns are computed by solving N − 1 linear equations according to the

assumptions in Press et al. (2007). These equations are defined as follows:

xi − xi−1

6
y′′i−1 +

xi+1 − xi−1

3
y′′i +

xi+1 − xi
6

y′′i+1 =
yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1

. (3.8)

The polynomial in Eq. (3.7) constitutes the piecewise continuous smooth cubic

spline which is used here to model the eigenmode vectors ~α into time continuous

signals:

~α(t) = cspline(~α). (3.9)

3.5 Experiments and Discussions

The subsequent paragraphs utilise the proposed approach of applying cubic spline

explained in Section (3.4) to model and reconstruct the shape eigenmodes men-

tioned in Section (3.3).

The experiments are aimed at achieving two goals: The first is a comparative

application of AR system described in Cremers (2006) and the cubic spline based

framework proposed here. The comparison concerns the modeling of the shape

eigenmodes and subsequently using these modeled eigenmodes to reconstruct the

training shapes.

The second goal includes further tests to verify the robustness of the proposed

approach in perceiving the evolution of the implicit shapes. Namely, by examining
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its ability to estimate the in-between shapes, by testing its adaptability to the lack

of part of the training data, and finally by using the generated model parameters

in the recognition of subjects.

A distance term Dist is introduced to assess the accuracy of the estimated shape

by computing the total number of erroneous pixels in the estimated shape::

Dist(φoriginal, φestimated) =

∫

x

∫

y

|H(φoriginal)−H(φestimated)| dxdy, (3.10)

where H is the Heaviside function, φoriginal is the original shape, defined by the

training set, and φestimated is its estimated counterpart.

• The first experiment uses a set of shapes derived from a subject silhouette

in each of the 38 frames of a video sequence recording their walk. The

gait feature formulation (Section (3.3)) is then computed to calculate the

eigenmode vectors ~αi of Eq. (3.5). The AR based model (Cremers, 2006)

and the cubic spline based approach (Al-Huseiny et al., 2009) are both then

used to model these eigenmodes (see Figure 3.2(b) and 3.2(c)). Next, both

approaches are employed to construct an estimated gait sequence of shapes

ûi by using Eq. (3.6).

Figure (3.3) shows Dist (Eq. (3.10)) for both approaches. This measure

clearly suggests that for cubic spline there are on average 11.1 erroneous

pixels per image of 12 × 104 pixels (0.009%) compared to 1802.3 erroneous

pixels per the same image (1.5%) for AR.

Figure (3.4) depicts these results, by showing some of the training sequence

shapes alongside with their reconstructed counterparts.

In the bottom row it is easy to observe a filtering effect imposed by the

AR on the time series data. This filtering can be due to the fact that AR

system expressed in Cremers (2006) and Neumaier and Schneider (2001) can

be considered as a linear regressor (Oppenheim et al., 1999), while obviously,

the eigenmodes, ~α, being modeled follow a non linear trend. This is reflected
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Figure 3.3: A semi-log plot of the error function Dist computed for the shapes
generated by the AR based model (o-labeled) and by the cubic spline based

approach (x-labeled)

Figure 3.4: The estimation of the training shapes. Top row is a sample shapes
of the training sequence with order (right to left):1, 5, 10, 13, 21, 26, 28, 33 and 38.
Middle row is the same sequence reconstructed by cubic spline based regression.

Bottom row is the sequence reconstructed by using AR based regression
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on the reconstructed shapes in the form of smoothening or even erasing the

thin parts of the shapes such as the hands. This also, in some cases, results

in invalid shapes like having twisted hands or feet.

The middle row of Figure (3.4) shows the shapes reconstructed by the cubic

spline based regressor which look very similar to training set. This is also

consistent with the outcomes of the measure Dist seen in Figure (3.3).

One final point worth mentioning is that AR is (by nature) not self-starting,

i.e. it depends on initial condition data that must be provided prior to the

start of the reconstruction operation. When and if such data is not available

or inaccurate the subsequent reconstruction becomes poor. Putting this in

the context of segmentation, this means that the segmentation of the first few

frames must rely on an alternative technique. Therefore, the overall segmen-

tation depends on the accuracy of that alternative segmentation technique,

this is of course in addition to the genuine shortcoming of the AR based re-

gression demonstrated by the results above. Comparing this with the cubic

spline based regression, which demonstrated excellent reconstruction results

and is self starting data sequence reconstruction technique, the argument

may be strongly held towards using this approach proposed here to model

the eigenmodes ~α.

• In the second experiment, the proposed technique is tested for its capability

to estimate unknown transitional shapes in between the successive training

shapes, i.e. to up-sample the training data set.

This has potential application in synchronising multiple cameras (Prismall

et al., 2003). This is quite important because a large number of cameras

placed in different locations, working with different sampling rates, produce

unsynchronised footages. Up-sampling can numerically synchronise the cap-

tured frames by reconstructing in-between frames.

Figure (3.5) exhibits the subtle movements in the contours of shapes esti-

mated by the approach presented here by using two different sampling rates.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: The up-sampling of the input gait cycle with two step sizes: (a)
shapes 37-38 with step size 0.5, (b) shapes 20-21 with step size 0.5, (c) shapes
5-6 with step size 0.5, (d) shapes 37-38 with step size 0.2, (e) shapes 20-21 with
step size 0.2, (f) shapes 5-6 with step size 0.2. In all cases, the bottom rows
show couples of consecutive training sequence shapes, the top rows are their

up-sampled counterparts

• In the third experiment the proposed approach is tested for its capability

to compensate for missing data in the training set. This is achieved by

applying the leave one out test, where each time one of the shapes of the

training cycle is removed and the remaining shapes are used for training the

algorithm. The algorithm is then used to estimate the whole gait sequence

including the missing shape. This is repeated to all of the cycle shapes.

Figure (3.6) shows examples of this test, in which the missing frames have

been successfully reproduced.

The error function Dist of Eq. (3.10) is used to quantify this test. From

Figure (3.7(a)) it can be seen that on average there are 11.5 erroneous pixels

per image of 12 × 104 pixels (0.01%). The autocorrelation function (ACF )

is also computed for Dist, which is shown in Figure (3.7(b)). The shape
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(a) 36-38 (b) 29-31 (c) 17-19 (d) 3-5

Figure 3.6: Leave one out test. (a) estimating shape 37, (b) estimating shape
30, (c) estimating shape 18, and (d) estimating shape 4. In all cases the bottom
rows show the two training sequence shapes before and after the removed one.
The top rows are the contours of the reconstructed shapes including the missing

one

(a) (b)

Figure 3.7: Error Analysis of the leave one out experiment for the estimated
38 shapes: (a) The error function, Dist. (b) The autocorrelation function ACF

of the error function Dist

of ACF confirms that error in the estimated shapes is of random nature

(random noise).

• In the fourth experiment, the proposed approach is used for the identification

of walking subjects. This is based on the assumption that the way different

persons walk induces different deformability coefficients, i.e., ~α.

Hence, the gait cycles of four different subjects are used in producing four

different sets of ~α regarded as reference. For one of those subjects a new

gait cycle different from the reference one used earlier is employed as a test

cycle. The features ~α corresponding to this test cycle are also computed.
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Table 3.1: The identification of pedestrians by using d between the unknown
and the reference cycles

Distance d to the test cycle
1st subject 28992
2nd subject 25158
3rd subject 26722
4th subject 7868

A distance measure d =
∑

i

∫

τ
|~α1,i(t)− ~α2,i(t)|2 dt is used, where i is the

index over the eigenmodes for each subject, τ is a single period of gait cycle,

~α1,i and ~α2,i are the ith eigenmode vectors of the gait cycles of two subjects

to whom the distance d is computed.

The empirical results show that this distance can be reasonably used to

identify the the correct subject that has least distance to the test cycle.

Table 3.1 shows that the cycle of the correct subject (the fourth) has the

least distance to the unknown cycle.

3.6 Conclusions

This chapter introduces an interpolating cubic spline to better model walking

subjects. This is done by modeling the time variation of shapes captured by

the eigenmodes over a single gait cycle. This approach demonstrates improved

performance and accuracy over the autoregressive system AR used in the literature

for the same purpose. The technique presented here succeeded in capturing the

key variability modes which led to success in the reconstruction of walking cycle

shapes identical to the training set.

This method presented here is also used successfully in reconstructing the in-

between frames which did not exist in the initial training set. Such result can be

employed, for example, in numerically synchronising multiple cameras, an applica-

tion which can prove vital with the expansion in the use monitoring cameras. The
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method proposed here is also tested for its tolerance to missing parts of the train-

ing set for which the technique proves robust. Furthermore the present technique

is employed in the identification of subjects by using the eigenmodes.

This approach, according to the presented results, provides a good answer in the

case of modeling and regenerating the shapes of a single gait cycle. However, the

expansion of the accuracy and generalisability of this approach by incorporating

the capacity to produce entirely new cycles in addition to the current results of

producing new shapes within a given cycle is further pursued in Chapter 4.





Chapter 4

Gait Generative Model

4.1 Summary

This Chapter proposes a learning method for gait synthesis from a sequence of

shapes(frames) with the ability to extrapolate to novel data. It involves the ap-

plication of PCA, first to reduce the data dimensionality to certain features, and

second to model corresponding features derived from the training gait cycles as

a Gaussian distribution. This approach transforms a non-Gaussian shape defor-

mation problem into a Gaussian one by considering features of entire gait cycles

as vectors in a Gaussian space. It is shown here that these features which we

formulate as continuous functions can be modeled by PCA. This model is also

used to in-between (generate intermediate unknown) shapes in the training cycle.

Furthermore, the subsequent sections demonstrates that the derived features can

be used rigorously in the identification of pedestrians.

4.2 Introduction

The construction of shape models has been an area of active research. Many appli-

cations share the need for good dependable shape models which should enjoy two

41
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distinctive features: to be flexible enough to extrapolate beyond learning mate-

rial, while being accurate enough to generate plausible estimates. Most prominent

approaches in this context are the point distribution model (Cootes et al., 1995)

which uses a Gaussian model for a set of corresponding points, later, the model by

Leventon et al. (2000) which acts on signed distance functions (SDF’s), a notion

that avoids a strict point correspondence requirement. The common theme be-

tween these approaches is that the data they deal with, has in general a Gaussian

distribution.

The issue with gait, as will be explained later in this chapter, is that the distribu-

tion of the human silhouette’s deformation is non Gaussian (Cremers et al., 2006;

Mahmoodi, 2009) (see Figures 1.2 and 1.3). Also a gait cycle is used as a sequence

of shapes. Therefore a particular deformation has to be drawn over the whole

sequence in order to produce a consistent gait cycle, i.e., the estimated cycle must

show shapes belonging to the same subject at all times.

This chapter proposes a new method to model shape deformations of the entire

gait sequences rather than individual shapes. Putting the problem in this form

seems practical, since gait shapes are usually used in the context as complete

cycles rather than particular shapes. This can be used to generate prior shapes

in a prior shapes segmentation framework, and hence clean data is used here to

train the model.

The proposed model is based on using PCA twice, first, to reduce the data dimen-

sionality and extract the shapes’ eigenmodes which are used to synchronise the

different cycles. The second is used to model the deformation of these eigenmodes

with a Gaussian distribution. We notice that the deformation of shapes in a gait

cycle along the time axis is non Gaussian. However it is assumed here that the

deformation of shapes over various gait cycles at a certain time is Gaussian (see

Figure (1.3)). A set of Gaussianity tests is presented in Section 4.3 to support

these assumptions.
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So in the rest of this Chapter, the shape of the distribution of the features is

discussed in Section 4.3, the structure of the proposed model is described in Sec-

tion 4.4, the experimental outcomes are presented in Section 4.5. This Chapter

concludes in Section 4.6.

4.3 Feature Distribution Analysis

It has been mentioned in several places throughout this thesis that the distribution

of the gait data along the time axis is non-Gaussian. Furthermore, the proposed

gait shape model detailed in the next section is based on the assumption that

equivalent data at the same time instant from multiple subjects can be approxi-

mated by a Gaussian model. This section presents a set of tests to support these

assumptions.

A set of 117 videos for walking subjects is used to compute the features, ~α (see

Section 3.3 for details). The ~α’s are then interpolated in order to align them and

establish correspondence between features from various videos.

In this context we use graphical techniques such as histograms and normal prob-

ability plot (NPP) (Chambers et al., 1983), as well as, formal tests such as prob-

ability plot correlation coefficients (PPCC) (NIST/SEMATECH, 2011) to verify

the shape of the distribution of the data.

Normal probability plot is a graphical technique for assessing whether or not a

data set is approximately normally distributed. For data that are approximately

Gaussian, NPP follows a linear order.

In PPCC, the test statistic is the correlation coefficient of the points that make

up a NPP. This is expressed as a function of lambda, the shape parameter (the

shape of the distribution). This test statistic is compared with tables of critical

value (NIST/SEMATECH, 2011). If the test statistic is less than the tabulated

value, the null hypothesis that the data came from a population with a normal

distribution is rejected.
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Figure 4.1: Gaussianity tests for ~α1, (a) ~α1, (b) histogram of ~α1, (c) NPP, (d)
PPCC plot as a function of lambda, PPCC=0.9898 at lambda=1 (Uniform)

4.3.1 Non-Gaussianity over time:

In order to assess the first assumption, that is, the distribution of gait data along

time (i.e. shapes from a gait cycle of the same subject) is non Gaussian, the first

ten eigenmodes ~α1:10, which carry most of the information are analysed.

