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In combustor design and development, the use of unsteady computational fluid 

dynamics (CFD) simulations of transient combustor aero-thermo-dynamics to provide 

an insight into the complex reacting flow-field is expensive in terms of computational 

time. A large number of such high-fidelity reactive CFD analyses of the objective and 

constraint functions are normally required in combustor design and optimisation 

process. Hence, traditional design strategies utilizing only high-fidelity CFD analyses are 

often ruled out, given the complexity in obtaining accurate flow predictions and limits 

on available computational resources and time. This necessitates a careful design of fast, 

reliable and efficient design strategies. Surrogate modeling design strategies, including 

Kriging models, are currently being used to balance the challenges of accuracy and 

computational resource to accelerate the combustor design process. However, its 

feasibility still largely relies on the total number of design variables, objective and 

constraint functions, as only high-fidelity CFD analyses are used to construct the 

surrogate model. 

 

This thesis explores these issues in combustor design by aiming to minimize the total 

number of high fidelity CFD runs and to accelerate the process of finding a good design 

earlier in the design process. Initially, various multi-fidelity design strategies employing 

a co-Kriging surrogate modeling approach were developed and assessed for 

performance and confidence against a traditional Kriging based design strategy, within 

a fixed computational budget. Later, a time-parallel combustor CFD simulation 

methodology is proposed, based on temporal domain decomposition, and further 

developed into a novel time-parallel co-Kriging based multi-fidelity design strategy 

requiring only a single CFD simulation to be setup for various fidelities. The 

performance and confidence assessment of the newly developed multi-fidelity 

strategies shows that they are, in general, competitive against the traditional Kriging 

based design strategy, and evidence exists of finding a good design early in the design 

optimisation process. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“The Jet Engine is a heat engine and the combustor is where the heat is 
created by converting the chemical energy of the fuel into thermal energy. 
Historically, the combustor has always been one of the most difficult areas of 
the engine to get right” 
 
 

- “The Jet Engine”, Rolls-Royce PLC 
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Introduction 

 
 
 

1.1 Background and problem overview 
 
Air traffic is rapidly increasing today [ACARE, European Aeronautics Report, 2001] and 

against this background, it is essential to consider the environmental impacts of 

aviation to ensure in advance that such a rate of development is sustainable. Since the 

initial demonstration of gas turbines in jet powered aircraft, substantial gains have been 

made in their performance. The operational performance, noise characteristics, and 

pollutant emissions of gas turbines for propulsive applications continue to improve. 

Contemporary gas turbines produce higher operating efficiencies and emit fewer 

pollutants than other major chemical-energy conversion devices. In addition, the ease of 

quick installation has made them attractive to investors and operators. As a result, gas 

turbines are currently, a dominant technology for propulsion and power generation 

applications. 

 

Despite the continued expansion of gas turbine use for aircraft propulsion over the past 

40 years, through the introduction of new technologies that have reduced CO2, noise 

and other emissions, further substantial improvements are likely to be realized through 

breakthrough technologies and concepts. As per the Advisory Council for Aeronautical 

Research in Europe (ACARE) “Vision 2020” [ACARE Strategic Agenda Report, 2002], the 

aeronautical industry environmental challenges have been divided into four goals: 

 

 To reduce fuel consumption and CO2 emissions by 50% 

 To reduce NOx emission by 80% 

 To reduce perceived external noise by 50% 

 To make substantial progress in reducing the environmental impact of the 

manufacture, maintenance and disposal of aircraft and related products 
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Over the last 40 years, despite major advances in gas turbine combustion technology, 

several design challenges remain to achieve further improvement in performance and 

to meet the desired requirements. Although the combustor must primarily be designed 

to ensure stable combustion, a high combustion efficiency and uniform exit 

temperature, the need to control emissions has been the major influence in recent 

years. While the legislation for emissions of oxides of nitrogen (NOx), carbon monoxide 

(CO), unburnt hydrocarbons (UHC) and smoke is becoming increasingly stringent, 

engine design trends, which have led to richer air/fuel ratios and high temperatures and 

pressures inside the combustor, make the control of NOx and smoke more difficult 

(Rolls-Royce, 2004). For this reason, a lean burn combustion system is a more attractive 

option to develop, which operates under fuel lean conditions that can have lower 

emissions of UHC, CO and NOx and simultaneously offer higher combustion efficiency. 

Unfortunately, achieving these improvements and designing a practical combustion 

system is complicated by low reaction rates, flame extinction, instabilities, mild heat 

release and sensitivity to fuel/air mixing. However, as a whole, the current and future 

ACARE targets can only be met by lean combustion systems (Derek Dunn-Rankin, 

2008). 
 

 
Fig. 1.1 ACARE Vision 2020 combustion systems target enabling path (ACARE strategic 

agenda report, volume 2(3), 2002) 

 

Figure 1.1 shows an illustration of a target enabling path for combustion system 

development, mentioned in the ACARE “Vision 2020” strategic plan. Long term 

integrated work, including detailed understanding of the combustion process, 

development of new mathematical models of physical phenomena and efficient design 

optimisation strategies, is needed to develop new designs of combustion and fuel 

injection system. 

 

 

1.2 Combustor design challenges 
 
The current challenges faced by the gas turbine industry during the design process of 

combustors can be classified into two categories: (a) operational challenges faced in 

meeting the ACARE 2020 targets and (b) design strategy challenges faced in developing 

the combustor design.  
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1.2.1 Combustor operational challenges 

 

A gas turbine combustor using liquid fuel is a complex combustion device within which 

there exist a wide range of interacting coupled physical and chemical phenomena 

including fuel spray atomization and vaporization, two-phase turbulent transport, 

thermal radiation and chemical kinetics. A combustor is primarily designed in such a 

way that it can contain and control the burning fuel-air mixture. The combustion 

chamber is required to burn large quantities of fuel with extensive volumes of air from 

the compressor. Heat must be released in such a way that the combustion gases are 

expanded in a smooth stream of uniformly heated gas – while also meeting the 

following tightly coupled operational targets (Lefebvre, 1983) 
 

 high combustion efficiency 

 wide range of combustion stability  

 reliable ignition on cold days 

 ability to restart the engine and pull away at high altitude 

 low pressure loss in order to maximize the overall engine performance, but 

sufficient pressure loss to drive cooling air through the turbine. 

 a temperature profile at the combustor exit that matches the life requirements 

of the turbine 

 ability to burn a wide range of fuels 

 low emissions of smoke, unburned fuel, and gaseous pollutant species 

 design for minimum cost and ease of maintenance 

 size and shape compatibility with engine development 

 durability and manufacturability 

 

Combustor performance often depends on subtle changes to the admission of air, the 

cooling features and the geometry of the fuel injector. If changes are made to improve 

one aspect of the combustor, it invariably has an impact, often adverse, elsewhere. In 

addition to the above mentioned challenges, the occurrence of instabilities during 

combustion is an important issue for combustor designers, particularly in low-emission 

gas turbines (Lieuwen and Yang, 2005).  

 

Combustion instabilities encountered in conventional diffusion-flame-gas-turbine 

combustors can be eliminated, in general, with simple modifications to the design and 

operating parameters. However, the combustion processes in low-emission combustors 

are pushed close to the limits of lean flame stability and/or heat release rates that lead 

to strongly coupled non-linear interaction between the flame exothermicity, acoustic 
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behaviour of the system and components. Hence, it is necessary to consider combustion 

instabilities and the effects on the combustor design process. 

 

1.2.2 Combustor design strategy challenges 

 

In the early days of gas turbine combustor design, the combustor design process was 

considered more of an art than a science. It was mostly based on the “cut-and try” 

method where the approach was to repetitively test different variants of the combustor 

until a suitable arrangement could be found. A study concerning gas turbine design 

costs in the 1970s highlighted that some 75% of the total costs were spent on those 

“cut-and-try” design feedback cycles. The design methodology or strategy typically 

involved using a number of empirical relations in combination with semi-empirical 

techniques supported by experiments (Mongia, 1998 and 2001). In order to reach a 

good design this approach was costly and time-consuming (Nightingale, 2000). 

 

Due to the recent advances in computing power and development of CFD codes, 

combustor design and development processes have changed significantly, and CFD has 

now become a valuable part of an overall integrated combustor design system (Anand 

et al., 2001). However, for combustor design and optimisation, the use of CFD has yet to 

overcome some obstacles in terms of combustion modelling accuracy and validation. It 

is well-known that an aero-engine gas turbine combustor consists of a turbulent 

reactive flow-field together with multiple time-dependent physical-chemical processes, 

occurring at varying time and length scales. Furthermore, the comprehensive physics 

implied by turbulent reacting flows involves strongly coupled behaviour between flow-

field dynamics and combustion mixing processes. With respect to lean burn 

combustors, the key technical issues are associated instabilities, flame flashback, flame 

blow-off and auto-ignition. Hence, CFD simulation of a gas turbine combustor, 

embracing many complex thermal/fluid dynamic phenomena, presents an extremely 

challenging task requiring very fine spatial and temporal resolution of the 

computational domain and therefore very high computational expense (Wankhede et 

al., 2010). Given the complexity in obtaining accurate flow predictions and due to the 

expensive nature of simulations, conventional techniques (such as direct search 

strategy using evolutionary search algorithms) for CFD-based combustor design 

optimisation are often ruled out, primarily due to the limits on available computing 

resources and time (Mongia et al., 2005). Additionally, the combustor design 

optimisation process typically requires a large number of analyses of the objective and 

constraint functions (Dulikravich et al., 2001). This necessitates the careful selection of 

a fast, reliable and efficient computational design methodology for the combustor 

design and optimisation process. 

 

Hence, currently, what has been proving more difficult during the combustor design 

development process is the application of the design and optimisation tools and the 

ability to obtain better results on performance targets within reasonable time and costs. 
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1.3 Motivation and research objectives 

 
The motivation for this research work stems from the appreciation of the challenges 

faced in the process of gas turbine combustor design development, both in terms of 

combustor operational challenges and combustor design strategy challenges, as 

explained in the previous section. 

 

Recent experimental and theoretical research on gas turbine combustors has resulted in 

better understanding of the physical processes taking place inside the combustor 

(Correa, 1998). This better understanding, in conjunction with increasingly powerful 

computational hardware, has facilitated the development of numerical techniques 

capable of simulating, with a relatively high accuracy, most of the phenomena 

encountered inside a combustor. Based on these simulation tools, design and 

optimisation strategies needs further development to make it more systematic and cost 

efficient, in order to accelerate the process of finding a good design configuration early 

on in the design process, given a performance target. 

 

Surrogate modeling design strategies, including Kriging models, are currently being 

used to balance the challenges of accuracy and computational resource to accelerate the 

combustor design process. However, its feasibility still largely relies on the total number 

of design variables, objective and constraint functions, as only high-fidelity CFD 

analyses are used to construct the surrogate model. This could be further enhanced by 

using a co-Kriging (which is an extension to Kriging) based multi-fidelity strategy 

(Forrester et al., 2008), where information from two different analysis levels, a low 

fidelity (approximate) analysis and a high fidelity (accurate) analysis, are combined to 

accelerate the process of finding a good design. 

 

Also, in order to facilitate faster combustor flow analysis, the CFD simulation is usually 

parallelized on multiple processors. The traditional approach for setting up a parallel 

combustor CFD simulation is to divide the spatial resolution between processors using 

spatial domain decomposition. However, it is well known that spatial domain 

decomposition techniques are not very efficient especially when the spatial dimension 

(or mesh count) of the problem is small and a large number of processors are used, as 

the communication costs between processors becomes significant per iteration 

(Trindade and Pereira, 2004). Hence, temporal domain decomposition has some 

attraction for unsteady CFD simulations, particularly on relatively coarse spatial 

meshes. 

 

A time-parallel CFD simulation of a lean burn combustion system has never been 

approached before. Neither has the development of a multi-fidelity strategy for 

combustor design, particularly in the temporal domain using unsteady CFD, has been 

attempted previously. Hence the main objectives of this thesis are as follows: 
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• To develop a time-parallel CFD simulation methodology for simulating reactive 

combustor flow 

• To develop a multi-fidelity strategy for combustor design comprising time-

parallel CFD simulation and co-Kriging surrogate modelling 

• To conduct performance assessment of time-parallel CFD and co-Kriging based 

multi-fidelity strategy relative to a Kriging based high-fidelity strategy for 

combustor design 

• To develop and test different multi-fidelity strategies for combustor design using 

varying spatio-temporal combustion dynamics employing a co-Kriging surrogate 

model 

• To perform combustor design optimisation using these multi-fidelity strategies 

and assess their performance relative to a traditional Kriging based strategy 

• To perform confidence assessment of all proposed multi-fidelity strategies 

relative to Kriging based high-fidelity strategy through a Bootstrapping 

confidence interval method 

 
1.4 Planning and progress 
 

This PhD research project was sponsored by a Dorothy Hodgkin Postgraduate Award 

co-funded by Rolls-Royce PLC. The company’s interest in this work is to develop 

advanced and efficient combustor design strategies which reduce the overall 

computational cost leading to optimal design configurations early on the design process.  

 

For this purpose, initially, research was conducted in understanding the modern lean 

burn combustion system configuration and design challenges (c. f. section 1.1.1) faced 

within Rolls-Royce PLC. Key reactive flow-field phenomena were identified which are of 

interest from design optimisation perspective. Since the computational analysis cost of 

Rolls-Royce 3D combustor simulations is very high and unpractical for developing new 

design strategies, a 2D lean burn combustor test problem was identified from the 

literature, with similar reactive flow and unsteady flow features as the 3D combustor.  

 

Throughout the PhD project, regular meetings have been held to review progress and 

plan ongoing tasks with inputs to and updates from Rolls-Royce PLC. An overview of the 

work plan undertaken over the three years is shown in Figure 1.2. 
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Task 
Year 1 Year 2 Year 3 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
Understanding lean burn 

combustion system                         
Identifying and formulating 

2D lean burn combustor  
test problem                         

Formulating 2D combustor 
design optimisation problem                         

Applying Kriging based 
design strategy                         

Developing multi-fidelity 
design strategies                         

Applying multi-fidelity design 
strategies, performance and 

confidence assessment                         
Developing time-parallel 

combustor CFD  
simulation methodology                         

Developing  and applying time-
parallel simulation based multi-

fidelity  design strategy                         
Presenting work at conferences, 

writing papers and thesis                         
 

Fig. 1.2 Overview of PhD project plan and progress over 3 years 

 
 
1.5 Thesis layout 
 
With a focus on the development of a multi-fidelity design strategy for the design of lean 

burn gas turbine combustor, an overview of the combustor flow features and existing 

strategies for combustor design and optimisation is provided in Chapter 2. A brief 

overview of combustion instabilities and flame vortex dynamics inside the gas turbine 

combustor is also provided.  

 

Chapter 3 presents a brief description of governing equations of reactive fluid dynamics 

and combustor flow modeling methods. Chapter 4 presents an analysis of Rolls-Royce 

three-dimensional lean burn combustor flow-field with an aim to develop an 

understanding of the modern lean burn combustion system, its key flow features and 

design challenges. 

 

Since the computational analysis cost of Rolls-Royce three-dimensional combustor 

simulations is very high and unpractical for developing new design strategies, a two-

dimensional test combustor problem is described and analyzed in Chapter 5. It models 

similar physical phenomena to the Rolls-Royce combustor discussed in Chapter 4 with 

respect to the reacting unsteady flow dynamics. The associated effects are captured to 
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different degrees of fidelity using various time-step sizes. Simulated phenomena such as 

recirculation zone, flame-front propagation and time-dependent flame/vortex dynamics 

are discussed in detail. The key focus in this chapter is the interaction between the 

flame front and vortex shedding behind the 2D flame stabilizer step, which results in an 

unsteady humming cycle. For this combusting flow, NOx formation is also discussed 

both in steady and unsteady states. The objective functions for design optimisation are 

also determined. 

 

With the objective functions identified, a Kriging based design strategy is applied to the 

problem with different objective functions, both in spatial and temporal domains, in 

Chapter 6. The Kriging based design strategy is applied with multiple numbers of 

starting samples to understand how the results are affected by variations in available 

information. 

 

Chapter 7 introduces various newly developed multi-fidelity strategies for combustor 

design employing a co-Kriging surrogate modeling technique. These strategies consist 

of two levels of fidelities, a fast but approximate low-fidelity and an expensive but 

accurate high-fidelity combustor solution, which are then used to construct a co-Kriging 

model on which design search is performed. Various low-fidelity solution models are 

developed and tested in different combinations leading to formation of strategies 

CoSUS, CoTUS, CoSTUS (c. f. Section 1.3). All strategies are run within fixed 

computational budgets and on multiple initial samples, to collect statistical data with 

mean convergence behaviour used as a performance indicator. A performance 

assessment of the newly developed strategies is also carried out and compared against 

the traditional Kriging based design strategy to identify potential benefits. 

 

Chapter 8 introduces a time-parallel combustor CFD simulation methodology for 

solving the transient reactive flow-field in the 2D test combustor problem. The time-

parallel method is then exploited in the CoTPUS co-Kriging strategy. It is also compared 

against the traditional Kriging based design strategy using performance assessment. 

 

Conclusions are drawn in Chapter 9 based on the relative performances of the various 

co-Kriging strategies. Based on this possible future work is recommended. 
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Chapter 2 

 
A review of gas turbine 

combustor design 
 
 

Since the 1950’s, gas turbine combustor technology has developed gradually and 

continuously rather than any dramatic changes, which is why most aero-engine 

combustor designs resemble each other (Mongia, 1998). Combustor design is a complex 

procedure due to simultaneous involvement of many conflicting performance 

requirements that are strongly coupled to each other. The literature on gas turbine 

combustor design requirements is well discussed in Lefebvre (1983), Mongia (1998, 

2001) and Saravanamuttoo et al. (2008). In this chapter, a gas turbine combustor is 

discussed from a design development perspective. A consideration of its main flow 

features will help in determining a representative 2D combustor test problem for design 

strategy development and assessment in this thesis. 

 

 

2.1 Combustor design evolution 
 

Figure 2.1 shows the logical development of a conventional gas turbine combustor in its 

most widely used form. Figure 2.1a shows the simplest possible form of a combustion 

chamber, which has a straight-walled duct that connects the compressor to the turbine. 

However, such a simple arrangement is not practical because the incurred pressure loss 

would be excessive. In a combustor, the fundamental pressure loss due to combustion is 

proportional to the square of the air velocity. The outlet air velocity of a gas turbine 

compressor is approximately of 150 m/s. In such a case, the pressure loss in the 

combustor shown in Figure 2.1a could amount to about 25% of the pressure rise that is 

achieved in the compressor (Lefebvre, 1983). In order to reduce this pressure loss to an 

acceptable level, a diffuser is used at the exit of the compressor such that the air velocity 

is lowered by a factor of usually about five. Such an arrangement is shown in Figure 

2.1b.  
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Fig. 2.1 Gas turbine combustor design evolution stages 

(Lefebvre, 1983) 
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Even if a diffuser is used to lower the air velocity before it enters the combustion 

chamber, it is still high enough to blow out the flame. Hence, flow reversal must be 

created to provide a low-velocity region in which the flame can be continuously 

sustained. Figure 2.1c shows how this is achieved with the use of a plain baffle. 

However, to produce the desired temperature rise, the overall chamber air/fuel ratio 

must normally be around 50, which is well outside the limits of flammability for air-

hydrocarbon mixtures. The equivalence ratio, ϕ, defined as fuel-air ratio to the 

stoichiometric fuel-air ratio, in the primary combustion zone should ideally be around 

0.8; however lower values (~ 0.6) are sometimes preferred if the prime consideration is 

lower emission of nitric oxides (Lefebvre, 1983). To solve this problem, especially in the 

near injector end region, the simple baffle (c.f. Figure 2.1c) is replaced with a perforated 

liner, as illustrated in Figure 2.1d. The liner provides a region of low velocity in a 

recirculation zone, where combustion is sustained by a recirculatory flow of burned 

products providing a continuous source of ignition for the incoming fuel-air mixture. 

The air which is not required for combustion is admitted downstream of the 

combustion zone (primary zone) to mix with the hot burned products exiting the 

chamber. This arrangement reduces the outlet gas temperature to a value that is 

acceptable to the turbine blades. 

 

There is also an intermediate zone between the primary and dilution zones, in which 

small discrete amounts of air are added to the flow to recover losses due to chemical 

dissociation of the primary combustion products. Many variations of the combustor 

design shown in Figure 2.1d exists but, in general, all designs comprise the key 

components of an air-casing, diffuser, liner, and fuel injector (Lefebvre, 1983).  

 

 

2.1.1 Typical combustor flow features 

 

 

 
 

Fig. 2.2 Gas turbine combustor typical flow features (Huang Y. and Yang V., 2009) 

Shear layers Precessing vortex core 

Vortex-breakdown induced 
central recirculation zone 

Corner  
recirculation 

zone 

Swirl injector 
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In designing a gas turbine combustor, it is important to consider that combustion 

sustains a wide range of engine operating conditions and also ensures high combustion 

efficiency in turbulent airstreams flowing at velocities greater than the burning velocity 

of the fuel/air mixture (Lefebvre, 1983).Most gas-turbine combustors utilize swirling 

flows to stabilize the flame for efficient and clean combustion. A flame in a combustor is 

considered to be stable over a range of input parameters; (e.g., fuel flow rate, air/fuel 

ratio, degree of preheat) if the flame does not extinguish (blow-off) or flashback in to 

the combustor with variation in the above input parameters.  

 

The swirl-injector induced flow structures in a typical gas turbine combustor are shown 

in Figure 2.2. According to Huang and Yang (2009), three important features exists in 

the flow field: a vortex breakdown-induced central recirculation zone (CRZ) 

downstream of the injector, a precessing vortex layer surrounding the center 

recirculation zone, and shear layers originating from the outer edge of the inlet annulus. 

 

Vortex breakdown is a phenomenon that manifests itself as an abrupt change in the core 

of a slender vortex, and usually develops downstream into a recirculating bubble or a 

spiral pattern. This flow region provides the dominant flame stabilization mechanism, 

and is characterized by stagnation points and reversed flows. Reviews on this subject 

have been given by Hall M. G. (1972), Leibovich S. (1978, 1984) and Lucca-Negro and 

O'Doherty (2001). 

 

Another distinct flow feature called the precessing vortex core (PVC), a three-

dimensional unsteady asymmetric flow structure, has been reported in turbulent swirl 

combustion devices by Syred and Beer (1972, 1974), Gupta (1977) Dellenback et al. 

(1988), Froud et al. (1995), Fick et al. (1996) and Syred et al. (1997). The PVC develops 

when a central vortex core starts to precess around the axis of symmetry at a well-

defined frequency. This phenomenon is usually linked to vortex breakdown and the 

associated recirculation zone in a high Reynolds number flow. The presence of shear 

layers modulates the fuel/air mixing process exerting significant influence on 

combustion processes. 

 

The interaction between the turbulent flame and these vortex mechanisms plays a key 

role in the combustor driving a large class of combustion instability problems, and 

controlling the corresponding rates of reaction. Vortices of various types are also often 

used to enhance mixing, organize the flame region, and improve the flame stabilization 

process. It is clear that this complexity demands a clear understanding of the basic 

mechanisms in turbulent combustion and combustion instability, especially in relation 

to combustor design and development. 
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2.2 Iterative combustor design using ‘trial and error’ and semi-

empirical, analytical and experimental evaluation 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Select type of combustor,  
fuel injector and cooling ports 

Sizing of combustor, injectors 
and cooling ports using  

Semi-empirical relations 

 
Experimental 

validation of semi-
empirical/analytical 

results 

Semi-empirical 
correlations or 

analytical method 
based performance 

targets e.g. efficiency, 
emissions etc. 

Define flow parameters  

for combustor, injector and 

cooling ports 

 

Combustor evaluation 

Acceptable 
performance 

targets? 

Final design 

Fig. 2.3 Combustor design strategy based on ‘trial and error’ iterative approach 
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Design modification to improve one aspect of the combustor often has an adverse 

impact, elsewhere. This can be due to a lack of complete understanding of the 

combustion processes and how the modification should progress (Matthews, 2002). 

Several studies using successive design modification procedures for the development of 

gas turbine combustors are discussed in more detail in Lefebvre (1977, 1983), Rizk and 

Mongia (1986), Holdeman (1989) and Mellor (1990). 

 

In the early days of gas turbine combustor development, the design process was largely 

trial and error based, where a new design concept or existing design would be 

iteratively evaluated for performance using semi-empirical correlations, analytical 

methods and experimental validation, until a suitable configuration of design 

parameters was found (Anand and Priddin, 2001). Figure 2.3 shows such a strategy 

employing a ‘trial and error’ iterative approach. Initially, after determining the type of 

combustor application, fuel injector type and required cooling method, the first step 

would involve the sizing† of the combustor and its system devices i.e. fuel injector, 

cooling ports etc. Figure 2.4 shows the reference dimensions of a typical gas turbine 

combustor for sizing.  

 

 
 

Fig. 2.4 Reference dimensions of a typical gas turbine combustor (Charest, 2005) 

 

The geometric parameters such as reference casing diameter (Dref) and the cross-

sectional area (Aref), which specifies the total ideal flow area inside the combustor, is 

defined during combustor sizing. Combustor performance such as flow residence time 

and combustion stability characteristics depends on combustor sizing. Next, for 

satisfactory performance in both combustion and dilution zones, air admission in to the 

combustor through injector and cooling holes are defined. For this, the momentum-flux 

ratio is the most significant parameter involved according to Holdeman et al. (1989), 

and Hammond et al. (1970). Later, the developed combustor is evaluated using semi-

empirical or analytical methods, the results of which are then validated using 

experimental methods. If the performance results are acceptable, the design process is 

stopped or else it is repeated iteratively, by re-sizing the combustor, until an acceptable 

performance level is achieved. The advantage of such a strategy is that it is quick to 

† For further reading on combustor sizing, refer Lefebvre (1983)   
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evaluate combustor performance using semi-empirical correlations. However, the cost 

of repeating combustion experiments is very high and time-consuming too, which is 

estimated to be almost 75 % of the entire design cycle cost (Anand and Priddin, 2001). 

Also, the semi-empirical correlations are limited to simple geometries and applicable to 

cases only for which past measured rig data is available. Thus, this requires intensive 

experimental rig testing at various operating parameters. The semi-empirical analysis 

could be replaced by analytical models, which are applicable to any generic operating 

conditions, at which rig testing is not performed (Lefebvre, 1983). However, analytical 

models face accuracy issues due to many simplifying assumptions made to reduce 

complexity and computational time (Anand and Priddin, 2001). 

 

In light of the above observations, the strategy represented in Figure 2.3 is not 

particularly suitable for future combustor design development targets (c.f. Section 

1.1.1), mainly due to not employing any systematic design search criteria for finding the 

optimum configuration. 

 

 

2.3 Combustor design using integrated search algorithm 
 

The concept of using a search algorithm to design a combustor was reported as long ago 

as 1997 by Despierre et al., who used network flow solver for combustor evaluation and 

a genetic algorithm search method for finding optimal combustor configuration. Figure 

2.5 depicts a design strategy employing a network flow solver or CFD simulation for 

combustor analysis and a search algorithm [genetic algorithm (GA) in this case] for 

finding an optimal design given an initial dataset of design configurations.  

 

The design and optimization of gas turbine combustors relies heavily on engineering 

know-how and experience. Initially, the variables which are to be optimized are chosen 

based on their importance to the particular problem of interest. These variables are 

determined on the basis of past experiences or preliminary experiments/simulations.  

 

Later it involves using a random sampling method to define evaluation points X in a 

design search space. The performance target for each design in the initial population X 

is evaluated using a network solver code or a CFD simulation. Once the initial data 

points (or initial generation) performance targets Y are evaluated, the GA search 

algorithm is used to determine the next set of data points M (or next generation). 

Genetic algorithm, a search procedure originally conceptualise by Holland et al. (1975) 

on the theory of natural genetics and survival of the fittest model, was developed by 

Goldberg (1989). The GA search when applied on the first generation population set, 

results in new population of design configurations. The performance target, of each 

design in this newly produced population set, N is evaluated.  
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Fig. 2.5 Combustor design strategy based on integrated search algorithm 
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This process is repeated until convergence or for a fixed number of pre-specified 

generations. However, despite its advantage in rapidly finding a sufficiently good 

solution, the GA integrated design strategy has some drawbacks. 

 

First, to perform its operations of reproduction, cross-over and mutation GA needs a 

relatively large set of individual design evaluations per population, thus requiring 

considerable computational effort. This increases the cost of overall design cycle 

significantly.  Second, though it can find good region globally, it might have problem in 

converging to the local optimal point to find the exact optimal design. This drawback 

can be addressed by employing dynamic hill climbing (DHC) search method proposed 

by Yuret and Maza (1993) in combination with a GA. 

 

As shown in Figure 2.5, the combustor performance evaluation could be carried out 

using either network flow solver or CFD simulation. Both methods are preferred over 

semi-empirical correlations (due to geometry restrictive issues) or analytical methods 

(due to accuracy issues). 

 

 

2.3.1 Employing combustor network models 

 

This approach was first conceptualised and developed by Stuttaford and Rubini (1996, 

1997), who demonstrated and further extended the successful application of network 

flow solvers to the design of a combustor. In this approach, the combustor is divided in 

to a series of elements, which are described by one-dimensional sub-flows, containing 

appropriately modelled independent semi-empirical conservative governing equations, 

according to the geometric feature. Typical elements (or geometric features) of the 

combustor are dilution port and cooling rings. These are linked together by nodes to 

form an overall network of the combustor.  

 

To obtain a complete solution of the combustor flow-field, the sub-flows are linked 

together by the overall governing equations (Despierre et al. 1997). Other parameters 

such as gas temperatures, combustion efficiency, gas emissivity, film cooling and heat 

transfer efficiencies are provided by separate empirical formulations (Gouws et al. 

2007). For further details on combustor network model theory, see Stuttaford and 

Rubini (1996, 1997). 

 

The network approach provides the ability to model the combustor flow in complex 

geometries and in reasonable time, making it computationally efficient and well suited 

to a GA search algorithm (c.f. Figure 2.5). However, this approach lacks the resolution 

and accuracy of three-dimensional flow features of the combustor making it applicable 

only at the preliminary design stage of the combustor, see Stuttaford and Rubini, (1996, 

1997), Despierre et al. (1997), Rogero and Rubini (2001), Rogero (2003)  and Gouws et 
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al. (2007). For more detailed design, higher fidelity combustor analysis is required, such 

as that provided by CFD. 

 

 

2.3.2 Employing combustor CFD simulation 

 

In the recent years, increases in the computational resources has made it possible to 

develop techniques such as numerical combustion CFD, to simulate three dimensional 

unsteady combustor flows with relatively higher accuracy compared to pure analytical 

predictions or empirical network flow solvers. This has also reduced the amount of 

experimentation needed for combustor flow assessment. Thus, combustor CFD had 

become an alternative tool with which different designs are currently assessed even 

before the designs are rig tested (McGuirk and Spencer, 2000, Lai et al., 2002, Motsamai, 

2008, Sivaramakrishna, G., 2010).  

 

The use of combustion CFD with integrated gradient based search optimisation 

algorithms has been successfully employed for combustor design previously. Anand et 

al. (2001) reported reduction in combustor design cycle lead times compared to 

traditional ‘trial and error’ based design cycles (c .f. Figure 2.3). Holdeman et al. (1997) 

and Gulati et al. (1994) also reported successful use of combustion CFD for design 

optimisation of the exit temperature profile. Recently, Motsamai (2008) successfully 

demonstrated the application of combustion CFD in combination with a gradient-based 

search algorithm to find an optimum combustor design configuration. Fuligno et al. 

(2009) presented a successful integrated approach of CFD analyses with game theory 

multi-objective optimisation to design a combustor. 

 

However, even if combustion CFD is now a becoming a preferred choice over network 

and empirical methods, the use of combustion CFD has its own disadvantages. First, it is 

important to ensure that the modeling is sufficiently accurate and validated using 

experimental results. Additionally, if the design strategy uses an evolutionary search 

algorithm such as GA, then it is still unpractical to use CFD to evaluate large numbers of 

combustor designs as required in multiple generations of the GA (Despierre et al., 

1997).   

 

Thus, the combustor design strategy represented in Figure 2.5 is infeasible and very 

time-consuming, particularly when unsteady CFD simulations are performed at each 

stage of the search algorithm. 

 
 

2.4 Combustor design using response surface model and CFD 

simulations 
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Fig. 2.6 Combustor design strategy based on Kriging response surface modeling (RSM) 
and CFD simulations (Keane and Nair, 2005) 
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To make the direct design strategy in Figure 2.5 more efficient and practical in the 

context of combustor design, it requires a methodology where the search algorithm is 

not coupled directly to expensive CFD simulations. Figure 2.6 represents such a strategy 

for combustor design; where pre-defined set of combustor CFD simulations within the 

target design space can be represented by an intermediate approximate model on which 

a global search is performed. The intermediate model is referred to as surrogate or 

response surface model (RSM).  

 

Response surface modelling is essentially used to develop surrogates for time-

consuming expensive experiments or computational simulations. It provides a tool to 

perform investigative experimentation in the design cycle, without having to perform 

expensive unsteady CFD simulations of all the possible design configurations explicitly. 

The objective or target functions evaluations are replaced by simpler functions, which 

are fitted carefully to the CFD evaluation data obtained on pre-defined design points 

within the design space. From a design optimisation perspective, it is widely used for a 

quick understanding of how the engineering function behaves in different coordinate 

(or variable) directions.  

 

The existing methodologies that use response surfaces for design optimisation can be 

classified on the basis of the type of response surface and the method that is used to 

search for the update points. Jones (2001) provides an excellent description of various 

types of response surface methods that are currently used. The main two types of 

response surface methods are non-interpolating and interpolating methods. The non-

interpolating methods such as fitting quadratic polynomial surfaces are unreliable as 

they fails to capture the true underlying function shape (c.f. Jones, 2001). The 

interpolating types perform better than non-interpolating ones in terms of capturing 

the shape of function being modelled. They are further classified in two types: one 

which has no statistics involved with fixed basis functions e.g. thin-plate spline, multi-

quadric etc. and others which has statistical interpretation i.e. realization of a stochastic 

process having tuned basis function parameters e.g. Kriging. 

 

Further classification of the methodology in Figure 2.6 is based on update point search 

strategy used to increase the accuracy of the response surface. The different search 

methods that are currently used for updating the constructed response surface are 

listed in Appendix B. For detailed description on these various response surface and 

search point methods, refer to Jones (2001). 

 

The Kriging response surface method and its update strategies are discussed briefly 

here, as they form the part of the Kriging based design optimisation strategy used late in 

this thesis for combustor design. The main steps in this process are outlined next. 
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2.4.1 Design space sampling plan 

 

Once the variables to be optimized are selected, a set of observational data Y is collected 

at sample points X in the design space. Clearly, the location of the points X in this set can 

have a significant impact on the accuracy of the surrogate model constructed. The 

design space is usually defined as a hypercube (a multi-dimensional cube) with vertices 

at the maxima and minima of the design variables. The number and distribution of 

sample points, known as a design of experiment (DOE), has an impact on both the time 

needed to build an approximate model and its accuracy. 

 

The simplest form of DOE that can be used is a full factorial design which samples the 

design space on a uniform grid. A 2k factorial design samples each variable at its upper 

and lower limit whereas a 3k factorial design includes a point at the center of the range 

of each variable. This type of DoE requires a large number of points to effectively fill a 

design space with many variables. Hence fractional factorial designs are often used 

(Myers and Montgomery, 1995).  

 

Another method of DOE is Latin hypercube design (Mackay et al., 1979). This method 

reduces the number of points needed to fill the design space effectively by never 

sampling the same value of a variable twice. Further optimizing the Latin hypercube 

design, by maximizing the minimum distance between points, yields a space filling 

design whilst retaining the Latin hypercube sampling criterion (Morris and Mitchell, 

1995). Also, an     array (Statnikov and Matusov, 1995; Sobol, 1979) method is an 

attractive DoE method. It is based on the uniformly distributed sequences in space. An 

important feature of     sampling is that it provides a way to add more points to the 

initially sampled points whilst maintaining the same uniformity characteristics. 