In Figure (4.1-a) it is noticed that ~α1 does not follow a random pattern and there

is a periodic behaviour in the data. This periodicity is a clear signal that the data

cannot be approximated by a Gaussian distribution because of the randomness

requirement of the central limit theorem. Also from the histogram of ~α1 it is easy

to tell that although there is a reasonable form of symmetry, the shape of the

data is not normal. The NPP as shown in this figure is not linear. This is also

confirmed by PPCC (computed by using the tool in Wessa (2011)) which peaks at

lambda=1, this in turn means that this data can be approximated by a uniform
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Figure 4.2: Gaussianity tests for ~α5, (a) ~α5, (b) histogram of ~α5, (c) NPP, (d)
PPCC, PPCC=0.9870 at lambda=0.5 (U-shaped)

distribution (NIST/SEMATECH, 2011). Figure (4.2) shows similar results for the

fifth eigenmode, ~α5.

4.3.2 Gaussianity over Subjects:

The second assumption which states a normal distribution over corresponding

instances from multiple sources of gait features is tested here. Ten vectors repre-

senting the first instances of the first ten eigenmodes, ~α1:10, over the 117 subjects

are formed, these are called here Eigenmodes∗1:10. Eigenmodes
∗

1, for example, is

formed of the first element of each of the 117 ~α1’s, to constitute the variation

modes of shapes from different sources at the same time instant (see Figure (4.3).
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Figure 4.3: A matrix of the first eigenmodes, ~α1, of 117 subjects over time
τ , the first entry represents the subject index and the second entry represents
the time index, i.e., each row is a single ~α1 vector from a different subject.
Eigenmodes∗’s are mapped from this matrix at the same time instant over all

subjects, therefore, Eigenmodes∗1 receives the bold α’s
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Figure 4.4: Gaussianity tests for Eigenmode∗1, (a) Eigenmode∗1, (b) histogram
of Eigenmode∗1, (c) NPP, (d) PPCC, PPCC=0.9918 at lambda=0.14 (Normal)
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Figure 4.5: Gaussianity tests for Eigenmode∗5, (a) Eigenmode∗5, (b) histogram
of Eigenmode∗5, (c) NPP, (d) PPCC , PPCC=0.9967 at lambda=0.14 (Normal)

Figure (4.4) demonstrates the results of the above described tests for theEigenmode∗1.

In this figure, it is clear that the data resembles random drawings, also the his-

togram shows reasonable symmetry with overall shape close to normal. The normal

probability plot is very close to linearity. This plot indicates that the data rep-

resented by Eigenmode∗ is approximately Gaussian. Furthermore, PPCC peaks

at 0.14 which verifies that a normal distribution is suitable for approximating the

data.

From Figure (4.4-(d)), the maximum value of PPCC is 0.9918, and, from the

tables in NIST/SEMATECH (2011), at the 5% significance level, the critical value

is 0.9881. Since 0.9918 is greater than 0.9881, we cannot reject the null hypothesis

that the data came from a population with a normal distribution. Figure (4.5)

shows similar test results for Eigenmode∗5.
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These tests show that eigenmodes of the shapes of the gait cycles, ~α (along time

axis), do not obey a normal distribution. Also shown here that the corresponding

shapes from different gait cycles (subjects) can be approximated by a Gaussian

distribution.

Figure (4.6) summarises these findings by showing the NPPs for the first ten

eigenmodes, ~α1:10, and the first ten over-subject vectors, Eigenmodes∗1:10. On the

basis of these results, a gait shape model is proposed in the next section. This

framework uses PCA to model corresponding data from multiple sources.

4.4 Gait Generative Model

In this section we describe the proposed framework to model a set of gait cycles.

The boundaries of the training data consisting of M gait cycles with different

number of shapes per cycle, are embedded as the zero level sets of N SDF’s, φi

by using fast marching (Sethian, 1996), where N is the total number of shapes

in the training set. These SDFs are aligned to each other by using the algorithm

presented in Chapter 5.

A mean shape is computed as ū = 1
N

∑N

i=1 φi, this shape is then subtracted from

the shapes to centralise the data, and the resulting distance maps φ́ are then

vectorised and augmented into the matrix S of shape vectors ~ui.

Sn×N ≡
[

~u11, . . . , ~u
1
l , . . . , . . . , ~u

M
1 , . . . , ~u

M
p

]

, (4.1)

the superscripts refer to the particular gait cycle, and the subscripts refer to a

shape within a cycle.

S, is then subjected to the first principal component decomposition, PCAbasis, to

generate a common eigenvector basis Ψ for the entire data set,

Ψ λ ΨT =
(

S ST
)

× 1/N. (4.2)
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Figure 4.6: Comparison of the normal probability plots, (a) NPPs for the first
ten vectors (over-time), ~α1:10, (b) NPPs for the first ten vectors (over-subject),

Eigenmode∗1:10
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PCAbasis is crucial, because the projection of the shapes on the common Ψ pro-

duces eigenmodes ~α corresponding to appropriate shapes,

~αi = ΨT~ui. (4.3)

Each cycle is now represented by a set of shapes’ eigenmodes. The variations

of these vectors (along the subject axis not the time axis), we argue, belong to

a Gaussian distribution, and therefore, a second decomposition, PCAfeature, is

applied to calculate the eigenvectors associated with these vectors.

The issue is that these eigenmode vectors, if considered as sampled periodic signals,

are of different lengths and in different phases. A Hermite cubic spline (section 3.4)

is therefore used to represent the underlying continuous function for each vector,

α (t) = cspline (~α) , (4.4)

these continuous shape eigenmodes α (t) are aligned and augmented as the columns

of a zero-mean feature matrix F,

F ≡ [α1 (t) , . . . , αM (t)]
∞×M . (4.5)

The feature covariance matrix C∞×∞ = F FT , has infinite dimensions and the

decomposition of its eigenvector components is not numerically tractable. A finite

dimensional kernel K is therefore defined as

KM×M = FT F. (4.6)

Since the vectors of F are continuous functions, then the components of K can be

computed by the following integration:

ki,j =

∫

τ

αi (t)αj (t) dt. (4.7)
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Now, the eigenvector decomposition of K gives:

X η XT = K. (4.8)

The eigenvectors χ(t), of the matrix C are found (Cootes et al., 1995),

χ = F X. (4.9)

Equations (4.4-4.9) show that PCA can be applied to continuous functions as ef-

fectively as with discrete data (A numerical example is provided in Appendix D for

further clarification). In other words, PCAfeature places an instantaneous Gaus-

sian model across the continuous functions at every time instant. The coefficients,

~β, corresponding to the eigenmodes of a cycle, i, are computed as:

~βi = χT
(

~αi − ᾱ
)

(4.10)

where ᾱ is the mean set of eigenmodes computed as ᾱ = 1
M

∑M

i ~αi. These com-

puted values, ~βi, can only be used to recall the eigenmodes ~αi of the training

set, a generalisation into estimating novel data, α̂, can be investigated by setting

new values, β̂, different from the computed ~β’s. A set of eigenmodes α̂(t) is then

computed by using:

α̂ = χ β̂ + ᾱ. (4.11)

These eigenmodes α̂(t) are then translated into an estimated novel gait cycle of

vectorised shapes by Eq. (4.12),

ût = Ψ α̂(t), (4.12)

where Ψ and ū are respectively the eigenvector basis and the mean shape of

PCAbasis.
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4.5 Evaluation

We have used the training cycles from the Southampton Gait database (Shutler

et al., 2002). The images are initially segmented manually and their SDF’s are

then generated (Sethian, 1996). It is worth mentioning here that all images in-

volved in the computation of this model are assumed to be generated under similar

conditions (fixed lateral view).

4.5.1 Novel Data Generation

The main contribution of this work is that it consistently facilitates the manipu-

lation of non Gaussian data in a linear fashion. That is to say, the generation of

a novel cycle is achieved by adding a linear combination of the eigenvectors to the

mean cycle of shapes. Hence, to test this idea, the model is trained by using 20

gait cycles of different subjects with a varying number of frames for each cycle.

Then by using Eq. (4.11), three new cycles (shown in Figure 4.7) are generated by

assigning 3 different values to the first element of β̂ and setting the rest to zero.

Each value set to β̂1 produces a different set of eigenmodes α̂, which in turn, by

using Eq. (4.12) generate a new cycle of gait shapes.

For the sake of measurement, a simple L2-norm distance D is computed between

the set of eigenmodes ~αi for each of the training cycles and the mean set of eigen-

modes ᾱ. This measure is intended to show the significance of the computed α̂’s

away from ᾱ compared to the distance of ~α’s of the training data from ᾱ for the

chosen β̂1.

The distances D corresponding to the chosen coefficients β̂1 (normalised by the 1st

eigenvalue) are shown in Figure 4.8. This indicates that changing one coefficient

β̂1, produces a significantly new set of eigenmodes α̂, which gives rise to a novel

gait cycle. Visually, it is easy to see from Figure 4.7 the effect of changing β̂1 in

producing new sequences appearing in the rows (b-d).
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Figure 4.7: The generation of novel gait cycles by using chosen values of β̂1
(normalised by the first eigenvalue). Row (a) is a cycle computed by using the
mean eigenmodes ᾱ by setting β̂ = 0. The rows (b-d) are novel cycles computed

by using β̂1 = 0.2291, β̂1 = −0.6872, and β̂1 = 1.3745 respectively

Important to check is that all the shapes in a generated cycle are for the same

subject in different walking positions. This is of course generated by altering

one parameter. Including, and subsequently, altering more parameters adds more

fidelity to the computed shapes.

4.5.2 Reconstruction: Leave One Out

The reconstruction by regenerating sequences of human walking subjects from the

gait training data is assessed in this experiment. Leave one out test has proved to

be a useful method to judge the reconstruction accuracy. Accordingly, for one of

the training gait cycles, i, a shape, j, is removed each time, the remaining shapes

of this cycle with the other 19 cycles together constituting the training set are

used to train the model. We then reconstruct the ith cycle by using Eq. (4.11) and
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Figure 4.8: The distance D computed from the mean cycle for the eigen-
modes ~αi of the training set, and the three computed sets of novel eigenmode

α̂ generated by setting three new distinct values to β̂1

(4.12) by setting β̂ to ~βi corresponding to the cycle i. The reconstructed shapes

are those used to train the model as well as the one removed.

This model proves robust against over-fitting and learns the underlying trend of

the data, which in practice led to the generation of a good estimate to the missing

shape. An error function Er between the removed shapes and their reconstructed

estimates is computed as:

Er(j) =

√

tr
(

(φrmv(j)− φest(j))
T (φrmv(j)− φest(j))

)

, (4.13)

where φrmv is the removed shape and φest is the estimated shape. This norm counts

the number of erroneous elements in the estimate compared to the reference shape.

Figure 4.9 compares the error function Er1 computed by using Al-Huseiny et al.

(2009), and the error function Er2 computed by using this model to reconstruct

the same cycle.
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Figure 4.9: A comparison of the error function Er in the estimated shapes,
Er1 computed for the shapes estimated by using (Al-Huseiny et al., 2009), Er2

computed for the shapes estimated by using the proposed model

It is noted that the average error is four times less by using the model proposed

in this chapter. The reason for this is that in this model the missing shape is

estimated by combining the effort of the instantaneous Gaussian contributed by

PCAfeature with the general trend of the data captured by the cubic spline, while

in Chapter 3 (also in Al-Huseiny et al. (2009)), the estimation is based purely on

the capturing of general trend of the data. Therefore, in the case of missing part

of the training data, the instantaneous Gaussian model drives the production of a

valid shape, i.e., a shape that belongs to the class of shapes at that specific time

instant (specific minute action). The data (subject) specific parameters drives the

generated shape closer to the look of the subject.

4.5.3 Pedestrian Identification

The shape eigenmodes generated by this model can be employed in the identifica-

tion of pedestrians based on their gait by using the following theorem.
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Theorem 1: In the model proposed here:

d =
∥

∥V1 −V2
∥

∥

2
=
∑

i

∥

∥~α1
i − ~α2

i

∥

∥

2
, (4.14)

where V1 and V2 are the vectorised SDF’s of the gait cycles for two subjects and

~α1 and ~α2 are their corresponding eigenmodes.

Proof: Let V1 and V2 be the gait cycles for two subjects with R shapes each,

such that:

Vk = v̄k +
R
∑

i=1

Ψk
i ~α

k
i , (4.15)

where k = 1, 2; then the distance, d, between the two cycles is computed by:

d = ‖V1 −V2‖2 (4.16)

=

∥

∥

∥

∥

∥

v̄1 +
∑

i

Ψ1
i ~α

1
i − v̄2 −

∑

j

Ψ2
j~α

2
j

∥

∥

∥

∥

∥

2

. (4.17)

Since all the shapes in the proposed model are represented by using a common

mean shape ū and eigenvectors Ψ, then v̄1 = v̄2 = ū, and Ψ1 = Ψ2 = Ψ and

hence,

d =

[

∑

i

Ψi~α
1
i −

∑

j

Ψj~α
2
j

]T [
∑

i

Ψi~α
1
i −

∑

j

Ψj~α
2
j

]

(4.18)

and since ΨT
i Ψj = δij , where δij is the Kronecker delta,

d =
∑

i

|~α1
i |2 − 2~α1

i ~α
2
i + |~α2

i |2 =
R
∑

i=1

∥

∥~α1
i − ~α2

i

∥

∥

2
(4.19)

This distance consumes parameters generated by the PCAbasis only. Alternatively,

theorem 2 shows that the full model provides simpler features for identification by

using gait:
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Theorem 2: In the model proposed here:

d̂ =
1

τ

∫

τ

∥

∥V1 −V2
∥

∥

2
dt =

∥

∥

∥

~β1 − ~β2
∥

∥

∥

2

, (4.20)

where ~β1 and ~β2 are the cycle features for the first and the second subject respec-

tively.

Proof: Let V1 and V2 be the gait cycles for two subjects over period τ , such

that:

Vk(t) = ū+Ψ αk(t), (4.21)

Eq. (4.21) can be written as:

Vk(t) = ū+Ψ(χ(t) ~βk + ᾱ(t)),

= ū+Ψ χ(t) ~βk +Ψᾱ(t), (4.22)

Therefore, the distance, d̂, is computed as:

d̂ =

∫

τ

‖V1 −V2‖2dt

=

∫

τ

∥

∥

∥ū+Ψ χ(t)~β1 +Ψᾱ(t)− ū−Ψ χ(t)~β2 −Ψᾱ(t)
∥

∥

∥

2

dt,

=

∫

τ

∥

∥

∥(Ψχ(t))(~β1 − ~β2)
∥

∥

∥

2

dt,

=

∫

τ

(~β1 − ~β2)T χ(t)T ΨT Ψ χ(t) (~β1 − ~β2)dt,

=

∫

τ

(~β1 − ~β2)T (~β1 − ~β2)dt,

= τ
∥

∥

∥

~β1 − ~β2
∥

∥

∥

2

, (4.23)

that is because ΨTΨ and χTχ reduce to unit matrices (due to orthogonality).

The distance d̂, then, becomes:

d̂ =
1

τ

∫

τ

∥

∥V1(t)−V2(t)
∥

∥

2
dt =

∥

∥

∥

~β1 − ~β2
∥

∥

∥

2

. (4.24)
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Figure 4.10: The identification of pedestrians by using their corresponding
shape eigenmodes. The distance d measured between the ~α’s of the set of

reference cycles R and those of the ith test cycle, Ti

This theorem shows that the subject features, ~β, can be used to identify individuals

by their gait. A classification experiment based on these findings is given in section

7.2.

The distance, d, of Eq. (4.19) is used in the identification to measure the closest

training cycle to an unknown cycle. So, for each of the subjects in the training set,

a new unknown cycle (not in the training set) is used as the test cycle, the distance

d is computed between the eigenmodes of these test cycles (referred to as T) and

the eigenmodes of the known 20 reference cycles of the training set (referred to as

R). In all of the 20 cases, d returns the lowest value for the correct cycle. Figure

(4.10) shows the outcomes for a selected set of this experiment. The minimum

value of d for each round is indicated by a star.

While this experiment shows good results in the identification of individuals by

using the shape eigenmodes, ~α, the cycle parameters, ~β, are more suitable (as seen
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in Section 7.2) for such tasks due to the fact that ~β has much less dimensionality

than ~α.

4.6 Conclusions

In this chapter a gait model is proposed. This model transforms the problem

of non Gaussian shape deformation, into a Gaussian one by considering entire

gait cycles as training data points (vectors). These points are modeled together

by using PCA. This approach is applied to human gait analysis and synthesis,

though it could be applied to similar problems elsewhere.

This approach preserves, and meanwhile exploits the time coherence of the shapes

in the gait. This is important in applications such as tracking and prior shape

based segmentation particularly in the presence of occlusion and with noisy images.

The interesting employment of PCA to deal with continuous functions makes it

possible to align the gait cycles in the feature space. This made the case for

accurate automatic shape correspondence.

The introduction of PCA over corresponding shapes results in producing entire

novel cycles with valid shapes. The generation of new cycles is governed by chang-

ing the model coefficients which is a significant practical outcome of this model.

The proposed model is also used successfully in reconstructing the training data.

Furthermore it proved more robust in the estimation of in-between shapes com-

pared to the previous approaches. These results presented in this chapter demon-

strate that the proposed method enjoys the flexibility of the statistical methods

without over-fitting the known sample.

In addition to the above mentioned applications, the model proposed here, has

showed and proved that the statistical shape eigenmodes can be used in pedes-

trian identification. This route can be extended into a gait biometric by applying

this model to a large database (a preliminary example is given in section 7.2).
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Unlike previous approaches there would be no need for computing complex shape

descriptors such as the statistical moments in order to provide the common basis

for measurement.



Chapter 5

Shape Registration

5.1 Summary

This chapter presents a fast algorithm for robust registration of shapes implic-

itly represented by signed distance functions (SDFs). The proposed algorithm

aims to recover the transformation parameters (scaling, rotation, and translation)

by minimising the dissimilarity between two shapes. To achieve a robust and

fast algorithm, linear orthogonal transformations are employed to minimise the

dissimilarity measures. The algorithm is based on phase correlation and statis-

tical shape moments to compute the registration parameters individually. The

algorithm proposed here is applied to various registration problems, to address

issues such as registration of shapes with various topologies, registration of com-

plex shapes containing various numbers of sub-shapes, applicability to databases,

accuracy, convergence speed and stability. The outcomes are compared with other

state-of-the-art shape registration algorithms and collectively suggest the advan-

tages of the new technique.

61
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5.2 Introduction

Shape registration can be viewed as the result of a point-wise transformation be-

tween an observation and a reference shape. It is a fundamental task used to

match two or more shapes taken, for example, at different times, from different

viewpoints, or from different scenes. Most image analysis systems which evaluate

images from various sources require the registration or a closely related operation

as an intermediate step (Brown, 1992)-(Zitova and Flusser, 2003). Shape registra-

tion is an essential requirement shared among many computer vision domains and

applications, such as, pattern recognition, remote sensing, computer graphics, and

medical image analysis to name a few.

Biomedical imaging, for instance, is a vital component of a large number of appli-

cations, which occur throughout the clinical track of events (Maintz and Viergever,

1998). Reliable matching and eventually integration of information from differ-

ent sources demonstrate its importance from the fact that knowledge contained

in an image is complemented by the knowledge contained in another image as a

reference in the same medical setting.

The main motive to address the issue of shape registration (represented by SDFs)

in this thesis is to build an integrated framework for prior guided gait segmentation.

In such a framework, shapes produced by the model are usually normalised in terms

of pose, size, and position of the shape. In order to be usable in a distance measure

(within the segmentation framework), the shape needs to be aligned to the evolving

contour. Existing approaches are either based on contours which later requires

computing their corresponding SDFs to fit in the framework, or, are iterative and

hence are slow and lack robustness. Furthermore, the construction of the shape

model necessitate that the training shapes be registered to each other. As will be

shown in this chapter, the proposed registration algorithm performs better than

the existing approaches and integrates easily in the segmentation framework.

The construction of a registration method requires the harmonisation of the prob-

lem requirements with the choice of four components that form the registration
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algorithm (Brown, 1992):

1. The feature space: this can be either the entire image (area-based or corre-

lation like techniques) or selected features (feature based techniques) such

as control points, line intersections, shape contours, and etc.

2. The search space: this has to do with the type of transformation the shapes

are anticipated to have undergone such as rigid (translation and rotation),

similarity (translation rotation and scale), affine (parallel lines remain par-

allel) and etc.

3. The search strategy: this represents the approach used to evolve from an

initial state to the solution, examples are exhaustive search, gradient descent,

and so on.

4. The similarity measure: this controls the quality of registration and triggers

the convergence to a solution, such as correlation, norms, mutual information

(Viola and Wells III, 1997) and many other similarity measures mentioned

in the extensive literature that covers the registration subject.

The registration process encompasses the following steps: feature detection and

matching, mapping function estimation, and finally image re-sampling and trans-

formation (Zitova and Flusser, 2003).

In shape registration, the representation of the shape plays a crucial role in the

registration process, and can significantly influence the overall performance of

the registration algorithm. Active contours (Kass et al., 1988), Fourier descriptors

(Zahn and Roskies, 1972) and active shape models (Cootes et al., 1995) are among

the methods which employ explicit representations of shapes to describe arbitrary

shapes. These representations are based on a significant parameterisation. Non-

parametric shape representations such as the signed distance functions (SDFs)

used in this thesis, are becoming a more popular choice, due to their implicit

handling of important shape deformation, and the relatively simple extension to

describe higher dimensions (Paragios et al., 2003)-(Paragios et al., 2002).
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Contour-based registration methods, examples of which are found in Marques

and Abrantes (1997), Markovsky and Mahmoodi (2009), Li et al. (1995), and

Eugenio and Marques (2003), are among the techniques used widely in shape

registration, due to their fast convergence. These techniques, however, rely merely

on the contour points of the shape as the feature space to be matched during the

registration. These techniques also require point correspondence for the boundary

of the shapes. Consequently, contour-based methods fall short if the two shapes

to be registered have Euler characteristic numbers other than 1 (i.e. solid shapes

only), due to the ambiguity surrounding the process of establishing the point

correspondence.

SDF-based shape registration techniques minimise the distance between the SDFs

of two shapes by using the gradient descent algorithm. The methods in Paragios

et al. (2003), Cremers et al. (2006), Vemuri et al. (2003), and El Munim and Farag

(2007) are examples of this approach. These techniques are widely used with

segmentation applications because it is relatively straightforward to embed such

registration methods in functionals used for segmentation. The SDF-based shape

registration methods (for example the seminal work by Paragios et al. (2003))

are in general capable of dealing with shapes with various Euler characteristic

numbers (different topologies), although, with the increase in shape complexity

the cost increases, as well as, the chances of falling into local minima. These

methods however, have some drawbacks: i) low speed due to their iterative nature,

ii) in some cases, the instability and convergence to local minima, which leads to a

limitation in the range of transformation these techniques can handle, and finally

iii) these methods are somewhat difficult to implement due to the need to tune

the stopping parameters and time step for each transformation individually (see

Cremers et al. (2006) for details).

This chapter presents a level set based shape registration algorithm, employing the

shape boundary as the zero level set of an SDF. The search space is assumed over

shapes with similarity transformation function. Our algorithm therefore estimates

the translation, rotation and scale parameters to minimise a distance term. The

algorithm proposed here employs orthogonal linear transformations and shape
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moments to compute the parameters individually. While the extension of the

algorithm suggested in this chapter to 3D registration problems is possible, it is

beyond the scope of this thesis and may be considered in the future. The main

advantages of this registration algorithm are as follows:

• It employs the Fourier shift theorem to compute the translation and rotation

parameters, however, we must stress that unlike early deployments of this

theorem, such as, in Casasent and Psaltis (1975) and De Castro and Morandi

(1987) and many others which are area-based methods, this chapter presents

an SDF-based method where the embedded boundaries of the shapes rather

than the entire image (gray levels) information are used for registration and

this is a fundamental difference.

• This chapter suggests a method to estimate the scale parameter based on

the radial moments of shapes. It is demonstrated empirically that the terms

used to compute rotation angle and scale are minimised in the correct scale

and rotation angle.

• The evaluation of the approach proposed here, shows that this registration

technique is robust, fast, and suitable for a wide range of registration prob-

lems. These problems address issues such as shapes with various topologies

(i.e. shapes with different Euler characteristic numbers), and sustained per-

formance over large sample volumes. The results presented here are com-

pared with the state-of-the-art shape registration algorithms in the literature.

In the rest of this chapter, the registration problem is stated in Section 5.3. Section

5.4 then describes the proposed algorithm. The experimental results are presented

in Section 5.5, and finally conclusions are drawn in Section 5.6.

5.3 The Statement of The Problem

Let φp(x, y) : Ω → R and φq(x, y) : Ω → R denote Lipschitz functions representing

SDFs of shapes p(x, y) and q(x, y) where Ω is the bounded image domain. SDF
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functions are generally defined as in (5.1),

φB(x, y) =



















0, (x, y) ∈ B,

+DE((x, y), B), (x, y) ∈ IB,

−DE((x, y), B), (x, y) ∈ Ω− (IB + B),



















, (5.1)

where DE represents the minimum Euclidean distance between the shape bound-

ary B and each point in the domain Ω, and IB is a subset of the domain Ω

representing the interior of the shape (Paragios et al., 2002).

Parameters s, θ, Tx, and Ty representing scaling, rotation, and translations in x

and y directions respectively are required to transform φq to minimise a distance

term between φp and the transformed φq defined in (5.2),

E =

∫ ∫
∣

∣

∣

∣

φp(x, y)−
1

s
φq (sRθ (x+ Tx, y + Ty))

∣

∣

∣

∣

2

dxdy (5.2)

so that,
(

θ̂, ŝ, T̂x, T̂y

)

= argmin
θ, s, Tx, Ty

E (5.3)

where θ̂, ŝ, T̂x, T̂y are respectively the estimated angle, scale, and translations.