 

 

2.4.2 Kriging response surface model  

 

Whilst the RSM constructed from a finite number of DOE points may not be as accurate 

as the individual simulations of all possible points, it provides almost instantaneous 

predictions of all points thus facilitating exhaustive global search (Sacks et al., 1989, 

Jones, 2001). 

 
Amongst several possible surrogate model building methods, the Kriging surrogate 

model is widely used in aerospace design. The Kriging interpolation method was first 

developed by Daniel Krige (Krige, 1951) as a geostatistical technique to estimate 

unknown values from data observed at known locations. Given two vectors of variables 

   and   , each of length l, the objective function values       and      , is assumed to 

depend on the distance between   and   . The function values will tend to be small if 

the distance ‖      ‖ is small.  
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This can be statistically modeled by assuming the correlation between the two objective 

function values,       and      , to be given by  

 
 

    [           ]     [  ∑  ‖ 
       ‖

  

 

   

] 
 

Eq. (2.1) 

 
   
If        , the correlation is 1 and if ‖      ‖    , the correlation tends to zero. 

   and    are the hyper-parameters of the Kriging model, which are tuned to the 

response, in order to make new prediction  ̂   .     is the width parameter which 

affects how far the influence of a sample point extends. Also known as the ‘activity 

parameter’, it helps in high-dimensional problems to identify the most important 

variables by determining its relative size.   determines the degree of smoothness of the 

Kriging model. Also Kriging allows these hyper-parameters to vary with each 

dimension. Hence, due to reduced numbers of assumptions in the Kriging method, as to 

the nature of the design space, the Kriging surrogate model can be more robust and 

accurate compared to others; see Jones (2001), Forrester et al. (2008) for more details.  

 

 

2.4.3 Kriging RSM update points strategies 

 

After evaluation of an initial sample and construction of the response surface model, the 

next step is to refine the response surface model with additional data using update or 

infill points. These update points can be obtained by exploiting the surrogate using best 

predicted point search or by exploring the surrogate model by using kriging prediction 

error. Another advanced method is to use the balanced exploitation/exploration 

method of expected improvement (Forrester et al., 2008). 

 

 

2.4.3.1 Best Kriging prediction search 

 

A natural way to refine the surrogate model surface is to compute a new simulation at 

the optimum point predicted by the RSM (Forrester et al., 2004) and add it to the 

database of observations to re-construct the surrogate model. Once the Kriging model 

hyper parameters (Eq. 2.1) are tuned to the initial sample observations, a Kriging 

prediction of the objective function value at some new point X* is given by (see Sacks et 

al. (1989), Jones (2001) for more details);  

 

 

 ̂       ̂             ̂  Eq. (2.2) 
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Where,  ̂ is the estimated value of the mean, r is the vector given by corr[Y(X*)Y(Xi)] for 

i =1…,n; R is the correlation matrix whose elements are given by Eq. (2.1), 1 is the  n x 1 

vector of ones and Y is the vector consisting of all objective function values. A search is 

carried out on the Kriging prediction response surface to find regions of optimal design 

configurations. For this process, a global optimizer (e.g. GA) is used as it can return 

multiple regions of local optima (Toal et al. 2008). This result is further exploited using 

dynamic hill climbing search algorithm to find the exact location of the optimal design 

(Song and Keane, 2005, Toal et al., 2008).  

 

 

2.4.3.2 Kriging prediction error 

 

The accuracy of the Kriging prediction depends largely on the distance between the 

prediction point location and the observed data point location. The Kriging process also 

provides the ability to estimate the error in the predictions made. This is given by  

 

 

        ̂ [          
           

      
] 

 

 

Eq. (2.3) 

 

where,         is the error estimate in the Kriging prediction at point X*  and  ̂  is the 

variance. 

 

The Kriging prediction error estimate can be used as an exploration based update 

criterion, by seeking points of maximum predicted error, to improve the accuracy of the 

surrogate model (Forrester et al., 2008). 

 

 

2.4.3.3 Expected improvement 

 

The expected improvement update criterion is a balanced surrogate model exploration 

and exploitation method (Forrester et al., 2008). With prediction provided by Eq. (2.2) 

and estimated error using Eq. (2.3), the prediction uncertainty about the function’s 

value at a point X can be modeled as the realization of a normally distributed random 

variable Y(X) with mean  ̂   , standard deviation  ̂    and a probability density 

function given by 
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Eq. (2.4) 
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The most acceptable value at X is  ̂   , however since there is uncertainty in its value 

with probability decreasing as Y(X) moves away from  ̂   , we can compute the 

expectation of an improvement, I on the best value so far. 

 

With  ̂    as the prediction at X, the amount of improvement, I 

 

 

 ( ̂     )     {       ̂  }                                                Eq. (2.5) 

 

 

obtained with respect to the best currently known objective function value      could 

be maximized (Wagner et al. 2011). The expected improvement criterion is then given 

as 
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Eq. (2.6) 
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where      is the normal cumulative distribution function and      is the normal 

probability distribution function. If   ̂   ,  [    ]    and thus there is no expectation 

of further improvement at previously sampled point. For maximizing the expected 

improvement,       ̂ should be replaced by    ̂      , to treat it as a minimization 

problem with minimization of the negative of the data. As proved by Locatelli (1997), 

with increasing number of updates based on maximum  [    ], the design space would 

be populated densely enough to find the global optimum (Forrester et al., 2008).  

 

The Kriging model based design strategy using these update criteria (c.f. Figure 2.6) has 

been previously applied successfully for combustor design. Jeong et al. (2006) reported 

95% saving in the total design cycle cost using a Kriging strategy compared to using 

only evolutionary search algorithm based strategy (c. f. Figure 2.5). The study concluded 

that this method is a practical approach for real-world combustor design problems. 

Duchaine et al. (2009) also demonstrated a multi-objective combustor design 

optimisation study using a Kriging model based design strategy and proved it to be a 

feasible tool with manageable computational resource and time.   
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2.5 Summary 

 

This chapter provided an overview of combustor design evolution stages and key flow 

features of the combustor from design point of view. Attention was drawn on multiple 

vortex mechanisms present inside the combustor and the flame/vortex interaction 

process. The combustor flow evaluation during the design stages evolved over time in 

terms of semi-empirical/analytical methods to more accurate network flow solvers, and 

recently with advanced 3D CFD evaluations. 

 

With combustor flow evaluation obtained, the early days ‘cut and trial’ design strategy 

to find optimal design was replaced by integrated search algorithms and recently by 

response surface model (e.g. Kriging) based strategies. The current state-of-the-art in 

the context of combustor design and optimisation is the use of CFD based Kriging design 

strategy with addition of update points to improve its accuracy for finding optimal 

design. 
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Chapter 3 

 
Combustor flow modelling 

- theory 

 
 

3.1 Introduction 
 

Combustor flow is turbulent, reacting and consists of many complex coupled physical-

chemical phenomena (Kuo, 1986; Peters, 2000). As discussed in the previous chapter, 

semi-empirical, analytical and network methods are not accurate enough for real world 

combustor development. The current state-of-the-art CFD techniques allow for the use 

of more sophisticated models of fluid flow, turbulence, combustion and turbulence-

chemistry interactions. Also, higher combustor flow resolution using more 

computational cells is possible enabling complex geometries of real combustors to be 

adequately represented. This chapter discusses the conservative equations used for 

modeling reacting combustor flow using commercial CFD software ANSYS FLUENTTM 

version 12.1. The governing equations are discussed without treating their derivations. 

 

 

3.2 Governing equations of reacting fluid flow 

 
Reacting flow differs from non-reacting flow, mainly due to reacting gas being a non-

isothermal mixture of many species, each requiring individual tracking. Also, compared 

to classical aerodynamics, a complex set of thermodynamic data is required as the heat 

capacities in reacting gases change significantly with temperature and composition 

(Kuo, 1986; Peters, 2000). In reacting gas flow, the species react chemically through 

multiple chemical reactions and the rate at which reactions occur requires specific 

modeling. Indeed, Navier-Stokes non-reacting fluid flow equations need to be adapted 

for such a multi-species and multi-reaction gas flow (Peters, 2000; Poinsot and 

Veynante, 2005).  
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Consider a reacting gas mixture consisting of N species, each characterized by their 

mass fraction 

 

 

                                       
  

 ⁄            (k = 1 to N)                                 Eq. (3.1) 

 

 

where,    is the mass of species k present in a given volume v and m is the total mass of 

gas in this volume. The primitive variables for a three dimensional compressible 

reacting flow are (Peters, 2000; Poinsot and Veynante, 2005; Echekki, 2011); 

 

 Density          

 Three dimensional velocity field    

 Energy (or enthalpy or temperature T) 

 Pressure 

 Mass fraction    of the N reacting species 

Hence, compared to six variables in non-reacting flow solutions, N + 6 variables are 

needed to be solved in a reacting flow. Thus, significant extra computational effort is 

required to solve the full set of conservation equations, including separate equations for 

each species. 

 

 

3.2.1 Conservation of mass and species 

 

The mass conservation equation for the total reacting mixture with N species is given as 

(Poinsot and Veynante, 2005): 

 
 

  

  
  

    

   
   

 

Eq. (3.2) 

 

Compared to the non-reacting case, the mass conservation equation is unchanged as the 

combustion processes do not generate any mass. 

 
For species k, the mass conservation equation with diffusion velocities is given by (k = 1, 

N): 

 
 

  
        

 

   
  (        )      ̇  

 

Eq. (3.3) 
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where,      is the ith component of the diffusion velocity    of species k,  ̇  is the 

reaction rate of species k, and 

 

 

∑      

 

   

   
Eq. (3.4a) 

 

∑ ̇ 

 

   

   

 

Eq. (3.4b) 

 

The different species in a diffusing mixture move at different velocities. In a reacting 

flow system, one is more interested in the velocity of a given species with respect to the 

local mass-average velocity v rather than with respect to stationary coordinates (Kuo, 

1986). For a mixture of N species, the local mass-average velocity v is defined as: 

 

 

   
∑     

 
   

∑   
 
   

 

 

Eq. (3.5) 

 

where    denotes the velocity of the ith species with respect to stationary coordinate 

axes. Hence, mass diffusion velocity (Vi) for a species is given by: 

 

 

Vi = vi - v 

 

Eq. (3.6) 

 

The diffusion velocity indicates the relative motion of component i to the local motion of 

the reacting fluid (Kuo, 1986). According to Williams (1985), it is mathematically 

difficult to solve for diffusion velocities using Eq. (3.3). Hence, most combustion codes 

currently employ a simplified approach based on Hirschfelder’s law (see Hirschfelder et 

al., 1954) or Fick’s law of diffusion (see Kuo 1986) which provides convenient 

approximations for diffusion velocities of reacting species. Hence, to maintain global 

mass conservation, two methods can be employed. The first method involves solving for 

Eq. (3.3) initially with only N-1 species equations. The last species mass fraction is 

obtained from 

 

 

      ∑   
    

   
 

Eq. (3.7) 
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This method is, however, not very accurate and must be used only for strongly diluted 

flames (Poinsot and Veynante, 2005). A more accurate method consists of solving for a 

modified species equation using Hirschfelder and Curtiss approximation and written as 

 

 

 

  
       

 

   

         
       

 

   
(   

  

 

   

   
)    ̇  

 

 

Eq. (3.8) 

where   
 is the correction velocity added to the convective velocity    to ensure global 

mass conservation. In unsteady flow calculations, as each time step, this correction 

velocity is computed and added to the convective velocity field thus ensuring the 

compatibility of the species and mass conservation equations (Kuo, 1986; Poinsot and 

Veynante, 2005). 

 

 

3.2.2 Conservation of momentum 

 

The equations for conservation of momentum in reacting flow are similar to non-

reacting flow and given by (Poinsot and Veynante, 2005): 
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where 

 

  is the static pressure 

 

 

      
 

 
  

   

   
      (

   

   
  

   

   
) 

 
is the viscous stress tensor with the  first term associated with 

volume dilatation 

 

 

     is the volume force acting on the species k in direction j. 

 

 

  is the dynamic viscosity 

 

Eq. (3.9a) 

 

 

 

 

 

 

Eq. (3.9b) 
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Even though the momentum equation is similar for reacting and non-reacting flow, the 

physics and behaviour of the flow is entirely different. The combustion process, through 

multiple chemical reactions modifies the flow greatly due to the temperature gradients 

it introduces in the flow field (Peters, 2000). The dynamic viscosity changes 

significantly because of the temperature variations and also density variations occur in 

the ratio of 1:8 to 1:10 (Poinsot and Veynante, 2005). The dilatation through the flame 

front increases all the speeds thus increasing the local Reynolds number of the reacting 

gases. This causes great variation in the local Reynolds number, which is not the case in 

non-reacting flow, thus making it more challenging to solve (Lewis and Von Elbe, 1987). 

 

3.2.3 Conservation of energy 

 

The energy conservation equation for reacting flow, in the form of sensible enthalpy   , 

is given as (Poinsot and Veynante, 2005) 
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where 

 

 ̇     ∑  
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is the chemical term and is associated with heat released due to 

combustion 

 

 

  ̇ is the external heat source term and not due to combustion 

 

 

        
  

   
   ∑           

 

   
  

 

is the heat flux term in which first term is a heat diffusion term expressed 

by Fourier’s Law and second term is associated with the diffusion of 

species with different enthalpies 

 

Eq.(3.10a) 

 

 

 
 

 

Eq.(3.10b) 

 

 

 

 

 

 

 

 

 

Eq. (3.10c) 

 

Various simplified forms of the energy equation commonly used in reacting flow CFD 

are constant pressure flames, equal heat capacities for all species and constant heat 

capacity for a mixture (see Poinsot and Veynante (2005) for more detailed discussion). 
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3.3 Turbulent combustion modelling 

 
Turbulence, even in isothermal fluid dynamics, is complex and difficult to simulate 

(Pope, 2000). Similarly combustion without turbulence is a fundamentally complex 

process involving varied chemical time and length scales. It consists of hundreds of 

species and thousands of chemical reactions, thus making it very difficult to solve 

numerically (Kuo, 1986; Peters, 2000; Poinsot and Veynante, 2005). Thus, simulation of 

turbulent combustion concerns with two-way interaction of two complex disciplines of 

turbulence and combustion.  

 

The current state-of-the-art in CFD simulation of turbulent combustion can be classified 

by three levels of computational accuracy; (1) Reynolds-averaged Navier-Stokes (RANS) 

(2) Large eddy simulations (LES) and (3) Direct numerical simulations (DNS). 

 

 

 
Fig. 3.1 Temperature fluctuations as computed by RANS, LES and DNS methods in a 

turbulent flame brush (Poinsot and Veynante, 2005) 

 

 

Figure 3.1 shows how these methods capture the temperature fluctuations in a 

turbulent flame brush. The most accurate solution of time-averaged Navier-Stokes 

equations can be obtained using direct numerical simulations (DNS) which predicts all 

time-variations of temperature (c.f. Fig. 3.1). In DNS, all the length and time scales of 

turbulence are directly resolved and the effect on combustion is determined without 

any model for turbulent fluctuations (Malalasekera, 1995; Peters, 2000; Poinsot, 2005). 

However, the computing requirement for DNS is very high and is currently impossible 

to be employed for real-world combustor flows. In contrast, although LES explicitly 

calculates the large scale turbulent scales of motion and can compute the large scale 

flame-front, it employs a sub-grid model to compute the effect of small scale turbulent 

motion on combustion (Malalasekera, 1995). LES captures only the low-frequency 

variations of temperature (c.f. Fig 3.1). Even though small scale turbulent motions are 

Fuel + Air 
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modelled to reduce the computational cost, LES is still unpractical for combustor 

simulations, especially from a design point of view where many CFD evaluations are 

required for different designs. Given the significant computing cost of DNS and LES, the 

RANS based approach is the most practical one for combustor simulations. RANS 

equations govern the transport of the averaged flow quantities, with all the scales of 

turbulent motion being modelled. Using RANS, the temperature predicted at a point is a 

constant corresponding to the mean temperature at this point (c.f. Fig. 3.1).  

 

Since a RANS based CFD approach is used in this thesis to model the combustor flow, it 

is discussed in more detail in Appendix B. Also, the partially premixed combustion 

model and NOx pollutant model are described briefly in Appendix B, as these are 

applied later in the thesis to solve reactive combustor flow. 

 

 

3.4 Summary 

 
This chapter provided a mathematical overview of the governing equations used for 

modelling combustor reacting flow using ANSYS Fluent 12.1 without treating their 

derivations explicitly and discussed briefly the turbulent combustion modelling 

methods.  

 

Based on this, the Rolls-Royce three-dimensional lean burn combustor and a two-

dimensional test combustor are modelled and analyzed in chapters 4 and 5 respectively. 
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Chapter 4 

 
Rolls-Royce lean burn combustor 

flow analysis 
 
 

In this chapter, a gas turbine lean burn combustion system, using complex fuel injector 

geometry with multiple inlet swirlers developed at Rolls-Royce PLC., has been 

investigated with an objective of understanding its key flow features and its influence 

on the combustor flow-field. A URANS method using the Reynolds Stress Model (RSM) is 

used to analyze the combustor flow-field and predict its behaviour over a long period of 

physical flow-time under partially premixed combustion conditions. The findings on 

swirl-induced instabilities in the vicinity of the air blast atomizer of the fuel injector and 

their effect on heat release and flow-field fluctuations in the combustor are also 

presented.  An investigation is presented on the effect of time-step size on the 

prediction of temperature variation in the flow-field. The mass-weighted average 

temperature variation is monitored so as to identify its relation to the PVC behaviour 

under combusting conditions. Flame-vortex interaction and combustion induced vortex 

breakdown phenomena causing PVC suppression and hence flame flashback into the 

injector, are captured and analyzed using axial velocity plots. (Note that flame flashback 

here and further in this report refers to upstream propagation of the flame in to the 

injector’s premixing zone). 

 

 

4.1 Computational model 
 

The numerical prediction of swirl flow instabilities is computationally expensive; it is 

three-dimensional and time dependent, and has therefore been attempted only recently 

(Fokaides et al., 2009 and Dunham et al., 2009). Figure 4.1 shows the complete 

computational domain used for URANS analysis indicating locations where inlet and 

outlet boundary conditions were specified. The swirler vanes are not included in this 

model. Instead, the configuration uses appropriate boundary conditions derived from a 

through-the-swirlers model solution run earlier.  
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Fig. 4.1 Computational domain consisting of a section of an annular combustor (left) and 

a meridional plane view (right) 

 

The inlet velocity is specified as the boundary condition at swirler inlets and outflow is 

specified as the boundary condition at the outlet. It consists of a section of annular 

combustor with periodic boundary conditions on both sides and part of the fuel injector 

geometry downstream of the swirler blades. The fuel injector consists of a multiple inlet 

swirlers arranged co-axially. All of the air, except for cooling, enters the combustor 

through the swirlers and fuel is introduced in the high velocity stream of air in the 

injector as a liquid film for atomization and mixing. The combustion processes take 

place in the combustor along its length and hot gases with products exit from the outlet. 

 

 

 

Fig. 4.2 Normalized x-velocity profiles for a coarse and refined  

grid near the injector exit  

 

Figure 4.2 shows the comparison between the predictions by a coarse and fine mesh in 

terms of normalized x-velocity profiles captured near the injector exit at isothermal 

conditions. The mesh is constructed using ICEM CFD meshing tool. The coarse mesh is a 

multi-block structured mesh with 0.95 million hexahedral cells, whereas the fine mesh 

has approximately 2.7 million cells, concentrated mainly in the injector region.  
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Table 4.1: Key 3D Unsteady CFD setup parameters for FLUENT 6.3 

Solver Pressure Based 

Space 3D 

Time Unsteady 2nd order implicit 

Energy  Yes 

Turbulence Model Reynolds Stress (standard wall functions) 

 

Transport and Reaction  

Species Partially Premixed Combustion 

PDF Options Inlet Diffusion: Yes 

Mixture Properties PDF-mixture  

 

Boundary Conditions  

Main and pilot swirl inlet Velocity-inlet 

Inlet (Momentum) X, Y, Z velocity profiles  

(obtained from isothermal run) 

Inlet (Temperature) 870 K 

Inlet (Species) Progress variable = 0 

 Mean mixture fraction = 0 

 Mixture fraction variance = 0 

Discrete phase BC type escape 

Outlet Outflow 

 

Operating Conditions  

Pressure(pa) 1361305  

 

Solution Controls  

Pressure-Velocity Coupling SIMPLE 

Discretization:  

Pressure Standard 

Momentum Third-Order MUSCL 

Turbulent Kinetic Energy First Order Upwind 

Turbulent Dissipation Rate First Order Upwind 

Reynolds Stresses Third-Order MUSCL 

Energy Third-Order MUSCL 

Progress Variable Third-Order MUSCL 

Mean Mixture Fraction First order upwind 

Mixture Fraction Variance First order upwind 
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As seen in Figure 4.2, the agreement between the meshes is very good away from the 

axis of the injector. In the region near the axis of the injector, a difference in predictions 

is observed, however the averaged x-velocity value over the profile for the two meshes 

is fairly similar. Though the mesh-independence of the solution is not 100% conclusive, 

both the profiles are found to compare favourably with the measured experimental 

profiles (not published due to confidentiality reasons), reassuring that the solution is 

robust, at least from a time-averaged viewpoint. Additionally, due to the computational 

expense of the simulation under reactive conditions, and with an objective to develop an 

engineering solution to the problem which will be of more industrial value, the coarse 

mesh with 0.95 million hexahedral cells is used for the CFD analysis under  reactive 

conditions. 

 

Table 4.1 highlights some of the key unsteady CFD setup parameters. The CFD package 

FluentTM version 6.3 is used for solving the unsteady Reynolds-averaged Navier-Stokes 

(URANS) equations in three-dimensions with time dependence. The solver used is 

pressure based and has a second order implicit unsteady formulation for time. The 

Reynolds stress model (RSM) is used for turbulence modeling due to its known 

capability to accurately predict complex swirling flows. The SIMPLE pressure-

correction method is used for pressure-velocity coupling. The combusting simulations 

discussed in this report were run at a high pressure of 1.36 MPa and the inlet air 

temperature is 870 K. Fluent’s Zimont partially premixed combustion model is used as 

the species model. The model solves a transport equation for the mean reaction 

progress variable  ̅, (to determine the position of the flame front), as well as the mean 

mixture fraction  ,̅ and the mixture fraction variance    ̅̅ ̅̅ . Ahead of the flame ( ̅ = 0), the 

fuel and oxidizer are mixed but unburnt, and behind the flame ( ̅ = 1), the mixture is 

burnt (User Guide, Fluent 6.3). Overall, the computational model used is representative 

of a lean burn combustor. 

 

 

4.2 Analysis methodology 

 
With reference to Figure 4.1, planes 1-1, 2-2 and 3-3 are set up inside the combustor at 

increasing distances from the injector end. Plane 4-4 is the exit plane of the combustor. 

Mass weighted average temperature and axial velocity variation is analyzed over 40ms 

of flow time, which represents more than four combustor flow residence times.  

 

Initially, the reactive simulation was run iteratively without time stepping to allow the 

flow-field to develop and obtain sensible initialization for subsequent unsteady run. The 

unsteady model was then switched on, and the time-dependent flow-field evolved  with 

the anticipated features. The precessing vortex core formation, its unstable behaviour 

and suppression were all observed using the visualisation tools EnSight 9.0. The effect 

on unsteady heat release is analyzed using temperature plots.     
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The unsteady reactive simulation was initially run at different time-step sizes, from 10-2 

s being the coarsest to 10-5 s as the finest, in order to understand its effect on 

temperature and flow-field instabilities. Temperature fluctuations at the exit plane 

predicted by different time-step size simulations over 40 ms flow-time were compared. 

Although the PVC was captured reasonably well in the coarsest time-step size 

computations, it was unable to even qualitatively capture the phenomena of CIVB and 

PVC suppression. Hence, the finest time-step size of 10-5 s was used to capture the PVC 

formation, its evolution over time and its suppression due to CIVB, and also to analyze 

its effect on temperature fluctuations in the combustor. The reactive simulation was run 

upto 0.1s of flow time to account for any further instability effects, changes in the heat 

release pattern and to understand the periodic pattern of unsteadiness in the 

combustor. The run time required to simulate 0.1s of flow time with 10-5s time-step size 

was approximately three months, using 8 processes in parallel on a cluster using Intel 

quad core processors with 2.8GHz clock rate.   

 

 

4.3 Vortex breakdown and precessing vortex core 

 

 
Fig. 4.3 Instantaneous axial velocity (xvel) flow field 

 

In the current setup, a swirling jet at high swirl number (S>0.6) is introduced in the 

combustion chamber through an injector consisting of multiple swirler blades arranged 

co-axially, under reactive conditions. Figure 4.3 shows an instantaneous axial velocity 

flow field. The vortex breakdown takes the form of an axi-symmetric bubble of 

recirculating fluid. This bubble then travels downstream, later forming a large central 

recirculation flow zone (RFZ). This type of bubble mode breakdown usually prevails at a 

high swirl number (Lucca-Negro and O’Doherty, 2001). Due to the rotating motion of the 

flow, there exists a tangential velocity component in addition to the axial and radial 

components which induces the flow to change its direction and establish a spiral motion 
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(Alecci et al., 2005). A low pressure zone in the central core of this spiral is created as 

seen in Figure 4.4.  

 

Figure 4.4 shows the central vortex core structure inside the air-blast atomizer of the 

injector. This low pressure structure was initially aligned with the axis of the injector 

inside the air-blast atomizer, but then later breaks down at a point downstream and 

starts to precess about the axis of the injector. Hence, it is a precessing vortex core, 

which is also rotating at the same time, about the axis of the injector (and the 

combustor). This identification is in agreement with the topology of the PVC by Poinsot 

et al. (Poinsot and Veynante, 2005). 

 

 
Fig. 4.4 Precessing nature of the vortex core structure 

 

 

 

 
 

Fig. 4.5 Axial velocity field with PVC structure and RFZ at T = 0.02s 
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Figure 4.5 depicts the axial velocity flow field after 0.02s of flow time. It clearly shows 

the existence of PVC in the vicinity of the air blast atomizer flow field. The PVC structure 

has a clockwise winding sense but the whole structure rotates in an anti-clockwise 

sense and has a periodic motion. In the present injector configuration, the PVC resides 

only within the injector and extends in length up to the end face of the injector. The PVC 

is captured using a pressure iso-surface at a low pressure value of -40 KP4. This PVC 

resembles the PVC structure observed by Wang et al. (2007), who simulated gas-turbine 

injector flow using LES under reacting conditions.  

 

In Figure 4.5, the low-pressure core which is initially aligned with the X-axis, is then 

driven away from the centerline flow, and extended downstream spirally. The PVC 

structure as a whole follows the main flow. The RFZ formed downstream is also shown 

using an iso-surface of zero axial velocity.  These findings are in agreement with the 

findings of Fick et al. (1997) and Froud et al. (1995), who used experimental methods 

for identifying the PVC, its precessing nature and its interaction with RFZ downstream 

in swirl induced flows. These findings are also in agreement with the findings on 

Fokaides et al. (2009) which reported the existence of the PVC in the vicinity of an air 

blast atomizer. 

 

 
 

  

 

 

 

 
 

 

Fig. 4.6 Structure of the precessing vortex core at denoted flow times 

 

Recirculating Bubble 
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Figure 4.6 shows the time evolution of the PVC in the vicinity of the air blast atomizer 

over 40ms of flow-time. Four different instants are shown to give a clearer 

understanding about the structural evolution of the PVC. The PVC develops and forms 

into a spiral structure during the first 10ms of flow-time. It then sustains its motion and 

grows in strength from 10ms to 20ms. After T = 20ms, the PVC structure is suppressed 

as seen at T = 30ms of Figure 4.6. The PVC still rotates in an anti-clockwise sense but 

has now reduced in size and strength. A recirculating bubble is seen to have formed at 

the exit of the pilot jet after T = 30ms in Figure 4.6. 

 

 
 

 
Fig. 4.7 Iso-contours of mean progress variable  ̅ = 1 showing CIVB 

 

Figure 4.7 shows the combustion induced vortex breakdown (CIVB) phenomen4. It 

shows iso-contours of mean progress variable,  ̅ = 1, downstream from the injector’s 

exit in the combustor indicating that the mixture is completely burnt. At T = 0.02s, the 

completely burnt mixture occurs further downstream away from the injector’s 

premixing zone due to the existence of the PVC and high axial momentum in the vortex 

core. At T = 0.04s, the PVC structure breaks down due to expansion of hot gases in the 

RFZ downstream, leading to flame flashback into the injector’s pre-mixing zone as the 

mixture with  ̅ = 1 propagates upstream near the injector. This process is referred to as 

combustion induced vortex breakdown (CIVB) (Fritz et al., 2004 and Tangermann et al., 
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2009). Figure 4.8 shows the position of the flame-front near the injector’s exit at the 

denoted flow times. At T = 0.02s, due to PVC existence, the flame-front is established 

away from the premixing zone of the injector. At T = 0.04s, the flame front moves 

upstream and this clearly shows the occurrence of the flashback mechanism into the 

premixing zone of the injector. These findings related to the flashback mechanism due 

to CIVB are in agreement with experimental findings of Fritz et al. (2004) which showed 

that CIVB is the dominating mechanism of flashback. Numerical findings of Tangermann 

et al. (2009) have also reported flashback observations due to CIVB using URANS 

method on a quasi-2D model of a simplified geometry. 

 

 

  
 

Fig. 4.8 Position of the flame-front near injector exit as seen in the meridional plane  
 

 

 
 

  
 

Fig. 4.9 Distribution of turbulence kinetic energy levels at denoted flow times  

 

Figure 4.9 shows the distribution of turbulence kinetic energy in the vicinity of the air-

blast atomizer before (left) and after (right) the suppression of the precessing vortex 

core (PVC). To achieve low-emission combustion, complete evaporation of liquid fuel 

droplets and thorough mixing of fuel and air within a short distance is desirable [15]. 

Flame 

Flashback 
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The existence of the PVC at T = 0.02s produces high levels of turbulence in the vicinity of 

the air blast atomizer end. The existence of the PVC at T = 0.02s produces high levels of 

turbulence in the vicinity of the air blast atomizer end. It facilitates the breakup of the 

liquid fuel into droplets and also enhances the fuel/air mixing process (Patel and 

Menon, 2008). Due to PVC suppression, as seen at T = 0.04s, the turbulence kinetic 

energy level is reduced compared to T = 0.02s, which may affect the liquid fuel breakup 

process resulting in inefficient fuel/air mixing.  As the flow expands from the injector 

exit and evolves downstream, strong shear layers develop, due to the velocity difference 

between the jet flow and the ambient fluid. Large-scale coherent structures are 

generated in the shear layer regions, and shed downstream sequentially (Durham et al., 

2009). As vortices move downstream, they merge and increase the shear layer spread.  

 

Figure 4.10 shows velocity vectors at plane 1-1 which is located downstream of the 

injector-end close to the exit of the injector and it clearly reveals the near injector-end 

flow field aerodynamics before and after the PVC suppression.   
 

 

 
 

 

Fig. 4.10 Vortices near injector-end flow field (plane 1-1) at denoted  

flow-times colored by axial velocity 

 
As seen in the Figure 4.10, at the denoted flow times, the velocity vectors show the 

existence of multiple vortices which emanate from the centre, precess around the 

centre, diverge and then continue to revolve around the centre. At T = 0.02s, the 

vortices are seen to precess around the geometric centre of the injector end due to the 

existence of the PVC structure. However after PVC suppression, these vortices move 

away from the centre and precess far away from the geometric centre. This behaviour of 

the vortices is expected to be greatly influenced by the upstream injector geometry. The 

presence of these vortices distorts the streamline pattern in the downstream direction. 

These vortices exert a significant influence on the combustion process by modulating 

the mixing processes among incoming fuel, air and hot combustion products. 
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4.4 Temperature fluctuation 

 

One of the main objectives of this study is to understand the effect of the PVC on the heat 

release pattern inside the combustor and the impact of combustion on the PVC itself.  

For this purpose, the URANS simulation was run at different time-step sizes in order to 

understand the effect of simulation time-step size on temperature prediction patterns. 

Figure 4.11 shows the variation of mass-weighted average temperature (Tma) captured 

by different time-step size simulations at the exit plane 4-4 (c.f. Figure 4.1) of the 

combustor. The Y-axis is normalized against a reference temperature. The average value 

of Tma captured by all time-step size simulations remains similar though the coarser 

time-step sizes are not able to capture small time-scale fluctuations in the flow-field.    

 

 
Fig. 4.11 Mass-weighted average temperature (Tma) variations at exit plane captured by 

different time-step size simulations 

 

Figure 4.12 depicts the temperature field at the denoted flow times for the simulation 

with 1e-05s time-step size. The existence of the PVC at T = 0.02s is responsible for 

relatively cooler temperatures close to the injector. This is seen more clearly in Figure 

4.13, which shows the temperature profile at plane 1-1.  As seen in Figure 4.9, the PVC 

in the vicinity of the air blast atomizer causes intense turbulence generation and rapid 

mixing of the fuel and air. Assisted by multiple vortex structures in this zone (c.f. Figure 

4.10) the PVC structure helps to keep the flame away from the injector assembly itself 

(c.f.  Figure 4.8) thus allowing homogenous mixing of air and fuel before the mixture 

reaches the combustion zone.  As seen in Figure 4.13 at T = 0.04s, due to flashback (c.f. 

Figure 4.8) there is an intense temperature rise in the premixing zone of the injector. 

The PVC structure, which reduces both in size and strength (c.f. Figure 4.6) after 

suppression, ceases to exist in the vicinity of the air blast atomizer. This results in 

relatively less turbulence generation leading to inefficient mixing of fuel and air in the 
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near injector-end flow field. This leads to the formation of fuel rich pockets and hence 

the appearance of hot-spots and a sudden rise in flow-field temperature. Hot-spots of 

high temperature are clearly visible in plane 1-1 in Figure 4.13. This may lead to 

increased production of NOx and also cause damage to the injector assembly, which is 

not designed to operate at these high temperatures. 

 

 

 

 
Fig. 4.12 Temperature field in the meridional plane at denoted flow times 

 

 

  

Fig. 4.13 Plane 1-1 temperature field at denoted flow times 

Flashback 
Region 
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Fig. 4.14 Mass-weighted average temperature (Tma) variation at each plane in the 

combustor 

 

Figure 4.14 shows the variation of mass weighted average temperature (Tma) over 0.1s 

of flow-time across all four monitoring planes setup in the combustor (c.f. Figure 4.1). 

The graphs are normalized against a reference temperature.  Plane 1-1 is the closest to 

the injector-end and lies in the most turbulent zone. Planes 2-2 and 3-3 lie further 

downstream of plane 1-1 at increasing distances. The effect of the PVC evolution (c.f. 

Figure 4.6) and multiple precessing vortices (c.f. Figure 4.10) is seen on the temperature 

profiles, especially of plane 1-1 and 2-4. On planes 1-1 and 2-2 in Figure 4.14, an initial 

transient is seen for the first 0.01s of flow-time. This coincides with the period of PVC 

formation in the vicinity of the air blast atomizer of the injector. From 0.01s to 0.02s, the 

PVC structure sustains in the swirling flow generating high turbulence and oscillations, 

whose effect is seen on the heat release pattern (i.e. temperature variation) on planes 1-

1 and 2-4. Also along with PVC, multiple vortices which precess around the PVC (c.f. 

Figure 4.10) are periodically shed downstream from the injector. Hence, high frequency 

oscillation of temperature is seen at these planes. The frequency of oscillation of 

temperature at these planes is related to frequency of PVC precession and frequency at 

which the vortices are shed downstream. The effect is strongest on plane 1-1 compared 

to plane 2-2, as it is very close to the injector-end face. 

 

Ahead of flow-time T = 0.02s, the PVC is suppressed due to expansion of hot gases in the 

RFZ formed downstream of the injector. Due to this suppression the PVC reduces in size 

and strength and a sudden rise is seen in the temperature profile on plane 1-1. At the 

same time, a temperature drop is seen in plane 2-2 between T = 0.02s and T = 0.03s due 

to expansion of the flame upstream in the injector. Further ahead of T = 0.03s, the flow-
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field is settled with fluctuating temperature at high frequency in the absence of the PVC. 