φp, φq, and the transformed SDF are in Ω, i.e. the aim is to compute transfor-

mation parameters such that the result is still in Ω. Also Rθ is a conventional 2D

rotation matrix,

Rθ =





cos θ − sin θ

sin θ cos θ



 . (5.4)

The minimisation of (5.2) leads to a set of non-linear equations with respect to

the desired parameters as discussed in (Paragios et al., 2003). According to the

authors in (Cremers et al., 2006), direct minimisation of these equations as utilised

in (Paragios et al., 2003) is slow to converge, can fall into local minima and requires

to continuously tune parameters for a smooth convergence, this conclusion is also

verified in this chapter.
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The objective of this chapter is, therefore, to propose a linear method minimising

distance terms equivalent to (5.2). The method should also be robust against local

minima, fast, and easy to implement.

5.4 Shape Registration

5.4.1 Rotation

Finding a closed form solution to minimise Eq. (5.2) with respect to the rotation

angle θ is a difficult task if not impossible. Therefore, an alternative term is

proposed here to compute the desirable optimal solution θ̂. It is numerically

demonstrated here that the minimisation of the term proposed here is equivalent

to the minimisation of (5.2). To this end, polar coordinate system is employed in

order to find the desirable rotation angle. The notion that a rotation in Cartesian

domain is a displacement in the angular component of the polar coordinate system

(Casasent and Psaltis, 1975) is exploited here. Initially the shapes’ SDFs become

translation invariant, i.e.:

φ̂p(x, y) = φp(x− px, y − py), (5.5)

φ̂q(x, y) = φq(x− qx, y − qy), (5.6)

where (px, py) and (qx, qy) are respectively the centroids of shapes φp and φq.

To this end, these centroids can be computed by using the Heaviside function,

however, taking the modifications made in the remark on page (75) to the definition

of SDFs into account, the centroids of SDFs can be directly computed.

A simple and efficient algorithm (Mukundan, 2009) with sub-pixel accuracy is used

to map φ̂p(x, y) and φ̂q(x, y) to polar coordinates. We then calculate φ̂p(ρ, ω) and

φ̂q(ρ, ω) such that: x = ρ cosω, and y = ρ sinω. These 2D centralised SDFs can

be expressed as 1D signals by removing ρ without losing the rotation information.

In order to vanish ρ in φ̂p(ρ, ω) and φ̂q(ρ, ω), we marginalise out ρ by integrating
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φ̂p(ρ, ω) and φ̂q(ρ, ω) over ρ according to (5.7) and (5.8).

φ̃p(ω) =

∫

ρ

φ̂p(ρ, ω)dρ, (5.7)

φ̃q(ω) =

∫

ρ

φ̂q(ρ, ω)dρ, (5.8)

It will be demonstrated in this chapter that this step reduces the complexity and

eventually increases the computational speed.

Let φ̄ denote a normalised instance of φ̃p, i.e.:

φ̄p(ω) =
φ̃ω

√

∫

ω
|φ̃p(ω)|2dω

. (5.9)

Also, let us define β̃ as the optimal scale factor which is a function of the desirable

rotation angle θ, i.e.:

β̃(θ) =

∫

ω

(

φ̃q(ω)φ̄p(ω + θ)
)

dω. (5.10)

The desirable angle is estimated by minimising the dissimilarity term Eθ in (5.11),

Eθ =

∫

ω

∣

∣

∣φ̃q − β̃φ̄p

∣

∣

∣

2

dω,

=

∫

ω

∣

∣

∣φ̃q − β̃φ̄p

∣

∣

∣ .
∣

∣

∣φ̃q − β̃φ̄p

∣

∣

∣dω,

=

∫

ω

((

φ̃q

)

.φ̃q − β̃
(

φ̃q

)

.φ̄p − β̃
(

φ̄p

)

.φ̃q + β̃2
(

φ̄p

)

.φ̄p

)

dω,

=

∫

ω

∣

∣

∣φ̃q

∣

∣

∣

2

dω − 2β̃
〈

φ̃q.φ̄p

〉

+ β̃2

∫

ω

∣

∣φ̄p

∣

∣

2
dω, (5.11)

From (5.9),
∫

ω

∣

∣φ̄p

∣

∣

2
dω = 1; therefore:

∫

ω

∣

∣

∣φ̃q − β̃φ̄p

∣

∣

∣

2

dω =

∫

ω

∣

∣

∣φ̃q

∣

∣

∣

2

dω − β̃2. (5.12)
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Hence the minimisation of (5.11) is achieved by maximising β̃. The optimal rota-

tion angle, θ̂, is therefore calculated by maximising β̃ with respect to θ, or,

θ̂ = argmax
θ

β̃ (5.13)

The maximum value for β̃ can be computed by using the Fourier transform. Let

the Fourier transform of φ̄p and φ̃q be ψ̄p and ψ̃q respectively, such that,

ψ̄p(ζ) =

∫

ω

φ̄p(ω) e
−i(ωζ)2πdω, (5.14)

ψ̃q(ζ) =

∫

ω

φ̃q(ω) e
−i(ωζ)2πdω. (5.15)

Accordingly, by using Parseval’s theorem, it can be written:

β̃(θ) =

∫

ω

(

φ̃q(ω)φ̄p (ω + θ)
)

dω =

∫

ζ

(

ψ̃q(ζ)ψ̄
∗

p(ζ)e
i(ζθ)2π

)

dζ, (5.16)

where (∗) denotes the complex conjugate. Hence, θ̂ is computed as:

θ̂ = argmax
θ

β̃ = argmax
θ

∫

ζ

(

ψ̃q(ζ) ψ̄
∗

p(ζ) e
i(ζθ)2π

)

dζ. (5.17)

It will be numerically demonstrated that the optimal (desirable) rotation angle

θ̂ minimising term (5.11) is a minimiser of term (5.2). We conjecture here that

terms (5.2) and (5.11) have the same minimiser. The numerical results presented

in this chapter support such a conjecture. Two different shapes (see Figure 5.1(a)

to 5.1(c)), one regarded as a reference shape and the other as an observed shape,

are used to evaluate terms (5.2) and (5.11). The observed shape is rotated with

angles between (-180 to 180) degrees. In Figure 5.1(d), terms (5.2) and (5.11) are

plotted with respect to rotation angle. As can be seen from this figure, both terms

are minimised at the same rotation angle corresponding to the correct desired

angle.
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(a) (b) (c)

(d)

Figure 5.1: The equivalence of term (5.11) and term (5.2) with regard to the
rotation angle. (a) reference shape-(b) observed shape, (c) both shapes with the
observed shape being subjected to different rotations, (d) (top row) the error
according to term (5.2) (d) (middle row) the error according to term (5.11), and
(d) (bottom row) β̃ as calculated in (5.10); all graphs in (d) are plotted with

respect to various rotation angle θ
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5.4.2 Scale

Similar to the case in section 5.4.1, a closed form solution to minimise (5.2) with

respect to the scale parameter, s, is difficult to achieve. Therefore an alternative

term is suggested in this section to estimate s, and a numerical example is used

to demonstrate that the minimisation of the term proposed here is equivalent to

the minimisation of (5.2).

To calculate the scaling parameter between two shapes, the radial moments of

SDFs are used to extract shapes’ features. Paragios et al. (2003) have shown

that if one shape is a scaled version of another, then the corresponding SDFs are

proportional to the scale factor,

sφ̂p(x, y) = φ̂q(sx, sy), (5.18)

where s is the scale parameter, and φ̂p and φ̂q are the translation invariant versions

of φp and φq respectively as in (5.5) and (5.6).

The radial moments of the reference SDF φ̂p and the observed SDF φ̂q are com-

puted as in (5.19) and (5.20),

M p̂
m =

∫ ∫

(

√

x2 + y2
)m

φ̂p(x, y)dxdy, (5.19)

M q̂
m =

∫ ∫

(

√

x2 + y2
)m

φ̂q(x, y)dxdy, (5.20)

where m represents the degree of the moment. By substituting (5.18) in (5.19),

we arrive at (5.21):

M p̂
m =

1

s

∫ ∫

(

√

x2 + y2
)m

φ̂q(sx, sy) dxdy (5.21)
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By using changes of variables, i.e., X = sx, and Y = sy, (5.21) can be written as,

M p̂
m =

1

s

∫ ∫

(√
X2 + Y 2

)m

sm
φ̂q(X, Y )

dXdY

s2
,

=
1

s(m+3)

∫ ∫

(√
X2 + Y 2

)m

φ̂q(X, Y ) dXdY ,

=
1

s(m+3)
M q̂

m. (5.22)

Therefore, let Es be the error term defined in (5.23):

Es =
∑

m

∣

∣M q̂
m − sm+3M p̂

m

∣

∣

2
. (5.23)

In order to find the desirable scale s, the above error term given in (5.23) needs

to be minimised. However, this term is not linear with respect to variable s. By

using a change of variable, the above non-linear least squares problem is, therefore,

reduced to a linear one with respect to ŝ = log s by minimising the following error

term:

És =
∑

m

∣

∣

∣

∣

log

(

M q̂
m

M p̂
m

)

− (m+ 3) log s

∣

∣

∣

∣

2

. (5.24)

Hence the optimal new parameter ŝ is estimated by minimising És:

ŝ = argmin
s

És. (5.25)

It should be noted that the use of Chebyshev or Zernike moments leads to a non-

linear least squares problem whose minimisation is more difficult and demanding

than the current method proposed here. In the case of Chebyshev and Zernike

moments, the non-linearity cannot be reduced to a linear problem by using a

simple change of variables such as the one employed in (5.24).

Term (5.24) is used in this chapter to estimate the desired scale parameter s. In

order to show that this term is equivalent to (5.2), two different shapes (see Figure

(5.2(a)) to (5.2(c))), one regarded as reference shape and the other as observed

shape, are used with scaling the observed shape by scaling factors between (0.5
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-1.5). Terms (5.2), and (5.24) are computed for each scaling factor value. From

Figure (5.2(d)), it is observed that terms (5.2) and (5.24) are minimised at the

same value for the scaling factor.

5.4.3 Translation

By using the scaling and rotation parameters calculated in sections 5.4.1 and 5.4.2,

term (5.2) is optimised to calculate the translation parameters Tx and Ty:

φp = φq(x− Tx, y − Ty). (5.26)

By employing the same approach explained in section 5.4.1, the translation pa-

rameters are calculated. The only difference here is that since the translations

are shifts in the Cartesian domain, there is no need to represents the SDFs in the

polar coordinate system.

Let φ̄p denote a normalised version of φp, i.e.:

φ̄p(x, y) =
φp(x, y)

√

∫

x,y
|φp(x, y)|2 dx dy

. (5.27)

Also, let us define ξ̃ as the optimal scale parameter which is a function of the trans-

lations Tx and Ty, such that, ξ̃(Tx, Ty) =
∫

x,y
(φ̄p(x, y) φq(x+ Tx, y + Ty)) dxdy.

The unknown desired translation parameters will be estimated by minimising the

dissimilarity term in (5.28),

∫

x,y

∣

∣

∣
φq − ξ̃φ̄p

∣

∣

∣

2

dxdy =

∫

x,y

(∣

∣

∣
φq − ξ̃φ̄p

∣

∣

∣
.
∣

∣

∣
φq − ξ̃φ̄p

∣

∣

∣

)

dxdy,

=

∫

x,y

(

(φq).φq − ξ̃.(φq).φ̄p − ξ̃(φ̄p).φq + ξ̃2.(φ̄p).φ̄p

)

dxdy,

=

∫

x,y

|φq|2dxdy − 2ξ̃
〈

φq.φ̄p

〉

+ ξ̃2
∫

x,y

|φ̄p|2dxdy. (5.28)
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(a) (b) (c)

(d)

Figure 5.2: The equivalence of term (5.24) minimised here, and the state-
ment of the problem as indicated in (5.2) with respect to various values for the
scaling parameter, (a) reference shape (b) observed shape (c) both shapes with
the observed shape being subjected to different scales (d) (top row) the error
according to term (5.2), and (d) (bottom row) the error according to term (5.24)
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From (5.27),
∫

x,y
|φ̄p|2dxdy = 1; therefore,

∫

x,y

|φq − ξ̃φ̄p|2 dxdy =

∫

x,y

|φq|2 dxdy − ξ̃2. (5.29)

Accordingly the minimisation of (5.28) is achieved by maximising ξ̃:

T̂x, T̂y = argmax
Tx,Ty

ξ̃ (5.30)

Similar to what is presented in section 5.4.1, the maximum value for ξ̃ is computed

in the frequency domain by using the Fourier transform, i.e.:

[

T̂x, T̂y

]

= argmax
Tx,Ty

ξ,

= argmax
Tx,Ty

∫

ωx,ωy

(

Θq(ωx, ωy)Θ̄
∗

p(ωx, ωy)e
i(Txωx+Tyωy)2π

)

dωxdωy,(5.31)

where T̂x, T̂y, Θq(ωx, ωy), Θ̄p(ωx, ωy), ωx, and ωy represent the estimated optimal

translation parameters, the 2D Fourier transforms of φq and φ̄p, and the spatial

frequencies respectively.