At planes 3-3 and 4-4, an oscillating behaviour of temperature variation is seen over the 

entire 0.1s of flow-time, but the frequency of oscillations is less compared to plane 1-1 

and plane 2-2, as they are further away from the PVC structure. This suggests that the 

PVC oscillations have relatively less effect on the heat release pattern on planes 3-3 and 

4-4.  Plane 3-3 has maximum heat release and thus has peak temperature compared to 

the other planes. Plane 4-4, being the exit plane, is the farthest from the PVC, and has 

the lowest frequency of temperature oscillation. Plane 3-3 has maximum heat release 

and thus has peak temperature compared to other planes. 

 

The average of the mass-weighted average temperatures (Tama) over 0.1s of flow-time 

on plane 4-4 is also less compared to plane 3-3 due to cooling effects. The amplitude and 

frequency of temperature oscillation at exit plane 4-4 is the result of all instabilities 

including the PVC, RFZ and other vortices which precess around the PVC (c.f. Figure 

4.10) and shed downstream in the combustor. This is in agreement with experimental 

evidence of Fokaides et al. (2009) who performed frequency analysis of spontaneous 

emission near and downstream of the instability and showed that the frequency of 

fluctuation decreases further downstream from the nozzle vicinity and concluded that 

periodic heat release would not be evidenced downstream of the instability regime. The 

temperature fluctuation pattern depicted in Figure 4.14 also shows that the PVC 

instability has more effect near the injector and the effect decreases downstream. 

 

 
Fig. 4.15 Average of mass-weighted average temperature (Tama) inside the combustor 

(Normalized) 

 

Figure 4.15 shows the variation of the average of mass-weighted average temperatures 

(Tama) over 0.1s of flow-time inside the combustor, along its length at all four planes. 

This average is the average of mass-weighted average temperatures recorded over 0.1s 

of flow time at each plane. The first plane is naturally cooler due to its closeness to the 

injector exit plane and existence of the low pressure zone. The temperature rises 

through plane 2 and 3 as they lie in the recirculation flow zone (RFZ) which is also the 

main reaction zone and contains the flame. A drop in exit plane temperature is seen 

relative to plane 3-3 due to the cooling effect of the air intake near the exit. 



Chapter 4 Rolls-Royce lean burn combustor flow analysis 
 

 47 

4.5 Velocity fluctuation 
 

Figure 4.16 shows the variation of X-velocity along the axis of the injector and 

combustor at the denoted flow-times. Position along the axis is normalized against 

maximum length until combustor contraction section (c.f. Figure 4.1). The PVC structure 

(c.f. Figure 4.5) resides only within the injector, after which it is destroyed. Evidence 

elsewhere suggests that the structure is destroyed by turbulence near the exit of the 

injector (Poinsot and Veynante, 2005). However, its existence and suppression has a 

clear effect on the velocity flow-field downstream the injector exit. 

 

 
Fig. 4.16 Variation of X-velocity along the axis of the injector and combustor  

at denoted flow-times 

 

As seen in Figure 4.16, at flow-time T = 0.01s, the PVC exists but in the formation stage 

(c.f. Figure 4.6). Nevertheless, it clearly has a strong effect on the velocity field 

downstream the injector. The existence of the PVC generates high turbulence kinetic 

energy (c.f. Figure 4.9) and causes an acceleration of the flow along the axis of the 

combustor, especially near the injector exit. At flow-time T = 0.02s, due to strengthening 

of the PVC, the flow has higher axial momentum near the injector exit which causes the 

‘push forward’ effect on the flow-field downstream the injector, pushing the flame-front 

forward (c.f. Figures 4.7 and 4.8).  

 

At flow-time T = 0.03s, the PVC structure is suppressed in size and strength as shown in 

Figure 4.6. Due to this suppression, a decrease in the level of turbulence kinetic energy 

near the injector exit region was discussed above (c.f. Figure 4.9). The X-velocity 

variation at T = 0.03s in Figure 4.16, shows the effect of PVC suppression. Along the axis 

of the combustor, negative X-velocity is seen in the near-injector exit flow-field as the 
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RFZ enters the injector’s premixing zone. The suppression of the PVC from the vicinity 

of the air blast atomizer end creates a ‘pull backward’ effect. This causes upstream 

propagation of the flame-front (c.f. Figure 4.8) into the injector’s premixing zone and an 

intense temperature rise (c.f. Figure 4.12) and hot-spots (c.f. Figure 4.13) in the 

premixing zone of the injector. This variation of axial velocity along the axis, due to 

damping of PVC in combustion, is also evidenced by Roux et al. (2005). This vortex 

breakdown phenomena induced by combustion and discovered as CIVB by Fritz et al. 

(2004) in an experimental setup is captured here by the URANS method. At flow-time T 

= 0.04s, the PVC structure remains suppressed. In Figure 4.16, at T = 0.04s, the near 

injector flow-field shows no change in X-velocity variation, compared to T = 0.03s, while 

a distinct change is observed further downstream the injector exit. 

 

 

4.6 Summary 
 

URANS simulations of a modern lean burn combustor geometry using a complex fuel 

injector system for gas turbine propulsion applications have been performed in this 

chapter. The simulation was run for a total of 0.1s of flow-time, with mass-weighted 

average temperature fluctuations monitored across different planes. However, after 

40ms of flow time, no further change in the flow-field behaviour was observed which 

represents more than four combustor flow through times, using a time-step size of 10-5 

s.. The run time required to simulate 0.1s of flow time with 10-5s time-step size was 

approximately three months, using 8 processes in parallel on a cluster using Intel quad 

core processors with 2.8GHz clock rate. 

 

An axisymmetric bubble type vortex breakdown is captured which then develops 

downstream in to a central recirculation flow zone (RFZ) which holds the flame and 

combustion processes. A start-up precessing vortex core (PVC) showing complex 

dynamical behaviour over the first 20ms of flow-time is also captured in the vicinity of 

the air blast atomizer. In addition to this PVC, multiple vortices are seen emanating from 

the centre and precessing around the central axis influencing the near injector flow field 

dynamics. Later, PVC suppression, a phenomenon caused due to the expansion of hot 

gases and combustion processes downstream of the injector is captured. The analysis 

performed using the URANS method on a complete 3D geometry predicts the PVC 

suppression and flashback phenomenon. Due to PVC suppression, hot-spots with very 

high temperatures near the injector exit are observed. Such hot-spots are undesirable as 

they can produce higher NOx and cause possible damage to the injector assembly itself.  

 

Since the computational analysis cost of Rolls-Royce combustor simulations is very high 

and unpractical for developing new design strategies, a two-dimensional test combustor 

problem with similar flow features (e.g. recirculation flow zone, flame-vortex 

interaction etc.) and unsteady reactive dynamics is described and analyzed in chapter 5.  
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Chapter 5 

 
Two-dimensional combustor flow 

in spatio-temporal domain 
 
 

5.1 Introduction 
 

As discussed in chapter 2, vortices are present naturally in many reacting flows of 

technological interest e.g. in continuous combustors, where their production is related 

to the streams injected into the chamber and to the turbulent motion of the flow. In 

general, concentrated vorticity constitutes the large-scale structure of the turbulent 

shear flows found in combustion systems. The elementary interaction between 

a vortex and a flame thus appears as a key process in the description of turbulent 

reactive flows (Renard et al., 2000). Flame-vortex interaction is one of the most 

significant instability mechanisms in large-scale gas turbine combustors (Venkataraman 

et al., 1999 and Bernier et al., 2004). The vortex roll-up often governs the transport of 

fresh reactants into the burning regions and this process determines the rate of the 

reaction in the flow and the amplitude of the pressure pulse associated with the vortex 

burn out. This view of practical devices and modes of operation clearly indicates that 

vortices and the accompanying dynamical interaction with combustion are of great 

importance. 

 

In this chapter, flame-vortex dynamics in a 2D lean burn combustor is analyzed. A 

numerical study of steady and unsteady turbulent reactive processes behind a profiled 

backward-facing step is presented. Although the 2D combustor geometry is simplified 

the flame-vortex behaviour is representative of that seen in more complex system†. 

Flame-vortex dynamics behind a backward-facing step has been examined 

experimentally and numerically previously (Poinsot et al., 1987; Venkataraman et al., 

1999; Keller et al., 1982; Cohen et al., 1996; Paschareit et al., 1998, Yu et al., 1991). 

However, definitive conclusions regarding the essential mechanisms or conditions 

under which flame-vortex dynamics may arise have not been reached yet. In most cases, 

it has been observed that under unstable operating conditions, as determined by the 

† See Chapter 4 
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mixture equivalence ratio and Reynolds number, one or more large vortices periodically 

convolute the flame front during part of the instability cycle. It has been suggested that 

the periodic convolution of the flame leads to oscillations in the heat release rate that 

may couple with the pressure field. To close the loop, pressure must also drive the 

vortex formation and flame convolution in a way that ensures positive feedback. In a 

study by Ghoniem et al. (2005), experimental evidence supporting the role of unsteady 

vortex shedding and flame-vortex interactions in sustaining the combustion instability 

was provided. 

 

The interaction of a premixed flame with the transient vortical structures in a turbulent 

flow can have a profound effect on the flame. Time dependent effects of stretch and 

strain can alter chemical pathways and may result in flame quenching. Combustion 

instability governed primarily by the turbulent mixing zone behind the trailing edge of a 

bluff-body flame holder, and by the recirculation zone immediately behind its base has 

been highlighted in studies by Mellor et al. (1976), Spadaccini (1974) and Lefebvre 

(1977). The effect of the recirculation zone on combustion instability under laminar as 

well as turbulent conditions has been studied by Huck and Marek (1978), using an 

axisymmetric combustion chamber with a sudden increase in cross-section area at the 

inlet port. When the size of the port was decreased, prolonging the residence time of the 

gases in its vicinity, a marked improvement in combustion stability was noted, 

indicating the influence of the size of the recirculation zone in this respect. 

 

 

5.2 Experimental combustor test rig of Keller et al. 

 
The combustor modeled for the study is the one used by Keller et al. (c.f. Figure 5.1) in 

an experimental study of mechanisms of instabilities in turbulent combustion leading to 

flashback. The combustion chamber had an oblong rectangular cross section to model 

the essential features of planar flow and was provided with a profiled backward-facing 

step acting as the flame holder. Premixed propane/air mixture was used as the working 

fluid.   

 

Upon experimental investigation, Keller et al. observed three modes of instabilities in 

the combustion chamber under highly turbulent conditions: 1) humming – a significant 

increase in the amplitude of the vortex pattern in the turbulent mixing zone; 2) buzzing 

– a large-scale oscillation of the flame up and down across the test section, eventually 

obliterating the vortex pattern of the mixing zone; 3) chucking – a cyclic formation of 

the flame that appears as if it were periodically spilled over the edge of the step. The 

mechanism of these phenomena is ascribed to the action of the vortices in the 

recirculation zone, and their interactions with the trailing vortex pattern of the 

turbulent mixing layer behind the step. 

  



Chapter 5 Two-dimensional combustor flow in spatio-temporal domain 
 

 51 

 

  

F
ig

. 5
.1

 C
ro

ss
 s

ec
ti

o
n

 o
f 

th
e 

co
m

b
u

st
io

n
 c

h
am

b
er

 e
xp

er
im

en
ta

l s
et

u
p

 a
s 

u
se

d
 b

y 
K

el
le

r 
et

 a
l.,

 1
9

8
2

 a
n

d
 

G
an

ji
 e

t 
al

. (
1

9
8

0
) 

(A
ll

 d
im

en
si

o
n

s 
in

 m
m

) 
 



Chapter 5 Two-dimensional combustor flow in spatio-temporal domain 
 

 52 

5.2.1 Flame/vortex interaction process – a physical understanding 
 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

(e) 

 
 

(f) 

 
Fig. 5.2 Interaction between flame front and trailing vortices behind the step  

(Keller et al., 1982) 
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The instabilities in turbulent combustion of premixed gases stabilized by the base flow 

behind a bluff body are intimately related to the large-scale structures of turbulent 

shear flow. Its prominent features have been described by Roshko (1976) while those 

pertaining to the base flow behind a step, including in particular the recirculation zone, 

were investigated experimentally earlier by Kim et al. (1978) and recently by Ghoniem 

et al. (2005) and Altay et al. (2009). 

 

Figure 5.2(a) shows a trailing vortex pattern downstream of the step. According to 

Keller et al. (1982), the flame front delineates the outer edges of the mixing layer at the 

contour of the interface between the burned gases and the fresh charge. The 

recirculation vortex A lies below, as a rule, established behind the step, irrespective of 

whether the flow-field is associated with combustion or not. This gives rise to the 

counter rotating vortex B. Figure 5.2(b) shows that under the presence of combustion, 

when burned gases are produced both of these vortices (A and B) grow. As the 

recirculation vortex of the burned gases grows, it causes the vortex A to be pushed 

downstream (c.f. Figure 5.2(c)), while the size of vortex B increases. As a consequence of 

the counterclockwise circulation of this vortex, it gives rise to vortices C and D, as 

required by compatibility with flow of the fresh charge. When vortex B becomes larger 

(c.f. Figure 5.2(d)), vortex C may be forced upstream, causing a flow reversal on the top 

of the step, tripping the boundary layer, and pushing the flame upstream. This is the 

characteristic feature of the turbulent flashback observed by Keller et al. (1982). The 

flame front is attached at its upstream edge of the boundary layer, but behind it is lifted 

from the wall by the action of vortex C. 

 

Further as vortex B still grows, it is convected downstream, while vortex C pairs with 

vortex D to form a new vortex A’, and also a new corner vortex B’ is formed (c.f. Figure 

5.2(e)). Finally, vortex A’ grows to a size which is comparable to that of vortex A and B’ 

to B (c.f. Figure 5.2(b)). At the same time, vortex B is convected further downstream and 

the combined action of vortex A’ and B causes the flame to acquire a practically vertical 

orientation, extending across the full height of the combustor (c.f. Figure 5.2(f)). 

 

Figure 5.2(b) illustrates the forming of the first vortex of the so-called humming cycle, 

the instability of high frequency oscillation. According to Keller et al. (1982), this occurs 

evidently due to pairing of the recirculation vortex A with the first component of the set 

of trailing vortices. The next vortex downstream is the result of the growth of vortex A 

in the course of its convection. In this study, a premixed reacting flow under steady and 

unsteady conditions is simulated at high Reynolds number in a representative of the 

geometry as shown in Figure 5.1.  

 

The fundamental focus here is to capture flow dynamics coupled with flame motion, but 

not considering acoustic modelling of the upstream and downstream elements. 
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5.3 Geometric model 
 

 
 

Fig. 5.3. Computational domain of the combustor with a flame-stabilizer step  
(All dimensions in mm) 

 
Numerical simulations have often been used for investigation of flame/vortex 

interactions. Figure 5.3 shows the complete computational domain used for steady and 

unsteady RANS analysis indicating locations where inlet and outlet boundary conditions 

were specified. Important factors considered in the design of the system (c.f. Figure 5.1) 

by Keller et al. (1982), and previously by Ganji et al. (1980), were thorough mixing of 

propane and air before entering the test section and uniform velocity (flat inlet velocity 

profile) at the entrance to the test section (i.e. combustion chamber). Referring to the 

experimental setup of Keller et al., (1982) (c.f. Figure 5.1), the premixing tube is not 

included in the computational model. Instead of this, the configuration uses appropriate 

boundary conditions at the inlet and outlet of the system. In a realistic combustor, the 

desired outlet temperature profile is far from flat; instead, it has a profile that peaks 

above the mid-height of the blade. The objective is to provide lower temperatures at the 

turbine blade root, where mechanical stresses are highest, and at the tip of the blade 

which is the most difficult to cool (Lefebvre, 1983). Hence, cooling is provided near the 

outlet of the combustor, both at the upper and the lower wall for representing a realistic 

combustor outlet flow condition. The width of the cooling hole is 5 mm and is at a 

distance of 22mm from the outlet of the combustor. The combustion processes take 

place in the combustor at atmospheric pressure along its length and hot gases with 

products exit from the outlet. 

 
 

5.4 Boundary conditions 

 
Appropriate inlet and outlet boundary conditions are necessary for the simulation of 

instability processes (Najm et al., 1994). To explore the flame/vortex dynamics in the 

combustor in an unsteady turbulent flow, a sinusoidal function (Table 5.1) is imposed at 

the inlet velocity boundary condition. This technique is indeed an easy way to represent 

the effect of an acoustic resonance in the reaction region (Thibaut et al., 1998). The 
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amplitude of the forcing fluctuation is 50% of the inlet velocity at a frequency of 175 Hz, 

which corresponds to the frequency of the humming cycle as reported by Keller et al 

(1982). Table 5.1 lists the key CFD parameters employed in the commercial CFD 

package ANSYS FLUENTTM version 12.1. The solver used is pressure based and has a 

second order implicit unsteady formulation for time. The standard k - ε model is used 

for turbulence modeling, with standard wall functions. The SIMPLE pressure-correction 

method is used for pressure-velocity coupling. Combustion takes place at a lean 

equivalence ratio of 0.86. Fluent’s partially premixed combustion model is used as the 

species model. The model solves a transport equation for the mean reaction progress 

variable  ̅, (to determine the position of the flame front), as well as the mean mixture 

fraction  ,̅ and the mixture fraction variance    ̅̅ ̅̅ . Ahead of the flame ( ̅ = 0), the fuel and 

oxidizer are mixed but unburnt, and behind the flame ( ̅ = 1), the mixture is fully burnt 

(Theory Guide, ANSYS FLUENTTM Version 12.1, 2009). 

 

Table 5.1. Key CFD analysis parameters for Ansys Fluent 12.1 

Solver: Pressure based 

Space: 2D 

Time: Unsteady second order implicit 

Energy equation: Yes 

Turbulence model: k - ε (standard wall functions) 

Transport and reaction:  

Species Partially premixed combustion 

Mixture properties PDF-mixture (propane + air) 

Equivalence ratio 0.86 

Boundary conditions:  

Inlet Velocity-inlet 

Inlet (Momentum) For steady RANS; 

Vin = 13.3 m/s 

 For unsteady RANS; 

User defined function with forced sinusoidal 

fluctuation at inlet, with frequency = 175 Hz 

and amplitude = 50% of inlet velocity 

Vin = 13.3 + 6.65*sin(1099.55*t)  

(t = time-step size) 

Inlet (Temperature): 300 K 

Outlet: Outflow 

Cooling inlet: Velocity inlet; Vin = 13.3 m/s 

Reynolds number: 2.06 * 104 (based on step height) 

Operating pressure: 101325 Pa 

Convergence criteria: 1e-06 (for residuals of continuity, x-velocity 

and y-velocity) 
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5.5 Computational grid 

 

 
 

Fig. 5.4 Multi-block structured hexahedral computational grid strategy 

 

 
 

Fig. 5.5 Locations of boundary layer mesh in the 2D combustor 

 

 
 

Fig. 5.6 Overall view of a structured hexahedral mesh across the 2D combustor 

 

 
 

Fig. 5.7a Closer view of the mesh near the inlet 
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Fig. 5.7b Closer view of the mesh near the end of the step 
 

 

 
 

Fig. 5.8a Closer view of the mesh behind the step 
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Fig. 5.8b Closer view of the mesh near the outlet 

 

A multi-block structured hexahedral approach is used for meshing the 2D combustor 

geometry. Figure 5.4 shows the 2D combustor geometry divided into 8 blocks for 

structured meshing. Blocks A and B make up the incoming zone of the premixed 

propane/air mixture flow. Blocks C and D consist of flow expansion and recirculation 

vortex zones behind the 2D flame-stabilizer step and require high mesh resolution. 

Blocks E and F consist of inlets for cooling air streams, which mixes with hot reacting 

gases flowing towards the outlet. Blocks G and H consist of the near-outlet flow zone. 

Since the reacting flow inside the 2D combustor is turbulent in nature, it is affected by 

the presence of the walls. Hence, the near-wall region flow determines successful 

prediction of wall-bounded turbulent reacting flow. As mentioned in section 4.4, 

standard wall functions in the k – ε turbulence model are utilized for modelling the 

viscosity affected near wall region flow. Figure 5.5 shows the distribution of boundary 

layer meshes at the walls inside the combustor. The boundary layer mesh is extended 

along the center line of the combustor to maintain the finer resolution (to capture 

flame-front established near the combustor center line) and cell size growth. Figure 5.6 

shows the complete structured mesh utilized for RANS and URANS analysis of the 

combustor. Figure 5.7a shows a closer view of the mesh near the inlet, whereas; Figures 

5.7b and 5.8a shows the mesh near the end of the step and just behind the step 

respectively. The mesh is finer near and behind the flame stabilizer step compared to 

the near inlet zone. Figure 5.8b shows a closer view of the mesh near the outlet. 

 
5.5.1 Spatial grid sensitivity 

 

For determining the effect of mesh size on the CFD solution for the configuration shown 

in Figure 5.3, five multi-block structured meshes of increasing cell counts were 
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constructed using GAMBITTM version 2.3. A Y+ value of ~30 is maintained for meshes 1 

and 2, but for meshes 3, 4 and 5 the Y+ value is less than five as a result of a finer 

resolution expected to be needed to capture complex combustion processes. Table 5.2 

lists the cell counts of all meshes along with the computation time and iterations 

required to evaluate a converged reactive steady RANS solution using eight processes in 

parallel on a cluster using Intel quad core processors with 2.8GHz clock rate.  

 

Table 5.2. Mesh size and steady RANS analysis 

details 

Mesh ~ Cell 

count 

~ Run-time 

(mins) 

~ No. of iterations for 

convergence 

1 11000 12 4000 

2 46000 40 6500 

3 190000 120 13000 

4 420000 880 28000 

5 800000 1900 40000 

 

 
 

Fig. 5.9 Outlet temperature profiles as captured by different mesh sizes  
using steady RANS 

 

Figure 5.9 shows the comparison between the predictions obtained from the five 

different meshes (c.f. Table 5.2) in terms of temperature profiles at the outlet plane of 

the combustor. As seen in Figure 5.9 the agreement between meshes is good near the 

walls. Away from the walls, grid independence is approached by mesh 3, though it is not 

100 % conclusive near the centerline of the combustor. Due to the significant increase 
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in the computational expense produced by refining the mesh further (c.f. Table 5.2) and 

from an engineering point of view of design optimisation, mesh 3 is deemed suitable  for 

further CFD analysis and design optimisation. 

 
5.5.2 Temporal grid sensitivity 
 

 
 

Fig. 5.10 Area-weighted average temperature (Ta) fluctuations  at the outlet as 
captured by different time-step size URANS simulations 

 
 

 
Fig. 5.11 Reactive flow-field settlement into meta-stable state as captured by time-

step size 1e-05 URANS simulation 
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After investigating the effect of different mesh sizes on the outlet temperature profile 

using steady RANS, the combustor with cooling holes (c.f. Figure 5.3) is investigated 

using URANS on mesh 3, with the sinusoidal velocity variation at the inlet. The URANS 

simulation is run using different time-step sizes for 10 cycles of the sinusoidal forcing 

function in order to understand the effect of simulation time-step sizes on the average 

outlet temperature prediction patterns.  

 

Figure 5.10 shows the variation of area-weighted average temperature (Ta), as captured 

by different time-step size URANS simulations, at the outlet of the combustor. The 

coarser time-step size simulations are not able to capture the humming instability cycle 

in the reactive flow-field. The coarsest time-step size at which the URANS simulation 

successfully captures the humming cycle is 1e-05s.  

 

As shown in Figure 5.11, after the initial transient, the flow-field settles in to a repetitive 

cycle of temperature fluctuations by the end of the ninth inlet velocity cycle, with a peak 

temperature of ~ 1800K and minimum of ~ 1200 K. The URANS simulation is further 

run with finer time-step sizes of 5.7e-06s and 1e-06s, and these results agree closely 

with the simulation results for 1e-05s in the tenth cycle. Thus, the average outlet 

temperature variation predicted by URANS is deemed to become sufficiently insensitive 

of the simulation time-step size at 1e-05s. Hence, a simulation time-step size of 1e-05s 

is used for further URANS analysis. 

 

 
5.6 Combustor flow dynamics in spatial and temporal domains 
 
The aim of this analysis is to develop an understanding of flame/vortex dynamics 

behind the flame-stabilizer step of the 2D lean burn combustor (c.f. Figure 5.3) in both 

spatial and temporal domains. Initially, both isothermal and reactive steady RANS 

analysis is presented highlighting the effect of combustion processes on the flow field 

behind the flame-stabilizer step. Later, reactive URANS analysis is presented focusing 

on time-dependent behaviour of flame and vortex interaction. 

 
5.6.1 Steady-state isothermal flow-field 

 

Figures 5.12 and 5.13 show the x-velocity flow-field and stream function variation 

inside the 2D lean burn combustor respectively, obtained after running non-reactive 

steady RANS simulations to convergence† over 10000 iterations (~40 minutes of wall 

clock time). As seen in Figure 5.12, as the flow passes over the profiled flame-stabilizer 

step, the velocity of the flow increases. At the end of the step, flow separation takes 

place. In the upper part of the combustor the flow largely maintains its momentum, 

whereas behind the step a recirculating vortex is formed. The flow reattaches along the 

bottom wall at a certain distance downstream of the step. 

† See Appendix C 
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Fig. 5.12 X-velocity flow-field inside the combustor under  

isothermal conditions 
 

 

 
 

Fig. 5.13 Recirculating vortex behind the step 
 under isothermal conditions 

 

The recirculating vortex behind the step under isothermal conditions is shown in Figure 

5.13 using stream function plot.  

 

 

5.6.2 Steady-state reactive flow-field 

 

Figures 5.14 and 5.15 show the x-velocity flow-field and stream function variation 

inside the 2D lean burn combustor respectively, obtained after running reactive steady 

RANS simulations to convergence† over ~13000 iterations (120 mins). Compared to the 

non-reactive solution, the reactive solution takes longer to converge. Similar to the non-

reactive flow, the propane/air mixture accelerates over the profiled flame-stabilizer 

step and separates at the end. The effect of combustion process on the flow-field is 

clearly seen in Figure 5.14. Due to the combustion processes, the axial velocity of the 

flow increases inside the chamber due to thermal expansion.  

Recirculating vortex 

† See Appendix C 
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Fig. 5.14 X-velocity flow-field inside the combustor under  

reactive conditions 
 

 

 
Fig. 5.15 Recirculating vortex behind the step 

 under reactive conditions 

 

 
 

Fig. 5.16 Reattachment length behind step under isothermal and reactive conditions 

Recirculating vortex 
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Just behind the step, the x-velocity is greater in the cold unburnt mixture (c.f. Figure 

5.17 for burnt/unburnt mixture in the flow-field), whereas further downstream 

towards the outlet, the situation is reversed. This observation is in agreement with the 

observation of Thibaut and Candel (1998). 

 

The primary function of the flame-stabilizer step is to provide a low-velocity region for 

flame stabilization and allow occurrence of combustion. The recirculating vortex behind 

the step under reactive conditions is shown in Figure 5.15. The effect of combustion 

processes on the size of the recirculation vortex is clearly seen in Figure 5.15. The 

recirculating vortex shrinks in size under reactive conditions compared to the non-

reactive condition (c.f. Figure 5.13) under which an expanded vortex exists behind the 

step. Further due to shrinking of the recirculating vortex behind the step under reactive 

conditions, the flow reattaches at a smaller distance from the step as compared to the 

non-reactive condition. Figure 5.16 shows the positions of flow reattachment behind the 

step under non-reactive and reactive conditions. 

 

 
Fig. 5.17 Burnt and unburnt mixture field inside the combustor under  

reactive conditions 
 

 

 
Fig. 5.18 Temperature flow-field inside the combustor under  

reactive conditions 
 

Flame surface 
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Fig. 5.19 Outlet temperature profile of the combustor (steady RANS) 
 

 
Fig. 5.20 Density field inside the combustor under  

reactive conditions 
 

 
Fig. 5.21 Product formation rate inside the combustor under  

reactive conditions 
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The steady turbulent flames require flame stabilization mechanisms (Poinsot and 

Veynante, 2005). The recirculation zone behind the step (c.f. Figure 5.15) provides the 

low-speed region necessary for flame stabilization. Figure 5.17 shows the progress 

variable flow-field and indicates the position of the flame surface (or flame front) inside 

the chamber. As the Reynolds number of the flow is in the turbulent regime, the mixture 

burns only in the location where the turbulent flame speed ST is able to sustain the 

mixture velocity  ̃, i.e. the region behind the step. Therefore the chamber behind the 

step is separated into unburnt and burnt mixture regions by an interface, where 

combustion has started but not yet fully established. Above this surface ( ̅ = 0), the fuel 

and oxidizer mixture is mixed but unburnt, and below this surface ( ̅ = 1), the mixture is 

completely burnt. Thus, due to high mixture velocity in the upper part of the chamber 

behind the step, much of the mixture escapes unburnt from the combustor. 

 

Figure 5.18 shows the temperature field inside the combustor. The temperature is 

maximum (~2100 K) in the burnt mixture region, reduces in the interface region and is 

the lowest in the unburnt mixture region. The temperature of the mixture which 

escapes unburnt from the combustor remains at the inlet temperature of 300 K. Figure 

5.19 shows the outlet temperature profile of the combustor as captured by steady 

RANS. 

 

As discussed previously in chapter 3, even though the flow is incompressible, density 

fluctuations exists due to temperature gradients induced by combustion processes, 

which requires the Favre-averaged Navier Stokes equation to be solved (c.f. section 3.2). 

Figure 5.20 shows the density field inside the combustor under reactive conditions. 

Large density variation exists in the combustor due to large temperature gradients. This 

is particularly very high in the region across the flame-front. Density is lower in the 

burnt mixture zone. 

 

Figure 5.21 shows the production formation rate inside the combustor. For premixed 

combustion, the reaction takes place only in the combustion zone (flame front) 

separating burnt and unburnt mixture (c.f. Figure 5.17). Hence the products are formed 

primarily in the flame surface zone. Product formation also takes place near the cooling 

inlet at the bottom wall, due to further reactions between high temperature gases 

exiting the combustor and the air stream at the cooling inlet.  

 

 

5.6.3 Time-dependent reactive flow-field 

 

After investigating the steady combustion process behind the step in the combustion 

chamber, a sinusoidal variation is imposed the inlet velocity condition, which 

represents the effect of an acoustic resonance produced in the experiment by Keller et 

al. (1982) with the use of loudspeaker radiating in the flow-field (c.f. Figure 5.1 for 

details). As mentioned in section 4.1, a sinusoidaly varying inlet velocity is used to 
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generate a humming instability phenomenon, which is ascribed to the interaction 

between flame-front and the trailing vortex pattern of the turbulent shear layer behind 

the step.  

 

 
(a) Sinusoidal forcing function (b) Non-dimensionalized humming cycle 

temperature variation with time showing 
corresponding points A-E 

 
Fig. 5.22 A sinusoidal forcing function (a) imposed at the inlet of the combustor and its 

corresponding outlet temperature variation pattern (b)  
 

Figure 5.22(a) shows the sinusoidal forcing function imposed at the inlet of the 2D 

combustor and Figure 5.22(b) shows the corresponding location of points A-E on the 

temperature variation (humming) cycle. The unsteady RANS simulation is started from 

the converged steady RANS results in order to achieve faster convergence of the 

solution as compared to unsteady RANS simulation starting from initial conditions†. 

 

Figure 5.23 shows the x-velocity flow-field of the combustor at cycle points A-E 

corresponding to Figure 5.22. At point A in the cycle, a large low-velocity region exists 

behind the step with high velocity gases at the outlet. At point B in the cycle, as the inlet 

velocity reaches its maximum value, the region of low-velocity mixture shrinks with a 

shorter flow re-attachment length. Also, a larger bubble of high-velocity gases now 

escapes at the outlet compared to cycle point A. At cycle point C, the low-velocity region 

behind the step increases in size. At cycle point D, the velocity reaches its minimum 

value, which creates the biggest low-velocity region in the cycle. Also, the exit velocity of 

the gases is the lowest. At cycle point E, the inlet velocity rises to its original value, and 

the state of x-velocity flow field is similar to cycle point A. This cycle continues into a 

metastable state. 

 

Figure 5.24 shows the axial velocity variation along the length of the combustor (plotted 

along the combustor centerline) under reactive conditions at different points of the 

sinusoidal cycle shown in Figure 5.22. It shows an increase in the x-velocity of the burnt 

mixture (or products) along the length of the combustor. This is the effect of the 

† See Appendix C 
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combustion process which accelerates the products and increases their flow velocity 

compared to unburnt gases. 

 
 
 

Fig. 5.23 Time-dependent x-velocity flow-field inside the combustor under  
reactive conditions at points corresponding to Figure 5.22 
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Fig. 5.24 Axial velocity variation along the length of the combustor under  
reactive conditions 

 
Figure 5.25 shows the reaction progress variable flow field inside the combustor at 

points A to E in the cycle.. The imposed inlet sinusoidal pulsation creates organized 

structures behind the step. 

 

At point A in the cycle, the formation of wake vortex V2 occurs near the edge of the step, 

which wrinkles the flame. Downstream, the previous wake vortex V1 as shown in Figure 

5.25A is moving near the outlet which convolutes the flame around it. Near the upper 

cooling hole, trapped burnt mixture is seen due to the earlier interaction between the 

incoming cooling jet and moving flame front.  

 

As the velocity reaches its maximum at cycle point B, the growing recirculation vortex 

V2 of the burned gases causes the previous vortex V1 (as shown in Figure 5.25A) to be 

pushed downstream, while vortex V2 increases in size. As the flame front convolutes 

now around vortex V2, the flame front ahead of vortex V2 reaches the wall of the 

combustor, burning more of the mixture before reaching the outlet.  

 

At cycle point C, as the velocity decreases from its maximum value, vortex V2 continues 

to grow in size as it moves downstream.  The flame advances in to the combustor 

forming two fronts, a leading vertical front that accelerates forward on the top half of 

the combustor, and a horizontal front that extends back to the step. Vortex V2 pushes 

the unburnt mixture trapped between the convoluted fold of the flame surrounding it 

and the leading curved flame front moving ahead of it vertically as shown in Figure 

5.25C.  
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Fig. 5.25 Pulsed flame inside the chamber (Vin = 13.3 m/s, Tin = 300 K, ϕ = 0.86, 
excitation amplitude = 50%, frequency = 175 Hz). Corresponding phases are indicated 

on sinusoidal velocity variation graph 
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At point D, the velocity reaches its minimum value, due to which the flame front is lifted 

behind the step as vortex V2 grows and stretches further downstream with its leading 

edge folded more as compared to cycle point C. Due to the reduced velocity of the 

mixture; the flame propagates upwards near the wall of the combustor. The leading 

vertical flame front is pushed further downstream as it reaches the upper wall, burning 

all the mixture leaving the combustor. At cycle point E, the velocity rises again to its 

original value. A new vortex V3 is again formed at the step edge with the previous vortex 

V2 convecting further downstream. Again, near the upper cooling hole, trapped burnt 

mixture is observed due to the interaction between the incoming cooling jet and moving 

flame front. This marks the end of the humming cycle which is then sustained in a meta-

stable mode. The average outlet temperature variation (c.f. Figure 5.11) is synchronized 

with this humming cycle. 

 

 

 

 
 

Fig. 5.26 Near-step vortex shedding and flame convolution during the humming cycle  
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Fig. 5.27 Outlet temperature profile variation during the humming cycle 

 
Figure 5.26 shows the process of flame convolution around the vortex which sheds 

behind the flame stabilizer step over the humming cycle. The five images shown 

correspond to the different time instances A-E as shown in Figure 5.22. The 

recirculating and downstream moving vortex behind the step controls the behaviour 

and movement of the flame-front throughout the humming cycle. 

 

Figure 5.27 shows the outlet temperature profile variation at points A-E in Figure 5.22. 