Remark: Since images in practice are in the discrete domain, the Discrete Fourier

transform (DFT) is employed instead of continuous Fourier transforms used in this

section. It is therefore, required to modify the definition of SDFs to cope with the

periodicity property introduced by DFT:

Let Ω be the image domain. This domain is partitioned by the shape perimeter

into two regions, the shape interior IB and the background, and let φ : IB → R
+

be a Lipschitz function that represents the distance transform for the boundary B

of the shape, this is expressed in (5.32):

φB(x, y) =







DE ((x, y), B) , (x, y) ∈ IB,

0, (x, y) ∈ Ω− (IB + B)







, (5.32)
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where DE,as before represents the minimum Euclidean distance between the shape

boundary and each point in the domain. This modified SDF representation is

induced by the periodicity requirements of the DFT used in Section 5.4. An

algorithm of the technique proposed in this chapter is presented in Appendix C.

5.5 Results and Discussions

In this section, a set of examples is presented to demonstrate the performance

of the shape registration method proposed here in comparison with other known

registration methods in various shape registration problems. In all of the exper-

iments presented in this chapter the moments up to the fifth degree are used to

compute the scale parameter s by using the proposed method in Section 5.4.2.

The higher the degree of the employed moments is, the more accurately s is esti-

mated. However, this higher accuracy comes at the expense of higher numerical

complexity.

Except for the first experiment, the results of the proposed technique are compared

with two well-known shape registration methods. The first one is based on contours

representing shapes, (e.g. see Markovsky and Mahmoodi (2009)). It will be called

throughout this section the contour-based method. The other method used here for

comparison employs SDFs to represent shapes similar to the technique proposed

here; however, unlike the method proposed here, a gradient descent approach is

employed to compute the optimal solutions (see Paragios et al. (2003) for more

details). Throughout this section this method is termed as the SDF-based method.

In all but the first example a distance term Dist is used to measure the quality of

registration. This term is defined as:

Dist(φreference, φregistered) =

∫

x

∫

y

|H(φreference)−H(φregistered)| dxdy, (5.33)

where H is the Heaviside function. In other words, this distance counts the num-

ber of un-overlapped pixels (area) in both shape SDFs. Also used as a measure
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of quality is the cost in terms of run time (t) required to compute the optimal

registration parameters.

For better demonstration, rather than showing the SDFs or the silhouettes of the

shapes, the contours of the observed and reference shapes are shown in the figures

throughout this section.

5.5.1 Comparison with Shapes’ Centre of Mass Registra-

tion Methods

One simple but useful approach to find the position and the rotation angle is to

compute the center of mass and the principal axes of two shapes and then to

use the difference between these computed values respectively as the translation

and rotation parameters (see Alpert et al. (1990), Dong and Boyer (1996), Chen

et al. (2005) and many others). This method is widely used in medical image

registration problems (Maintz and Viergever, 1998).

In the first example shown in Figure (5.3(a)), the shapes of two sickled red blood

cells (RBCs) are registered. For the observed RBC, the center of mass is almost

inside the shape while for the reference RBC, the center of mass is situated outside

the shape. The use of the center of mass registration approach, shown in Figure

(5.3(b)), results in shifting the observed shape incorrectly outside the reference

shape. Figure (5.3(c)) also shows how the same problem is resolved by using the

method proposed here. It is obvious that the observed shape is aligned to the

reference shape despite the dissimilarity and the shift of mass between the two

shapes.

5.5.2 Shapes with Different Topologies

In the example presented in this subsection, two shapes with different Euler char-

acteristic numbers are used. These shapes obviously have different topologies. In
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(a) (b) (c)

Figure 5.3: Two sickled RBCs, the observed shape (red) and the reference
shape (black). (a) Initially, (b) the alignment by using centre of mass method,

(d) by using the method proposed here

Figure (5.4(a)), the observed shape is an open ’4’ with Euler number one, and the

reference shape is a closed ’4’ with Euler number zero.

As shown in Figure (5.4(b)), the two shapes are completely misaligned by using

the contour-based method in Markovsky and Mahmoodi (2009). This shortcom-

ing stems directly from the necessity to establish correct point correspondence in

order for this method to work correctly. Such a requirement makes the algorithm

sensitive to topological changes due to the ambiguity of establishing point corre-

spondences in certain cases. Since in this case the shapes have different topologies,

such correspondence may not be achievable. Figure (5.4(c)) is the result of apply-

ing the scheme in Paragios et al. (2003) to solve the registration problem. This

figure shows a typical example of the local minima hurdle associated with this

approach. In Figure (5.4(d)), the shapes in question are correctly registered by

using the approach proposed in this chapter. Another example of the consistent

performance of the proposed algorithm regarding the topological variance problem

is showcased in Figure (5.5) where two gait shapes with different topologies are

register
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(a) (b) (c) (d)

Figure 5.4: The registration of shapes with different topologies (size= 300 ×
300). (a) initial shapes, (b) the result of attempting to register the shapes by
using the contour based method in Markovsky and Mahmoodi (2009), (c) the
registration of the shapes by using the SDF-based method in Paragios et al.
(2003) (d) the two shapes superimposed optimally by using the approach pro-

posed here

(a) (b)

Figure 5.5: The registration of two gait shapes with different topologies (size =
300×300). (a) initial shapes, (b) the two shapes aligned by using the algorithm

presented here

5.5.3 Complex Shapes Containing Various Sub-Shapes

In the third example, two complex shapes, each having different number of com-

ponents are registered. The employment of contour method in Markovsky and

Mahmoodi (2009) to register such shapes, for example, by registering the indi-

vidual objects in the observed shape to their counterparts in the reference shape

may do partially. Wherein the objects with no counterparts remain unregistered

and the overall shape integrity may be distorted. The other way is to register the

shape components all together as a single entity. With this comes again the issue
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Table 5.1: Comparison of the Results of the Registration Algorithms
Dist
(pixel)
Origi-
nal

Dist
(pixel) in
Markovsky
and Mah-
moodi
(2009)

Dist
(pixel)
in
Para-
gios
et al.
(2003)

Dist
(pixel)
in Pro-
posed

t (Sec.) in
Markovsky
and Mah-
moodi
(2009)

t
(Sec.)
in
Para-
gios
et al.
(2003)

t
(Sec.)
in
Pro-
posed

Number
4

3664 2296 2722 1078 1.09 28.25 2.83

Gait-
Topology

13706 - - 2305 - - 3.02

Clock-
face

5859 5162 6442 4775 3.13 29.18 9.361

Hands
radiog.

8140 8303 8191 6194 3.15 1175.8 2.86

Similar
hands

7249 668 916 171 1.34 3543.5 2.89

Gait-
Similar

7420 314 499 220 1.74 859.72 2.89

Verteb.-
x-ray

Av. =
2244

Av. =
345.2

Av. =
862.4

Av. =
339.2

Av. =
1.05

Av. =
470.5

Av. =
3.06

Gait-
Sample

Av. =
3800

- - Av. =
1366

- - Av. =
3.39

of point correspondence seen in the previous example. The algorithm in Para-

gios et al. (2003) on the other hand, is capable to certain extent of dealing with

complex shapes. By increasing the shape complexity, the chance of falling into

local minima increases as well. The time required to find the final parameters as

demonstrated in Table (5.1) becomes longer.

In Figure (5.6), the observed shape is a clock face with conventional indicators,

while the reference shape has compass point indicators. Similarly, in Figure (5.7),

an x-ray of a child’s hand with incomplete carpal bones is registered to an x-ray of

an adult’s hand with completely developed carpal bones. These two experiments

demonstrate that the registration algorithm proposed here have the impetus to

register two shapes, even if there is no direct (one to one) correspondence among

components forming the complex shapes. This is in contrast to the methods in

Markovsky and Mahmoodi (2009) and Paragios et al. (2003) which both produce

poor results.
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(a) (b) (c) (d)

Figure 5.6: The registration of clock-faces with different number of compo-
nents (size= 480 × 480). (a) Initial shapes. (b) registration by using contour-
based technique in Markovsky and Mahmoodi (2009). (c) registration by using
the SDF-based algorithm proposed in Paragios et al. (2003), (d) registration by

using the algorithm proposed here

(a) (b)

(c) (d) (e) (f)

Figure 5.7: The registration of two hand radiographies with various number of
bones (size= 300× 300), (a) original x-ray of a developed hand and (b) original
x-ray of an underdeveloped hand with less bones (c) initial shapes before regis-
tration, (d) the registration by using the contour-based algorithm in Markovsky
and Mahmoodi (2009), (e) the registration by using the SDF-based algorithm
in Paragios et al. (2003). (f) the registration by using our registration algorithm
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5.5.4 Similar Shapes with Artificial Transformations (Ac-

curacy of Registration)

In the fourth example, similar shapes transformed by using various artificial trans-

formations are registered. This is to ensure that maximum accuracy is achievable

and quantifiable.

In Figure (5.8), two reference shapes (a hand and a walking subject shapes) are

transformed by using two sets of parameters. Therefore, the observed shapes

are replicas of the reference shapes. The algorithms in Markovsky and Mahmoodi

(2009), Paragios et al. (2003), and the proposed algorithm are used to estimate the

registration parameters. From this figure it is evident visually that the technique

presented in this chapter delivers the highest matching of the two identical shapes.

These results are also presented in Table 5.1.

5.5.5 Shapes’ Database:

In the fifth experiment, a set of 86 x-ray images available from the U. S. National

Library Of Medicine (2010) 1 are registered. These images are segmented to extract

the shapes of the third cervical vertebra (C3). The corresponding SDF’s are

eventually computed by using Fast Marching algorithm (Sethian, 1996). The

algorithm proposed here along with the algorithms in Paragios et al. (2003) and

Markovsky and Mahmoodi (2009) are deployed to register these 86 shapes for the

sake of performance comparison.

In Figure (5.9(a)), examples of this set are shown before registration. Figure

(5.9(c)), (5.9(e)), and (5.9(g)) are the registered counterparts of the shapes shown

in Figure (5.9(a)) by using respectively Markovsky and Mahmoodi (2009), Paragios

et al. (2003), and the algorithm proposed here.

The quantitative assessment of this example is discussed in Figure (5.10). The

figure shows that the average of the distance Dist (defined in 5.5) between the

1http://archive.nlm.nih.gov/proj/ftp/ftp.php#available

http://archive.nlm.nih.gov/proj/ftp/ftp.php#available
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: The registration of identical shapes with synthetic transformations
(size= 300 × 300). (a) Initial shapes (hands example), the observed shape is
generated by transforming the reference shape by using the parameters θ =
−60, s = 0.7, Tx = −90, Ty = 20. (b) The registration of the shapes in (a) by
using the approach in Markovsky and Mahmoodi (2009), (c) the registration
of the shapes in (a) by using the method in Paragios et al. (2003), (d) the
registration of the shapes in (a) by using our method. (e) Initial shapes (gait
exmple), the observed shape is generated by transforming the reference shape by
using the parameters θ = 95, s = 1.7, Tx = −10, Ty = 20, (f) the registration of
the shapes in (e) by using Markovsky and Mahmoodi (2009), (g) the registration
of the shapes in (e) by using the method in Paragios et al. (2003), (h) the

registration of the shapes in (e) by using our method

reference and the observed shapes, for our method is reduced to 15.11% of that

before registration. Dist is reduced to 15.38% for the algorithm in Markovsky and

Mahmoodi (2009), and to 38.4% for the algorithm in Paragios et al. (2003). This

example clearly demonstrates the robustness of our algorithm in registering large

volumes of data while at the same time (as seen in Figure (5.10(b)) our method

is characterised with a very competitive cost in terms of run time.

In another example, the shapes of walking subjects (in full-stride) are registered

to a reference shape. In this example, Figure (5.11) shows that the average error,

Dist, is reduced to the third after applying the algorithm proposed in this thesis

to this sample.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: The registration of a medical image database, a set of 86 C3 ver-
tebrae shapes (size= 300× 300). (a) examples of the shapes before registration,
(b) accumulated initial shapes, (c) the registration of the shapes by using the
method in Markovsky and Mahmoodi (2009), (d) accumulated shapes after reg-
istration by using Markovsky and Mahmoodi (2009), (e) the registration of the
shapes by using the algorithm in Paragios et al. (2003), (f) accumulated shapes
after registration by using the method in Paragios et al. (2003), (g) the regis-
tration of the shapes by using the algorithm proposed here, (h) accumulated

shapes registered by using our algorithm

The results summarised in Table (5.1), clearly suggest that in all of the exper-

iments, the proposed algorithm have produced better registration performance

compared to the other two approaches. It is shown here that the proposed algo-

rithm is capable of registering shapes with various Euler characteristic numbers

leading to different topologies and higher shape complexity. This is in contrast to

the method in Markovsky and Mahmoodi (2009) which is limited to solid shapes

(shapes with no holes).