At point A (start of the humming cycle), most of the mixture escaping from the lower 

half of the combustor is completely burnt and is at high temperature ~2100 K, whereas, 

in the upper part, the mixture is mostly partially burned, and at a lower temperature. At 

cycle point B, due to high velocity, most of the mixture escapes unburnt from the upper 

part of the combustor which explains the sudden drop in the temperature profile in the 

upper part. At point C, due to the vertically lifted flame front, the incoming mixture is 

completely burnt before reaching the outlet, hence resulting in a relatively uniform 

temperature profile at the outlet across the centerline. At cycle point D, the vertical 

flame front moves forward but due to a lower inlet velocity, the cooling jet bubble flows 

further away from the combustor wall reducing the amount of burnt mixture leaving the 

outlet, thus reducing the outlet temperature near the upper and lower walls. At cycle 

point E, the inlet velocity increases, pushing the vertical flame front ahead and 

suppressing the cooling jet bubble flow. The temperature profile for cycle point E 

matches with temperature profile at cycle point A.  
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Fig. 5.28 Product formation rate during the humming cycle 
 

Figure 5.28 shows the product formation rate inside the combustor over the humming 

cycle. As the reaction takes place at the flame surface, converting the reactant into 

products, the product formation rate is high in the vicinity of the flame-front. The 

variation in its behaviour is directly linked with the variation of the flame front position 

over the humming cycle. 
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5.6.4 Comparison against experimental results of Keller et al. (1982) 

 

 
 

Fig. 5.29 Humming cycle captured by unsteady RANS in comparison with experimental 

data of Keller et al. (1982) [Time interval between frames: 1ms] 

 
Figure 5.29 shows the comparison of the URANS prediction with the experimental data 

of Keller et al. (1982) (c.f. Figure 5.1). The results are in good agreement, qualitatively, 

in the near step region where the wake vortex is formed and periodical flame 

convolution occurs. Away from the step, the flame structure is less accurately captured 

as the URANS averages instantaneous flame front fluctuations and shows only the mean 

value. Also, the mesh size used for the reactive URANS simulation is not fine enough to 

accurately capture the flame front with all its detail. An appropriate large eddy 

simulation (LES) on a fine mesh is required in order to capture all details of the flame 

front propagation and fluctuations, and is not within the scope of the current analysis.  
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5.6.5 Comparison against experimental results of Altay et al. (2009) 

 

 

 
 

Fig. 5.30 Flame/Recirculation zone interaction captured by unsteady RANS compared 
with experimental data of Altay et al., 2009 on a different geometrical configuration, 

(Time interval between frames: 1.1 ms) 
 

Figure 5.30 shows the comparison of flame/recirculation zone interaction results as 

captured by URANS and the experimental setup of Altay et al. (2009). The flame/vortex 

interaction process behind the step captured by the URANS simulation is in good 

qualitative agreement with the experimental data of Altay et al. (2009), who studied 

combustion dynamics behind the step but on a different geometrical configuration. 

Nevertheless, the qualitative agreement of URANS results regarding the flame/vortex 

interaction process is encouraging. This imparts confidence into the reactive URANS 

model used for capturing the flame/vortex dynamics, at least from an averaged solution 

point of view, if not in all its details. 
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5.7 Combustor thermal NOx formation in spatial and temporal 

domains 

 

 
Fig. 5.31 Steady-state NOx flow-field  

 
 

 
Fig. 5.32 Temperature flow-field inside the combustor under  

reactive conditions 

 

 

 
Fig. 5.33 Temperature flow-field inside the combustor above 2100 K 

 



Chapter 5 Two-dimensional combustor flow in spatio-temporal domain 
 

 77 

NOx modelling is complex as it requires accurate capturing of chemical kinetics, 

combustion reaction time and length scales and associated fluid dynamics and turbulent 

motions. This necessitates a very fine resolution of the computational domain in space 

and time, making the simulations very expensive. Hence, in this section, modelling of 

NOx formation in the 2D lean burn combustor is presented only from a qualitative point 

of view with no experimental validation. The steady and unsteady NOx solution is 

developed with an aim of constructing a preliminary understanding of the correlation 

between combustion temperature and thermal NO levels in both spatial and 

temperature domains. NOx as well as temperature is used as an objective function in 

later combustor design studies. 

 

 

5.7.1 Steady-state thermal NOx  

 

The NOx analysis in the spatial domain is performed by post-processing the previous 

reactive flow solution. With combustion and fluid dynamics model turned off, only the 

NOx model is run until thermal NO residual convergence†. Total computation wall clock 

time for converged thermal NO solution is ~90 minutes. 

 

Figure 5.31 shows the NOx flow-field as captured by the steady RANS simulation. It 

shows significant thermal NO production behind the flame stabilizer step due to the 

occurrence of reaction processes at very high temperatures (c.f. Figure 5.32).This is in 

agreement with the Zeldovich mechanism of thermal NO formation (Malte, 1974, Hill 

and Smoot, 2000). Figure 5.33 shows the part of the reactive flow-field where the 

temperature is the highest (>2100K) which correlates to the high thermal NO 

concentration zone in Figure 5.31.  

 

 
 

Fig. 5.34 Outlet thermal NO profile in parts per million (ppm) 

† See Appendix C 
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Figure 5.34 shows the thermal NO outlet profile. High levels of thermal NO escapes from 

the combustor outlet near the lower wall. The outlet thermal NO level reduces towards 

the upper wall, with almost no thermal NO detection in the upper half of the combustor 

due to the flow being largely non-reactive. 

 

 

5.7.2 Time-dependent thermal NOx 

 

 
 

Fig. 5.35 Thermal NO production and transport during the humming cycle 
corresponding to high temperature regions inside the combustor 

 
For NOx analysis in the temporal domain, the NOx formation is computed 

simultaneously with combustion reaction at every time step of URANS, as the flame-

vortex dynamics affects thermal NO formation and its transport. 

 

Figure 5.35 shows the time-dependent NOx flow-field in correlation with high 

temperature zones of the combustor as captured by URANS. As discussed in section 

5.6.3, the inlet sinusoidal pulsation creates organized vortex structures behind the step 

which drives the flame/vortex instability. Thermal NO formation, which is directly 

linked with high temperature zones, also varies according to the flame/vortex motion 

downstream of the step. Referring to different instances of the humming cycle (c.f. 

Figures 5.22 and 5.35), at cycle point A, the existence of high temperature wake vortex 

behind the step leads to high thermal NO concentration. The extent of high thermal NO 

concentration is until the leading edge of downstream flame as shown in Figure 5.35. At 
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cycle point B, a new high temperature vortex grows in size behind the step entraining 

thermal NO. Downstream the step, a diffusion of thermal NO concentration is seen, with 

high amount of thermal NO escaping at the outlet of the combustor. 

 

At cycle point C, thermal NO concentration is high in two areas of the combustor. One is 

in the growing vortex behind the step and other behind the curved vertical flame 

moving towards the outlet. At cycle point D, due to low inlet velocity and lifting of the 

flame behind the step, the thermal NO concentration follows the flame dynamics with 

further diffusion in the stretched vortex. The highest amount of thermal NO escapes at 

the outlet during this instance of the humming cycle, as the curved vertical flame is 

pushed near the exit reaching the upper wall of the combustor (c.f. Figure 5.35). At cycle 

point E, the inlet velocity rises again to its original value marking the end of the 

humming cycle. The thermal NO concentration in the combustor matches to cycle point 

A. This process is sustained in a meta-stable state.  

 

Overall the thermal NO concentration is observed to be higher in high temperature 

regions and is entrained by the vortices shedding behind the step during the humming 

cycle. 

 

 
 

Fig. 5.36 Area-weighted average thermal NO variation at the outlet of the combustor  
in correlation with area-weighted average temperature over one  

humming cycle   
Figure 5.36 shows the variation of area-weighted average thermal NO in direct 

correlation to area-weighted average temperature. Both variables are non-

dimensionalized with respect to the peak values of outlet thermal NO and temperature 



Chapter 5 Two-dimensional combustor flow in spatio-temporal domain 
 

 80 

respectively. As seen in Figure 5.36, the peak of thermal NO levels at the outlet arrives 

later in time compared to the peak of average temperature. This is because the time-

scales of NOx formation are considerably longer than the time-scales of the main 

combustion reactions (Barths et al, 1998). Hence, the NO pollutant formation moves 

more slowly towards the outlet in comparison to high temperature combustion reaction 

products which adjust rapidly downstream during the humming cycle. This is consistent 

with the observations of Barths et al. (1998). 

 

 

5.8 Summary 
 

This chapter presented an analysis of 2D isothermal and lean burn reactive flow-fields, 

along with thermal NO pollutant formation. Both steady and unsteady RANS based 

computational reactive fluid dynamics of the combustor were discussed. Based on this 

analysis, in the next chapters, various design strategies are developed for flame-

stabilizer step design to influence the flame/vortex dynamics downstream. The 

objective functions used for design optimisation are the outlet temperature profile and 

area-weighted thermal NO in the spatial domain. For design strategies in the temporal 

domain, the objective function is humming cycle averaged outlet area-weighted thermal 

NO and temperature. 
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Chapter 6 

 
Kriging based high-fidelity 

strategy for combustor design 
 
 

6.1 Introduction 
 
Based on the description of the Kriging response surface method in Chapter 2 and 2D 

combustor steady and unsteady CFD analyses in Chapter 5, a Kriging based high-fidelity 

design optimisation strategy is applied to combustor design in this chapter. Using 

multiple initial sampling plans a standard Kriging strategy is used to optimize the inlet 

flame-stabilizer step design (c.f. Figure 5.1). 

 

The optimisation problem is set-up for two geometry variables (defining the shape of 

the flame stabilizer step) and two single-objectives, outlet temperature and NOx, as they 

are of current interest to the combustor design community. A reasonably accurate 

representation of the design space is first evaluated on a 10x10 design matrix for the 

two variable study. 

 

To test the effectiveness of the standard Kriging strategy, the total number of high-

fidelity CFD evaluations used in the optimization is limited to only 10. With this fixed 

computational budget and a number of different starting sampling plans, the Kriging 

design strategy is assessed for its performance in terms of its statistical mean and 

variance and confidence interval level. 

 
 
6.2 Kriging based design optimisation strategy 
 
Figure 6.1 shows the traditional Kriging based design optimisation strategy. The three 

key stages of the strategy includes: (1) Initial sampling using DOE (2) Constructing 

Kriging response surface and (3) Update points search strategies for increasing Kriging 

prediction accuracy.   
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Fig. 6.1 Kriging design optimisation strategy employing a DOE sampling 
plan and update points methodology 
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Identifying the effects of variables or parameters within a design space, a space filling 

design of experiments (DOE) method is used to generate an initial sample of evaluation 

points. These DOE points are evaluated in parallel using CFD analysis. A database of 

objective function values at sample points obtained using CFD evaluations is built. 

Further, a Kriging response surface model is constructed based on the observations at 

few sample points within the design space. This surface provides a glimpse of the 

variation of objective function values in the design space. As the response surface model 

accuracy is limited due to a relatively small initial sample, the accuracy of the model is 

increased by adding further update points. The update points are found using a genetic 

algorithm followed by dynamic hill climbing algorithm, which provides a combination of 

global and local search strategy to find the exact location of the predicted optimum 

configuration. The resulting update points are again evaluated in parallel using CFD 

analysis and added to the database to update the Kriging model. This process is 

continued until the RSM is converged or the given computational budget gets exhausted. 

 

 

6.3 Problem setup 
 
 
6.3.1 Parametric geometry model 
 

 
 

 

 
Fig. 6.2 Computational domain of the combustor consisting of a parameterized flame 

stabilizer step (All dimensions in mm) 

 
The construction of the 2D profiled backward-facing step combustor is carried out using 

the CAD package CATIA (Computer Aided Three Dimensional Interactive Application) 

version V5R18. CATIA is a multi-platform CAD/CAM/CAE commercial software suite 

developed by the French company Dassault Systemes. Figure 6.2 shows the 

computational domain of the combustor consisting of a parameterized flame stabilizer 

step. The flame stabilizer step is constructed and parameterized using a cubic spline in 

CATIA. 

  

5 

Inlet Outlet 

Y=17.5 
Θ = 90 

Cooling Holes 

Parameterized flame 
stabilizer step 



Chapter 6 Kriging based high-fidelity strategy for combustor design 
 

 84 

Parameterization using cubic spline: 

 

A cubic spline is a spline constructed of piecewise third-order polynomials which passes 

through a set of control points. Consider a 1-dimensional spline for a set ofn+1 points 

(y0, y1 … yn) with n intervals between them. There is a separate cubic polynomial for 

each interval, each with its own coefficients 

 

 

Yi (x) = ai + bi x + ci x2+ di x3                                                                        Eq. (6.1) 

 

 

Together, these polynomial segments are denoted as Y(x), the spline, as shown in 

Equation 6.1, where, x is a parameter x Є [xi, xi+1] and i = 0, … n.  ai , bi , ci  and di are the 

constraints. 

 

 
 

 

Fig. 6.3 Flame-stabilizer step design parameterization using spline control points  

 
Figure 6.3 shows a closer view of the flame stabilizer step (A-B-C) baseline geometry. 

Points A, B and Care connected by a spline curve of which control point A and C are 

fixed. However, the angle θ at point C is free. At control point B, the x-coordinate is fixed 

at a distance of 95.5mm from the inlet and the y-coordinate is variable. Thus, two 

variables [Y and θ] are used to change the shape of the flame-stabilizer step and thus 

influence flame/vortex interaction processes downstream. A baseline spline is defined 

by Y = 17.5mm and θ = 90 degrees. 
 

 
 

Fig. 6.4 (a) Two design variables under consideration and  

(b) design space with lower and upper bounds 

(X, Y) A 

B 

C 

θ 
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Figure 6.4(a) shows the two design variables of the flame stabilizer step that is 

considered for the optimization process. Figure 6.4(b) shows the two-dimensional 

design space that is considered for the design study indicating the upper and lower 

limits of the variable values. 

 
6.3.2 Modified meshing strategy 
 

 

 

Fig. 6.5 A paved quadrilateral mesh using quad-pave meshing scheme in Gambit 

 

 
 

Fig. 6.6a Closer view of the modified mesh near the inlet of the combustor 
 

 
 

Fig. 6.6b Closer view of the modified mesh near the flame-stabilizer step exit 
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Fig. 6.7a Closer view of the modified mesh behind the flame-stabilizer step 

 

 
 

Fig. 6.7b Closer view of the modified mesh near the exit of the combustor 

 
Section 6.5 in Chapter 5 presented a hexahedral meshing strategy for the 2D combustor 

on the baseline geometry. Since the profile of the flame-stabilizer step is smooth in the 

baseline configuration, the hexahedral scheme is the best way to mesh the geometry. 

However, during the design study the shape of the flame-stabilizer step varies between 

extreme values, which might not be suitable for a structured hexahedral mesh 

approach. At high values of θ, the hexahedral mesh tend to be very skewed which could 
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lead to mesh quality and CFD solution convergence issues. Thus, a quadrilateral-paved 

(quad-paved) meshing approach is applied to the 2D combustor. The mesh 3 

configuration (c.f. Table 5.2), which is selected in the mesh sensitivity analysis, is re-

meshed using quad-pave meshing scheme in Gambit 2.3.16. With this scheme Gambit 

creates an unstructured face mesh consisting of quadrilateral mesh elements. The 

boundary layer scheme is retained as previously used in mesh 3. 

 

Figure 6.5 shows an overall view of the quad-pave mesh in the 2D combustor. Figures 

6.6a and 6.6b shows a closer view of the modified mesh near the inlet and flame-

stabilizer step exit respectively; whereas Figures 6.7a and 6.7b shows a closer view of 

the modified mesh behind the flame-stabilizer step and near the combustor exit 

respectively. A relatively coarser mesh is built near the inlet and the outlet of the 

combustor, with finer mesh near the step exit and behind the step zone. The total cell 

count in this scheme is ~ 180,000 as compared to ~190,000 in the structured 

hexahedral approach. 

 
To understand the effect of the quad-pave meshing scheme on the CFD solution, a 

reactive CFD analysis using steady RANS is carried out. The outlet temperature profile is 

measured and compared to the profile obtained using the hexahedral mesh. Figure 6.8 

shows the comparison of the outlet temperature profiles predicted using these two 

different meshing strategies. 
 

 
 

Fig. 6.8 Outlet temperature profile as predicted by hexahedral and quad-pave meshing 
 

As shown in Figure 6.8, only a small difference in the outlet temperature profile is 

noticed in the burning mixture zone of the combustor. However, overall the solution 

remains largely unaffected. Thus, for the purpose of a design optimisation study, the 

modified mesh is used without any further changes.  
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6.4 Experiment design 
 
 

6.4.1 100 point detailed prediction surfaces 
 
With the combustor design parameters, design space and meshing strategy defined, a 

reasonably accurate representation of the design space is evaluated on a 10x10 regular 

grid of design points for outlet temperature and thermal NO objective functions, both in  

spatial and temporal domains. 

 
6.4.1.1 Spatial domain (using steady RANS) 

 
(A) Outlet temperature profile  

 

 
Fig. 6.9 Comparison between baseline geometry outlet temperature profile and target 

outlet temperature profile 

 

Figure 6.9 shows the comparison between the outlet temperature profile of the baseline 

step geometry and the developed target outlet temperature profile. The target outlet 

temperature profile is developed such that it is more symmetrical about the centerline 

of the combustor, which represents an approximate position of the flame front inside 

the chamber, above which the mixture is unburnt and below which the mixture is burnt.  

 

The aim of the optimization process is to minimize the difference between the design 

and target profiles. This is done by changing the shape of the flame-stabilizer step i.e. 
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changing the design variables Y and θ until a design is found that minimises the root 

mean square deviation (RMSD) of the difference between the design outlet temperature 

profile and the target outlet temperature profile. If vector P represents points on an 

individual design outlet temperature profile and vector T represents points on the 

target outlet temperature profile, then: 

 

For, T = [T1, T2, T3 …… Tn] and P = [P1, P2, P3 …… Pn]; 
 

where, n = number of points in the profile; 

 

 

RMSD (T, P) = √   (   ) = √
∑ (     )

  
   

 
                                 Eq. (6.2) 

 
 
The value of the RMSD is used as the objective function for outlet temperature 
optimisation. 

 
 
Fig. 6.10 Kriging response surface for steady outlet temperature generated using 10x10 

regular grid CFD data 
 

Figure 6.10 shows the steady outlet temperature Kriging RSM constructed using 100 

CFD runs based on 10x10 regular grid data points. As shown in Figure 6.10, the Kriging 

response surface fits smoothly over the evaluated 10x10 grid of CFD data points 

indicating a low level of numerical noise in the data. It shows a hill of high objective 



Chapter 6 Kriging based high-fidelity strategy for combustor design 
 

 90 

function values at lower design parameter values of Y and θ, signifying a region of bad 

designs. The region with good designs consists of a valley surrounding the hill at higher 

values of Y and θ. This region becomes the area of attention when applying a Kriging 

design optimisation strategy for outlet temperature.  

 

 
 

(a) Best design [Y = 0.67, θ = 1, RMSD = 337]  

 
 
 

(b) Worst design [Y = 0.11, θ = 0.33, RMSD = 825.72] 

 
 

Fig. 6.11 Best and worst designs for outlet temperature profile obtained using 10x10 
regular grid CFD evaluations 

 
 

(a) Best design 

 
 

(b) Worst design 

 

Fig. 6.12 Vortex behind the best and worst step designs for outlet temperature profile 

 
Figure 6.11 shows the best and worst step designs temperature flow-field obtained 

using 10x10 regular grid CFD evaluation. At higher values of Y and θ [c.f. Figure 6.11(a)], 

the incoming mixture velocity is reduced due to the contraction leading to higher 

amount of mixture burning in the combustor downstream. Figure 6.12(a) shows the 

flow separating near the end of the step, which leads to a wrinkled flame effect near the 

step as captured in Figure 6.11(a) with a recirculating vortex behind the step. 
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Fig. 6.13 Comparison between baseline geometry outlet temperature profile and target 

outlet temperature profile 

 

At lower values of Y and θ [c.f. Figure 6.11(b)] the incoming mixture velocity continues 

to be higher in the upper part of the combustor leading to high amount of unburnt 

mixture at the combustor exit. Figure 6.12 (b) shows the stretched vortex behind the 

worst step design. Hence, predominantly, a reduction in incoming mixture velocity 

favors a good design for outlet temperature profile. Figure 6.13 shows the comparison 

between the outlet temperature profiles of the best and worst designs against the target 

outlet temperature profile. 

 
(B) Outlet thermal NO  

 

The objective function for combustor outlet NOx is concerned with thermal NO 

concentration in parts per million (ppm) at the outlet plane. For this prediction a 

custom field function in Fluent 12.1 is setup which computes NO ppm from the 

following equation (Ansys Fluent theory guide, 2009): 

 

 

        
                      

                    
 

 

 

 

Eq. (6.3) 

An area-weighted average of the thermal NO in ppm at the outlet plane is considered as 

the objective function to be minimized in the optimisation process. 
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Fig. 6.14 Kriging response surface for steady outlet thermal NO generated using 10x10 

regular grid CFD data 
 

 

 
 

(a) Best design [Y = 0.89, θ = 0.44, NO = 8.17 ppm]  

 
 
 

(b) Worst design [Y = 0, θ = 0.22, NO = 10.98 ppm] 

 
 

Fig. 6.15 Best and worst designs for outlet thermal NO obtained using 10x10 regular 
grid CFD evaluations 
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(a) Best design 

 
 

(b) Worst design 

 

Fig. 6.16 Vortex behind the best and worst step designs for outlet temperature profile 
 

Figure 6.14 shows the steady outlet NO Kriging RSM constructed using 10x10 regular 

grid CFD evaluations.A hill of high objective function values is observed at lower design 

parameter values of Y and θ, indicating a region of bad designs. This is similar to the 

observation in outlet temperature profile RSM (c.f. Figure 6.10). However, the region of 

good designs exists at high values of Y and intermediate values of θ. This region 

becomes the area of attention when applying Kriging optimisation strategy for steady 

outlet NO. 

 
Figure 6.15 shows the best and worst designs for outlet thermal NO objective function 

using 10x10 regular grid CFD evaluations. The best design [c.f. Figure 6.15(a)] is 

obtained at high value of Y and intermediate value of θ. The amount of thermal NO 

produced is low mainly due to the small recirculation zone behind the step [c.f. Figure 

6.15(a)] and is entrapped. Hence, low amount of thermal NO is transported towards the 

outlet. Whereas, in the case of worst design [c.f. Figure 6.15(b)], the thermal NO 

production is larger due to bigger recirculation vortex behind the step [c.f. Figure 

6.16(b)]. 

 

Hence, a smaller recirculation vortex behind the step majorly favors good designs with 

lower thermal NO. 

 

 

6.4.1.2 Temporal domain (using URANS) 

 

(A) Time-averaged outlet temperature profile  

 

Figure 6.17 shows the variation of combustor area-weighted outlet temperature Ta over 

time for the baseline configuration. This unsteady RANS computation is started from the 

converged steady RANS solution. The simulation settles into a meta-stable state after 

four cycles of inlet sinusoidal fluctuation.  Over the 4th cycle of fluctuation, the outlet 

area-weighted average temperature at each time-step is recorded leading to a time-

averaged area-weighted average temperature  
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Fig. 6.17 Variation of area-weighted outlet temperature (Ta) over time  
(URANS solution started from converged steady RANS solution) 

 

 

 
 

Fig. 6.18 Kriging response surface for time-averaged area-weighted outlet temperature 
obtained using 10x10 regular grid CFD data 
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  ̅   
∑   

  
   

  
 

 

   = number of time-steps 

 

 

Eq. (6.4) 

which is taken as the objective function to be minimized in the Kriging design 

optimisation process for area-weighted outlet temperature in temporal domain. 

 

Figure 6.18 shows the Kriging RSM constructed for time-averaged outlet temperature 

using 100 CFD runs based on 10x10 regular grid data points.Compared to the RSM of 

steady outlet temperature (c.f. Figure 6.10), a different picture of the objective function 

landscape is observed. The region of good designs in steady outlet temperature RSM is 

no longer the best for the time-averaged outlet temperature objective function. As seen 

in Figure 6.18, a valley of low objective function values exists at intermediate values of Y 

and θ. This region becomes the focus of attention when applying the Kriging design 

strategy for time-averaged outlet temperature. Interestingly, this regions design 

parameters value are close to the baseline design parameter values. 

 

(a) Best design  

[Y = 0.22, θ = 0.33,  ̅  = 1525 K] 
 

 
 

(b) Worst design 

[Y = 0.89, θ = 1,  ̅  = 1927.5 K] 
 

 

Fig. 6.19 Flame stabilizer step best and worst designs for time-averaged area-weighted 

outlet temperature (K) 

 

Figure 6.19 shows the comparison between the best and worst designs of the flame-

stabilizer step. Since the objective is to obtain a design with minimum time-averaged 

area-weighted outlet temperature, a contraction at higher values of Y and θ [c.f. Figure 

6.19(b)] has an adverse effect. Due to the reduced velocity, almost all of the mixture in 

the combustor downstream is burnt over the humming cycle. Whereas, with designs at 

intermediate values of Y and θ [c.f. Figure 6.19(a)], the mixture content at the outlet 

consists of both burnt and unburnt species over the unsteady humming cycle, leading to 

a reduction in area weighted outlet temperature. Figure 6.20 shows the effect of the 

best and worst step designs on the area-weighted outlet temperature variation over the 

humming cycle. For the worst design, the temperature variation is almost consistent 

around high value of 1900 K, whereas the temperature fluctuation range for best design 

is in between 1200 K to 1800 K. Hence, a smooth step profile with intermediate values 

of Y and θ favors a good design for time-averaged area-weighted outlet temperature. 
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Fig. 6.20 Best and worst designs area-weighted outlet temperature fluctuation over 

humming cycle 

 

 

(B) Time-averaged outlet thermal NO 

 

 
 

Fig. 6.21 Variation of area-weighted outlet thermal NO (NOa) as captured by URANS 
over time  
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Fig. 6.22 Kriging response surface for time-averaged area-weighted outlet thermal NO 
obtained using 10x10 regular grid CFD data 

 

Figure 6.21 shows the variation of area-weighted outlet thermal NO (ppm) over time for 

the baseline configuration. The unsteady RANS thermal NO computation, which is 

started from the converged steady RANS reactive solution, settles to a meta-stable state 

after four cycles of fluctuations. This agrees with the unsteady outlet temperature 

fluctuation cycle (c.f. Figure 6.17). 

 

Thermal NO in parts per million is computed as per Equation 6.3 at each time-step of 

unsteady RANS. Over the 4th cycle of fluctuation, the outlet area-weighted average 

thermal NO (ppm) is time-averaged according to 
 

 

   ̅̅ ̅̅ ̅̅   
∑    

  
   

  
 

 

   = number of time-steps 

 

Eq. (6.5) 

 
This value of NO is taken as the objective function to be minimized in the Kriging design 

optimisation process for thermal NO in the temporal domain. 

 

Figure 6.22 shows the Kriging RSM for time-averaged area-weighted outlet thermal NO 

constructed using 100 CFD runs based on 10x10 regular grid data points.The Kriging 

response surface fits smoothly over the evaluated 10x10 grid of CFD data points 
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indicating a low level of numerical noise in the data. A hill of high objective function 

values at lower design parameter values of Y and θ indicates a region of bad designs. It 

shows as a valley of good designs at values of θ between 0.4 and 0.8 and values of Y 

between 0 and 0.6 which becomes the focus of attention. 

 
(a) Best design 

[Y = 0, θ = 0.67,   ̅̅ ̅̅   = 9.775 ppm] 
 

 

(b) Worst design 
[Y = 0.22, θ = 0.11,   ̅̅ ̅̅   = 11.12 ppm] 

 

 
 

Fig. 6.23 Flame stabilizer step best and worst designs for time-averaged area-weighted 
outlet thermal NO (ppm) 

 
 

 
 

Fig. 6.24 Best and worst designs area-weighted outlet thermal NO  

fluctuation over humming cycle 

 
Figure 6.23 shows the comparison between the best and worst step profiles for time-

averaged area-weighted outlet thermal NO (ppm). The intermediate to higher values of 

θ (between 0.4 and 0.8) causes the recirculation vortex size behind the step to be 

relatively smaller. Also, at lower values of Y, the higher mixture velocity leads to a 

reduction of total amount of burnt mixture and hence high temperatures zone in the 

combustor. This combination favors a good design from time-averaged area-weighted 

thermal NO point of view, which predominantly depends on recirculation vortex size 

and high temperature zones. Figure 6.24 shows the comparison between the best and 

worst designs area-weighted outlet thermal NO (ppm) over the humming cycle. 
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6.4.2 Sampling plan using DOE 
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Since using 100 points to sample the design space is very expensive, attention is now 

turned to using small initial sample plans followed by an update strategy to locate the 

best design.  

 

For initializing the design study, 4 space-filling sample points are generated using 

optimal Latin-Hypercube sampling (LHS). Figure 6.25 shows nine different samples of 

space-filling points in two dimensions. The two variables are Y and θ (c.f. Figure 6.3). 

The Kriging design optimisation strategy is applied on all 9 starting samples to 

investigate their effect on the strategy’s ability to find optimum design configuration 

within the given computational budget of 10 high-fidelity runs. 

 
6.4.3 Update point strategy 
 
After constructing the Kriging surface, based on the observations from DOE points (c.f. 

Figure 6.2), two update points are generated per update cycle in this design study. One 

is obtained using best Kriging prediction in the response surface and other is obtained 

using the expected improvement criteria (Both methods are explained in more detail in 

Section 2.4.4). Thus a balanced exploration and exploitation approach is used to update 

the Kriging response surface model. 

 

 

6.5 Results and discussion 

 
6.5.1 Design optimisation in spatial domain 
 

Figures 6.26 and 6.27 shows the optimisation search histories for Kriging based design 

strategy using 9 different DOE samples (c.f. Figure 6.25) over a fixed computational 

budget of 10 high-fidelity CFD runs for outlet temperature profile RMSD and outlet 

thermal NO respectively. They also show the respective mean performances over all the 

search histories. 

 

The DOE evaluation consists of 4 sample points with 3 update cycles, each consisting of 

2 update points. The different initial samples have an effect on the way the optimisation 

process progresses over the cycle. This is because different initial samples lead to 

different information being available at the DOE stage with altered Kriging model 

convergence behaviour. Hence, each optimisation cycle leads to a different optimal 

design in Figures 6.26 and 6.27. 

 

A spread, or variation, in the search histories convergence is also shown in Figures 6.26 

and 6.27. 
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Fig. 6.26 Steady outlet temperature profile RMSD optimisation search histories over a 

fixed computational budget of 10 high-fidelity CFD runs (4 in initial sample + 6 updates)   

 

 
 

Fig. 6.27 Steady outlet thermal NO optimisation search histories over a fixed 

computational budget of 10 high-fidelity CFD runs (4 in initial sample + 6 updates)  

  

Variation 

Variation 



Chapter 6 Kriging based high-fidelity strategy for combustor design 
 

 102 

 

 
 

Kriging response surface using DOE sample no. 4 with best optimal design 
(1) After DOE 

 
 
 

(2) After DOE + Updates 

 
 

 
Kriging response surface using DOE sample no. 7 with worst optimal design 

(3) After DOE 

 

(4) After DOE + Updates 

 
 

Fig. 6.28 Kriging response surfaces consisting of best and worst optimal designs for 
steady outlet temperature profile 

 
Figure 6.28 shows the Kriging response surfaces consisting of best and worst optimal 

designs for steady outlet temperature profile RMSD after the DOE stage and end of the 

optimisation cycle stage (c.f. Figure 6.26). The ranking of the DOE samples based on the 

final outlet temperature RMSD values is listed in Appendix E.  

 

In comparison to the shape of the response captured using 10x10 grid CFD evaluations 

(c.f. Figure 6.10), the response surface of experiment four captures the good and bad 

design regions within the given fixed computational budget. Whereas, the response 

surface of experiment seven fails to capture the shape of the response within the given 

budget. This difference is clearly due to the quality of the information available at the 

DOE stage which subsequently effects convergence and finding the optimal design with 

a limited budget. This observation is consistent with one of the possible pitfalls 

associated with Kriging mentioned by Jones (2001). 

 

Similarly, Figure 6.29 shows the Kriging response surfaces consisting of best and worst 

optimal designs for outlet thermal NO. (Refer Appendix E for the ranking of the DOE 

Y Theta 
Y Theta 

Y Theta Y Theta 
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samples based on the final outlet thermal NO values). The response surface of 

experiment four captures the good and bad design regions within the fixed computation 

budget compared to the Kriging surface constructed using 10x10 grid CFD evaluations 

(c.f. Figure 6.14). The response surface of experiment three fails to capture the correct 

shape of the response within the fixed computational budget. 

 

 
 

Kriging response surface using DOE sample no. 4 with best optimal design 
(1) After DOE 

 

 
 
 

(2) After DOE + Updates 

 
 

 
Kriging response surface using DOE sample no. 3 with worst optimal design 

(3) After DOE 

 

(4) After DOE + Updates 

 
 

Fig. 6.29 Kriging response surfaces consisting of best and worst optimal designs for 
steady outlet thermal NO (ppm) 

 

Figures 6.30 and 6.31 shows the optimal flame-stabilizer step designs obtained using 

Kriging design optimisation strategy for steady outlet temperature RMSD and thermal 

NO respectively. The shapes of the best optimal designs agree closely with that of the 

optimal designs found using 10x10 grid CFD evaluations (c.f. Figure 6.11 for outlet 

temperature RMSD and Figure 6.15 for thermal NO).  

 

This highlights that this approach can obtain good design with ten times less effort than 

the full grid sampling plan.  

Y Theta Y Theta 

Y Theta Y Theta 
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Fig. 6.30 Optimal flame-stabilizer step for steady outlet temperature profile RMSD 

optimisation at Y = 0.6 (27.52mm) and θ = 1 (140 degrees) 

 

 
 

Fig. 6.31 Optimal flame-stabilizer step for steady outlet thermal NO obtained by  

Kriging design strategy at Y = 0.933 (35.82mm) and θ = 0.446 (100.1 degrees) 

 

 
 

6.5.2 Design optimisation in temporal domain 

 

After the investigation of the Kriging strategy for combustor design in the spatial 

domain using steady RANS, combustor design optimisation in the temporal domain 

using the Kriging strategy and URANS is performed in the following section. A time-

averaged objective function is of main interest for design optimisation in the temporal 

domain.  
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Fig. 6.32 Time-averaged area-weighted outlet temperature (K) optimisation search 

histories over a fixed computational budget of 10 high-fidelity CFD runs  

(4 in initial sample + 6 updates)  

 

 
Fig. 6.33 Time-averaged area-weighted outlet thermal NO optimisation search histories 

over a fixed computational budget of 10 high-fidelity CFD runs  

(4 in initial sample + 6 updates)  

Variation 

Variation 
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Figures 6.32 and 6.33 shows the optimisation search histories for Kriging based design 

strategy using 9 different DOE samples (c.f. Figure 6.25) over a fixed computational 

budget of 10 high-fidelity CFD runs for time-averaged outlet temperature and thermal 

NO respectively. The mean convergence of all search histories is also shown in Figures 

6.32 and 6.33. 

 

Similar to the observation in the spatial domain design search histories (Figures 6.26 

and 6.27) different initial samples do have an effect on the way the temporal domain 

Kriging optimisation process progresses. In Figures 6.32 and 6.33, each optimisation 

process leads to a different optimal design and a variation in the convergence behaviour 

of search histories can be seen at the end of the optimisation cycle.  

 

 

 
 

Kriging response surface using DOE sample no. 5 with best optimal design 
(1) After DOE 

 
 
 

(2) After DOE + Updates 

 
 

Kriging response surface using DOE sample no. 9 with worst optimal design 

(3) After DOE 

 

(4) After DOE + Updates 

 
 

Fig. 6.34 Kriging response surfaces consisting of best and worst optimal designs for 
time-averaged area-weighted outlet temperature (K) 

 

 
  

Y Theta Y Theta 

Y Theta 
Y Theta 
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Figure 6.34 shows the Kriging response surfaces consisting of best and worst optimal 

designs for time-averaged area-weighted outlet temperature after both DOE stage and 

end of optimisation cycle. In comparison to 10x10 grid CFD evaluation based Kriging 

surface (c.f. Figure 6.18), response surface of experiment† 5 is more accurate compared 

to response surface captured using experiment 9, within fixed computational budget. 

This is a direct consequence of information available at the DOE stage. Hence, 

experiment five finds the best optimal design with the lowest objective function value of 

1524.87 K. 

 

 
 

Kriging response surface using DOE sample no. 1 with best optimal design 
(1) After DOE 

 
 

(2) After DOE + Updates 

 
 

 
 

Kriging response surface using DOE sample no. 4 with worst optimal design 
(3) After DOE 

 

(4) After DOE + Updates 

 
 

Fig. 6.35 Kriging response surfaces consisting of best and worst optimal designs for 
time-averaged area-weighted thermal outlet NO 

 
Fig. 6.35 shows the Kriging response surfaces consisting of best and worst optimal 

designs for time-averaged outlet thermal NO. The response surface of experiment 1 

correctly captures the shape of the response within the fixed computation budget 

compared to the Kriging surface constructed using 10x10 grid CFD evaluations (c.f. 

Figure 6.22). The response surface of experiment four† fails to capture the correct shape 

of the response within the fixed computational budget. 

Y Theta Y Theta 

Y Theta Y Theta 

† See Appendix D for ranking of the DOE samples based on objective function values 
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Fig. 6.36 Optimal flame-stabilizer step for time-averaged area-weighted outlet 

temperature optimisation at Y = 0.285 (19.64mm) and θ = 0.252 (80.14 degrees) 

 
 

 
 

Fig. 6.37 Optimal flame-stabilizer step for time-averaged area-weighted outlet thermal 

NO optimisation at Y = 0 (12.50mm) and θ = 0.66 (113.1 degrees) 

 
Figures 6.36 and 6.37 shows the optimal flame-stabilizer step designs obtained using 

Kriging design optimisation strategy in temporal domain for time-averaged area-

weighted outlet temperature and thermal NO respectively.  

 

The shapes of the best optimal designs agree closely with that of the optimal designs 

found using 10x10 grid CFD evaluations (c.f. Figure 6.19 for time-averaged outlet 

temperature and Figure 6.23 for time-averaged thermal NO). 
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6.6 Confidence assessment 
 
The Kriging based design strategies, both in spatial and temporal domains, were applied 

on 9 different DOE samples with mean performance shown in Figures 6.26, 6.27, 6.32 

and 6.33.  It is the mean performance of different strategies which is of interest in this 

thesis. This mean is not the true mean (µ) but is an estimated mean (M) as it is based on 

a small sample of the real (unknown) population and is given by 

 

 

   ∑  

 

   

 ⁄  

 

 

Eq. (6.6) 

 

where    is the individual sample value and N is the total number of samples (nine in 

this case). 

 

Table 6.1 Relevant statistical estimates for all objective function data in spatial 
and temporal domains evaluated in section 6.5 

Domain Objective function Mean (M) 
Standard 

deviation 

Standard 

error 

Spatial 

Outlet temperature 

profile RMSD 
348.24 10.93 3.64 

Outlet thermal NO (ppm) 8.231 0.07 0.02 

Temporal 

Time-averaged 

outlet temperature (K) 
1531.44 7.94 2.65 

Time-averaged 

outlet NO (ppm) 
9.837 0.07 0.02 

 

The estimated mean, obtained by Equation 6.6, varies with sample size N. In such a case 

it is important to estimate the accuracy of the sample or estimated mean (M). This is 

traditionally given by the estimated standard error (SE). Table 6.1 shows the relevant 

statistical estimates for all objective function data evaluated in this chapter. Figure 6.38 

shows a representative variation in the estimated mean performance of the Kriging 

strategy for each objective function, over the optimisation cycle with increasing number 

of samples. 
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(a) Spatial domain outlet temperature 
 

 

(b) Spatial domain outlet NO 
 

 
 

 
(c) Temporal domain outlet temperature 

 

 
 

 
(d) Temporal domain outlet NO 

 

 
 

Fig. 6.38 Representative variation in estimated mean (M) due to increased number of 
samples (n = 3,6 and 9) in the estimation 

 

If the sample size is large and the data is normally distributed around the estimated 

mean (M), then the standard confidence interval (CI) is (Efron and Tibshirani, 1993) 

 

 

[M -  (   ) . SE, M -  ( ) . SE] Eq. (6.7a) 

 

 

where  ( ) is the 100 * α (significance level) percentile point of a normal distribution 

and  
 

 

Confidence level = 100. (1-2α)% 

 
Eq. (6.7b) 

According to the standard normal table (Efron and Tibshirani, 1993), for 95% 

confidence level,  (     )         and  (     )        . 
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Thus, 95% standard confidence interval (CI) for a normal distribution data is given by 

[M – 1.964. SE, M – 1.964. SE] 

 

The use of Equation 6.6 is valid if the sample size is large enough and normally 

distributed. In this study (section 6.5), the sample size (N) is 9, which may or may not be 

large enough. More samples can be added to the data to increase the accuracy of 

estimation of the mean. Also, as the sample size grows the data becomes more normally 

distributed around the mean. However, adding more samples is expensive as the 

computation time of the entire design optimisation cycle is high.  

 

Hence, to reduce the uncertainty associated with the accuracy of the estimated mean 

without adding more samples, the confidence level can be assessed using a bootstrap 

methodology. 

 
6.6.1 Bootstrapping methodology – an overview 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.39 Schematic of a bootstrap method for estimating bootstrap mean 

 

Bootstrapping, originally invented by Efron (1979), is a way of using the current sample 

or experiment data to simulate what the result might be if the experiment was repeated 

over and over with new samples. It belongs to the general class of resampling methods. 

X = (x1, x2, x3 …xN) 

X’1 X’2 X’B 

M’(X’1) M’(X’2) M’(X’B) 

Original dataset 
(X) with 

estimated mean 
M(X) 

Bootstrap 
samples (B) 

Bootstrap 
mean of each  
sample M’ (X’B) 
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The core idea of bootstrapping is random sampling-with-replacement from current 

sample. Figure 6.39 shows the idea behind the bootstrapping method.  

 

Given an initial data set X of independent points x1, x2, x3 …xN, bootstrap samples B can 

be drawn at random-with-replacement, each a sample of size N, from N actual 

observations. For each bootstrap sample B, a bootstrap mean M’ is computed. Using 

these bootstrap replications of mean, true population confidence intervals can be 

estimated using different bootstrap CI methods as detailed in Efron and Tibshirani 

(1993) e.g. bootstrap-t, percentile, BCa etc. 

 

Bootstrap confidence intervals are computed in MATLAB version R2010a, which 

consists of an inbuilt bootstrap confidence interval routine which uses BCa bootstrap CI 

strategy. 

 

BCa bootstrap stands for Bias-Corrected-and-accelerated bootstrap method. Derivation 

and more details of this method are given in Efron and Tibshirani (1979). The main 

reason to prefer this method is its suitability for small sample size data sets. Also, if the 

bootstrap distribution of sample mean is skewed and not consistent with normal 

distribution theory, other CI methods are very likely to be inaccurate whereas the BCa 

bootstrap CI method adjusts for this skewness (Efron and Tibshirani, 1993). 

 

 

6.6.2 Bootstrapped confidence interval for Kriging based strategy 

 

As the number of bootstrap samples B increases the accuracy of bootstrap computation 

also increases. Also the time required for this increased computation is much less than 

computing actual number of increased samples N. 

 

The bootstrap sample size B for computing bootstrapped confidence interval (CI) is 

obtained from a convergence test. (Refer Appendix D for the results of convergence test 

for each objective function in spatial and temporal domain). 

 

 

6.6.2.1 Spatial domain 
 
Figures 6.40 and 6.41 shows the 95% CI on the estimated mean M and the original 

sample data points (N = 9) for steady outlet temperature profile RMSD and thermal NO 

respectively. 

 
Using bootstrap CI routine in MATLAB and B = 5000, the 95% confidence interval for 

steady outlet temperature RMSD is [342.52, 356.15] whereas with B = 1000, the 95% 

confidence interval for steady outlet thermal NO is [8.19, 8.28]. 
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Fig. 6.40 Estimated mean with 95% confidence interval and original sample data points 
for steady outlet temperature profile RMSD 

 
 

 
 

Fig. 6.41 Estimated mean with 95% bootstrapped confidence intervals and original 

sample data points for steady outlet thermal NO (ppm)  
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6.6.2.2 Temporal domain 
 

 
 

Fig. 6.42 Estimated mean with 95% confidence interval and original sample data points 

for time-averaged (area-weighted) outlet temperature (K) 

 

 

 
Fig. 6.43 Estimated mean with 95% confidence interval and original sample data 

points for time-averaged (area-weighted) outlet thermal NO (ppm) 
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Figures 6.42 and 6.43 shows the 95% CI on the estimated mean M and the original 

sample data points (N = 9) for time-averaged outlet temperature and thermal NO 

respectively. 

 
Using bootstrap CI routine in MATLAB and B = 10000, the 95% confidence interval for 

time averaged outlet temperature is [1528, 1539] whereas with B = 5000, the 95% 

confidence interval for time-averaged outlet thermal NO is [9.80, 9.88]. 

 
 

6.7 Summary 
 
A Kriging based design optimisation strategy was used to optimize the shape of a flame-

stabilizer step in both spatial and temporal domains, using outlet temperature and NOx 

as the objective functions. The Kriging design strategy optimisation cycle was repeated 

on 9 different initial samples, which showed how the convergence search history varies, 

leading to different optimum designs. However, the statistics of interest is the mean 

performance of the strategy over all the samples. Since the sample size was small, and 

the mean is only an estimate of the true mean, a confidence assessment was performed 

on the Kriging design strategy results.  

 

For this purpose, a bootstrap sampling methodology was used to simulate what the true 

mean might be if the design strategy was repeated over large number of times. Using 

the bootstrap mean distribution, confidence intervals for all four objective functions 

were derived. This is summarized in Table 6.2.  

 

Table 6.2 Summary of 95% confidence intervals for Kriging strategy in spatial 
and temporal domains 

Domain Objective function 
Sample mean 

(N = 9) 

95% confidence interval 

Lower limit Upper limit 

Spatial 

Outlet temperature 
profile RMSD 

348.24 342.52 356.15 

Outlet thermal NO 
(ppm) 

8.230 8.19 8.28 

Temporal 

Time-averaged area-
weighted outlet 
temperature (K) 

1531.44 1528 1539 

Time-averaged area-
weighted outlet 
thermal NO ppm 

9.837 9.80 9.88 
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In the next chapter, the Kriging strategy confidence intervals form the basis for 

performance comparison against the newly developed co-Kriging based multi-fidelity 

design strategies, both in spatial and temporal domains. 
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Chapter 7 

 
Co-Kriging based multi-fidelity 
strategy for combustor design 

 
 

7.1 Introduction 
 

In this chapter, various multi-fidelity strategies employing a co-Kriging surrogate 

modeling technique are developed and applied for combustor design in both spatial and 

temporal domains. In the spatial domain, outlet temperature profile RMSD and thermal 

NO are used as the objective functions whereas in the temporal domain, time averaged 

outlet thermal NO (ppm) is used as the objective function. The multi-fidelity strategies 

consist of two levels of fidelity, a fast but approximate low-fidelity (lo-fi) and an 

expensive but accurate high-fidelity (hi-fi) combustor solution, which are then used to 

construct a co-Kriging model. Various low-fidelity models are developed and tested in 

different combinations with a fixed high-fidelity model leading to the formation of 

CoTGL strategy in the spatial domain and CoSUS, CoTUS and CoSTUS strategies in the 

temporal domain. All strategies are run within fixed computational budgets and on 

multiple initial samples, to collect statistical data with mean convergence behaviour 

used as a performance indicator. A confidence assessment of the newly developed 

strategies is also performed and compared against the traditional Kriging based design 

strategy to identify potential benefits. 

 
 
7.2 Co-Kriging based design optimisation strategy 
 
Co-Kriging is essentially an extension of the original Kriging methodology (c.f. Section 

2.5), and consists of correlating multiple sets of data. CFD simulations can be run at 

different levels of complexity, e.g. using two different levels of mesh resolution, such 

that there is a relatively accurate but slow analysis along with a fast but inaccurate 

analysis. 
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Parametric geometry 

DOE (N Points) 

Point 1 
CFD  
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Point 2 
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CFD  
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CFD  
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of CFD 
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Build Co-Kriging 
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surface for update points 
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surface 
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CFD  
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CFD  
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CFD  
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Upd. 1 
CFD  

analysis 

Upd. 2 
CFD  
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Convergence 
or budget 

limit?  
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Fig. 7.1 Co-Kriging based multi-fidelity design optimisation strategy 
employing a DOE sampling plan and update points  

Lo-fi data Hi-fi data 

Lo-fi data Hi-fi data 

(N =Nc + NE) 

(U =Uc + UE) 
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However, in the context of design optimisation, these fast approximations, though 

somewhat inaccurate, may well include important flow-field features and can be used 

for design search investigation.  To improve the efficiency of high-fidelity surrogate 

based design optimisation systems (c.f. Figure 6.1), a greater quantity of fast (or cheap) 

analyses can be used in combination with a smaller number of expensive accurate 

analyses, in a multi-fidelity co-Kriging methodology, to enhance the accuracy of the 

high-fidelity function surrogate model at a lower computational cost. 

 

Figure 7.1 shows a co-Kriging response surface model based design optimisation 

strategy with NC (cheap) and NE (expensive) DOE points and UC (cheap) and UE 

(expensive) update points per update cycle, where NC > NE and UC > UE.  NE DOE points 

and UE updates are the subsets of NC and UC respectively. Starting with an initial set of 

NC and NE DOE points, a combined database of objective function values is constructed. 

Based on these observations, a co-Kriging response surface model is built†. Further, to 

increase the accuracy of the co-Kriging response surface model, update points are 

selected at either or all locations of the co-Kriging (a) best prediction, (b) maximum 

prediction error and (c) maximum expected improvement. Also, the update points UC 

and UE are evaluated in parallel and the co-Kriging RSM is re-built and searched for 

optimal designs. This process is iterated until response surface model convergence or 

the end of a given computational budget. 

 
7.2.1 Spatial domain – Co-Kriging using two different grid levels (CoTGL) 
 

For co-Kriging in the spatial domain, two different levels of grid (or spatial) resolutions 

are used. The fine grid resolution is used as the expensive high-fidelity model and the 

coarse grid resolution is used as the cheap low-fidelity model. In order to apply co-

Kriging based design optimisation strategy for two different grid levels (CoTGL), the 

computational cost ratio between the cheap low-fidelity (C) and expensive high-fidelity 

model (E) is used as the basis for determining the total number of CFD evaluations.  

 

Table 7.1 Relative budget of Kriging and CoTGL strategies for spatial domain 

outlet temperature profile RMSD and thermal NO optimisation 

Strategy 

Given budget for 

high-fidelity CFD 

runs  

Total no. of high-

fidelity CFD runs 

performed 

Cost ratio 

Total no. of low-

fidelity CFD 

runs performed 

Kriging 10 10 - - 

CoTGL 10 7 E ≈ 10C 30 

 

Table 7.1 shows the details of the CoTGL strategy budget relative to the standard 

Kriging strategy (applied in Chapter 6) for design optimisation in the spatial domain. 

 
7.2.2 Temporal domain 

† See Appendix E 
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For co-Kriging in the temporal domain, various low-fidelity models in combination with 

a fixed high-fidelity model are used, leading to multiple co-Kriging based design 

strategies. These are detailed as follows: 

 

7.2.2.1 CoSUS: Co-Kriging using steady and unsteady RANS simulations: For CoSUS, 

a low-fidelity model using steady RANS simulations and a high-fidelity model using 

URANS with Δt = 1e-05s is used. The spatial grid resolution is fixed for both fidelities. 

 

7.2.2.2 CoTUS: Co-Kriging using different time-step sizes of unsteady RANS 

simulations: For strategy CoTUS, coarse and fine time-step sizes URANS simulations 

are used as low and high fidelity models respectively, with the same spatial grid 

resolutions. Two different low-fidelity models are assessed in combination with a fixed 

high-fidelity model. The two different combinations are: 
 

[a] lo-fi model: URANS with Δt = 5e-05s and hi-fi model: URANS with Δt = 1e-05s 

[b] lo-fi model: URANS with Δt = 2e-05s and hi-fi model: URANS with Δt = 1e-05s 

 

7.2.2.3 CoSTUS: Co-Kriging using varying spatio-temporal unsteady RANS 

simulations: In strategy CoSTUS, a coarse spatial and temporal grid URANS simulation 

is used as the low-fidelity model. The high-fidelity model is the fine spatial and temporal 

grid URANS simulation. The different grid sizes are chosen from Table 5.2. 
 

 lo-fi model: URANS with Δt = 1e-04s and grid size of ~11000 cells (mesh 1) 

 hi-fi model: URANS with Δt = 1e-05s and grid size of ~180000 cells (mesh 3) 

 

Table 7.2 shows the details of the computational budget for these co-Kriging design 

strategies in the temporal domain relative to the standard Kriging strategy (applied in 

Chapter 6) for the time-averaged outlet thermal NO objective function. 

 

 Table 7.2 Relative budget of Kriging and  various multi-fidelity strategies 
for time-averaged outlet thermal NO optimisation 

 

Method 

Given 
budget for 

high-
fidelity CFD 

runs 

Total no. of 
high-fidelity 

CFD runs 
performed 

Cost ratio 

Total no. of 
low-fidelity 

CFD runs 
performed 

 Kriging 10 10 - - 

(1) CoSUS 10 7 E ≈ 5C 15 

(2) CoTUS – (a) 10 7 E ≈ 4C 12 

(3) CoTUS – (b) 10 7 E ≈ 2C 6 

(4) CoSTUS 10 7 E ≈ 18C 54 
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7.2.3 DOE and update points strategy 

 
 

 

 
Fig. 7.2 CoTGL strategy sample 

 

 
 

 

         Fig. 7.3 CoSUS strategy sample 

 

  
 

Fig. 7.4 CoTUS-(a) strategy sample 
 

 
 
 

 Fig. 7.5 CoTUS-(b) strategy sample 

 
 

 Fig. 7.6 CoSTUS strategy sample 
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To initialize each design study, DOE sample points are generated using an optimal Latin-

Hypercube sampling (LHS) method. As shown in Table 7.2, the total number of high-

fidelity CFD runs over the optimisation cycle is limited to seven for all co-Kriging 

strategies. The remaining three high-fidelity runs are replaced by equivalent number of 

low-fidelity runs, as determined by the cost ratio between the low and high fidelity 

model for each co-Kriging strategy.  

 

Table 7.3 High and low fidelity CFD runs budget distribution for different co-

Kriging design strategies over DOE and update cycle stage 

[Note: Ne and Ue in bold, Nc and Uc in brackets, EI: expected improvement update, 

BP: best predicted update, ER: maximum error update] 

 

Method DOE 
Update 

cycle 1 

Update  

cycle 2 

Update  

cycle 3 

 Kriging 4 2 2 2 

(1) CoTGL 4(15) 
1(5) 

(1 EI, 2 BP, 2 ER) 

1(5) 

(1 EI, 2 BP, 2 ER) 

1(5) 

(1 EI, 2 BP, 2 ER) 

(2) CoSUS 4 (9) 
1(2) 

(1 EI, 1 BP) 

1(2) 

(1 EI, 1BP) 

1(2) 

(1 EI, 1BP) 

(3) CoTUS – (a) 4(6) 
1(2) 

(1 EI, 1 BP) 

1(2) 

(1 EI, 1 BP) 

1(2) 

(1 EI, 1 BP) 

(4) CoTUS – (b) 3(5) 
1(1) 

(1 EI) 

1(1) 

(1 EI) 

1(1) 

(1 EI) 

(5) CoSTUS 4(18) 
1(12) 

(1 EI, 5 BP, 6 ER) 

1(12) 

(1 EI, 5 BP, 6 ER) 

1(12) 

(1 EI, 5 BP, 6 ER) 

 

Table 7.3 shows the distribution of total number of high and low fidelity CFD runs over 

four stages (DOE and three update cycles) for each co-Kriging design strategy. Four high 

fidelity CFD runs are evaluated at the DOE stage, except for the CoTUS-(b) strategy 

which consists of three high-fidelity CFD runs. In parallel to these high-fidelity CFD runs, 

several low-fidelity runs are evaluated (c. f. Table 7.3). Figures 7.2 to 7.6 show the 

representative DOE samples generated for design strategy CoTGL in spatial domain and 

strategies CoSUS, CoTUS-(a) and (b) and CoSTUS in temporal domain. Nine such DOE 

samples for each strategy are generated†. Low-fidelity data is evaluated at all DOE 

points, whereas the sampling points where high-fidelity data is evaluated are a subset of 

the full DOE and shown in red. Table 7.3 also gives the details of the update points 

generated per update cycle. The high fidelity CFD run, per update cycle, is only run at 

the expected improvement update point. 

† See Appendix E for all nine initial samples for each strategy in Table 7.3 
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7.3 Results and discussions 
 
To test the effectiveness of strategies based on co-Kriging response surface model, 

initially, strategy CoTGL is applied for combustor design optimisation in the spatial 

domain for outlet temperature profile RMSD and thermal NO. 

 

Later, strategies CoSUS, CoTUS and CoSTUS are applied to design the combustor in the 

temporal domain for time-averaged outlet thermal NO. All strategies are applied using a 

fixed computational budget for low and high fidelity models as listed in Table 7.3. Each 

strategy is repeated nine times with different initial DOE samples. The results obtained 

using these multi-fidelity design strategies is also compared against the standard 

Kriging based design strategy (applied in Chapter 6) to assess their performance. 

 
 
7.3.1 Co-Kriging based design optimisation in spatial domain using two different 
grid levels (CoTGL) 
 
 
7.3.1.1 Outlet temperature profile RMSD 

 
Figure 7.7 shows the steady outlet temperature RMSD optimisation search histories for 

CoTGL design strategies, using nine different DOE samples, over a fixed computational 

budget of seven high-fidelity and thirty low-fidelity CFD runs (c.f. Table 7.1). It also 

shows the mean performance of all the search histories. The DOE evaluation consists of 

four high-fidelity and fifteen low-fidelity CFD runs. Further, the three update cycles 

consists of three high-fidelity and fifteen low-fidelity CFD runs in total (c.f. Table 7.3). 

Similar to the Kriging strategy optimisation histories (c.f. Figure 6.26), the different 

initial samples lead to different information being available at the DOE stage leading to 

variations in altered CoTGL model convergence behaviour. Hence, each optimisation 

cycle leads to a different optimal design. Figure 7.7 also shows the variation in the 

search histories at the end of the optimisation budget. 

 

Figure 7.8 shows the comparison between the mean of optimisation search histories of 

Kriging and CoTGL strategies for steady outlet temperature profile RMSD. The CoTGL 

strategy mean performance is as good as Kriging strategy mean by the end of the fixed 

computational budget. However, after the DOE stage (four high-fidelity CFD runs), the 

CoTGL strategy mean is below the Kriging strategy mean, thus demonstrating the 

potential of the CoTGL strategy to find a good design earlier in the design process. 

 
Figure 7.9 shows the comparison between response surfaces of CoTGL and Kriging 

strategies, for their respective experiments containing the best optimal designs, after 

both DOE stage and end of the optimisation cycle stage. The ranking of the DOE samples 

based on the final outlet temperature RMSD values is listed in Appendix E. 
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Fig. 7.7 Steady outlet temperature profile RMSD optimisation search histories† using 

CoTGL over a fixed computational budget (c.f. Table 7.3)  

 

 
 

Fig. 7.8 Comparison between mean optimisation search histories of Kriging and CoTGL 

strategies for steady outlet temperature profile RMSD 

  

† The X-axis, here and in subsequent co-Kriging based strategies, represents the number of equivalent 

high- fidelity runs, which is seven high-fidelity plus other low-fidelity runs. 

Variation 
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CoTGL response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

 
Kriging response surface consisting of best optimal design 
(3) After DOE 

 

(4) After DOE + Updates 

 
 

Fig. 7.9 Comparison between CoTGL and Kriging response surfaces consisting of their 
respective best optimal designs for steady outlet temperature profile RMSD 

 

 

 

 CoTGL model correlation  
(r2 = 0.9381) 

 
 

Kriging model correlation 
(r2 = 0.8006) 

 

Fig. 7.10 Comparison between CoTGL and Kriging RSM (after DOE + Updates) 
correlation with 10x10 CFD data for steady outlet temperature profile RMSD 

 

  

Y Theta 
Y Theta 

Y Theta Y Theta 
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In comparison to the shape of the response surface captured using 10x10 grid CFD 

evaluations (c.f. Figure 6.10), the CoTGL response surfaces, both after DOE [Figure 

7.9(1)] and updates [Figure 7.9(2)] appears more globally accurate, compared to the 

Kriging response surfaces in Figures 7.9(3) and 7.9(4) respectively. This is because of 

the availability of a greater quantity of information from the low-fidelity model in 

CoTGL, which enhances the accuracy of the global response surface. 

 

Figure 7.10 shows the comparison between the correlation of CoTGL and Kriging RSM 

predictions (at the end of the computational budget) relative to the 10x10 CFD data. As 

per the scatterplots of Figure 7.10, the CoTGL RSM prediction is more linearly related to 

the 10x10 CFD data compared to Kriging RSM prediction. The CoTGL model has 

r2=0.938 which is higher than Kriging model r2=0.8. The value of r2, known as co-

efficient of determination, represents a measure of how good the models predictive 

capabilities are. This quantitatively shows that the CoTGL response surface model is 

more globally accurate.  

 

Table 7.4 Comparison between the best optimal designs found by Kriging and 

CoTGL strategies for steady outlet temperature profile RMSD 

 Y Θ 

Outlet temperature profile 

RMSD 

Kriging 0.600 1 338.08 

CoTGL 0.638 1 338.22 

 
Table 7.4 shows the comparison between the best optimal designs obtained by Kriging 

and CoTGL strategies within the fixed computational budget. The lowest RMSD value 

design configuration is found by the Kriging strategy. 

 

7.3.1.2 Outlet thermal NO (ppm) 
 
Figure 7.11 shows the steady outlet thermal NO optimisation search histories for CoTGL 

design strategies along with the mean performance of all the search histories using nine 

different DOE samples; over a fixed computational budget of seven high-fidelity and 

thirty low-fidelity CFD runs (c.f. Table 7.1). Similar to the observations for the CoTGL 

strategy for steady outlet temperature RMSD, the different initial samples cause 

variations in CoTGL model convergence due to different information being available at 

the DOE stage. Hence, different optimal designs are obtained at the end of each 

optimisation cycle. Figure 7.11 also shows the variation in the convergence across the 

different experiments at the end of the budget. 
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Fig. 7.11 Steady outlet thermal NO optimisation search histories using CoTGL over a 

fixed computational budget (c.f. Table 7.3)  

 

 

 
 

Fig. 7.12 Comparison between mean optimisation search histories of Kriging and CoTGL 

strategies for steady outlet thermal NO 

 

 

Variation 
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CoTGL response surface consisting of best optimal design 
(1) After DOE 

 
 
 

(2) After DOE + Updates 

 
 

 
Kriging response surface consisting of best optimal design 
(3) After DOE 

 

(4) After DOE + Updates 

 
 

Fig. 7.13 Comparison between CoTGL and Kriging response surfaces consisting of their 
respective best optimal designs for steady outlet thermal NO (ppm) 

 

 

 

CoTGL model correlation 
(r2 = 0.2789) 

 
 

Kriging model correlation 
(r2 = 0.8785) 

 

Fig. 7.14a Comparison between correlations of CoTGL and Kriging RSM (after DOE + 
Updates) predictions with 10x10 CFD data for steady outlet thermal NO (ppm) 
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Table 7.5 Comparison between the best optimal designs found by Kriging and 
CoTGL strategies for steady outlet thermal NO  

 Y Θ Outlet thermal NO (ppm) 

Kriging 0.933 0.446 8.159 

CoTGL 0.913 0.529 8.164 

 

Figure 7.12 shows the comparison between the mean of optimisation search histories of 

Kriging and CoTGL strategies for steady outlet thermal NO.  The CoTGL strategy does 

not perform better than the Kriging strategy in terms of mean convergence at the end of 

the fixed computational budget. However, similar to CoTGL mean for outlet temperature 

profile RMSD, the CoTGL mean for outlet thermal NO is below the Kriging mean after 

the DOE stage, thus indicating again the CoTGL strategy’s ability to find a good design 

earlier in the design process. 

 

Figure 7.13 shows the comparison 

between response surfaces of CoTGL† 

and Kriging strategies containing best 

optimal designs for steady outlet 

thermal NO. In comparison to the 

shape of the response surface captured 

using 10x10 grid CFD evaluations (c.f. 

Figure 6.14), the shape of the CoTGL 

response surfaces after DOE [Figure 

7.13(1)] and updates [Figure 7.13(2)] 

appear more globally accurate, 

compared to the Kriging response 

surfaces [Figure 7.13(3) and (4)] due 

to the availability of a greater quantity 

of information from the low-fidelity 

model. 

 

 

Fig. 7.14b Low-fidelity model of the CoTGL 

response surface after DOE + Updates 

 

However, the CoTGL response surface at the end of the optimisation cycle [Figure 

7.13(2)] appears more distorted due to presence of noise in the low-fidelity model as 

shown in Figure 7.14b. This noise is regressed in the co-Kriging prediction. Figure 7.14a 

shows the comparison between the correlation of CoTGL and Kriging RSM predictions 

(at the end of the computational budget) with 10x10 CFD data. As per the scatterplots of 

Figure 7.14, the relationship between CoTGL RSM prediction and 10x10 CFD data for 

outlet thermal NO is more non-linear as compared to the relation between Kriging RSM 

prediction and 10x10 CFD data. The CoTGL model has r2=0.278 which is much lower 

than the Kriging model (r2=0.878). Even though visually, the shape of the CoTGL RSM 

appears more accurate, the presence of noise in the prediction again lowers the 

† See Appendix E for ranking of CoTGL samples  

Y Theta 
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correlation. Table 7.5 shows the comparison between the best optimal designs obtained 

by Kriging and CoTGL strategies for outlet thermal NO within fixed computational 

budget. The best design configuration with lowest thermal NO value is found by Kriging 

strategy. 
 

 

7.3.2 Co-Kriging based design optimisation in temporal domain for time-averaged 
area-weighted outlet thermal NO (ppm) 
 
After the investigation of co-Kriging based design strategies in the spatial domain using 

steady RANS, combustor design optimisation in temporal domain using various co-

Kriging based design strategies - CoSUS, CoTUS and CoSTUS is investigated in this 

section and compared against traditional Kriging based design strategy within a fixed 

computational budget (c.f. Table 7.2) for time-averaged outlet thermal NO. 

 

7.3.2.1 Using steady and unsteady RANS simulation (CoSUS) 

 

Figure 7.15 shows the time-averaged area-weighted outlet thermal NO optimisation 

search histories along with the mean performance of all the search histories using nine 

different DOE samples; over a fixed computational budget of seven high-fidelity and 

fifteen low-fidelity CFD runs (c.f. Table 7.2). As shown in Figure 7.15, the variation in 

convergence behaviour of search histories at the end of the optimisation cycle is higher 

compared to the variation in the CoTGL strategy for outlet thermal NO (c.f. Figure 7.11). 

 

Figure 7.16 shows the comparison between the mean of optimisation search histories of 

Kriging and CoSUS strategies for time-averaged area-weighted outlet thermal NO. The 

CoSUS strategy does not perform better than Kriging strategy in terms of the mean 

convergence at the end of the fixed computational budget. However, the mean of CoSUS 

strategy is below the Kriging strategy mean after the DOE stage, thus establishing that 

strategy CoSUS is able to find a good design earlier in the design process. 

 

Figure 7.17 shows the comparison between the response surfaces of CoSUS† and Kriging 

strategies containing best optimal designs for time-averaged outlet thermal NO. In 

comparison to the shape of the response surface captured using 10x10 grid CFD 

evaluations (c.f. Figure 6.22), the CoSUS strategy captures the correct shape of the 

response surface after the DOE stage [Figure 7.17(1)] compared to the Kriging response 

surface [Figure 7.17(3)]. However, at the end of the optimisation cycle, the Kriging 

response surface [Figure 7.17(4)] appears more accurate as compared to CoSUS 

strategy response surface [Figure 7.17(2)]. This is established quantitatively in Figure 

7.18 which shows the comparison between the correlation of CoSUS and Kriging RSM 

predictions with 10x10 CFD data. As per the scatterplots of Figure 7.18, the correlation 

between CoSUS RSM prediction and 10x10 CFD data varies less linearly as compared to 

correlation between Kriging RSM prediction and 10x10 CFD data. The CoSUS model has 

r2=0.7389 which is lower than Kriging model (r2=0.8855).  

† See Appendix E for ranking of CoSUS samples 
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Fig. 7.15 Time-averaged area-weighted outlet thermal NO optimisation search histories 

using CoSUS over a fixed computational budget (c.f. Table 7.3)  
  

 

 
Fig. 7.16 Comparison between mean optimisation search histories of Kriging and CoSUS 

strategies for time-averaged area-weighted outlet thermal NO 

 
 

Variation 



Chapter 7 Co-Kriging based multi-fidelity strategy for combustor design 
 

 132 

 

 
 

CoSUS response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

Kriging response surface consisting of best optimal design 

(3) After DOE 

 

(4) After DOE + Updates 

 
Fig. 7.17 Comparison between CoSUS and Kriging response surfaces consisting of their 

respective best optimal designs for time-averaged area-weighted  
outlet thermal NO (ppm) 

 

 

 

CoSUS model correlation 
(r2 = 0.7389) 

 

Kriging model correlation 
(r2 = 0.8855) 

 
Fig. 7.18 Comparison between correlations of CoSUS and Kriging RSM (after DOE + 

Updates) predictions with 10x10 CFD data for time-averaged area-weighted  
outlet thermal NO(ppm) 
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Table 7.6 Comparison between the best optimal designs amongst all 

experiments found by Kriging and CoSUS strategies for time-averaged outlet 

thermal NO  

 Y Θ 

Time-averaged area-weighted 

outlet thermal NO (ppm) 

Kriging 0 0.660 9.778 

CoSUS 0 0.662 9.778 

 

Table 7.6 shows the comparison between the best optimal designs obtained by Kriging 

and CoSUS strategies for time-averaged outlet thermal NO within fixed computational 

budget. CoSUS strategy finds similar best optimal design as Kriging strategy. 

 

 

7.3.2.2 Using different time-step sizes of unsteady RANS simulations  

 

 

(i) CoTUS-(a) 

  

In CoTUS-(a) strategy the low-fidelity model is URANS with Δt = 5e-05s. 
 

Figure 7.19 shows CoTUS-(a) strategy optimisation search histories and the mean of all 

the search histories using nine different DOE samples (c.f. Figure 7.4); over a fixed 

computational budget of seven high-fidelity and twelve low-fidelity CFD runs (c.f. Table 

7.2). 

 

Similar to the observation in CoSUS strategy search histories, CoTUS-(a) strategy 

progresses towards different optimal designs due to different starting samples. 

However, the variation in convergence of CoTUS-(a) optimisation search histories is 

higher compared to the variation observed in the CoSUS strategy (c.f. Figure 7.15). 

 
Figure 7.20 shows the comparison between the mean of optimisation search histories of 

Kriging and CoTUS-(a) strategies for time-averaged area-weighted outlet thermal NO 

(ppm). Again, the CoTUS-(a) strategy does not perform any better than Kriging strategy 

in terms of the mean convergence at the end of the fixed computational budget. Also, in 

contrast to CoSUS strategy, the mean of CoTUS-(a) strategy is above the Kriging strategy 

mean after the DOE stage and throughout till the end. This shows that CoTUS-(a) 

strategy fails to improve on the Kriging design process completely. 
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Fig. 7.19 Time-averaged area-weighted outlet thermal NO optimisation search histories 

using CoTUS-(a) over a fixed computational budget (c.f. Table 7.3)  

 
 

 
Fig. 7.20 Comparison between mean optimisation search histories of Kriging and 

CoTUS-(a) strategies for time-averaged area-weighted outlet thermal NO 

 

Variation 
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CoTUS-(a) response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

Kriging response surface consisting of worst optimal design 
(3) After DOE 

 

(4) After DOE + Updates 

 
Fig. 7.21 Comparison between CoTUS-(a) and Kriging response surfaces consisting of 

their respective best optimal designs for time-averaged area-weighted  
outlet thermal NO 

 

 

CoTUS-(a) model correlation 
(r2 = 0.7723) 

 

Kriging model correlation 
(r2 = 0.8855) 

 
 

Fig. 7.22 Comparison between correlations of CoTUS-(a) and Kriging RSM (after DOE + 
Updates) predictions with 10x10 CFD data for time-averaged area-weighted  

outlet thermal NO 
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Figure 7.21 shows the comparison between the response surfaces of CoTUS-(a)† and 

Kriging strategies containing best optimal designs for time-averaged outlet thermal NO 

(ppm). In comparison to the shape of the response surface captured using 10x10 grid 

CFD evaluations (c.f. Figure 6.22), the CoTUS-(a) strategy fails to capture the correct 

shape of the response surface after the DOE or at the end of optimisation cycle stage 

[Figure 7.17(1) and (2) respectively] compared to the Kriging response surfaces.  