The results also suggest that the algorithm proposed here is much faster than that

proposed in Paragios et al. (2003) and is as fast as the algorithm presented in

Markovsky and Mahmoodi (2009). The results presented in this section demon-

strate a promising prospect for the shape registration algorithm proposed in this
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Figure 5.10: : A quantitative assessment of the results demonstrated in Figure
(5.9) by using Dist and the time t, (a) comparison of Dist produced by our
algorithm and the algorithms in Markovsky and Mahmoodi (2009) and Paragios
et al. (2003), (b) the time required for registration by using the three algorithms
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(a) (b) (c) (d) (e) (f)
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Figure 5.11: The registration of a sample of gait shapes, a set of 20 full-stride
gait shapes (size= 300× 300). (a-e) examples of the shapes before registration,
(f) accumulated initial shapes, (g-k) the registration of the shapes by using
the algorithm proposed here, (h) accumulated shapes registered by using our
algorithm, (m) the error measure, Dist, computed for the shapes before and

after registration

chapter and indicate that this algorithm is robust and fast and can perform reg-

istration for shapes with various complexities.



Chapter 5 Shape Registration 87

5.6 Conclusions

This chapter presents a shape registration algorithm which employs a modified

signed distance function to represent the shapes. The proposed algorithm esti-

mates the parameters by using closed form expressions. This algorithm takes the

advantage of Parseval’s theorem to estimate the rotation and the translation pa-

rameters by using Fourier transform. The algorithm also uses the radial moments

to estimate the scale parameters.

This registration technique is tested successfully on a variety of problems includ-

ing complex shapes and shapes with various topologies which cannot be registered

by using contour based methods. The experimental results show that the pro-

posed registration algorithm is fast, accurate, stable, and does not fall into local

minima in contrast with other iterative techniques. Furthermore our technique is

successfully exploited to register a large volume of medical shapes from human

organs.

The results presented here show that our registration algorithm is overall more

robust and accurate in comparison with the other algorithms investigated here.

The algorithm proposed here, therefore, can be a solution to a wide range of regis-

tration problems encountered in image processing and computer vision especially

medical problems.

As a future work, this algorithm can be generalised to register 3D shapes. The

generalisation of this algorithm can be achieved for instance, by employing radial

moments in a spherical coordinate system to estimate the scale parameter. The

rotation parameter can be computed by using 2D DFT in the spherical coordinate

system. Similarly, the translation parameters can be computed by employing a

3D DFT in the Cartesian coordinate system of the original shapes.





Chapter 6

Prior Aided Gait Segmentation

6.1 Summary

A major reason for the problems seen at the end of Chapter 2 upon dealing with

real-world images, is that the segmentation model (as represented by the energy

functional in Eq. (2.6) or (2.16)) does not specify the class which the shape

being searched for falls into. Although this model establishes a good basis for

the segmentation of an image by separating it into regions. The approach has

its limitations, as noticed before. Some supervision can be included to guide the

functional to a meaningful collection of regions constituting the target shape. Prior

knowledge is known to improve segmentation/grouping significantly. This chapter

discusses a proposed segmentation algorithm that employs the shape model defined

in Chapter 4 and the registration algorithm presented in Chapter 5. The test

results show accuracy, resilience and flexibility in segmenting real-world images in

spite of various types of visual complications added to them.

6.2 Introduction

An important approach in the analysis of patterns is the employment of genera-

tive models. Predictions following from particular hypotheses are generated and

89
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tested against the products of analysis of an image (Blake et al., 1998). An ele-

gant combination of analysis and synthesis (Mumford, 1996) yields a productive

partnership between the data and the learned knowledge.

One of the pilot uses of prior knowledge in image segmentation is to be found in

the pioneering work by Cootes et al. (1995), in which, a Gaussian model is used

to learn a set of training shapes represented by series of corresponding points.

By adopting implicit shapes as the training set instead of only a set of markers,

Leventon et al. (2000) developed an image segmentation approach which employs

a geodesic active contour (Caselles et al., 1997) guided by statistical prior shape

captured by PCA.

In the context of statistical shape learning, level sets allow the construction of

shape dissimilarity measures defined on the embedding function which can handle

shapes of varying topology (Cremers, 2006). Cremers et al. (2002) use level sets

and Mumford-Shah functional with a non linear statistical shape model based on

kernel density estimation.

In Leventon et al. (2000), the authors have developed active contours that use

a shape model defined by a PCA. In their approach, the active contour evolves

locally based on image gradients and curvature and globally towards the maximum

a posteriori (MAP) probability of position and shape of the prior shape model.

By using the Chan and Vese (2001) segmentation model, Tsai et al. (2003) modified

the Leventon et al. (2000) approach to develop prior shape segmentation for objects

with linear deformations such as human organs in medical images. Optimisation

is performed directly within the subspace of the first few eigenmodes.

The AR-based shape model (Cremers, 2006) mentioned earlier in this thesis is used

to develop a prior shape gait segmentation algorithm. This algorithm addresses

elegantly the time coherence between sequential shapes in a video. However, the

algorithm in Cremers (2006) lacks the flexibility to learn from different sources

because the transition from one video to another is meaningless in terms of time

coherence. Also, this algorithm does not perform sufficient shape registration (it
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does not include scale matching). Therefore the AR-based segmentation algorithm

is limited to segmenting videos including shapes familiar (in terms of look and size)

to those in the training set.

Motivated by the above mentioned and other approaches, a prior guided gait

segmentation algorithm is proposed here. This algorithm exploits the proposed

shape model which is capable of producing novel shapes while keeping the time

coherence of the produced shapes. This model is engaged in a framework with the

powerful region based segmentation addressed earlier. This combination achieves

a balanced parting of roles between the prior and the active contour. Moreover,

this framework, uses the registration algorithm proposed in this thesis to match

the prior and the evolving contour to ensure.

This algorithm functions in the following way: initial few shapes are assumed

know to start the analysis phase closer to the target subject features. The syn-

thesis phase then produces a prior shape which is used by the evolving contour

in conjunction with the image data to produce the next segmented shape. This

shape is consequently used in the next analysis phase and so forth. Frame after

frame the algorithm boosts its knowledge about the target and evolves toward

more accurate guesses of the features of the unknown gait cycle.

This algorithm is evaluated by using real-world challenges. The outcomes are

compared with the results of applying the algorithm suggested in the novel work

by Cremers (2006). These results demonstrate more accuracy and reliability in

the case of the proposed algorithm.

So, in the remaining part of this chapter The structure of the proposed segmen-

tation algorithm is described in Section 6.3. The estimation of the prior shape is

presented in Section 6.4. The proposed algorithm is tested and analysed in Section

6.5. Some conclusions are drawn Section 6.6.
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6.3 Prior Shape Segmentation

Following the work in Cremers (2006), Cremers et al. (2006), Tsai et al. (2003),

Bresson et al. (2006), and others, we merge prior shapes in the segmentation

process. This is achieved here by incorporating the Chan and Vese model with the

learned shape model discussed in Chapter 4 in a level set energy functional. Let

φ be the evolving SDF, and let φPr be the SDF of prior shape, then, the distance

between these SDFs is defined by the energy in (6.1),

Eprior(φ, φ
Pr) =

∫

x,y

∣

∣φ(x, y)− φPr(sRθ(x+ Tx, y + Ty))
∣

∣

2
dxdy. (6.1)

The total prior shape segmentation energy is then defined by (6.2),

Etotal(φ(x, y)) = γ1Ẽcv(c1, c2, σ1, σ2, φ(x, y))+γ2Eprior(φ(x, y), sRθφ
Pr(x+Tx, y+Ty).

(6.2)

The segmentation process is achieved by evolving the functional in (6.2) with time

until equilibrium. The evolution of Ẽcv (Eq. (2.16)) is detailed in Chapter 2.

Warp parameters s, θ, Tx, and Ty are optimised by solving the following equations:

∂Eprior

∂θ
= 0, (6.3)

∂Eprior

∂s
= 0, (6.4)

∂Eprior

∂Tx
= 0, (6.5)

∂Eprior

∂Ty
= 0. (6.6)

The solution to Eq. (6.3), (6.4), (6.5) and (6.6) is achieved by using the algorithm

proposed in Chapter 5.

The inference of φPr to minimise Eprior is given in the next section.
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6.4 Prior Shape Inference

The prediction of the prior is in fact a twofold problem: first, to estimate the

particular subject (in the space of walking subjects captured by the model detailed

in chapter 4), and second, to decide a particular shape (time instant in the cycle)

that is most likely to have produced the given data.

In the proposed algorithm, an estimate to an unknown subject’s identity is made

by estimating the feature ~βt from the distribution of walking subjects, followed by

estimating a particular shape in the cycle by using αt(i) at time instant i.

By recalling Section 4.4, in particular, Eq. (4.3), (4.10) and (4.12). Given the

shapes segmented previously and the frame ut. An update to the subject identity,

~βt, by using our prior shape model is computed according to Eq. (6.7):

~βt = χT (~αt−1 − ᾱ), (6.7)

where ~αt−1 is the eigenmodes set computed by using the current shapes segmented

up till t− 1. ~βt, therefore, can be written as,

~βt = χT ((ΨT (φ1:t−1 − φ̄))− ᾱ), (6.8)

where φ1:t−1 are (for simplicity1), the observed (segmented) shapes so far. This is

the analysis phase.

The synthesis phase starts by computing the sequence of shapes representing the

gait cycle of the estimated subject. Initially the eigenmodes, ~αt, are computed:

~αt = χ ~βt + ᾱ, (6.9)

1This should in fact be the vectorised shapes ~u1:t−1 in stead of φ1:t−1.
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The next prior shape is then computed:

φPr = ψT ~αt(i) + ᾱ. (6.10)

φPr is plugged into energy (6.2) which evolves toward the next segmented shape

φt. Shapes φ1:t are then used to actuate the analysis-synthesis process for the next

frame ut+1. One final point is mentioned here, that is, the selection of a particular

shape as the prior. In other words the computation of i in Eq. (6.10). This is

done here by averaging the offsets of the known successive shapes. A detailed

algorithmic procedure for the inference of the prior shape is given in Appendix E.

6.5 Evaluation and Discussion

In this section the proposed algorithm is implemented and tested by using data

taken from the Southampton gait database (Shutler et al., 2002). The test data

includes both indoor and outdoor samples. In order to put the proposed algorithm

in context with the literature a set of experiments is initiated. In those experiments

the results of this algorithm are compared to the results produced by the algorithm

presented by Cremers (2006). This will be called here the AR-based algorithm.

To show the potential of the tested algorithms, the indoor data is contaminated

with different types of noise and with occlusion. The outdoor scenes normally offer

high level of challenge and distraction to computer vision algorithms. Therefore,

no noise or occlusion is introduced to those images.

As the algorithm presented in Cremers (2006) lacks the ability to accommodate

for discrepancies in scale and rotation between the data and the prior due to the

fact that no proper registration is performed (no scale is predicted); and also,

due to the fact that the AR-based model can only be trained by using videos

from a single source (subject), in the following experiments, the AR-based model

is trained by using hand segmented data of the same subject in the scene being

segmented. This is to ensure that the size of the shapes of the subject in the
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training set is the same as those in the data to be segmented (which, obviously,

favours the AR-based algorithm). Consequently, because of these limitations, the

AR-based algorithm is compared to our algorithm only once in each category of

experiments.

The following experiments help understand the way this algorithm works. These

examples show that our shape model is producing shapes that are both plausible

and increasingly similar to the subject in the scene. Such a guiding force indeed

makes it easier for the evolving contour to split the region formed by an occlusion

into an area which is inside and another area outside the contour. Although this

seems to contradict the basics of the Ẽcv force, it is perfectly compliant with the

way smart (human, for example) visual system works. This means that the contour

can be made to rely on the bi-modality in the scene only selectively. In the areas

where bi-modality is the dominant force, Ẽcv acts locally to fine tune segmented

shape. The global geometry may therefore be driven by the prior. This flexible

configuration is parameterised by γ1 and γ2. Such flexibility is of course required

to make the algorithm adapt to the differing conditions in different scenes.

The quality of segmentation is compared to hand segmented images of the test

sequence. For better demonstration, the figures display the given images, the

images with the segmenting contour by the AR-based algorithm and the images

with the segmenting contour by the algorithm proposed here.

6.5.1 Indoor cycles

In this example, a gait cycle captured inside lab is used. This video has few

distracting factors, there is for instance, very limited clutter in the background.

The scene is formed of chunks of quasi homogeneous regions. This however does

not mean that this is an easy task for a segmentation algorithm. On contrary,

there is still a problematic amount of shadow and difference in luminance levels.

Furthermore, the target is formed mainly of two different regions.
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In the first experiment, the scene is obstructed by a synthetic occlusion. From

Figure (6.1(a)) it is noticeable that this algorithm is generating better outcomes

compared to the AR-based algorithm. Clearly, the combination of the prior with

the data term extracts the shape from the background. In the occluded area, the

prior term takes full control of the segmentation. The AR-based algorithm, as

explained in Chapter 4 depends on a prior model that seems insufficient. This can

be concluded from the shapes produced which have some missing parts. Figure

(6.1(b)) presents a quantitative comparison of the results of both approaches. In

which the number of error pixel (in comparison with the ground truth) is used

as measure. This graph backs the early observation about the robustness and

accuracy of the proposed algorithm.

Also provided in Figures 6.2, 6.3, and 6.4, further examples of scenes containing

occluded walking subjects in an indoor setting segmented by using this algorithm

presented here.

The second experiment is characterised by the inclusion of noise in addition to the

occlusion. This is evidently a tough problem where the the region homogeneity is

highly disturbed. Figure (6.5(b)) shows the scene glittered with Gaussian noise.