 

Figure 7.22 shows the comparison between the correlation of CoTUS-(a) and Kriging 

RSM predictions with 10x10 CFD data. Similar to the observation in CoSUS RSM 

correlation, the scatterplots show that the correlation between CoTUS-(a) RSM 

prediction and 10x10 CFD data varies less linearly as compared to correlation between 

Kriging RSM prediction and 10x10 CFD data. However, the CoTUS-(a) model has 

r2=0.7723 (which is higher than CoSUS RSM r2 =0.7389) but lower than Kriging model 

(r2=0.8855).  

 

Table 7.7 Comparison between the best optimal designs amongst all                                          

experiments found by Kriging and CoTUS-(a) strategies for time-averaged outlet 

thermal NO 

 Y Θ 

Time-averaged area-weighted 

outlet thermal NO (ppm) 

Kriging 0 0.660 9.778 

CoTUS-(a) 0 0.656 9.778 

 
Table 7.7 shows the comparison between the best optimal designs obtained by Kriging 

and CoTUS-(a) strategies for time-averaged outlet thermal NO (ppm) within fixed 

computational budget. Again, CoTUS-(a) strategy finds similar best optimal design as 

Kriging strategy. 

 

(ii) CoTUS-(b) 

 
In CoTUS-(b) strategy the low-fidelity model is URANS with Δt = 2e-05s. Figure 7.23 

shows the CoTUS-(b) optimisation search histories and the mean of all the search 

histories using nine different DOE samples; over a fixed computational budget of seven 

high-fidelity and six low-fidelity CFD runs (c.f. Table 7.2).  Similar to the observation in 

CoTUS-(a) strategy search histories, CoTUS-(b) strategy also progresses towards 

different optimal designs due to different starting samples. However, the variation in 

convergence of CoTUS-(b) optimisation search histories is higher compared to the 

variation observed in the CoSUS and CoTUS-(a) strategies (c.f. Figures 7.15 and 7.19 

respectively).  

† See Appendix E for ranking of CoTUS-(a) samples 
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Fig. 7.23 Time-averaged area-weighted outlet thermal NO optimisation search histories 

using CoTUS-(b) over a fixed computational budget (c.f. Table 7.3)   

 
 

 
Fig. 7.24 Comparison between mean optimisation search histories of Kriging and 

CoTUS-(b) strategies for time-averaged area-weighted outlet thermal NO 

 

 

Variation 
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CoTUS-(b) response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

Kriging response surface consisting of best optimal design 
(3) After DOE 

 

(4) After DOE + Updates 

 
Fig. 7.25 Comparison between CoTUS-(b) and Kriging response surfaces consisting of 

their respective best optimal designs for time-averaged area-weighted  
outlet thermal NO 

 

 

 

CoTUS-(b) model correlation 
(r2 = 0.8125) 

 

Kriging model correlation 
(r2 = 0.8855) 

 
 

Fig. 7.26 Comparison between correlations of CoTUS-(b) and Kriging RSM (after DOE + 
Updates) predictions with 10x10 CFD data for time-averaged area-weighted  

outlet thermal NO 
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Figure 7.24 shows the comparison between the mean of optimisation search histories of 

Kriging and CoTUS-(b) strategies. Compared to Kriging strategy, the CoTUS-(b) strategy 

does not perform better as the mean of the CoTUS-(b) strategy is above the mean of the 

Kriging strategy after the DOE stage and the end of the optimisation cycle. This shows 

that similar to CoTUS-(a), CoTUS-(b) strategy also fails to improve on the Kriging design 

process completely. 

 

Figure 7.25 shows the comparison between the response surfaces of CoTUS-(b)† and 

Kriging strategies containing best optimal designs for time-averaged outlet thermal NO 

(ppm). The CoTUS-(b) strategy fails to capture the correct shape of the response surface 

(c.f. Figure 6.22) after the DOE [Figure 7.25(1)] or at the end of optimisation cycle stage 

[Figure 7.25(2)] entirely, compared to the Kriging response surfaces. This is due to less 

number of data points available to build the response surfaces, as the cost ratio between 

low and high fidelity model of CoTUS-(b) strategy is very low. 

 

Figure 7.26 shows the comparison between the correlation of CoTUS-(b) and Kriging 

RSM predictions with 10x10 CFD data. The scatterplots show that the CoTUS-(b) RSM 

prediction have almost no linear correlation with the 10x10 CFD data. However, the 

CoTUS-(b) model has r2=0.8125 (which is higher than CoSUS and CoTUS-(a) RSM r2) but 

lower than Kriging model r2=0.8855. 

 

Table 7.8 Comparison between the best optimal designs amongst all                                          

experiments found by Kriging and CoTUS-(b) strategies for time-averaged outlet 

thermal NO (ppm) 

 Y Θ 

Time-averaged area-weighted 

outlet thermal NO (ppm) 

Kriging 0 0.660 9.778 

CoTUS-(b) 0 0.656 9.778 

 

Table 7.8 shows the comparison between the best optimal designs obtained by Kriging 

and CoTUS-(b) strategies for time-averaged outlet thermal NO (ppm) within fixed 

computational budget. As observed previously in CoTUS-(a), strategy CoTUS-(b) also 

finds similar best optimal design as Kriging strategy. 

 
7.3.2.3 Using different spatio-temporal unsteady RANS simulations (CoSTUS) 

 

Figure 7.27 shows the CoSTUS strategy optimisation search histories with the mean 

performance of all the search histories using nine different DOE samples; over a fixed 

computational budget of seven high-fidelity and fifty-four low-fidelity CFD runs (c.f. 

Table 7.2).  

† See Appendix E for ranking of CoTUS-(b) samples 
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Fig. 7.27 Time-averaged area-weighted outlet thermal NO (ppm) optimisation search 

histories using CoSTUS over a fixed computational budget (c.f. Table 7.3)   

  

 

 
Fig. 7.28 Comparison between mean optimisation search histories of Kriging and 

CoSTUS strategies for time-averaged area-weighted outlet thermal NO (ppm) 

 

Variation 
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CoSTUS response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 

 
Kriging response surface consisting of best optimal design 
(3) After DOE 

 

(4) After DOE + Updates 

 
Fig. 7.29 Comparison between CoSTUS and Kriging response surfaces consisting of their 

respective best optimal designs for time-averaged area-weighted  
outlet thermal NO (ppm) 

 

 

CoSTUS model correlation 
(r2 = 0.7386) 

 

Kriging model correlation 
(r2 = 0.8855) 

 
 

Fig. 7.30 Comparison between correlations of CoSTUS and Kriging RSM (after DOE + 
Updates) predictions with 10x10 CFD data for time-averaged area-weighted  

outlet thermal NO(ppm) 
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Table 7.9 Comparison between the best optimal designs amongst all                                          

experiments found by Kriging and CoSTUS strategies                                                

within fixed computational budget 

 Y Θ 

Time-averaged area-weighted 

outlet thermal NO (ppm) 

Kriging 0 0.660 9.778 

CoSTUS 0 0.656 9.778 

 
The CoSTUS strategy has the highest number of low-fidelity runs amongst all the 

temporal domain co-Kriging strategies. Figure 7.27 also shows the variation in 

convergence behaviour of search histories at the end of the optimisation cycle. 

 

Figure 7.28 shows the comparison between the mean of optimisation search histories of 

Kriging and CoSTUS strategies. The CoSTUS strategy does not perform better than 

Kriging strategy in terms of the mean convergence at the end of the fixed computational 

budget. However, the mean of CoSTUS strategy is below the Kriging strategy mean after 

the DOE stage, thus establishing that strategy CoSTUS (similar to CoSUS) is able to find a 

good design earlier in the design process. 

 

Figure 7.29 shows the comparison between the response surfaces of CoSTUS† and 

Kriging strategies containing best optimal designs for time-averaged outlet thermal NO 

(ppm). In comparison to the shape of the response surface captured using 10x10 grid 

CFD evaluations (c.f. Figure 6.22), the CoSTUS strategy does not capture the correct 

shape of the response surface after the DOE stage [Figure 7.17(1)] or at end of 

optimisation stage [Figure 7.17(2)].  

 

Figure 7.30 shows the comparison between the correlation of CoSTUS and Kriging RSM 

predictions with 10x10 CFD data. The scatterplots show that the CoSTUS RSM 

prediction has a less linear correlation with the 10x10 CFD data compared to 

correlation of Kriging RSM with 10x10 CFD data. However, the CoSTUS model has 

r2=0.7386 which is lower than Kriging model r2=0.8855. Table 7.9 shows the 

comparison between the best optimal designs obtained by Kriging and CoSTUS 

strategies for time-averaged outlet thermal NO (ppm) within fixed computational 

budget. As observed previously in CoSUS, CoTUS-(a) and CoTUS-(b), strategy CoSTUS 

finds the best optimal design similar to Kriging strategy. 

 
 

7.4 Bootstrapped confidence interval for co-Kriging based strategies 

† See Appendix E for ranking of CoSTUS samples 
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The co-Kriging based multi-fidelity design optimisation strategies, both in spatial and 

temporal domains, were applied on nine different DOE samples with mean 

performances shown in Figures 7.7, 7.11, 7.15, 7.19, 7.23 and 7.27. These mean 

performances were compared against the Kriging strategy mean performances in 

Figures 7.8, 7.12, 7.16, 7.20, 7.24 and 7.28. 

 

Table 7.10 summarizes the relevant statistical estimates for steady and time-averaged 

outlet thermal NO (ppm) data evaluated in this chapter, using strategies CoTGL, CoSUS, 

CoTUS and CoSTUS in comparison with the Kriging strategy in spatial and temporal 

domains. 

 

Table 7.10 Relevant statistical estimates for all objective function data 
evaluated using strategies CoTGL, CoSUS, CoTUS and CoSTUS. 

 
Objective 
function 

 Sample mean 
(M) 

Standard 
deviation 

Standard 
error 

S
p

a
ti

a
l 

d
o

m
a

in
 

Temperature 

profile RMSD (K) 

Kriging 348.242 10.9274 3.6424 

CoTGL 351.127 12.4281 4.1427 

NO (ppm) 
Kriging 8.2305 0.0684 0.0228 

CoTGL 8.2851 0.1484 0.0495 

T
e

m
p

o
ra

l 
d

o
m

a
in

 

Time-averaged 

area-weighted NO 

(ppm) 

Kriging 9.8369 0.0653 0.0218 

CoSUS 9.8727 0.1204 0.0401 

CoTUS-(a) 9.9393 0.1941 0.0647 

CoTUS-b 9.9214 0.1671 0.0557 

CoSTUS 9.8965 0.1731 0.0577 

 

As shown in Table 7.10, in the spatial domain, the Kriging strategy performs better than 

the CoTGL strategy in terms of sample mean at the end of the optimisation cycle for 

both objective functions, outlet temperature profile RMSD and thermal NO. The 

standard deviation of the sample data is also less for the Kriging strategy, which shows 

that the sample data points are close to the mean, whereas for the CoTGL strategy the 

variability of data is higher. Hence, the standard error, which is a measure of precision 

of the sample mean, is lower for Kriging strategy compared to the CoTGL strategy. In the 

temporal domain, too, the Kriging strategy has lower sample mean and lower standard 

deviation and error compared to the co-Kriging based strategies CoSUS, CoTUS and 

CoSTUS. 
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Fig. 7.31 Comparison between sample (N = 9) mean performances of Kriging 

 and various Co-Kriging strategies in temporal domain over the given fixed 

computational budget (c.f. Table 7.3) 

 
Figure 7.31 shows the comparison between the estimated mean performance (of nine 

samples) of the Kriging strategy against the CoSUS, CoTUS and CoSTUS strategies over 

the fixed computational budget. Among all the co-Kriging based strategies, strategy 

CoSUS performs the best in terms of estimated mean value at the end of the 

optimisation cycle and also at the end of the DOE stage.  

 

However, the estimated mean is based on a sample size of N = 9. Adding more samples, 

the estimated mean performances (as presented in Table 7.10 and Figure 7.31) could 

change leading to a different conclusion. Since this process is expensive, bootstrap 

based confidence intervals are evaluated giving a range of values where the true mean 

could be located. Based on these intervals, all co-Kriging based design strategies 

developed in this chapter are compared against the standard Kriging based strategy. 

 
7.4.1 Spatial domain 
 
The CoTGL design strategy for outlet temperature profile RMSD and thermal NO in the 

spatial domain is assessed using 95% bootstrapped confidence intervals (CI). A 

convergence test is initially performed for determining the bootstrap sample size B (see 

Appendix E) which is then used to construct 95% bootstrap confidence intervals. 

 

(A) Outlet temperature profile RMSD: 
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Table 7.11 Lower and upper limits of 95% bootstrapped CI for Kriging and 

CoTGL strategies for steady outlet temperature profile (RMSD) 

Strategy B Lower limit (K) Upper limit (K) 

Kriging 5000 342.523 356.150 

CoTGL 10000 344.728 360.341 

 

 

Table 7.11 shows the upper and lower limit values of Kriging and CoTGL strategies 95% 

confidence intervals for steady outlet temperature profile RMSD. Figure 7.32 shows the 

comparison between the 95% confidence intervals on the Kriging and CoTGL means for 

steady outlet temperature profile RMSD.  If the confidence intervals on the two sample 

estimates do not overlap, one can be confident that the true value (or population) of the 

estimate differs significantly, statistically (Cumming et al., 2005). Since, the confidence 

intervals for Kriging and CoTGL strategies in Figure 7.32 overlap considerably, no 

statistically significant difference would be observed on the population mean obtained 

by using Kriging and CoTGL strategies for outlet temperature RMSD.    

 

 
 

Fig. 7.32 Estimated means with 95% CI and original sample data of Kriging and CoTGL 

strategies for steady outlet temperature profile (RMSD) 
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(B) Outlet thermal NO (ppm): 

 
Table 7.12 Lower and upper limits of 95% bootstrapped CI for 

Kriging and CoTGL strategies for steady outlet  

thermal NO (ppm) 

Strategy B 
Lower limit 

(ppm) 

Upper limit  

(ppm) 

Kriging 1000 8.194 8.281 

CoTGL 1000 8.218 8.431 

 

 

Table 7.12 shows the upper and lower limit values of Kriging and CoTGL strategies 95% 

confidence intervals for steady outlet thermal NO. Figure 7.33 shows the comparison 

between the 95% confidence intervals on the Kriging and CoTGL means for steady 

outlet thermal NO.  Similar to steady outlet temperature (RMSD), for outlet thermal NO 

the confidence intervals on Kriging and CoTGL mean do overlap but not considerably. 

Also the lower and upper bounds of the confidence interval for Kriging mean are 

narrower, compared to the CoTGL mean confidence interval. Hence, a statistically 

 
 

Fig. 7.33 Estimated means with 95% CI and original sample data of Kriging and CoTGL 

strategies for steady outlet thermal NO 
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significant difference would be observed on the population mean obtained by using 

Kriging and CoTGL strategies for outlet thermal NO.  

 
 
7.4.2 Temporal domain 
 

Table 7.13 Lower and upper limits of 95% bootstrapped CI for 

various strategies for time-averaged area-weighted outlet thermal 

NO (ppm) 

Strategy B 
Lower limit 

(ppm) 

Upper limit 

(ppm) 

Kriging 
5000 

9.8025 9.8840 

CoSUS 
5000 

9.8158 9.9732 

CoTUS-a 
1000 

9.8472 10.0869 

CoTUS-b 
1000 

9.8391 10.049 

CoSTUS 
10000 

9.8254 10.0784 

 
 

 
 

Fig. 7.34 Estimated means with 95% CI and original sample data of Kriging and 

various co-Kriging based design strategies for time-averaged outlet thermal NO (ppm) 
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Figure 7.34 shows the comparison between the 95% confidence intervals of Kriging and 

various co-Kriging based design strategies for time-averaged outlet thermal NO (ppm) 

with upper and lower bounds of the intervals listed in Table 7.13.  It shows that the 

confidence intervals of Kriging and other co-Kriging based design strategies do overlap. 

However, the lower and upper bounds of the Kriging confidence interval are much 

narrower compared to confidence interval of any other co-Kriging based design 

strategy in temporal domain. Amongst co-Kriging based strategies, the confidence 

interval of CoSUS has the lowest sample mean, lowest variation in sample data and 

narrower upper and lower CI bounds. 

 

 
7.5 Summary 
 
Various co-Kriging based multi-fidelity design optimisation strategies – CoTGL, CoSUS, 

CoTUS and CoSTUS were developed and used to optimize the shape of a flame-stabilizer 

step in both spatial and temporal domains. All co-Kriging based design optimisation 

cycles were repeated on nine different initial samples, which revealed how the 

convergence search history varied, leading to different optimal designs. Later, the 

statistics of interest i.e. mean performance of each co-Kriging based design strategy 

over all the samples were compared against the mean performance of the Kriging based 

design strategy within the fixed computational budget. This showed that strategy CoTGL 

in the spatial domain (for steady outlet temperature profile and thermal NO) and 

strategies CoSUS and CoSTUS in the temporal domain (for time-averaged outlet thermal 

NO) found a good design earlier in the design process, after the DOE stage, compared to 

the standard Kriging strategy. However, the standard Kriging strategy outperforms all 

proposed co-Kriging based multi-fidelity strategies at the end of the optimisation cycle.  

 

Since the sample size is small (N = 9), and the mean is only an estimate of the true mean, 

a confidence assessment was performed on all the co-Kriging based multi-fidelity 

strategies, in spatial and temporal domain, at the end of the optimisation cycle. This was 

compared against the confidence intervals of the Kriging strategy. It was observed that 

in the spatial domain, the confidence interval of CoTGL strategy overlaps considerably 

with the Kriging strategy for outlet temperature profile RMSD objective function 

whereas, for outlet thermal NO, the Kriging strategy confidence interval is much 

narrower and below the CoTGL strategy confidence interval. In the temporal domain, 

the confidence intervals of Kriging and co-Kriging based design strategies i.e. CoSUS, 

CoTUS and CoSTUS do overlap. However, the lower and upper bounds of the Kriging 

confidence interval are much narrower compared to the confidence interval of any 

other co-Kriging based multi-fidelity design strategy. Hence, the Kriging strategy 

outperforms the co-Kriging based design strategies at all times. However, evidence 

exists of finding a good design earlier in the process using co-Kriging based multi-

fidelity design strategy. 
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Chapter 8 

 
Time-parallel co-Kriging based 

multi-fidelity strategy for 
combustor design 

 
 

In this chapter, a co-Kriging based multi-fidelity strategy involving a time-parallel CFD 

simulation concept is investigated for the design optimisation of the two-dimensional 

lean burn combustor. For this purpose, initially, two different time-parallel CFD 

simulation methods are developed for solving the temporally evolving combustor 

reactive flow-field using the commercial CFD code FLUENTTM. The time-parallel 

combustor solution is compared against a traditional time-serial solution for identifying 

any benefits in terms of wall-clock time speed-up and its potential use for multi-fidelity 

design optimisation. 

 

Subsequently, the proposed time-parallel CFD simulation method is used to seed 

multiple levels of fidelity within the framework of a multi-fidelity co-Kriging based 

design optimisation strategy. The developed design strategies are run within fixed 

computational budgets and on multiple initial samples, to collect statistical data with 

mean convergence behaviour used as a performance indicator. A confidence assessment 

of the newly developed strategies is also performed and compared against the 

traditional Kriging based design strategy to draw conclusions. 

 
 
8.1 Introduction 
 
To reduce the computational expense of a combustor simulation and to take advantage 

of increasing computational power, combustor simulations are often performed with 

spatial domain decomposition using a time-serial approach. In the time-serial method, 

the solution at each time-step is evaluated before starting the next time-step 

computation. This methodology employs spatial discretization which divides and solves 
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the spatial computational domain on multiple computing nodes (Trindade and Pereira, 

2006). However, the time-serial methodology can be inefficient when the spatial 

dimension (or mesh count) of the problem is small and a large number of computing 

nodes are used. In such a case the communication costs between computing nodes due 

to data parallelism becomes significant. This demands a CFD simulation methodology 

which is ‘purely’ parallel, such that there is no data exchange cost overhead between 

two parallel computing nodes, thus giving a possibility of scaling the simulation to all 

available nodes efficiently. As the number of computing nodes available will naturally 

increase in the future (Trindade and Pereira, 2004), to fully exploit the available large 

number of computing nodes, time-parallel (or temporal domain decomposition) 

methods have some attraction. 

 

The concept of time-parallel simulation was first conceptualized by Nievergelt in 1964 

for the time-integration of ordinary differential equations. In time-parallel methods, the 

time-direction is discretized into many time-states where individual time-states of the 

flow-field are computed in parallel. The peculiarity here is that each time-state 

computation is independent of other time-states, such that no data transfer between 

two time-states occurs while the computation is being performed. Based on Nievergelt’s 

work, much of the investigation of time-parallel methods was restricted to the solution 

of linear and non-linear ordinary differential equations (Miranker and Liniger, 1964, 

Keller, B., 1968, Chartier and Philippe, 1993), which highlighted some benefits of the 

methods in terms of computation speed-up obtained over time-serial methods. 

 

In contrast, the development of time-parallel simulation methodologies for solving 

time-dependent partial differential equations has been attempted only recently. The 

method termed as the ‘parareal’ or ‘parallel-in-time (PIT)’ algorithm was first presented 

by Lions et al. in 2001 for numerical solution of time-dependent partial differential 

equations. The algorithm is based on a predictor-corrector scheme, where a coarse 

time-discretization predictor step (sequential) and a fine time-discretization corrector 

step (parallel) are evaluated alternatively until convergence. This algorithm has 

received much interest from many authors for the solution of a temporally evolving 

problems in fluids, structures and fluid-structure interactions (Farhat and Chandesris, 

2003), Navier-Stokes equations (Fischer et al., 2003) and for reservoir simulation 

(Garrido et al., 2003). Also, many variants of the original ‘parareal’ algorithm have been 

developed to decompose the temporal domain of the specific problem under 

consideration (Baffico et al., 2002, Maday and Turinici, 2003). Further analysis of the 

‘parareal’ algorithm’s accuracy, stability and performance is discussed in more detail in 

(Gander and Vanderwalle, 2007, Bal, G., 2003, Saltz and Naik, 1988, Staff and Ronquist, 

2003). 

 

 

8.2 Time-serial combustor flow analysis 
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For time-serial combustor flow analysis, fine time-step size URANS simulations are 

typically started from an initial coarse time-step size URANS solution. In this way, faster 

convergence towards the final meta-stable state is achieved as compared to starting 

from quiescent initial conditions. 

 

 
Fig. 8.1 Area-weighted outlet temperature (Ta) fluctuations as captured by URANS 

simulation using Δt = 1e-04s and Δt = 1e-05s over 20 inlet fluctuation cycles 

 

 
Fig. 8.2 Evolution of humming instability cycle in the flow-field as captured by URANS 

simulation with Δt = 1e-05s starting from a coarse time-step simulation result  
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Figure 8.1 shows the difference between the area-weighted outlet temperature (Ta) 

fluctuation captured by URANS simulations using time-step sizes of 1e-04s and 1e-05s 

over 20 inlet fluctuation cycles. Using Δt = 1e-04s, it is not possible to capture the 

reactive flow physics accurately and the outlet temperature above 1800K throughout 

the time domain. However, it provides a fast approximation of the reactive flow 

dynamics and can be used to start the fine time-step size simulation. Figure 8.2 shows 

the convergence of the time-serial URANS simulation using a combination of 1e-04s and 

1e-05s time-step sizes. As seen in Figure 8.2, the fine time-step size (1e-05s) URANS 

simulation is started after running the coarse time-step size (1e-04s) URANS simulation 

for ten inlet velocity fluctuation cycles. Convergence to the humming instability cycle is 

achieved by the end of the fourth inlet fluctuation cycle. The total wall clock time 

required to achieve this is ~615 minutes which is significantly less than the ~1350 

minutes required for the URANS simulation with Δt = 1e-05s starting from initial 

quiescent conditions. 

 

 

8.3 Time-parallel combustor flow analysis 

 
A time-parallel CFD simulation approach for solving transient combustor flow-field, as 

far as is known, has not been attempted previously. Two new time-parallel combustor 

CFD simulation methodologies based on the ‘parareal’ algorithm are developed in this 

section and compared against the traditional time-serial simulation result (c.f. Figure 

8.2). 

 

8.3.1 Time-parallel simulation method-A 

 

Table 8.1. Time-parallel simulation method-A 

 

Start 

 

(1) Initialize a coarse time-step size computation on a specified time interval [0,T] 

(Sequential) 

(2) Discretize the temporal domain [0,T] of the sequential solution in to N time-

states of equal length 

(3) For each subsequent iteration, compute a fine time-step size solution for each 

time-state (Parallel) 

(4) Check for convergence (or M iterations) 

 

End 
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(a) Iteration 1 

 

(b) Iteration 2 

 
 

(c) Iteration 3 

 

 

(d) Iteration 4 

 
 

Fig. 8.4.Area-weighted average temperature (Ta) fluctuations at the outlet as captured by 
 different iterations of time-parallel simulation method-A 

 

Table 8.1 lists the key steps involved in the time-parallel simulation method-A. Figure 

8.3 represents this method graphically. The first step (iteration 0) involves solving a 

coarse time-step size (1e-04s) URANS simulation between specified time interval [0, T], 

where T is the total flow time, sequentially. Next, at iteration 1, the temporal domain of 

the approximate solution is divided into N time-states of equal lengths (in terms of flow-

time). At each time-state, a fine time-step size (1e-05s) URANS simulation is run, which 

is considered as the most accurate flow-field representation at that particular iteration 

and time-state space. Also, this iteration is evaluated entirely in parallel, such that each 

time-state solution is evaluated simultaneously on the parallel computing nodes (each 

being an 8-core process). Hence, at the cost of one time-state computation all time-

states representing the entire flow-time domain [0, T] are evaluated. 

 

If U represents an URANS solution for any time-state ‘N’ at any iteration level ‘M’, then 

the computational process in time-parallel method-A can be mathematically written as: 

 

 

  
           

     Eq. (8.1) 
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where 

 

i = iteration number,0>i ≤ M 

 

j = time-state number,0 >j ≤ N 

 

    = fine time-step size operator 

 

 

Using Equation (8.1), the current time-states are evaluated and the iterations are 

continued until convergence to the humming instability cycle. However, as shown in 

Figure 8.3, the ‘no-run’ time-states represent the state of the flow-field which cannot be 

improved any further, as the solution corresponds to the final solution at that particular 

iteration level. Hence, these time-states are not evaluated. Also, the current time-state 

solution only depends on the solution evaluated in the past time-state of the previous 

iteration (in terms of simulation time). The continuous use of available accurate time-

state solutions at a previous iteration level to seed the next iteration time-state 

evaluation is the key modification in this method-A as compared to original ‘parareal’ 

algorithm, which evaluates a new coarse time-step prediction at every iteration level 

(Lions et al., 2001). 

 

Figure 8.4 shows the area-weighted outlet average temperature (Ta) fluctuation as 

captured by different iteration levels of time-parallel simulation method-A. Following 

the initialization using the coarse time-step size (1e-04s) URANS simulation (c.f. Figure 

8.1) between flow-time domain [0.057s, 0.114s], the time-states at every iteration are 

evaluated in parallel. As seen in Figure 8.4, the convergence to the humming instability 

cycle is achieved by iteration 4, corresponding to four inlet fluctuation cycles. The state 

of the flow-field achieved by iteration 4 using time-parallel method-A matches the flow-

field state as captured by the time-serial URANS simulation in Figure 8.2. However, no 

speed-up in terms of number of inlet fluctuation cycles (or wall-clock time) required to 

reach the humming instability cycle is observed, compared to the time-serial method. 

 

 

8.3.2 Time-parallel simulation method-B 

 
Table 8.2 lists the steps involved in applying time-parallel simulation method-B, which 

involves a data fusion† process between past and future time-state solutions, to evaluate 

the current time-state solution at the next iteration level. Figure 8.5 represents this 

methodology graphically. In contrast to method-A, all time-states at every iteration level 

are computed until solution convergence. Referring to Figure 8.5, the algorithm begins 

with a coarse time-step size (1e-04s) URANS evaluation as a sequential process. The 

coarse solution over entire flow-time [0, T] is then divided into N equal length time-

states.  

† See Appendix F 
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Table 8.2. Time-parallel simulation method-B 

 

Start 

 

(1) Initialize a coarse time-step size computation on a specified time interval [0,T] 

(Sequential) 

 

(2) Discretize the temporal domain [0,T] of the sequential solution in to N time-

states of equal lengths 

 
(3) Perform data fusion between past and future (final)time-states (Parallel) 

 

(4) At next iteration, compute a fine time-step size solution on the new data file for 

each time-state (Parallel) 

 
(5) Repeat (3) and (4) until convergence 

 

End 

 
 

Table 8.3. Data fusion process for step (3) in Table 8.2 

 
Time-state space 

 
Past 

(Time-state) 
Current 

(Time-state) 

 

Future 
(Final-state) 

M-1  
 

 

M    

 
The next step involves a data fusion process, where the FLUENTTM data files at the end 

of each time-state (past) are blended† with the data file of the final (future) time-state to 

construct a new data file. These new data files are then used to evaluate all current 

time-states at the next iteration level. This process is represented graphically in Table 

8.3. The current time- state solution, at iteration M, is obtained by running a fine time-

step size simulation on a data file obtained by blending past and future time-states data 

at previous iteration level M-1.  

† See Appendix F 



Chapter 8 Time-parallel co-Kriging based multi-fidelity strategy for combustor design 
 

 158 

 

(a) Iteration 1 

 

(b) Iteration 2 

 
 

(c) Iteration 3 

 

 

(d) Iteration 4 

 
 

Fig. 8.6 Area-weighted average temperature (Ta) fluctuations at the outlet as captured 
by different iterations of time-parallel simulation method-B 

 

The data fusion operation is performed in order to improve the quality of information 

available at each time-state level, which could potentially help in accelerating the 

convergence process (in terms of number of time-parallel iterations required) (Salinas, 

et al., 1996). The past time-state data is blended with the final time-state data because 

the solution obtained at the end of the flow-time is expected to be the most accurate 

from the previous time-state levels. Hence, this information is passed to all the previous 

time-states, using a blending factor α. In this study, a blending factor of 0.9 is used. 

 

If U represents an URANS solution for any time-state ‘N’ at any iteration level ‘M’, then 

the computational process in time-parallel method-B with data fusion can be 

mathematically written as: 

 

 

  
      [   

     (   )    
   ] 

 

 Eq. (8.2) 

 

 

where 

 

  



Chapter 8 Time-parallel co-Kriging based multi-fidelity strategy for combustor design 
 

 159 

i = iteration number, 0 > i ≤ M  
 

j = time-state number, 0 > j ≤ N 
 

    = fine time-step size operator 
 

  is the blending factor 

 

Using Equation (8.2), all current time-states are evaluated and the iterations are 

continued until convergence to the humming instability cycle. Figure 8.6 shows the 

area-weighted outlet average temperature (Ta) fluctuation at different iteration levels of 

time-parallel algorithm method-B. Following the initialization using the coarse time-

step size (1e-04s) URANS simulation (c.f. Figure 8.1) between flow-time domain 

[0.057s, 0.114s]; a data fusion is performed between each time-state and final time-

state solution to construct a new data file for the next iteration level. As seen in Figure 

8.6, the convergence to the humming instability cycle is achieved by iteration 4, again 

corresponding to four inlet fluctuation cycles. 

 

In comparison to time-parallel method-A, the humming cycle appears over the entire 

simulation time-state space in method B, as a high blending factor of 0.9 is used. This 

helps to transfer the future (or final) time-state flow-field information across the entire 

time-state space. The state of the flow-field achieved by iteration 4 using time-parallel 

method-B matches with the flow-field state obtained using the time-serial URANS 

simulation depicted in Figure 8.2. However, no speed-up in terms of the number of inlet 

fluctuation cycles (or wall-clock time) required to reach the humming cycle is observed 

compared to the time-serial simulation method. 

 

 

8.4 Co-Kriging based multi-fidelity design strategy using time-parallel 

unsteady RANS simulations (CoTPUS) 
 
Two different time-parallel CFD simulation methods (A and B) were developed and 

investigated for unsteady combustor flow solution in the previous section. Although no 

speed-up advantage, in terms of convergence to humming instability, was obtained 

relative to the time-serial approach, it is observed that the time-parallel simulation 

method provides multiple stages of transient combustor flow-field solution data whilst 

converging towards a final converged state. In this section, results from the time-

parallel simulation method-A is further used to formulate a co-Kriging based multi-

fidelity strategy for combustor design optimisation. A steady-state RANS solution of the 

combustor is used to initialize the time-parallel solution iterations. Figure 8.7 shows the 

area-weighted temperature (Ta) fluctuations at the outlet of the baseline combustor 

geometry (c.f. Figure 5.3) as captured by Iteration 0 (time-serial) of the time-parallel 

simulation method-A with number of time-states N = 4.  
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Steady-state RANS 

combustor  flow 

solution as an 

initialisation step 

for Iteration 0 

using mesh 3 (c.f. 

Table 4.2) 

                 Iteration 0 (Time-serial URANS     = 1e-04s) 

           
 

Fig. 8.7 Starting from a steady-state RANS solution, an area-weighted outlet 
temperature (Ta) fluctuations as captured by Iteration level 0 of the time-parallel 

simulation method-A (c.f. Figure 8.3) with N = 4  
 

 

(a) Iteration 1 

 

(b) Iteration 2  

 

 

(c) Iteration 3 

 

 

(d) Iteration 4 

 
 

Fig. 8.8 Area-weighted temperature (Ta) fluctuations at the outlet as captured by 
different iterations of time-parallel simulation method-A 
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Figure 8.8 shows the state of the combustor outlet temperature fluctuations as captured 

by different iterations of time-parallel simulation method-A until convergence to 

humming instability cycle at iteration 4. Hence, iteration 4 is used as the high-fidelity 

time-parallel combustor analysis. For low-fidelity time-parallel analysis, two iteration 

levels, 1 and 2, are tested independently, leading to two variants of the CoTPUS strategy. 

 
 
8.4.1 Choosing two levels of fidelities 
 
8.4.1.1 CoTPUS-(a): For strategy CoTPUS-(a), the two fidelity levels are: 
 

 lo-fi model: Time-parallel iteration level 1  

 hi-fi model: Time-parallel iteration level 4 

 

8.4.1.2 CoTPUS-(b): For strategy CoTPUS-(b), the two fidelity levels are: 
 

 lo-fi model: Time-parallel iteration level 2  

 hi-fi model: Time-parallel iteration level 4 

 
To evaluate the objective function value for iterations 1 and 2, a time-average of the 

outlet temperature fluctuation across all four time-states (N=4) is computed. For 

iteration level 4, a time-average of only the final time-state (humming instability) is 

computed. 

 

 

8.4.2 DOE and update points strategy 
 

The computational cost ratio between the cheap low-fidelity (C) and expensive high-

fidelity model (E) is used as the basis for determining total number of CFD evaluations.  

 
 

Table 8.4 Relative overall budget of Kriging and  CoTPUS strategies for 
time-averaged area-weighted outlet temperature optimisation 

 

Method 

Given 
budget for 

high-
fidelity CFD 

runs 

Total no. of 
high-fidelity 

CFD runs 
performed 

Cost ratio 

Total no. of 
low-fidelity 

CFD runs 
performed 

 Kriging 10 10 - - 

(2) CoTPUS – (a) 10 7 E ≈ 3C 9 

(3) CoTPUS – (b) 10 7 E ≈ 2C 6 

 



Chapter 8 Time-parallel co-Kriging based multi-fidelity strategy for combustor design 
 

 162 

Table 8.4 shows the overall high and low fidelity CFD budgets for CoTPUS design 

strategies relative to the standard Kriging strategy (applied in Chapter 6) for time-

averaged area-weighted outlet temperature.  

 

Table 8.5 Details of DOE and update cycle budget of Kriging and  CoTPUS 

strategies for time-averaged area-weighted outlet temperature optimisation 

[Hi-Fi: No. of high-fidelity evaluations, Lo-FiF: No. of free low-fidelity evaluations 

Lo-FiX: No. of extra low-fidelity evaluations, EI: expected improvement update, 

BP: best predicted update] 

 

 Kriging CoTPUS-(a) CoTPUS-(b) 

 Hi-Fi Hi-Fi Lo-FiF Lo-FiX Hi-Fi Lo-FiF Lo-FiX 

DOE 4 4 

10 

4 

7 

4 6 4 3 

Update 1 2 
(1 EI, 1BP) 

1 
(1 EI) 

2 
(1 EI, 1BP) 1 

(1 EI) 

2 
(1 EI, 1BP) 

1 (EI) 1 (BP) 1 (EI) 1 (BP) 

Update 2 2 
(1 EI, 1BP) 

1 
(1 EI) 

2 
(1 EI, 1BP) 1 

(1 EI) 

2 
(1 EI, 1BP) 

1 (EI) 1 (BP) 1 (EI) 1 (BP) 

Update 3 2 
(1 EI, 1BP) 

1 
(1 EI) 

2 
(1 EI, 1BP) 1 

(1 EI) 

2 
(1 EI, 1BP) 

1 (EI) 1 (BP) 1 (EI) 1 (BP) 

 
To initialize the design study, DOE sample points are generated using optimal Latin-

Hypercube sampling (LHS) according to the computational budget shown in Table 8.5. 

This shows the complete details of the number of low and high fidelity evaluations in 

the DOE and update stages for the CoTPUS strategy relative to the Kriging strategy. As 

shown in Table 8.5, the total number of high-fidelity CFD runs over the optimisation 

cycle is limited to seven for both CoTPUS strategies. The remaining three high-fidelity 

runs are replaced by equivalent numbers of low-fidelity runs, as determined by the cost 

ratio between the low and high fidelity models (c.f. Table 8.4). However, the process of 

evaluating low-fidelity data is unique in the CoTPUS strategy. In a time-parallel 

unsteady flow analysis, only one simulation needs to be setup from which multi-level 

solutions are available. Thus, for a particular design point, the low-fidelity evaluations 
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(iterations 1 and 2) are available for free in the process of the high-fidelity (iteration 4) 

evaluation without any extra effort. This is the key difference and an advantage over the 

previous temporal domain co-Kriging based design strategies CoSUS, CoTUS and 

CoSTUS (applied in Chapter 7).  

 

In addition to the free low-fidelity analysis (obtained during high-fidelity analysis), the 

‘extra’ low-fidelity analysis effort can be applied elsewhere in the design space to get 

more information at the low-fidelity level which could enhance the overall quality of the 

co-Kriging model in the CoTPUS strategy. Table 8.5 shows that the total number of DOE 

points to be evaluated for CoTPUS-(a) is ten and for CoTPUS-(b) is seven. Low-fidelity 

data is evaluated at all DOE points, whereas the sampling points where high-fidelity 

data is evaluated are a subset of the full DOE. Figure 8.9 shows the representative DOE 

samples for strategies CoTPUS-(a) and (b). Nine such DOE samples for each strategy are 

generated†. 

 

 
 

CoTPUS-(a) strategy sample 

 
 

CoTPUS-(b) strategy sample 

 
 

Fig. 8.9 Representative DOE samples for strategies CoTPUS-(a) and (b) using optimal 
Latin-hypercube method (c.f. Table 8.5 for sampling budget)  

 

† See Appendix F 
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8.5 Results and discussions 
 

8.5.1 Design optimisation using CoTPUS strategies 
 

 
Fig. 8.10 Time-averaged area-weighted outlet temperature optimisation search 

histories using CoTPUS-(a) over a fixed computational budget (c.f. Table 8.5) 
 
 

 
Fig. 8.11 Time-averaged area-weighted outlet temperature optimisation search 

histories using CoTPUS-(b) over a fixed computational budget (c.f. Table 8.5) 

Variation 

Variation 
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Figures 8.10 and 8.11 show the time-averaged area-weighted outlet temperature 

optimisation search histories for CoTPUS-(a) and CoTPUS-(b) strategies respectively. 

They also show the respective mean performances of each strategy for nine different 

DOE samples; over a fixed computational budget of high and low fidelity CFD runs (c.f. 

Table 8.5). Similar to the observation in Kriging and various co-Kriging strategies 

previously, the different initial samples have an effect on the way the CoTPUS design 

strategy progresses thus leading to a different optimal design at the end of the 

optimisation cycle.  

A variation in the convergence behaviour of the optimisation search histories is also 

shown in Figures 8.10 and 8.11, which indicates that CoTPUS-(b) strategy has less 

variation about the mean compared to CoTPUS-(a) strategy. 

 

8.5.2 Comparison between CoTPUS and Kriging strategy performance 
 

 
 

Fig. 8.12 Comparison between mean optimisation search histories of Kriging, CoTPUS-(a) 

and CoTPUS-(b) strategies for time-averaged area-weighted outlet temperature 

 
Figure 8.12 shows the comparison between the mean optimisation search histories of 

Kriging, CoTPUS-(a) and CoTPUS-(b) strategies for time-averaged area-weighted outlet 

temperature. The CoTPUS-(a) strategy does not perform better than the Kriging 

strategy in terms of the mean convergence over the entire optimisation cycle. However, 

the CoTPUS-(b) strategy performs equally well compared to the Kriging strategy. 
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CoTPUS-(a) response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

 
 

CoTPUS-(b) response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

 
 

Kriging response surface consisting of best optimal design 
(1) After DOE 

 

(2) After DOE + Updates 

 
 

Fig. 8.13 Comparison between CoTPUS-(a), CoTPUS-(b) and Kriging response surfaces 
consisting of their respective best optimal designs for time-averaged area-weighted  

outlet temperature 
 
  

Y Theta Y Theta 

Y Theta Y Theta 

Y Theta Y Theta 
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CoTPUS-(a) model correlation 
(r2 = 0.850) 

 
 

CoTPUS-(b) model correlation 
(r2 = 0.828) 

 
 

Kriging model correlation 
(r2 = 0.712) 

 
 

Fig. 8.14 Comparison between correlations of CoTPUS-(a), CoTPUS-(b) and Kriging RSM 
(after DOE + Updates) predictions with 10x10 CFD data for time-averaged area-

weighted outlet temperature 
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Table 8.6 Comparison between the best optimal designs amongst all experiments 

found by Kriging and CoTPUS-(b) strategies for time-averaged outlet temperature 

 
Y Θ 

Time-averaged area-weighted 

outlet temperature (K) 

Kriging 0.285 0.252 1524.82 

CoTPUS-(a) 0.341 0.331 1525.32 

CoTPUS-(b) 0.323 0.264 1525.23 

 
Figure 8.13 shows the comparison between the response surfaces of CoTPUS-(a), 

CoTPUS-(b) and Kriging strategies containing their respective best optimal designs for 

time-averaged area-weighted outlet temperature. In comparison to the shape of the 

time-averaged outlet temperature RSM captured using 10x10 grid CFD evaluations (c.f. 

Figure 6.18), the CoTPUS-(b) strategy captures a more accurate shape of the response 

surface after both, the DOE and update stages relative to both the CoTPUS-(a) and 

Kriging strategies. 

 

Figure 8.14 shows the comparison between the correlations of CoTPUS-(a), CoTPUS-(b) 

and Kriging RSM predictions with 10x10 CFD data. As per the scatterplots of Figure 8.14, 

the correlation between CoTPUS-(b) RSM prediction and 10x10 CFD data varies more 

linearly as compared to correlations between CoTPUS-(a) and Kriging RSM prediction 

with 10x10 CFD data. The best optimal designs (amongst all nine experiments) obtained 

by Kriging, CoTPUS-(a) and CoTPUS-(b) strategies are listed in Table 8.6. 

 

 

8.6 Confidence assessment 
 
In this section the confidence assessment on the estimated mean performances of the 

CoTPUS design strategies is performed to draw quantitative comparison against the 

Kriging strategy performance for time-averaged outlet temperature objective function. 

The two variants of the CoTPUS design optimisation strategy, CoTPUS-(a) and CoTPUS-

(b) were applied on nine different DOE samples with mean performances shown in 

Figures 8.10 and 8.11 and comparison against the Kriging strategy mean performance 

shown in Figure 8.12.  

 

Table 8.7 shows the relevant statistical estimates for time-averaged outlet temperature 

objective function data evaluated in this chapter, using strategies CoTPUS-(a) and 

CoTPUS-(b) in comparison against standard Kriging strategy. 
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Table 8.7 Relevant statistical estimates for time-average outlet temperature 
objective function data evaluated using strategies CoTPUS-(a) and CoTPUS-(b). 

 
Objective 
function 

 Sample mean 
(M) 

Standard 
deviation 

Standard 
error 

T
e

m
p

o
ra

l 

d
o

m
a

in
 Time-averaged 

area-weighted 

outlet 

temperature 

Kriging 1531.44 7.94 2.64 

CoTPUS-

(a) 
1535.89 6.84 2.28 

CoTPUS-

(b) 
1531.54 4.57 1.52 

 
As shown in Table 8.7, the Kriging strategy has the lowest sample mean value at the end 

of the optimisation cycle, which is very closely matched by CoTPUS-(b) strategy. In 

terms of standard deviation and standard error both, CoTPUS-(a) and CoTPUS-(b) 

strategies perform better than the standard Kriging strategy. Overall it is observed that 

CoTPUS-(b) strategy has the best performance with low sample mean, standard 

deviation and standard error. 

 
 
8.6.1 Bootstrapped CI for CoTPUS strategy 
 

 
Fig. 8.15 Estimated means with 95% CI and original sample data of Kriging, CoTPUS-(a) 

and CoTPUS-(b) strategies for time-averaged area-weighted outlet temperature 
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Initially, a convergence test for bootstrap sample size B is performed to compute the 

confidence intervals of CoTPUS-(a) and CoTPUS-(b) strategies†. Based on this sample 

size B, a bootstrapped confidence interval is computed for both CoTPUS strategies.  

 

Figure 8.15 shows the comparison between the 95% confidence intervals on the 

Kriging, CoTPUS-(a) and CoTPUS-(b) sample means for time-averaged area-weighted 

outlet temperature.  The CoTPUS-(a) and CoTPUS-(b) confidence intervals are 

completely overlapped by Kriging strategy confidence intervals. However, the upper 

and lower limits of the CoTPUS-(b) strategy CI are much narrower relative to CoTPUS-

(a) and Kriging strategies CI, which suggest that there is higher confidence in CoTPUS-

(b) strategy’s ability to have a population mean near the sample mean value.  

 
 

8.7 Summary 
 
In this chapter, two new time-parallel CFD simulation approaches are developed and 

tested on a two-dimensional unsteady combustor flow problem using a URANS 

formulation. Initially, the unsteady humming instability cycle in the combustor is 

simulated using a conventional time-serial methodology, which settles to the humming 

instability in four inlet fluctuation cycles. Later, the time-parallel simulation method-A 

and method-B (which involves a data fusion strategy) are developed independently and 

applied to simulate the humming instability cycle. Also, using time-parallel method-B, 

the humming cycle appears over the entire simulation time-state space. However, a 

clear advantage in terms of the number of inlet fluctuation cycles (or wall-clock time) 

required to reach the humming instability is not observed. 

 

Further, using the time-parallel CFD simulation method-A, the intermediate un-

converged solution states, which are observed in the process of convergence towards 

the final solution, are used to seed multiple levels of fidelity within the framework of a 

co-Kriging based design optimisation strategy, designated here as CoTPUS. The main 

advantage of the CoTPUS strategy over previously proposed temporal domain co-

Kriging strategies CoSUS, CoTUS and CoSTUS (c.f. Chapter 7) is the possibility of setting 

up only a single combustor CFD simulation from which multiple fidelity levels are 

available. Also each high-fidelity time-parallel analysis provides a low-fidelity analysis 

for free, thus increasing the total number of low-fidelity data and further enhancing the 

co-Kriging models quality. 

 

Two variants of CoTPUS strategy, CoTPUS-(a) and CoTPUS-(b), are investigated for 

combustor design optimisation over nine different samples. The mean performances of 

both strategies are compared against the Kriging strategy, which revealed that the 

CoTPUS-(a) strategy does not perform better than the standard Kriging strategy; 

whereas CoTPUS-(b) performs equally well. The bootstrapped 95% confidence interval 

(CI) evaluation on the sample mean performance of all three strategies, at the end of the 

† See Appendix F 



Chapter 8 Time-parallel co-Kriging based multi-fidelity strategy for combustor design 
 

 171 

optimisation cycle, suggests that there is a significant overlap between the CI’s. 

However, the upper and lower limits of the CoTPUS-(b) strategy CI are much narrower 

relative to the Kriging CI, indicating higher confidence in the CoTPUS-(b) strategy’s 

ability to generate a population mean near the sample mean value. 

 

Overall, the CoTPUS-(b) design strategy performs better than the standard Kriging 

based design strategy for the time-averaged area-weighted outlet temperature objective 

function. 
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Chapter 9 

 
Conclusions and future work 

recommendations 
 
 
 

9.1 Conclusions 
 
Unsteady computational fluid dynamics (CFD) simulations are routinely used in the gas 

turbine industry to predict and visualize the complex reacting flow dynamics, 

combustion environment and emissions performance of a combustor. Given the 

complexity involved in obtaining accurate flow predictions and, due to the expensive 

nature of the simulations, conventional techniques for unsteady CFD based combustor 

design optimisation (e.g. direct global optimisation methods such as genetic algorithm 

or simulated annealing) are often ruled out, primarily due to the limits on available 

computing resources and time. 

 

The design optimisation process normally requires a large number of analyses of the 

objective and constraint functions which necessitates a careful selection of fast, reliable 

and efficient computational methods for the unsteady CFD analysis and the 

optimization process. The current state-of-the-art in the context of combustor design 

and optimisation is the use of Kriging surrogate model based design strategies, which 

reduce the total number of high-fidelity unsteady CFD analyses required to reach an 

optimal design configuration. However, Kriging feasibility is limited by the total number 

of design variables, objective and constraint functions, as computationally expensive 

high-fidelity CFD analyses are typically used to construct the surrogate model. 

 

To address these challenges an effort was made in this research to develop more 

efficient combustor design strategies in terms of minimizing the total number of high 

fidelity CFD runs required and to accelerate the process of finding a good design earlier 
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in the optimisation process. This resulted in novel contributions being made to the field 

of unsteady CFD based combustor design optimisation which are as follows: 

 

(1) Development of a time-parallel CFD simulation method for solving transient 

combustor reactive flow 

 

 Employing a temporal domain decomposition methodology  

 Applied to simulate combustor reactive flow with and without data fusion  

 

(2) Development and performance assessment of multi-fidelity design strategies using 

 

(a) co-Kriging of time-parallel unsteady RANS simulations (CoTPUS) 

 
 Employing a time-parallel CFD simulation method providing multiple levels of 

simulation fidelities from a single simulation 
 

o Low-fidelity model: Initial iterations of time-parallel CFD simulation 

o High-fidelity model: Final iteration of time-parallel CFD simulation 

 

(b) co-Kriging of steady and unsteady RANS simulations (CoSUS) 

 

 Employing steady and unsteady combustor RANS simulations on the same 

spatial resolution grid,  

 

o Low-fidelity model: Steady-state RANS simulation 

o High-fidelity model: Unsteady RANS simulation 

 

(c) co-Kriging of varying time-step sizes unsteady RANS simulations (CoTUS) 

 

 Employing two unsteady combustor RANS simulations with different time-step 

sizes on the same spatial resolution grid,  

 

o Low-fidelity model: Coarse time-step size unsteady RANS simulation 

o High-fidelity model: Fine time-step size unsteady RANS simulation 

 

(d) co-Kriging of varying spatio-temporal resolution unsteady RANS simulations 

(CoSTUS) 

 

 Employing combustor RANS simulations with varying spatial and temporal 

resolution grids for combustor design optimisation 
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o Low-fidelity model: Coarse grid and time-step size unsteady RANS 

simulation 

o High-fidelity model: Fine grid and time-step size unsteady RANS 

simulation 

 
Additionally, each of the developed strategies has been assessed for confidence levels 

using the computational experiment data and a Bootstrap methodology. The results are 

then compared against a well-established Kriging based combustor design strategy. 

 

In this thesis, initially, research was conducted in understanding modern lean burn 

combustion system configuration and design challenges (c. f. section 1.1.1) faced within 

Rolls-Royce PLC. Key reactive flow-field phenomena were identified which are of 

interest from a design optimisation perspective. Further, due to the very high 

computational cost of Rolls-Royce 3D combustor simulations, a 2D lean burn combustor 

test problem was identified from the literature as a practical problem for developing 

new design strategies.  

 

The test combustor model selected to develop various multi-fidelity design optimisation 

strategies was the one used by Keller et al. (1984) in an experimental study of 

mechanisms of instabilities in turbulent combustion leading to flashback. A numerical 

study of steady and unsteady turbulent reactive processes behind a profiled backward-

facing step in the 2D combustor was presented in Chapter 5. The steady RANS study 

identified a flame-front established behind the flame-stabilizer step whereas the 

unsteady RANS analysis revealed time-dependent, periodic humming cycle instability 

behind the step due to a forced sinusoidal velocity fluctuation at the combustor inlet. 

Thermal NO formation inside the combustor was also analyzed in both spatial and 

temporal domains. 

 

Based on the combustor flow analysis, a Kriging based design optimisation strategy was 

applied in Chapter 6 to design a flame-stabilizer step by influencing the flame/vortex 

dynamics downstream. The objective functions used for design optimisation were the 

RMSD outlet temperature profile and thermal NO in the spatial domain. For design 

optimisation in the temporal domain, a humming cycle averaged area-weighted outlet 

temperature and thermal NO was used as the objective function. The Kriging design 

strategies for all objective functions were applied on nine different initial samples which 

showed the variation in the optimisation search histories convergence to the final 

optimal design. 95% bootstrapped confidence intervals were also evaluated on the 

mean performance of the Kriging strategy. 

 

Chapter 7 presented various co-Kriging based multi-fidelity design optimisation 

strategies both in the spatial and temporal domains. In the spatial domain, a co-Kriging 

strategy using two different grid levels (CoTGL) was applied to design the flame 



Chapter 9 Conclusions and future work recommendations 
 

 175 

stabilizer step within a fixed computational budget. In the temporal domain, co-Kriging 

strategies using (a) steady and unsteady RANS simulations (CoSUS), (b) varying time-

step sizes unsteady RANS simulations (CoTUS) and (c) varying spatio-temporal 

unsteady RANS simulations (CoSTUS) were developed and used to design the flame-

stabilizer step. All co-Kriging based design strategies were repeated on nine different 

initial samples, which revealed how the convergence search history varied, leading to 

slightly different optimal designs at the end of the computational budget. Later, the 

statistics of interest i.e. mean performance of each co-Kriging based design strategy 

over all the samples were compared against the mean performance of the Kriging based 

design strategy within the fixed computational budget. This showed that strategy CoTGL 

in the spatial domain (for steady outlet temperature profile and thermal NO) and 

strategies CoSUS and CoSTUS in the temporal domain (for time-averaged outlet thermal 

NO) found a good design earlier in the design process, after the DOE stage, compared to 

the standard Kriging strategy. However, the standard Kriging strategy outperforms all 

proposed co-Kriging based multi-fidelity strategies at the end of the optimisation cycle. 

Also, the comparison between the 95% bootstrapped confidence intervals of Kriging 

and all co-Kriging based design strategies showed that the lower and upper bounds of 

the Kriging confidence interval are narrower compared to the confidence interval of any 

other co-Kriging based multi-fidelity design strategy. This indicates that there is a 

greater confidence in the Kriging strategy’s ability to generate a population mean near 

the sample mean value.  

 

In Chapter 8, a time-parallel CFD simulation approach for solving transient combustor 

flow was developed using a URANS formulation. Initially, the unsteady humming 

instability cycle in the combustor was simulated using a conventional time-serial 

methodology, which settled into the humming instability in four inlet fluctuation cycles. 

The two variants of the time-parallel CFD simulation approach, method-A and method-B 

(which involved a data fusion strategy) also successfully captured the humming 

instability cycle. However, a clear advantage in terms of the number of inlet fluctuation 

cycles (or wall-clock time) required to reach the humming instability was not observed.  

Further, using the time-parallel CFD simulation method-A, the intermediate un-

converged solution states observed in the process of convergence towards the final 

solution, were used to seed multiple levels of fidelity within the framework of a co-

Kriging based design optimisation strategy, designated as CoTPUS (co-Kriging using 

time-parallel unsteady RANS simulations).  The two variants of CoTPUS strategy, 

CoTPUS-(a) and CoTPUS-(b), were investigated for combustor design optimisation over 

nine different samples. The mean performances of both strategies were compared 

against the Kriging strategy, which revealed that the CoTPUS-(a) strategy does not 

perform better than the standard Kriging strategy; whereas CoTPUS-(b) performs 

equally well. The bootstrapped 95% confidence intervals (CI) evaluation on the sample 

mean performance of all three strategies, at the end of the optimisation cycle, suggested 

that the Kriging strategy performs better than CoTPUS-(a), however, the upper and 

lower limits of the CoTPUS-(b) strategy CI are much narrower relative to the Kriging CI, 
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indicating higher confidence in the CoTPUS-(b) strategy’s ability to generate a 

population mean near the sample mean value. Overall, the CoTPUS-(b) design strategy 

performed better than the standard Kriging based design strategy for the time-averaged 

area-weighted outlet temperature objective function. Additionally, the key advantage of 

the CoTPUS strategy over other temporal domain co-Kriging strategies CoSUS, CoTUS 

and CoSTUS is the possibility of setting up only a single combustor CFD simulation from 

which multiple fidelity levels are available. Also each high-fidelity time-parallel analysis 

provides a low-fidelity analysis for free, thus increasing the total number of low-fidelity 

data and further enhancing the co-Kriging models quality. 

 

In conclusion, this research suggests that the developed co-Kriging based design 

optimisation strategies (CoTGL, CoSUS, CoSTUS and CoTPUS) performs as well as the 

standard Kriging based design strategy with evidence of the co-Kriging based strategies 

ability to find a good design earlier in the process of optimisation. Overall, for unsteady 

CFD based combustor design optimisation, a time-parallel CFD simulation based co-

Kriging strategy (CoTPUS) performs better than the standard Kriging based design 

strategy in terms 95% confidence intervals. 

 

 

9.2 Future work recommendations 
 

Although many different co-Kriging based multi-fidelity design strategies were 

investigated in this thesis for combustor design optimisation in comparison to the 

Kriging based design strategy, using steady and unsteady CFD, there are still a number 

of areas for investigation in the future. The following are the future work 

recommendations: 

 

First, the co-Kriging based multi-fidelity design strategy’s ability to find an optimum 

design within the design space is dependent on the quality of the information available 

from low-fidelity model which could help in reducing the total amount of computational 

effort.  In the co-Kriging approach applied in this thesis, the cost ratio between low and 

high fidelity models was used as the basis to determine the number of low and high 

fidelity CFD evaluations to be performed in each strategy. It was observed that with low 

cost ratios (e.g. expensive evaluation ~ twice cheap evaluation in strategy CoTUS), the 

amount of information available from low-fidelity model reduces due to less data points 

evaluation. With high cost ratios (e.g. expensive evaluation ~ eighteen times cheap 

evaluation in strategy CoSTUS), the amount of information available from the low-

fidelity model increases due to more availability of data points. However, due to a very 

coarse low-fidelity model being evaluated, the quality of information available may not 

be very helpful to construct a co-Kriging model with good prediction capability. Thus it 

is necessary to establish a methodology, which could be referred to as a ‘multi-fidelity 
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cost ratio test’, where an optimal cost ratio between low and high-fidelity models could 

be setup.  

 

Second, the proposed time-parallel CFD simulation approach for evaluating unsteady 

combustor flow did not provide an advantage over the time-serial CFD method and 

hence requires further attention, especially from the perspective of its iterative strategy. 

The progress of time-parallel CFD simulations towards convergence depends on the 

quality of information available at the initialization step i.e. from the coarse time-step 

size time-serial CFD simulation. Further investigation is needed in this direction with 

respect to different time-step size initialisation simulations. For the time-parallel CFD 

simulation employing data fusion, further investigation is needed to establish an 

optimal blending factor.  

 

Third, amongst all proposed co-Kriging based design strategies using unsteady CFD, the 

time-parallel CFD simulation multi-fidelity design strategy appears to be the most 

promising for superior performance over the standard Kriging based strategy. This 

strategy needs further development, especially incorporating the data-fusion strategy, 

which could enhance the quality of the low-fidelity model further. 

 

In addition to the above recommendations, all the proposed unsteady CFD based co-

Kriging strategies needs to be further tested on higher dimensional studies including 

three and four variable design problems and three dimensional combustors. The Rolls-

Royce three-dimensional lean burn combustor is the design problem to which the 

developed multi-fidelity design optimisation strategies would be applied. Further these 

strategies would also be formulated in to multi-objective co-Kriging based combustor 

design optimisation strategies for handling real-world combustor design challenges. 
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Kriging model 

 
 
 

A.1 Kriging methodology 
 
Given two vectors of variables    and   , each of length l, the objective function values 

      and      , depends on the distance between   and   . The function values will 

tend to be small if the distance ‖      ‖ is small. This can be statistically modeled by 

assuming the correlation between the two sets of random variables objective functions, 

      and      , to be given by  

 
 

    [           ]     [  ∑  ‖ 
       ‖

  

 

   

] 
 

Eq. (A.1) 

 
   
If        , the correlation is 1 and if ‖      ‖    , the correlation tends to zero. 

   and    are the hyper-parameters of the Kriging model, which are tuned to the 

response, in order to make new prediction  ̂   .  The hyperparameter    determines 

the rate of correlation decreases and is basically a width parameter which tells how far 

the influence of the sample point extends. It helps in high-dimensional problems to 

identify the most active variables by determining its relative size. The hyperparameter 

   is the smoothness parameter, which determines the smoothness of the function in 

the     coordinate direction. The value of       help model smooth functions, 

whereas values of    close to 0 models non-smooth functions.  

 

The functions value could be represented by a vector Y consisting of a series of n 

objective function values given by 
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Eq. (A.2) 

 
where the mean is 1µ and 1 is a n x 1 vector of ones. The covariance of Y is equal to 

 

 

            

 

 
Eq. (A.3) 

 

where    the variance and R is the n x n correlation matrix whose (i, j) elements are 

given by Equation (A.1).  

 

The model parameters to estimate include µ,       and     Values of hyperparameters  

   and   , are chosen to maximize the likelihood on the observed data set Y. This 

maximum likelihood function is written as 
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Eq. (A.4) 

 

 

and after taking natural log of Equation (A.4) and ignoring the constant terms, 

 

 

 
 

 
          

 

 
     | |   

                

   
 

 
Eq. (A.5) 

 

 

Setting the derivatives of Equation (A.4) with respect to    and   equal to zero, the 

optimal values of mean ( ̂) and variance ( ̂) as functions of R could be obtained as: 
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Eq. (A.6) 
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Eq. (A.7) 
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Substituting the Equations (A.6) and (A.7) into Equation (A.5) gives the concentrated 

log likelihood function 

 

 

 
 

 
      ̂    

 

 
     | |  

 
Eq. (A.8) 

 

 

which depends only on correlation R and hence on the hyperparameters    and   . 

Equation (A.5) is maximized to get the estimates  ̂  and  ̂  and using these,  ̂ and  ̂ are 

computed from Equations (A.6) and (A.7) respectively. The estimated parameters 

reflect the pattern of variation in the observed data. With fixed estimated parameters, to 

predict the value  ̂(X) at a new location X which is consistent with the observed data, an 

augmented log-likelihood function is computed. 

 

The augmented vector of objective function values is given by   ̃       ̂   when 

augmented by new prediction  ̂, the value of which is to be determined.  

 

The vector of correlations of  ̂(X) with      , for          
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Eq. (A.9) 

 

 

The augmented correlation matrix is: 
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)   
Eq. (A.10) 

 

 

The augmented log-likelihood function (with constant terms ignored) is: 
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Eq. (A.11) 

 

 

in which only the last term is dependent on   ̂ and considered for maximization.  
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Substituting  ̃ and  ̃ in Equation (A.5): 

 

 

  
(
     ̂

 ̂   ̂
)
 

(
  
   

)
  

(
     ̂

 ̂   ̂
)

   
 

 

Eq. (A.12) 

 

 

Using partitioned inverse formula (Theil, 1971) the expression for  ̃   is then 

substituted in Equation (A.6). The augmented log-likelihood function is then expressed 

as a quadratic function of   ̂ (Jones, 2001). Setting its derivative with respect  ̂ equal to 

zero and solving for  ̂ gives the Kriging predictor: 

 

 

 ̂      ̂             ̂  Eq. (A.13) 

 

 

 

 

Consideration for numerical noise: 

 

The CFD simulations, although deterministic, involves discretization and iterative 

solution procedure, thus making itself susceptible to numerical noise. Due to presence 

of noise, the resulting landscape is no longer smooth and continuous but appears as a 

random scatter about the smooth trend. Hence, given the potentially noisy nature of 

CFD simulations due to discretization and iterative solution, during the construction of a 

surrogate model, it is very important to consider regression to counter numerical noise 

(Forrester et al., 2006). With regression applied to often interpolation Kriging 

technique, the observed data does not necessarily correlate with the resulting model. In 

correlation matrix R, a constant term λ is added to the diagonal, resulting in R    , 

where I is an n x n identity matrix.  

 

The estimated mean and variance as per Equations (A.6) and (A.7) respectively are then 

given as: 

 

 

 ̂    
            

            
 

 

Eq. (A.14) 

 

  

 ̂    
     ̂                ̂ 

 
 

 

Eq. (A.15) 
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Thus with regression Kriging,   ,    and   are the hyperparameters to be estimated for 

construction the surrogate model. 

 

 
A.2 List of RSM techniques and update methodologies 
 

 
Table A.1 Different types of response surfaces and search methods  

as classified by Jones (2001) 

(1) Response surfaces 

(2) Update point search method 

Two-stage approach One-stage approach 

Minimize 

response 

surface 

(or best 

predicted 

point) 

Minimize 

a lower 

bounding 

function 

Maximize the 

probability of 

improvement 

Maximize the 

expected 

improvement 

Goal 

seeking 

-  to find 

point 

that 

achieves 

a given 

goal 

Optimisation 

- to find 

point that 

minimizes 

the objective 

function 

Non-

interpol- 

ating 

Quadratic polynomial 
 

X X X X X 

Interpol- 

ating 

Fixed 

basis 

function 

Cubic spline, 

Thin plate 

spline, Multi-

quadric 
 

X X X 
  

Tuned 

basis 

function 

Kriging 
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Reactive flow modelling 

 
 
 

B.1 Reynolds and Favre averaging 
 

Turbulent reacting flow comprises of fluctuating velocity field, which helps to mix all 

transported quantities including momentum, energy and species concentration, also 

causing the fluctuation of the transported quantities themselves (Peters, 2000). The 

fluctuations exist from smallest to largest scales, at high and low frequency, and are 

very expensive to resolve directly (e.g. using DNS). However, the instantaneous (or 

exact) governing equations (see Equations 3.2, 3.8, 3.9 and 3.10) can be time-averaged, 

ensemble-averaged, mass-weighted averaged (or density weighted) or filtered to 

remove small scale turbulent motions and to be replaced by a model to simulate their 

behaviour. This reduces the computational cost, making it practical to simulate 

turbulent reacting flow. 

 

In Reynolds-averaging, any solution variable    can be split into its mean (ensemble 

averaged or time-averaged) component and fluctuating contribution 

 

 

     
 
    

  

 

 

Eq. (B.1) 

where  
 
 and   

  are the mean (averaged) and fluctuating components (i = 1, 2, 3), 

respectively. The averaged component is usually defined as an ensemble-average (i.e. 

average of a large number of instances at the same instant of the same flow-field). For 

steady mean flow, this average is replaced by a time-average over a sufficiently long 

period of time, t 
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∫   ( 

 )   
 

 

 

 

Eq. (B. 2) 

The strength of turbulence is given by turbulence intensity I: 

 

   
√   

 
 

 

 

Eq. (B.3) 

In turbulent combustion with turbulence intensity, turbulent kinetic energy and its 

distribution over different length scales interact with the flame (Poinsot and Veynante, 

2005). 

 

Substituting Reynolds averaged quantities (using Equations B.1 and B.2) in the 

instantaneous continuity equation gives (B.f. Eq. 3.2) gives: 

 

 

 

  

  
  

 

   

(   )    
 

   
(     ) 

 

 

Eq. (B.4) 

 

which contains the unclosed quantity       corresponding to the correlation between 

density and velocity fluctuations, and requires modelling as the mass source term. This 

complexity, introduced by Reynolds averaging with regards to unclosed quantities, is 

particularly critical for the reaction source terms in the species equation and energy 

equation (Echekki, 2011). From a combustion CFD perspective, this process is difficult 

to handle and to avoid this, mass-weighted (or density weighted) averaging called Favre 

averaging is preferred (Favre, 1969; Williams, 1985; Kuo, 1986). The Favre-average  ̃  is 

expressed as 

 

 ̃   
  

 
 

 

Eq. (B.5) 

 
Any solution variable    can be split into a Favre mean and fluctuating component 

 

 

     ̃     
   

 

with    ̃    

Eq. (B.6) 
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The symbol ‘~’ denotes the density-weighted ensemble average. With density-weighted 

averaging the need to explicitly represent the density-momentum and density-scalar 

correlations is eliminated (Kuo, 1986; Poinsot and Veynante, 2005). The Favre-

averaged continuity, momentum, species and energy equations are now given as: 

 

 

Continuity equation: 
 

  

  
  

 

   

(  ̃ )    

 
 

 

 

Eq. (B.7) 

 

Momentum equation: 

 

 

  
(  ̃ )   

 

   
(  ̃  ̃ )   

  

   
  

 

   
(        

    
 

̃ ) 

 

 

 

 

 

Eq. (B.8) 

 

 

 

Species equation: 

 

 

  
((  ̃ )   

 

   
(  ̃  ̃ )    

 

   
(                 ̃ )    ̇  

 

For k = 1 to N 

 

 

 

 

Eq. (B.9) 

 

 

 

Energy equation: 

 

 

  
(  ̃ )   

 

   
(  ̃  ̃ )   ̇   

  

  
  

 

   
(  

  

   
          ̃ ) 

                  
 

   
( ∑           )

 

   
      

   

   
  ̇    ∑       

 

   
     

 

where 

 

  

  
  

  

  
   

  

   
  

  

  
   ̃ 

  

   
      

  

   
 

 

 

 

 

 

Eq. (B.10) 
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Using Favre-averaged Equations (B.7) to (B.10), the turbulent reacting flow can be 

effectively modelled; however it requires proper closures for the unknown quantities 

(Kuo, 1986; Poinsot and Veynante, 2005). These are Reynolds stresses (   
    

 )̃   species 

(        ̃ ) and enthalpy (        ̃ ) turbulent fluxes, laminar diffusive fluxes for species or 

enthalpy (      ), species chemical reaction rates ( ̇ ) and pressure–velocity 

correlation (    
  

   
 ). Of these various unknown quantities, only Reynolds stresses 

closure using a turbulence model is discussed here. For more detail on other closure 

strategies refer to Kuo (1986), Poinsot and Veynante (2005), Echekki (2011). 