This experiment is another example of the resilience of the algorithm proposed

here. The example, nonetheless, can be regarded as a vote in favour of both

compared algorithms as they managed to segment the target shapes. The graphs

in Figure (6.5(a)) also supports this conclusion.

Further examples segmented by using this algorithm presented here are provided

in Figures 6.6, 6.7, and 6.8, in which images of walking subjects are subjected to

occlusion and Gaussian noise with SNR=1 in indoor settings.

6.5.2 Outdoor cycles

The experiment in this example is conducted on a sequence of images captured

in an open place. The scene is rich in clutter and moving object. This is a

typical real life visual challenge. In Figure (6.9(a)) it is shown that the AR-based
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Figure 6.1: Indoor segmentation: occlusion, (a) the given sequence (top row),
segmentation results by the AR-based algorithm (middle row), and the segmen-
tation results by the algorithm proposed here (the bottom row) , (b) the number
of error pixels in the segmented image sequence produced by each of the two

algorithms



98 Chapter 6 Prior Aided Gait Segmentation

(a)

5 10 15 20 25
200

300

400

500

600

700

800

Frame index i

E
rr

or

(b)

Figure 6.2: Indoor segmentation: occlusion, (a) the given sequence (top row),
the segmentation results by using the algorithm proposed here (the bottom row)
, (b) the number of error pixels in the segmented image sequence produced by

this algorithms

algorithm starts to loose track of the target. This results in reduced performance

and increase in the number of error pixels compared to the ground truth as seen in

Figure (6.9(b)). Our algorithm on the other hand seems to hold well against the

distractions presented by this scene. Interesting to mention that as compared with

the indoor example, the error have dramatically increased here for both algorithms.

However, as shown by the graphs in Figures (6.1(b), 6.5(b) and 6.9(b)), the AR-

based algorithm has seen greater degradation in its segmentation output.
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Figure 6.3: Indoor segmentation: occlusion, (a) the given sequence (top row),
the segmentation results by using the algorithm proposed here (the bottom row)
, (b) the number of error pixels in the segmented image sequence produced by

this algorithms

6.5.3 Noise analysis

The impact of various levels of noise on the quality of segmentation is investigated

here. The indoor image sequence used in Section 6.5.1 is employed in this analysis.

Increasing levels of Gaussian and uniform noise are added to the images of this

sequence. The measure suggested by Cremers (2006) to quantify the quality of

segmentation is used here as an indicator of the robustness. This measure is given

in Eq. (6.11):

ǫ́ =

∫

x,y
(H(φ)−H(φ0))

2dxdy
∫

x,y
H(φ)dxdy +

∫

x,y
H(φ0)dxdy

(6.11)
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Figure 6.4: Indoor segmentation: occlusion, (a) the given sequence (top row),
the segmentation results by using the algorithm proposed here (the bottom row)
, (b) the number of error pixels in the segmented image sequence produced by

this algorithms

where H is again the Heaviside step function, φ0 is the ground truth segmentation,

and φ the shape segmented by the algorithm. This measure accounts for the

relative area of the set symmetric difference and has a value between 0 and 1.

In Figure (6.10) examples of the shapes with various levels of noise are segmented

by using this algorithm. It can be seen from this figure that in the high levels of

noise most of the visual information is destroyed. Yet, it is still manageable by

this algorithm. This is explained in better details in Figure (6.11).

Figure (6.11(a)) shows the segmentation error ǫ́ curves resulting from different

levels of noise. It shows in particular that overall the algorithm is steady. Figure

(6.11(b)) demonstrates the average error ǫ́ as a function of the noise level. As
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Figure 6.5: Indoor segmentation: occlusion and Gaussian noise with SNR=1,
(a) the input sequence (top row), the segmentation results by using the AR-
based algorithm (middle row), and the segmentation results by using this al-
gorithm (bottom row), (b) the number of error pixels in the segmented images

produced by the algorithms compared here
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Figure 6.6: Indoor segmentation: occlusion and Gaussian noise with SNR=1,
(a) the given sequence (top row), the segmentation results by using the algo-
rithm proposed here (the bottom row) , (b) the number of error pixels in the

segmented image sequence produced by this algorithms

is intuitive, the error increases with higher values of noise. This graph, however,

shows that the error remains to some extent constant for noise levels below SNR=1.

The residual error starts rising noticeably at values below SNR=0.8. The range of

increase is, nevertheless, around 1 percent. This suggest clearly that this algorithm

is very robust against noise.
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Figure 6.7: Indoor segmentation: occlusion and Gaussian noise with SNR=1,
(a) the given sequence (top row), the segmentation results by using the algo-
rithm proposed here (the bottom row) , (b) the number of error pixels in the

segmented image sequence produced by this algorithms

6.6 Conclusions

A gait segmentation algorithm with prior shape is presented in this chapter. This

algorithm balances between classic active contour forces working on local level and

prior shape governing the class of segmented shapes globally. The prior is derived

by employing a framework of subsequent synthesis and analysis.

This new technique is evaluated by using a set of problems. These problems involve

real-world image sequences of walking subjects. The images are further distorted

by use of occlusion, noise, and clutter.



104 Chapter 6 Prior Aided Gait Segmentation

(a)

5 10 15 20 25
200

300

400

500

600

700

800

Frame index i

E
rr

or

(b)

Figure 6.8: Indoor segmentation: occlusion and Gaussian noise with SNR=1,
(a) the given sequence (top row), the segmentation results by using the algo-
rithm proposed here (the bottom row) , (b) the number of error pixels in the

segmented image sequence produced by this algorithms

The test results project the ability of this algorithm to perform good segmentation

in all of the included distortions. Furthermore, the experiments demonstrate better

results in comparison with previous approaches.

This algorithm can be further improved by including tracking methods such as

Kalman filters. This is useful for instance in the extreme cases where the shape is

occluded either partially or completely for a several frames. Such addition might

increase resilience significantly.
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Figure 6.9: Outdoor sequence segmentation example, (a) a sample of images
before segmentation (top row), after segmentation by using AR-based algorithm
(middle row), and by using this algorithm (bottom row), (b) the number of error

pixels in the segmented images produced by these algorithms
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Figure 6.10: Some examples of image sequences contaminated with various
levels of Gaussian noise: SNR=2 in the first row, SNR=1.25 in the second row,

SNR=0.5 in the third row, and SNR=0.05 in the fourth row
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Figure 6.11: Noise analysis, (a) the error ǫ́ in the segmented images as a
function of different levels of noise, (b) a graph of the average values of ǫ́ plotted

against the level of noise included in the images





Chapter 7

Conclusions and Further Work

7.1 Conclusions

This thesis communicates a set of algorithms aiming to advance the analysis and

manipulation of temporally deforming shapes. In this thesis, shape features of

entire cycles are packed as a single entity preserving the periodicity and time co-

herence. With the aid of an interpolating cubic spline, these features are matched

in terms of length and phase. The correspondence of feature entities is automated.

The formed features are treated in a Gaussian framework by using PCA. Therefore,

the manipulation of the model parameters leads to a holistic deformation pattern

drawn over the entire sequence. The introduction of PCA over temporally matched

shapes results in producing novel cycles with valid shapes. The generation of new

cycles is governed by changing the model parameters which is a significant practical

outcome of this model.

The generative model presented here is used successfully in reconstructing the in-

between shapes which did not exist in the initial training set. Furthermore, this

method is tested for its tolerance to missing parts of the training set for which

the technique proves robust. One other application is to use the derived feature in

the identification of pedestrian. A flavour of possible further investigation of this

application can be found in the next section.
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A shape registration algorithm is also contributed here. The proposed algorithm

estimates the parameters by using closed form expressions. This algorithm em-

ploys Fourier transform properties to estimate the rotation and the translation

parameters. The scale parameter is computed by using radial moments. This reg-

istration technique is tested by using a wide range of problems. The results show

that this algorithm is fast (non-iterative), accurate, stable, and does not fall into

local minima.

The final part of this thesis is devoted to the integration of the shape model with

the ACWE segmentation functional. The algorithm suggested here to perform a

prior shape informed segmentation also employs our shape registration technique.

This algorithm is constructed such that the evolving contour takes its global geo-

metrical structure from the prior. The data driven term brings the contour closer

to the strong local forces in the data. This way the algorithm manages to over-

come occlusion, ignore clutter and survive devastating levels of additive noise as

demonstrated here.

The prior is estimated dynamically in an analysis-synthesis coupled iterations.

Shapes known previously help identify the subject, which in turn help estimate

the next prior. The prior guides the segmentation which subsequently provide an

extra known shape for the next iteration.

There experimental results presented here show that the techniques presented in

this work can help the progress in the field. Further research is needed to expand

the findings of this report. The extension of the registration algorithm to 3D is

foresee-ably possible as well as important. The inclusion of a tracking component

in the segmentation algorithm can increase the reliability of the algorithm. Finally,

there might be a good potential for the proposed gait features to be of use in the

increasingly interesting gait biometrics area.
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Figure 7.1: Heel strikes: the average image of the lower leg area of one of the
videos (Arbab-Zavar et al., 2011)

7.2 Further Work

This section sheds some light on the potential use of the model proposed in Chapter

4 in gait biometrics. The experiment presented there shows on a very limited

scale that the features derived are discriminative. This section, however, broadens

the prospect by using a large database and including comparable classification

techniques. This work was done in collaboration with B. Arbab-Zafar (Arbab-

Zavar et al., 2011).

A sample from the Southampton Gait database (Shutler et al., 2002) is used.

Videos were filmed for walking subjects laterally before a static camera at a rate

of 25 frames per second in controlled conditions. We used a set of 1079 sequences

from 116 subjects where the subject is moving from right to the left of the frame.

7.2.1 Single Cycle Detection

Gait cycles are detected automatically by detecting all the heel strike positions.

Since the heels remain static while the rest of the body moves forward, it is ex-

pected that heels appear in the same position in the image for several frames. The

successive frames are averaged and the heel strikes are detected by computing the

highest intensity values beyond some threshold (see Figure 7.1). Then, the period

of three successive frames where these positions first appear are considered a single

gait cycle. An example of extracted gait cycles of a subject is shown in Figure 7.2.
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Figure 7.2: Some extracted gait cycles of one of the recorded subject of the
database (Arbab-Zavar et al., 2011)

7.2.2 Gait Feature Computation and Recognition

7.2.2.1 Gait Features

The sample is partitioned into two sets, Strain ≡ {V1
1, . . . ,V

M
1 }c×M , where Vj

i is a

vector of image sequence. The subscript, i, represent the cycle per subject and the

superscript, j, represents the particular subject. M , is the total number of subjects

and c is the average number of frames per all cycles. This set is used to train the

regenerative model (i.e to compute ū, Ψ, ᾱ, and χ) as detailed in chapter 4. The

other (much bigger) set is Stest ≡ [V1
2, . . . ,V

1
l , . . . ,V

M
2 , . . . ,V

M
p ]c×r×M , where r is

the average number of cycles per subject. This set is used to generate the features

~β which are used in the classification:

~βj
i = χT (~αj

i − ᾱ), for i = 2 : r, j = 1 :M. (7.1)

where the eigenmode ~α is computed as:

~αj
i (z) = ΨT (Vj

i (z)− ū) (7.2)

where (Vj
i (z) is the z

th image of the sequence i of subject j.
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7.2.2.2 Component and Discriminant Analysis

Due to the fact that gait image data (with high dimensionality) are problem-

atic to classifiers. Researchers (Huang et al., 1999) combine PCA and Multiple

Discriminant Analysis (MDA) to achieve the best data representation and class

separability simultaneously.

Han and Bhanu (Han and Bhanu, 2006) proposed a simple spatio-temporal gait

feature called Gait Energy Image (GEI). The authors employ PCA to reduce fea-

ture dimensionality while preserving the data, followed by MDA to maximise the

ratio of between-class scatter (covariance) matrix and within-class scatter matrix.

By assuming Gaussian distributions for all the classes in the feature space with the

same covariance matrix, Bayes optimal classifier becomes a minimum Mahalanobis

distance classifier (Han and Bhanu, 2006),

DM(x̃) = −1

2
(x̃− µi)

TΣ−1(x̃− µi) (7.3)

where x̃ is a test feature, µi is the mean of the ith class in the training sample,

and Σ is the covariance matrix of the features.

The above described feature manipulation and classifier are employed for features

computed by using the GEI and the model proposed here. However, since the

features generated by our proposed gait model are in already low dimensionality

(because of PCAfeature) PCA is of no use here. MDA is certainly useful and is

employed in the same way as above.

7.2.3 Experiments

The data efficient leave-one-out cross validation is used here. Therefore, the clas-

sifier is trained by using one sample and tested by using the remaining samples in

the dataset. Table 7.1 shows the correct classification rates (CCR) which is the

number of test points classified correctly divided by the total number of points
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Table 7.1: Leave-one-out cross-validation correct classification rates
Method CCR (%)

GEI + PCA + MDA + Bayesian (no normalisation) 898/959 (≈ 93.6%)
GEI + PCA + MDA + Bayesian (scale normalised) 947/959 (≈ 98.7%

~β + MDA + Bayesian (no normalisation) 928/959 (≈ 96.8%)

in the data set. This experiment shows that the proposed features give better

discriminant results than the GEI (Han and Bhanu, 2006) in the case of non

normalised silhouettes.