 

 

B.2 Turbulence model 
 

From an engineering perspective, it is the mean reacting flow and certain mean 

quantities that are of prime focus. The Reynolds-averaged or Favre-averaged 

momentum equations contain the unknown quantities such as        

or    
    

 
̃  respectively, known as Reynolds stresses. These terms requires a closure and 

a turbulence model is often employed to model the behaviour of Reynolds stresses and 

its effect on the mean flow behaviour.  

 

The turbulence models for reacting flows are similar to models used for non-reacting 

flows modified in terms of Favre averaging. The classical methods for turbulence 

modelling could be considered in two categories. One based on the Boussinesq 

hypothesis as proposed by Joseph Boussinesq (1887) viz. zero-equation mixing length 

model, one-equation Prandtl-Kolmogorov model and two-equation k-ε and k-ω models. 

And others based on evaluating the Reynolds stress terms directly using transport 

equations e.g. Reynolds stress model and algebraic stress models.  

 

Though the Reynolds stress model is more accurate in predicting the behaviour of 

Reynolds stresses (used in analysis of Rolls-Royce 3D combustor, Chapter 4), its 

computation cost is significantly higher than models based on the Boussinesq 

hypothesis. Hence, from an engineering design and optimisation point of view, the k-ε 

turbulence model based on the Boussinesq hypothesis is used in 2D combustor 

modelling and further design simulations. For more information on other models, see 

Malalasekera (1995), Pope (2000), Kuo (1986), Poinsot and Veynante (2005). 

 

 

B.2.1 Boussinesq approach 

 

Based on the turbulence viscosity assumption of Boussinesq (Hinze, 1975; Tennekes 

and Lumley, 1972) the Favre-averaged turbulent Reynolds stresses are described as 

(Kuo, 1986; Peters, 2000; Poinsot and Veynante, 2005) 
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̃      (

  ̃ 

   
 

  ̃ 

   
 

 

 
   

  ̃ 

   
)   

 

 
   

 

where 

 

       is the turbulent dynamic viscosity 

 

   is the kinematic viscosity 

 

    is the Kronecker symbol 

 

k is the turbulent kinetic energy  

 
 

Eq. (B.11) 

 

The turbulent kinetic energy 

 

   
 

 
∑         ̃
 

   

 
 

Eq. (B.12) 

 

In Equation (B.11), the main unknown is the turbulent or eddy viscosity term    , which 

needs to be evaluated. 

 

 

B.2.2 Two – equation standard k-ε model 

 

The zero-equation and one-equation turbulence models lack the ability to capture 

recirculating flow dynamics accurately, as they neglect convective and diffusive 

turbulence properties (Malalasekera, 1995). The two-equation k-ε model considers the 

dynamics of turbulence, focusing on the mechanisms affecting the turbulent kinetic 

energy in particular (Tennekes and Lumley, 1972; Malalasekera, 1995). 

 

In the two-equation k-ε model, the turbulent viscosity   is estimated by (Jones and 

Launder, 1972) 

 

       

  

 
 

 

 

 

Eq. (B.13) 

where, the turbulent kinetic energy k and the dissipation rate   are described by two 

balance equations given as 
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Eq. (B.14) 
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Eq. (B.15) 

 

 

where 

 

   is the source term given by  –     
    

 
̃   ̃ 

   
 

 

    
    

 
̃  are the Reynolds stress terms evaluated using Eq. (B.11) 

 

The model constants usually used are (Wilcox, 2006): 

 

       ,       ,       ,     = 1.44 and     = 1.92  

 

 

 

The advantages and disadvantages of using the standard two-equation k-ε model for 

reacting flows can be summarized as follows (Malalasekera, 1995; Poinsot and 

Veynante, 2005): 

 

Advantages: 

 Simplicity and low computational cost compared to Reynolds stress model 

 Higher accuracy compared to zero and one-equation model 

 Availability of turbulent time scales estimates   ⁄  and √    used in turbulent 

combustion model for evaluating integral and Kolmogorov length scales 

respectively 

 Well-established and most widely validated 

 

Disadvantages: 

 Assumption of homogeneous and isotropic turbulence 

 Unable to capture swirling flows and stress-driven secondary flows accurately 

 In combustion, flame flapping and intermittency related low frequency turbulent 

motions are underestimated 
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B.3 Partially premixed combustion model 
 
The partially premixed combustion model in FLUENTTM version 12.1 is used for 

modelling the combustor flow in this thesis. This model can be utilized to model fully 

premixed combustion as well (Theory guide, ANSYS FLUENTTM 12.1 2009). Hence, 

although the 2D lean burn combustor operates in the fully premixed regime, the 

partially premixed model is used to keep the modelling approach in consistence with 

the Rolls-Royce 3D lean burn combustor which operates under partially premixed 

conditions. The partially premixed model is essentially a combination of premixed and 

non-premixed combustion models. It solves transport equations for the reaction 

progress variable   ̃, mean mixture fraction  ̃ and mixture fraction variance    ̃. A 

description of the equations used in premixed and non-premixed combustion model is 

presented in this section. 

 

 

B.3.1 Premixed combustion model: 

 

Premixed combustion modelling involves predicting the interaction of turbulent eddies 

or vortices with a propagating flame front in a mixture of premixed reactants. The 

turbulent premixed combustion model solves the transport equation for the reaction 

progress variable (Zimont et al. 1995, 1998, 2001) given as 

 

 

 

  
(  ̃)   

 

   
(  ̃ ̃ )  

 

   
(  

  ̃

   
    

     ̃)       

 

 

where;  

 

  is the mean density 

 

 ̃ is the Favre-averaged reaction progress variable 

 

  
  ̃

   
 is the average thermal diffusion term 

 

   is the reaction progress source term 

 

Eq. (B.16) 

 

The reaction progress variable ( ̃) 

 

 ̃   
∑  ̃ 

 
   

∑  ̃    
 
   

 

 

Eq. (B.17) 
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where 

 

N is the number of species 

 

 ̃  is the Favre-averaged mass fraction of species k 

 

 ̃     is the Favre-averaged mass fraction of species k after complete adiabatic 

combustion 

 

According to Eq. (B.17), if  ̃    the mixture is unburnt and if  ̃   , the mixture is 

considered to be burnt. The source term is given by 

 

 

      
 
  |

  ̃

   
| 

 

 

where  

 

 
 

 is the density of unburnt mixture 

 

   is the turbulent flame speed 

 

 

Eq. (B.18) 

The turbulent flame speed prediction is the key to the premixed combustion model and 

is influenced by laminar flame speed, flame front wrinkling by large-scale eddies and 

flame thickening by small scale eddies (Zimont et al., 1998). It is given by 

 

 

      (
  

  
)
   

 

 

 

where  

 

  is the model constant 

 

   is the RMS velocity 

 

   is the turbulence time scale 

 

   is the chemical time scale 

 

Eq. (B.19) 
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For more discussion on premixed combustion model, see Kuo (1986), Poinsot and 

Veynante (2005), Zimont (2000) and Zimont et al. (1995, 1998 and 2001). 

 

 

B.3.2 Non-premixed combustion model: 

 

In a non-premixed combustion process, the fuel and oxidizer enter the combustion 

system separately. The flame-front does not propagate through the system but rather is 

located where fuel and oxidizer meet (Kuo, 1986; Poinsot and Veynante, 2005). 

Compared to a premixed turbulent combustion system, the main difference lies in the 

definition of boundary conditions and in the use of mixture fraction z, which is the mass 

fraction that originates from the fuel stream. In systems with separate fuel and oxidizer 

streams (with reference states (  
    

 ) for fuel and (  
    

 ) for oxidizer) under certain 

set of simplifying assumptions†, the instantaneous thermochemical state of the fluid is 

related to the mixture fraction 

 

 

   
          

 

   
     

  

 

 

where 

 

  is the stoichiometric ratio  

 

   is the fuel mass fraction 

 

   is the oxidizer mass fraction 

Eq. (B.20) 

 

 

The turbulent non-premixed combustion model solves the transport equation for the 

Favre-averaged mean mixture fraction  ̃ and in addition a conservation equation for the 

mixture fraction variance    ̃ (Sivathanu and Faeth, 1990; Poinsot and Veynante, 2005) 

given as 
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(  ̃ ̃ )  

 

   
(  

  

   
    

     ) ̃ )     

 

 

where  

 

 

Eq. (B.21) 
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  ̃

   
 is the average thermal diffusion term 

 

   is the source term solely due to transfer of mass from liquid fuel 

droplets or reacting particles to the gas phase 

 

The closed equation for mixture fraction variance    ̃, used widely in combustion CFD 

codes is given by (see Poinsot and Veynante, 2005 for derivation): 
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    ̃ 

 

 

where  

 

   is the turbulent viscosity provided by the turbulence model 

 

    and     are the turbulent Schmidt numbers 

 

c is a model constant of order unity 

 

Eq. (B.22) 

 

The transport equations for reaction progress variable  ̃ (c.f. Eq. B.16), mean mixture 

fraction  ̃ (c.f. Eq. B.21) and mixture fraction variance    ̃ (c.f. Eq. B.22) together 

represent the partially premixed combustion model. 

 

Thus, the Favre-averaged Navier-Stokes Equations B.7, B.8, B.9, B.10 along with the 

standard k-ε turbulence model Equations B.14 and B.15 and partially combustion model 

Equations B.16, B.21 and B.22 are solved for predicting turbulent reacting combustor 

flow in Chapters 4 and 5. 

 

In addition to these equations, the turbulence-chemistry interaction models are solved 

to account for fluctuations in the average values of mixture fraction, species fraction, 

density and temperature in relation to instantaneous turbulent reacting flow field 

(Fluent 12.1 theory guide, 2009). The coupling between the turbulent flow field and 

heat release chemistry is performed by a conserved scalar approach in limits of 

infinitely fast chemistry using a beta-probability density function (PDF) approach for 

mixture fraction variable. The local density, temperature, and species concentration are 

stored as functions of Favre-averaged mixture fraction, its variance and enthalpy via a 

look-up table consisting of PDF weighted equilibrium values (See Kuo, 1986; Poinsot 
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and Veynante, 2005; Fluent 12.1 theory guide, 2009 for more details on turbulence-

chemistry interaction modelling). 

 

 

B.4 Pollutant model for NOx 
 

The process of formation and destruction of nitrogen oxides in combustion systems 

requires simulation of both the turbulent reacting fluid dynamics and chemical kinetics 

in the system and coupling of these with nitrogen pollutant kinetics (Hill and Smoot, 

2000; Barths et al., 1998). Hence, it is currently unfeasible to simulate lengthy, detailed 

chemical and nitrogen kinetic mechanisms simultaneously with a turbulent mixing 

process. A practical approach widely employed is to use a nitrogen kinetic mechanism 

with minimum number of reactions, global in nature, and approximate the essential 

features of NOx formation and destruction (Hill and Smoot, 2000). 

 

 

B.4.1 Governing equation for NOx transport 

 

During combustion, the nitrogen from combustion air or fuel is converted into nitrogen 

containing pollutants such as NO, NO2, N2O, NH3 and HCN (Hewson and Bollig, 1996). 

The pollutant species formed depends primarily on temperature and fuel/air ratio in 

the combustion system. For gas-phase reacting systems, NOx formation and destruction 

can be classified in at least four separate processes: thermal NO, prompt NO, fuel NO 

and NO reburning. Of these four processes, thermal NO is discussed in more detail 

below, as it is used for combustor NOx analysis in this thesis. For more details on other 

processes, refer to Hill et al. (2000). 

 

The governing transport equation for NO species is given as: 

 

 

 

  
(  ̃  )   

 

   
(  ̃   ̃ )  

 

   
(  

    

   
)      

 

 

where;  

 

 ̃   is the Favre-averaged mean NO mass fraction 

 

  is the average effective diffusion coefficient 

 

    is the source term to be determined for different NOx 

mechanisms 

 

Eq. (B.23) 
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Equation B.23 is valid for thermal and prompt NOx mechanisms only as fuel NOx 

mechanisms are more involved and requires tracking of nitrogen-containing 

intermediate species (Miller, 19889; Fluent 12.1 theory guide, 2009). 

 

 

B.4.2 Thermal NO mechanisms 
 

The NO formation process is described by the widely accepted Zeldovich two-step 

mechanism (Malte and Pratt, 1974; Visona, 1996): 

 

 

            

 

            

Eq. (B.24a) 

 

Eq. (B.24b) 

 

 

In addition to Equations (B.24a) and (B.24b), a further NO reaction is added to the 

thermal NO mechanism and is referred to as to extended Zeldovich mechanism, 

particularly important at fuel-rich and near-stoichiometric conditions, given as 

 

 

            Eq. (B.24c) 

 

Thermal NO is formed by oxidation of nitrogen in air at high temperatures. The rate of 

formation of thermal NO is highly dependent on temperature, residence time, and 

atomic concentration (Hayhurst and Vince, 1980). The rate of consumption of free 

nitrogen atoms becomes equal to the rate of its formation in the presence of sufficient 

oxygen and therefore a quasi-steady state is established. Based on a quasi-steady 

assumption of [N] and using Equations (B.24a), (B.24b) and (B.24c) the rate of 

formation of NO is given by (Bowman, 1975) 

 

 

d    

dt
     [

        
           

      

   
       

              

] 

 

where 

 

  ,    and    are rate constants for forward reactions 

whereas    ,     are reverse rate constants (m3/gmol.s) 

 

 

 

 

Eq. (B.25) 
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Further as suggested by Zeldovich, assuming equilibrium values of stable species 

     and     , to predict NO formation, [O] and [OH] free radicals concentrations must 

be calculated. The different methods to calculate these concentrations are discussed in 

Coelho and Carvalho (1995), Chen et al. (1996) and Fluent 12.1 theory guide 

(2009).Thus to solve the transport equation for NOx species (Eq. B.23), the source term 

is 

 

         

     

  
 

 

 

where 

 

      molecular weight of NO  

 

 
     

  
 is rate of thermal NO formation computed from Eq. (B.25) 

 
 

Eq. (B.26)  
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2D Combustor flow solution 

 
 
 

C.1 Species model for combustor flow 
 
Partially premixed combustion systems are premixed flames with non-uniform fuel-

oxidizer mixtures (equivalence ratios) which include premixed jets discharging into a 

quiescent atmosphere, lean premixed combustors with diffusion pilot flames and/or 

cooling air jets, and imperfectly mixed inlets. The 2D test combustor is modeled to 

operate at lean conditions, capturing the humming cycle instability which occurs at an 

equivalence ratio of Φ = 0.86. The equivalence ratio is a central parameter for premixed 

gases. Lean combustion is defined as combustion in which the mixture equivalence ratio 

is less than 1. Perfectly premixed systems can also be modeled using the partially 

premixed combustion model in FLUENTTM. This is used for modelling lean combustion 

in the 2D combustor. 

 

Since air is the source of oxygen for burning in a premixed propane/air mixture, the 

burning of propane under stoichiometry (  = 1) is given as follows: 

 
 
 

                                                            Eq. (C.1) 
 
 
 
For a stoichiometric mixture of propane with air, the mass stoichiometric ratio, s, is 3.63 

and the fuel mass fraction (  
    is 0.060. 

  
In hydrocarbon/air flames, the fresh gases contain fuel, O2 and N2 with typically 3.76 

models of nitrogen for 1 mole of oxygen. Since the sum of mass fractions must be unity, 

according to Poinsot et el., 2005, the fuel mass fraction is given as: 
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 (      

   

   

)
 

 

                                     
  

  Eq. (C.2) 
 

 
 
For   = 0.86 and S = 3.63, the fuel mass fraction is 0.052 according to Equation D2. 
 
 
Species settings for premixed inlet boundary conditions: 
 

The mass fraction of the fuel composition is set to       
 = 1.0 in the boundary tab 

while generating PDF mixture table, the mean mixture fraction is set to  ̅ ̅ = 0.052 and 

progress variable  ̅ = 0 at the inlet boundary conditions panel. The mixture fraction 

variance,   
 ̅̅ ̅ = 0. 

 
 
Laminar flame-speed for propane/air mixture: 
 

The propane/air mixture will burn only in the locations where the turbulent flame 

speed ST is able to sustain the mixture velocity  ̃ (i.e. ST =  ̃ ). The turbulent flame speed 

is influenced by the following: 

 laminar flame speed, SL, which, in turn, is determined by the fuel concentration, 
temperature, and molecular diffusion properties, as well as the detailed chemical 
kinetics 
 

 flame front wrinkling and stretching by large eddies, and flame thickening by 
small eddies 

 
For premixed systems, laminar flame speed is approximately constant throughout the 

domain. Fluent automatically selects the pre-PDF-polynomial function for laminar flame 

speed, indicating that the piecewise-linear polynomial function from the PDF look-up 

table is used to compute the laminar flame speed. 
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C.2 Convergence history for steady RANS isothermal solution 
 

 
 

Fig. C.1 Residuals for steady RANS isothermal solution 

 
 
C.3 Convergence history for steady RANS reactive solution 

 
 

Fig. C.2 Residuals for steady RANS isothermal solution 
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C.4 Convergence history for pollutant NO using steady RANS 
 

 
 

Fig. C.3 Residuals for NO using solution steady RANS 
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Kriging based combustor  

design strategy 
 
 
 

D.1 Ranking of DOE samples as per objective function values 
 
 

Table D.1 Ranking of Kriging design strategy search histories 

for steady outlet temperature profile RMSD using different 

starting samples (c.f. Figure 6.25) 

Optimal RMSD DOE sample 

338.09 (Best) 4 

338.89 8 

339.13 9 

341.11 1 

345.43 5 

345.76 2 

356.83 3 

361.61 6 

367.33 (Worst) 7 
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Table D.2 Ranking of Kriging design strategy search histories 

for steady outlet thermal NO using different starting samples 

(c.f. Figure 6.25) 

Optimal outlet thermal  
NO ppm 

DOE sample 

8.159 (Best) 4 

8.162 9 

8.165 2 

8.199 5 

8.212 6 

8.253 1 

8.256 8 

8.322 7 

8.342 (Worst) 3 

 
 

Table D.3 Ranking of Kriging design strategy search histories for time-
averaged area-weighted outlet temperature using different starting 

samples (c.f. Figure 6.25) 

Optimal time-averaged area-weighted 
outlet temperature (K) 

DOE 
sample 

1524.87 (Best) 5 

1524.96 1 

1525.03 7 

1527.56 3 

1530.86 8 

1531.59 6 

1532.74 4 

1535.31 2 

1550.04 (Worst) 9 
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Table D.4 Ranking of Kriging design strategy search histories 
for time-averaged area-weighted outlet thermal NO using 

different starting samples (c.f. Figure 6.25) 

Optimal time-averaged area-
weighted outlet thermal NO (ppm) 

DOE 
sample 

9.778 1 

9.775 9 

9.781 5 

9.795 2 

9.836 6 

9.837 8 

9.838 3 

9.940 7 

9.946 4 

 
 
 

D.2 Bootstrap sample convergence study 
 
(1) Spatial domain 

 
(a) Outlet temperature profile RMSD: 

 
Table D.5 Convergence study for number of bootstrap samples B for steady 

outlet temperature profile RMSD 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 3.120 3.706 3.519 3.372 3.464 3.432 3.430 3.432 

 

Table D.5 shows that beyond B = 5000, the bootstrap standard error (SE’) value of ~3.4 

doesn’t change significantly further. Figure D.1 shows sampling data distribution about 

the mean. The original dataset X with sample size N = 9, does not follow a normal 

distribution, whereas the bootstrap sampling distribution based on B=100, 5000 and 

20000 samples approximately follow normal distribution. However, at B = 5000 the 

distribution curve looks converged without any significant change further.  
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Fig. D.1 Sampling distribution of original dataset X around the estimated mean M = 

348.24 compared with bootstrap distribution around bootstrap mean M’ =  348.25 for 

outlet temperature profile RMSD 

 
(b) Outlet thermal NO (ppm): 

 

 
Fig. D.2 Sampling distribution of original dataset X around estimated mean M = 8.230 

compared with bootstrap distribution around bootstrap mean M’ =  8.231 for outlet 

thermal NO 
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Table D.6 Convergence study for number of bootstrap samples B for steady 

outlet thermal NO (ppm) 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 

 
Similar to the outlet temperature profile objective function bootstrap analysis, Table D.6 

shows that the bootstrap standard error value at B=100 appears to be converged with 

no further change in its value as B increases. Figure D.2 shows original data and 

bootstrapped data distribution about the mean. With sample size N = 9, the sampling 

distribution is not normal, whereas the bootstrap sampling distribution with B=100, 

1000 and 10000 are approximately normal. However, at B = 1000 the sampling 

distribution curve appears to be converged without any significant change. 

 

 

(2) Temporal domain 
 

Similar to the bootstrap sample size B analysis in spatial domain, the convergence 

analysis is performed on temporal domain objective functions to determine size of B. 

 

(a) Time-averaged (area-weighted) outlet temperature (K): 

  

 
Fig. D.3 Sampling distribution of original dataset X around the estimated mean M = 

1531.44 compared with bootstrap distribution around bootstrap mean M’ =  1531.40 

for time-averaged outlet temperature 
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Table D.7 Convergence study for number of bootstrap samples B for time-

averaged area-weighted outlet temperature (K) 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 2.634 2.451 2.535 2.456 2.511 2.505 2.500 2.500 

 

 

(b) Time-averaged (area-weighted) outlet thermal NO (ppm): 

 

Table D.8 Convergence study for number of bootstrap samples B for time-

averaged area-weighted outlet thermal NO (ppm) 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 0.0202 0.0214 0.0201 0.0204 0.0205 0.0205 0.0205 0.0205 

 

 

 
Fig. D.4 Sampling distribution of original dataset X around the estimated mean M = 

9.836 compared with bootstrap distribution around the bootstrap mean M’ =  9.837 for 

time-averaged outlet thermal NO 
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Co-Kriging based combustor  

design strategy 
 
 
 

E.1 Co-Kriging methodology 
 
Co-Kriging is an extension to the original form of Kriging methodology, which correlates 

multiple sets of data. Given two vectors of variables    
  and   

 
 , where   

  is the vector 

of cheap (or low-fidelity) evaluation points (           ), and   
 
 is the vector of 

expensive (or high-fidelity) evaluation points with (          ), the combined set of 

sample points 
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 ]   
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]
 
 
 
 
 
 
 
 

 

 

 
 
 
 

Eq. (E.1) 

 
The objective function values could be represented by a vector Y consisting of all cheap 

[     
    and expensive    (  

 
)  objective function values given by 
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Eq. (E.2) 

 

For two levels of fidelities in the co-Kriging methodology, according to auto-regressive 

model of Kennedy and O’Hagan (2000), 

 
 

   [    
        |    

  ]            Eq. (E.3) 

 

 
Equation E.3 is a Markov property, which indicates that at a particular location, nothing 

more can be learnt about the expensive function from the cheap function if the value of 

the expensive function is known at that location. Hence all inaccuracies lie only in the 

cheap model. For making use of cheap function data, a correction process is required to 

formulate the difference between the cheap and expensive function.  

 

If    and    are the Gaussian realization of the expensive and cheap functions 

respectively, then using the auto-regressive model the approximation of the expensive 

function is given as the sum of the scaled cheap function realization (with scaling factor 

ρ), and a Gaussian process representing the difference between the expensive function 

and the scaled cheap function (Kennedy and O’Hagan, 2000), given as 

 
 

                     Eq. (E.4) 
 

 
The covariance of Y, for two-levels of fidelities, similar to that of Kriging (Equation B.3) 

is: 

 

 

         
        

       
      

    
   

 

 
Eq. (E.5) 
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Eq. (E.6) 
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Eq. (E.7) 

 

where   
  is the variance in the cheap model and    and    are the correlation 

matrices. The covariance matrix using Equations (E.5), (E.6) and (E.7) is given as: 
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) 

 

Eq. (E.8) 

 

 

The elements of two correlations matrices    and    are of the same form as Equation 

B.1 and the hyperparameters to be determined are   ,   ,   ,    along with the scaling 

factor  .  

 

The estimates of cheap model hyperparameters    ,  
 ,           are found by 

maximizing the log-likelihood function 
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Eq. (E.9) 

 

 

and after taking natural log of Equation (E.9) and ignoring the constant terms, 
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Eq. (E.10) 

Setting the derivatives of Equation (E.10) with respect to   
  and    equal to zero, the 

optimal values of mean (  ̂) and variance ( ̂ 
 ) as functions of      

    
   could be 

obtained as: 

 

  ̂    
       

    
       

       
    

      
 

 
Eq. (E.11) 

 

  

 ̂ 
    

      ̂  
      

    
           ̂  

  
 

 
Eq. (E.12) 
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Substituting Equations (E.11) and (E.12) into Equation (E.10) gives the concentrated log 

likelihood function 

 

 

 
  

 
      ̂ 

    
 

 
     |     

    
  |  

 
Eq. (E.13) 

 

 

which depends only on the correlation      
    

  . Equation (E.13) is maximized to get 

the estimates  ̂  and  ̂  and using these,   ̂ and  ̂ 
  are computed from Equations (E.11) 

and (E.12) respectively.  

 

To estimate model hyperparameters    ,   
 ,          , the difference model is defined 

as: 

 

 

                Eq. (E.14) 
 

 

The log-likelihood function for the expensive function is: 
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Eq. (E.15) 

 

Again setting the derivatives of Equation (E.15) with respect to    
  and    equal to 

zero,  

 

 ̂    
       

 
   

 
      

       
 
   

 
     

 
 

Eq. (E.16) 

 

  

 ̂ 
    

      ̂  
      

 
   

 
          ̂  

  
 

 
Eq. (E.17) 

 
 

Substituting Equations (E.16) and (E.17) into Equation (E.15) gives the concentrated log 

likelihood function 

 

 
  

 
      ̂ 

    
 

 
     |     

    
  |  

Eq. (E.18) 
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Equation (E.18) is maximized to get the estimates  ̂ ,  ̂   and  ̂. Using these estimates,  

 ̂  and  ̂ 
 is computed from Equations (E.16) and (E.17) respectively.  

 

To make a co-Kriging prediction at a new expensive point, a method similar to Kriging is 

applied (c.E. Section B.1). With fixed estimated parameters, to predict the value  ̂     at 

a new location X which is consistent with the observed data, an augmented log-

likelihood function is computed. 

 

The augmented vector of objective function values is given by   ̃     
    

   ̂     
  

when augmented by a new expensive prediction point  ̂    , the value of which is to be 

determined. The column vector of covariance of  ̂     with      is given by:  

 

 

  (
  ̂ 

      
    

    ̂ 
    ̂ 

    (  
 
  )

)  
 

Eq. (E.19) 

 

 

and the augmented covariance matrix 

 

 

 ̃   (
  

      ̂ 
    ̂ 

  
)  

 
Eq. (E.20) 

 

 

Using Equation (E.20), an augmented likelihood function is computed similar to 

Equations (E.10) and (E.15). Maximizing this function and using method similar to 

Kriging (c.E. Section 2.4), the MLE of  ̂     is obtained as: 

 

 

 ̂        ̂             ̂  Eq. (E.21) 

 

 

Equation E.21 is the expression for the co-Kriging predictor. 

 

 

Similar to the Kriging prediction error, the co-Kriging prediction error is computed as: 

 

 ̂      [   ̂ 
   ̂ 

          
        

      
 ] 

 

Eq. (E.22) 
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E.2 DOE samples of various co-Kriging based design strategies 
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E.3 Ranking of DOE samples as per objective function values 
 

Table E.1 Ranking of CoTGL design strategy search histories 
for steady outlet temperature profile RMSD using different 

starting samples (c.f. Figure E.1) 

Optimal RMSD DOE sample 

338.22 (best) 7 

340.08 1 

341.42 2 

345.52 9 

346.84 3 

348.71 5 

359.13 8 

367.44 4 

372.75 (Worst) 6 

 
 

Table E.2 Ranking of CoTGL design strategy search histories for 
steady outlet thermal NO using different starting samples (c.f. 

Figure E.1) 

Optimal outlet thermal NO ppm DOE sample 

8.165 (best) 9 

8.168 5 

8.185 1 

8.193 8 

8.250 2 

8.275 3 

8.293 7 

8.420 6 

8.616 (worst) 4 
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Table E.3 Ranking of CoSUS design strategy search histories for 

time-averaged area-weighted outlet thermal NO using different 

starting samples (c.f. Figure E.2) 

Optimal time-averaged area-weighted 

outlet thermal NO (ppm) 

DOE 

sample 

9.778 (best) 8 

9.782 6 

9.789 2 

9.800 5 

9.815 4 

9.866 9 

9.889 1 

10.050 7 

10.107 (worst) 3 

 
 

Table E.4 Ranking of CoTUS-(a) design strategy search histories 

for time-averaged area-weighted outlet thermal NO using 

different starting samples (c.f. Figure E.3) 

Optimal time-averaged area-

weighted outlet thermal NO (ppm) 

DOE 

sample 

9.778 (best) 7 

9.785 1 

9.789 3 

9.821 5 

9.825 8 

9.981 9 

10.087 4 

10.185 2 

10.254 (worst) 6 
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Table E.5 Ranking of CoTUS-(b) design strategy search histories for 

time-averaged area-weighted outlet thermal NO using different 

starting samples (c.f. Figure E.4) 

Optimal time-averaged area-weighted 

outlet thermal NO (ppm) 
DOE sample 

9.778 (best) 5 

9.782 9 

9.793 1 

9.826 7 

9.855 8 

9.864 2 

10.049 6 

10.113 3 

10.232 (worst) 4 

 
 

Table E.6 Ranking of CoSTUS design strategy search histories for 
time-averaged area-weighted outlet thermal NO using different 

starting samples (c.f. Figure E.5) 

Optimal time-averaged area-weighted 
outlet thermal NO (ppm) 

DOE sample 

9.778 (best) 7 

9.791 9 

9.797 5 

9.800 4 

9.835 3 

9.867 8 

9.876 1 

9.999 6 

10.321 (worst) 2 
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E.4 Bootstrap sample convergence study 
 
(1) Spatial domain 

 
(a) Outlet temperature profile RMSD: 

 
Table E.7 Convergence study for number of bootstrap samples B to be used in 

strategy CoTGL for outlet temperature profile RMSD 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 3.555 3.947 3.831 3.834 3.877 3.88 3.88 3.88 

 

 
Fig. E.6 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoTGL for outlet temperature profile RMSD 

 

Table E.7 shows the variation of the bootstrap standard error with number of bootstrap 

samples B, which appears to be converged at B = 10000.  

 

Figure E.6 shows original data and bootstrapped data distribution (for increasing B) 

about their respective mean values. With sample size N = 9, the sampling distribution is 

not normal, whereas the bootstrap sampling distribution with B=1000 and 10000 are 

approximately normal. At B = 1000 the sampling distribution curve appears to be 

converged without any significant change.  



Appendix E 
 

 221 

(b) Outlet thermal NO (ppm): 

 

Table E.8 Convergence study for number of bootstrap samples B to be used in 

strategy CoTGL for outlet thermal NO (ppm) 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 0.041 0.047 0.046 0.047 0.046 0.046 0.046 0.046 

 

 
Fig. E.7 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoTGL for outlet thermal NO 

 
Table E.8 shows that the bootstrap standard error value at B=100 converges with no 

further change in its value as B increases. Figure E.7 shows original data and 

bootstrapped data distribution about their respective mean values. With sample size N 

= 9, the sampling distribution is not normal, whereas the bootstrap sampling 

distribution with B=50, 1000 and 10000 are approximately normal. However, at B = 

1000 the sampling distribution curve appears to be converged without any significant 

change. 

 

 

(2) Temporal domain 
 

Similar to the bootstrap sample size analysis in spatial domain, the convergence test is 

performed on temporal domain objective function to determine size of B. 
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Table E.9 Convergence study for number of bootstrap samples B to be used for 

all co-Kriging strategies in temporal domain 

Strategy 

No. of bootstrap samples 

50 100 1000 5000 10000 20000 40000 80000 

CoSUS 

B
o

o
ts

tr
a

p
p

e
d

 s
ta

n
d

a
rd

 

e
rr

o
r 
(S
E
’)

 

0.043 0.039 0.038 0.038 0.038 0.038 0.038 0.038 

CoTUS-

(a) 
0.050 0.063 0.059 0.06 0.059 0.059 0.059 0.059 

CoTUS-

(b) 
0.054 0.059 0.050 0.052 0.052 0.052 0.052 0.052 

COSTUS 0.061 0.057 0.052 0.055 0.054 0.054 0.054 0.054 

 

 

Sampling distribution for CoSUS 

 
Fig. E.8 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoSUS 
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Sampling distribution for CoTUS-(a) 

 
Fig. E.9 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoTUS-(a) 

 
Sampling distribution for CoTUS-(b) 

 
Fig. E.10 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoTUS-(b) 
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Sampling distribution for CoSTUS 

 
Fig. E.11 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoSTUS 
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Time-parallel co-Kriging based 

combustor design strategy 
 
 
 

F.1 Data fusion strategy for FLUENT data files 
 
The data fusion process is used to combine data from multiple sources and gather that 

information in order to achieve inferences, which will be more efficient and potentially 

more accurate than if they were achieved by means of a single source. The expectation 

is that fused data is more informative than the original inputs. 

 

For time-parallel simulation method-B, which requires a data fusion strategy, the 

following steps are performed in order to obtain a modified FLUENT data file using 

information from the past and future time-states: 

 
(1) Set blending factor for data fusion, α 

  

(2) Perform data mapping operation – this step maps all the required data within the 

FLUENT data files of past and future time-states.  

 

(3) Perform data modification operation – this step modifies the header section of the 

FLUENT data files which consists of the information regarding the total number of flow 

variables and their data sets. 

 

(4) Perform data fusion operation – this step blends (using blending factor from step 1) 

the individual sections of data from two source FLUENT data files and stores it into an 

independent new data file. 
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(5) Perform data integration operation – this step integrates the newly fused data file 

with a FLUENT header file resulting into a new blended FLUENT data file. 

 

Figure F.1 represents the above steps graphically. 

 
 

  
Start 

Set blending factor 

Perform data 

mapping 

Perform data 

modification 

Perform data fusion 

Perform data 

integration 

End 

Fig. F.1 Overview of processes involved in the data fusion strategy 
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 F.2 DOE samples of CoTPUS design strategies 
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F.3 Ranking of DOE samples as per objective function values 
 

Table F.1 Ranking of CoTPUS-(a) design strategy search histories 

for time-averaged area-weighted outlet temperature using 

different starting samples (c.f. Figure F.2) 

Optimal time-averaged  

area-weighted outlet temperature (K) 

DOE 

sample 

1525.32 (best) 2 

1532.39 4 

1533.14 7 

1534.37 6 

1535.08 1 

1535.18 3 

1535.73 9 

1541.85 5 

1550.09 (worst) 8 

 
 

Table F.2 Ranking of CoTPUS-(b) design strategy search histories 

for time-averaged area-weighted outlet temperature using 

different starting samples (c.f. Figure F.3) 

Optimal time-averaged area-weighted 

outlet temperature (K) 

DOE 

sample 

1525.23(best) 1 

1528.03 8 

1528.72 4 

1530.42 5 

1530.56 7 

1531.74 6 

1531.94 2 

1536.78 3 

1540.41(worst) 9 
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F.4 Bootstrap sample convergence study 
 
(1) CoTPUS-(a) 

 
Table F.3 Convergence study for number of bootstrap samples B to be used 

for CoTPUS-(a) strategy CI 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 1.894 2.292 2.137 2.149 2.151 2.151 2.151 2.151 

 

 
Fig. F.4 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoTPUS-(a) for time-averaged outlet temperature (K) 

 
 
(2) CoTPUS-(b) 

 
Table F.4 Convergence study for number of bootstrap samples B to be used 

for CoTPUS-(b) strategy CI 

B 50 100 1000 5000 10000 20000 40000 80000 

SE’ 1.544 1.572 1.461 1.448 1.445 1.448 1.448 1.448 
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Fig. F.5 Sampling distribution of original dataset (N = 9) compared with bootstrap 

distribution for strategy CoTPUS-(b) for time-averaged outlet temperature (K) 

 
Tables F.3 and F.4 show the bootstrap sample size convergence study on the CoTPUS-

(a) and (b) strategies bootstrapped standard error. The number of bootstrap samples B 

appears to be converged at B = 5000 for both CoTPUS strategies. Figures F.4 and F.5 

show the original data and bootstrapped data distribution (for increasing values of B) 

about their respective mean values. 
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