Indeed, more scrutiny is required to involve data under different conditions such as

scale normalisation, different viewpoints, noise and occlusion. Further, it is good

to investigate the performance with randomly missing frames or lower temporal

resolution, as reported earlier that this model can compensate for missing data.

It is also interesting to study the use of other classification strategies.



Appendix A

Derivation of Euler Lagrange

Equations

Let F (c1, c2, φ) be the functional of the ACWE model defined in Eq. (A.1):

F (c1, c2, φ) = µ

∫

Ω

δ (φ(x, y))
∣

∣

∣

~∇φ(x, y)
∣

∣

∣
dxdy

+ λ1

∫

Ω

|u0(x, y)− c1|2H (φ(x, y)) dxdy

+ λ2

∫

Ω

|u0(x, y)− c2|2 (1−H (φ(x, y))) dxdy. (A.1)

The objective is to find φ that minimises F .

Therefore, the Lagrangian L of F is defined in Eq. (A.2):

L = µ
(

δ (φ(x, y))
∣

∣

∣

~∇φ(x, y)
∣

∣

∣

)

+ λ1
(

|u0(x, y)− c1|2H (φ(x, y))
)

+ λ2
(

|u0(x, y)− c2|2 (1−H (φ(x, y)))
)

(A.2)

In what follows φ(x, y) and u0(x, y) will be respectively referred to as φ and as u0

for short.
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The function minimising F is the solution of the Euler-Lagrange Eq. (A.3):

∂φ

∂t
=
∂L

∂φ
− ∂

∂x

∂L

∂φ́
− ∂

∂y

∂L

∂φ́
= 0. (A.3)

Next, each term of this equation is computed individually. For ∂L
∂φ

this is given in

Eq. (A.4):

∂L

∂φ
= µ δ1(φ)

∣

∣

∣

~∇φ
∣

∣

∣+ λ1(u0(x, y)− c1)
2δ(φ) + λ2(u0(x, y)− c2)

2δ(φ) (A.4)

For ∂L

∂φ́
this is given in Eq. (A.5)

∂L

∂φ́
=

∂

∂φ́

(

µ δ(φ)
∣

∣

∣

~∇φ
∣

∣

∣

)

,

= µ δ(φ)
φx + φy
√

φ2
x + φ2

y

,

= µ δ(φ)
~∇φ
∣

∣

∣

~∇φ
∣

∣

∣

. (A.5)

From Eq. (A.5), ∂
∂x

∂L

∂φ́
can be computed,

∂

∂x

∂L

∂φ́
= µ



δ1(φ)φ́x

~∇φ
∣

∣

∣

~∇φ
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+ δ(φ)
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∂x

~∇φ
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~∇φ
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∣



 . (A.6)

Similarly ∂
∂y

∂L

∂φ́
can be computed as in Eq. (A.7):

∂

∂y

∂L

∂φ́
= µ



δ1(φ)φ́y

~∇φ
∣

∣

∣

~∇φ
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∣

+ δ(φ)
∂
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~∇φ
∣

∣

∣
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∣

∣

∣



 . (A.7)
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Then we have,
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This is simplified in Eq. (A.9):
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This can be written as:
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or equivalently,
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which gives:
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Putting all parts together similar to Eq. (A.3), we have:

∂φ

∂t
= µ δ1(φ)

∣

∣

∣

~∇φ
∣

∣

∣+ λ1(u0 − c1)
2δ(φ)− λ2(u0 − c2)

2δ(φ)

− µ δ1(φ)
∣

∣

∣

~∇φ
∣

∣

∣
− µ δ(φ)∇





~∇φ
∣

∣

∣

~∇φ
∣

∣

∣



 . (A.13)



118 Appendix A Derivation of Euler Lagrange Equations

By deleting similar terms Eq. (A.13) gives rise to Eq. (A.14),
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= −µ δ(φ)∇ ·





~∇φ
∣

∣

∣

~∇φ
∣

∣

∣



+ λ1(u0 − c1)
2δ(φ)− λ2(u0 − c2)

2δ(φ). (A.14)

Rearranging,

∂φ

∂t
= δ(φ)



µ ∇ ·





~∇φ
∣

∣

∣

~∇φ
∣

∣

∣



− λ1(u0 − c1)
2 + λ2(u0 − c2)

2



 = 0. (A.15)

The PDE given in Eq. (A.15) is the minimiser of the functional F (c1, c2, φ). The

solution to this equation is the evolving contour according to model proposed by

Chan and Vese (2001).



Appendix B

Functional Parameters of ACWE

c3 =
1

√

(

φn
i+1,j−φn

i,j

h

)2

+
(

φn
i,j+1−φn

i,j−1

2h

)2
. (B.1)

c4 =
1

√

(

φn
i,j

−φn
i−1,j

h

)2

+
(

φn
i−1,j+1−φn

i−1,j−1

2h

)2
. (B.2)

c5 =
1

√

(

φn
i+1,j−φn

i−1,j

2h

)2

+
(

φn
i,j+1−φn

i,j

h

)2
. (B.3)

c6 =
1

√

(

φn
i+1,j−1−φn

i−1,j−1

2h

)2

+
(

φn
i,j

−φn
i,j−1

h

)2
. (B.4)

m =
△t
h2
δǫ(φi,j)µ. (B.5)

C = 1 +m(c3 + c4 + c5 + c6). (B.6)

where for all the above, h is the spatial step parameter.
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Registration Algorithm

Algorithm1: Shape Registration Algorithm

Require: φp and φq {φp is the input reference shape, φq is the input observed

shape}
θ̂ ⇐ the angle difference between φp and φq {by using Algorithm2}

Ensure: φtemp1 ⇐ rotated φq by using θ̂ {Apply the computed rotation}
ŝ⇐ the scale difference between φp and φtemp1 {by using Algorithm3}

Ensure: φtemp2 ⇐ scaled φtemp1 by using ŝ {Apply the computed scale}
[

T̂x, T̂y

]

⇐ the translation difference between φp and φtemp2 {by using Algo-

rithm3}
Ensure: φ́q ⇐ tranlated φtemp2 by using [T̂x, T̂y] {Apply the computed transla-

tions}
return φ́q

%%%

Algorithm2: Rotation Angle Computation Algorithm

Require: φp and φq

SampleAngle⇐ the angular step size

Ensure: φ̂p ⇐ centralised φp {translation invariance by using Eq. (5.5)},
φ̂q ⇐ centralised φq {translation invariance by using Eq. (5.6)},
φ̃p ⇐ map φ̂p to polar domain with angular step size SampleAngle,

φ̃q ⇐ map φ̂q to polar domain with angular step size SampleAngle.
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φ̃p(ω) ⇐ marginalise out ρ of φ̂p(ρ, ω) {by using Eq. (5.7)}
φ̃q(ω) ⇐ marginalise out ρ of φ̂q(ρ, ω) {by using Eq. (5.8)}
φ̄p ⇐ normalise φ̃p {by using Eq. (5.9)}
ψ̄p ⇐ DFT of φ̄p {according to Eq. (5.14)}
ψ̃q ⇐ DFT of φ̃q {according to Eq. (5.15)}
Phase⇐ index of maximum of inverse DFT of ψ̄p.ψ̃q {according to Eq.(5.17)}
θ̂ ⇐ Phase× SampleAngle× 360 {Convert the Phase shift to angle degrees}
return θ̂

%%%

Algorithm3: Scale Computation Algorithm

Require: φp and φq,

Order ⇐ the degree of the shape momemnts,

φ̂p ⇐ centralise φp {translation invariance by using Eq. (5.5)},
φ̂q ⇐ centralise φq {translation invariance by using Eq. (5.6)}.

MinTerm⇐ derivative of Eq. (5.24) with respect to ŝ

for i = 1 → Order do

M i
p̂ ⇐ the ith moment of φ̂p

M i
q̂ ⇐ the ith moment of φ̂q

ŝ⇐ ŝ+MinTerm(M i
p̂,M

i
q̂, i)

end for

ŝ⇐ exp ŝ

return ŝ

%%%

Algorithm4: Translations Computation Algorithm

Require: φp and φq(x, y))

φ̄p ⇐ normaliseφp {by using Eq. (5.9)}
Θ̄p ⇐ DFT of φ̄p {according to Eq. (5.14)}
Θ̃q ⇐ DFT of φ̃q {according to Eq. (5.15)}
[Tx Ty] ⇐ index of maximum of inverse DFT of Θ̄p.Θ̃q {accoring to Eq. (5.31)}
return T̂x and T̂y



Appendix D

Application of PCA in

Continuous Data

This is an example of the employment of PCA in modeling continuous functions.

Let fi(x) be the set of functions defined in Eq. (D.1)

fi(x) = ϑi x
2, (D.1)

where x and ϑi are defined in Eq. (D.2) and Eq. (D.3) respectively:

∀x : x ∈ [−6, 6], (D.2)

ϑi = {−2,−1, 0, 1, 3, 4, 5}. (D.3)

Figure (D.1) depicts the set of functions represented by fi(x). These functions are

centralised by subtracting the mean f̄ defined in Eq. (D.4),

f̄ =
1

8

∑

i

ϑix
2,

f̄ = 1.5x2. (D.4)
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Figure D.1: A set of 8 functions fi computed by using Eq. (D.1)

A matrix S which constitutes the set of functions fi as its column elements is

formed:

S(x) = [ f1 f2 f3 f4 f5 f6 f7 f8 ] . (D.5)

The covariance matrix SST has infinite dimensionality. Therefore, a kernel K =

STS (has dimensions 8×8) is formed instead. The components of K are computed

as in Eq. (D.6):

ki,j = ϑiϑi

∫

x

x4 dx,

= ϑiϑi

(

x5

5
|6x=−6

)

,

= 3110.4 ϑiϑj. (D.6)

Hence, the set of eigenvalues ι and the corresponding eigenvectors o of K are

computed according to Eq. (D.7),

o ι oT = K. (D.7)
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Figure D.2: A set of 21 functions f̂ζ generated by using Eq. (D.9) and setting
ζ = {−200,−180,−160 · · · , 160, 180, 200} respectively

Accordingly, the eigenvector basis of the covariance matrix of training set fi is

given in Eq. (D.8),

χ = S o. (D.8)

A novel data point (function of x), f̂ , belonging to the class of the training sample

is generated (estimated) by using Eq. (D.9):

f̂ζ = ζ χ+ f̄ , (D.9)

where ζ is some parameter (has an arbitrary value). Figure (D.2) and Figure (D.3)

show some functions, f̂ζ(x), generated by setting various values to ζ.
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Figure D.3: A set of 101 functions f̂ζ generated by using Eq. (D.9). The values
of ζ are chosen as: ζ = {−1000,−980,−960 · · · , 960, 980, 1000} respectively



Appendix E

Algorithmic Prior Segmentation

SequenceSegmentation(u1, u2, . . . , un) =⇒ [φ1, φ2, . . . , φn] :

1. Initialise: i = t−1, Shapeoff , KnownShapes := [φ1, . . . , φt−1], ImageSequence:=

[uj : j = (1, 2, . . . n)], where t − 1 is the number of known (given) shapes,

and Shapeoff is the average offset of the indices of the given shapes,

2. Update identity of the subject (analysis), ~β:

βetaUpdate(~βt−1, [φ1, . . . , φt−1]) ⇒ ~βt,

3. Set i = i+ Shapeoff ,

4. Compute next prior shape (synthesis), φPr:

(a) compute ~αt := χ ~βt + ᾱ (by using Eq. (4.11)),

(b) compute φPr = ΨT ~αt(i) + φ̄ (by using Eq. (6.9)),

5. Segment image ut: ImageSegment(ut, φ
Pr, φt−1) ⇒ φt,

6. Add φt to the set of know shapes, KnownShapes := [φ1, . . . , φt−1, φt],

7. If t ≤ n go to step 2. Otherwise, Return [φ1, φ2, . . . , φn].

βetaUpdate(~βt−1, [φ1, φ2, . . . , φt−1]) =⇒ ~βt :
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1. Re-Compute a provisional entire gait cycle by using the previous subject

identity ~βt−1:

(a) α̂t−1 := χ ~βt−1 + ᾱ, (by using Eq. (4.11)),

(b) φ̂1:n := Ψ α̂t−1 + φ̄, (by using Eq. (6.9)),

2. Assign new sequence indices to the given shapes [φ1, . . . , φt−1] by matching

them to the closest shapes in the provisional cycle [φ̂1, . . . , φ̂n]:

k = argmin
l

∑n

l=1

∫

x,y
|φk − φ̂l|2dxdy,

3. Compute the eigenmodes corresponding to the (re-indexed) given shapes

~αt−1(k) := ΨT (φ(k)− φ̄) (by using Eq. (4.3),

4. Fill the gaps in the newly constructed eigenmodes ~αt−1 with zeros (thus,

considering them as missing completely at random (Howell, 2009)),

5. Compute the updated subject identity, i.e., ~βt := χT (~αt−1 − ᾱ), (by using

Eq. (6.7))

6. Return ~βt.

ImageSegment(ut, φ
Pr, φt−1) =⇒ φt :

1. Initialise the evolving SDF φ := φt−1,

2. Iterate Eq. (6.2) until convergence,

3. Return φt.
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