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Abstract

In this note, we develop a condition on a closed curve on a surface or in a 3-manifold that implies
that the length function associated to the curve on the space of all hyperbolic structures on the
surface or in the 3-manifold (respectively) completely determines the curve. Specifically, for an
orientable surface S of negative Euler characteristic, we extend the known result that simple
curves have this property to curves with self-intersection number one (with one exceptional case
arising from hyperellipticity that we describe completely). For a large class of hyperbolizable
3-manifolds, we show that curves freely homotopic to simple curves on ∂M have this property.
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1 Introduction and statement of results

Randol [36], building on earlier work of Horowitz [18] on characters of representations of free groups
into SL2(C), makes the remarkable observation that on an orientable surface S of negative Euler
characteristic, there exist pairs of distinct (homotopically non-trivial) closed curves having the
property that their lengths are equal to one another in each hyperbolic structure on S. In fact, for
any n ≥ 2, there exist n-tuples of closed curves on S whose lengths are equal to one another in
each hyperbolic structure on S.

As Randol notes, earlier work of Abraham [2] demonstrates that such tuples of curves do not
exist for general families of metrics, making the existence of such tuples a phenomenon of constant
negative curvature metrics. (It is not known whether the existence of such tuples characterises
or largely characterises constant negative curvature metrics among all metrics.) Since Randol’s
observation, much effort has been undertaken to characterise in some way such tuples of curves
on a surface; however, such efforts are still incomplete. We note here in particular the work of
Ginzburg and Rudnick [14], in which they develop a condition on the exponents of a word w in the
free group of rank two which implies that w cannot belong to any such tuple; the work of Leininger,
who shows that the straightforward necessary topological condition for two curves to have the same
length is not sufficient; and the work of Masters [27], who demonstrates the existence of such tuples
in 3-dimensional hyperbolic manifolds. We refer the interested reader to the survey by the author
[3] for a discussion of variants of this question and known results.
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In this note, we take a different tack and consider an obverse question to the characterisation
question described briefly above. Specifically, we develop a condition on a closed curve on a surface
or in a 3-manifold that implies that the curve cannot belong to one of the tuples described above,
for either surfaces or 3-manifolds. That is, we develop a condition that implies that the length
function associated to a closed curve on the space of all hyperbolic structures on the surface or
in the 3-manifold (essentially) completely determines the curve. We also discuss why no stronger
similar conditions hold, at least of the sort discussed herein.

We note here that in her thesis, Bright [7] used different techniques to give partial results towards
answering this question of developing such a condition for core curves in a book of I-bundles M
which implies that there is no other curve in M with the same length over all hyperbolic structures
on int(M).

McShane [32] shows that the length function associated to a simple curve C on an orientable
hyperbolic S completely determines C. We extend this to show, for a surface S which is the
interior of a compact orientable surface of negative Euler characteristic, that for a curve C on S
with self-intersection number one, the length function `C associated to C completely determines
C, with two non-avoidable exceptions related to hyperellipticity.

Theorem 1.1 Let S be the interior of a compact, orientable surface Σ of negative Euler character-
istic. Let C be a curve on S with self-intersection number one. If C ′ is a curve on S that satisfies
`C′(ρ) = `C(ρ) for all ρ ∈ D(π1(S)), then either C ′ = C or we are in the case of the hyperelliptic
exception, so that one of the following holds:

1. We have that S = Σ2 is the closed, orientable surface of genus two with hyperelliptic involution
τ , the curve C is contained in the interior of a pair of pants P ⊂ Σ2 for which every boundary
component of P is a non-separating curve on Σ2, and C ′ = τ(C).

2. There exists an embedded torus with one hole T ⊂ Σ containing C, that τ is the hyperelliptic
involution restricted to T , and that C ′ = τ(C).

The proof of Theorem 1.1 follows relatively straightforwardly from standard properties of hyperbolic
metrics on surfaces, including the Collar Lemma and the fact that the length of a non-simple curve
on a hyperbolic surface has a positive universal lower bound, independent of the surface and the
curve, over all hyperbolic structures on the surface.

The main result of this note is to present the following extension to a wide class of 3-manifolds
with interiors admitting hyperbolic metrics. (Full definitions are given in Section 3.)

Theorem 1.2 Let M be a compact, hyperbolizable 3-manifold with non-empty, incompressible,
atoroidal boundary. Assume that M is not an I-bundle over a surface. Let C be a curve in M
freely homotopic to a simple curve on ∂M . If C ′ is a curve in M which satisfies `C′(x) = `C(x)
for all hyperbolic structures x on int(M), then C ′ = C.

We first prove a restricted version of Theorem 1.2 for acylindrical 3-manifolds M and then use
topological arguments to handle the general case.

We would like to thank the referee for their careful reading of the paper and their comments, and
in particular for pointing out that a mistake in the statement and proof in the original version of
Theorem 1.1, which led to the current phrasing of this Theorem and the Lemmas leading up to
this statement, in particular Lemma 2.8.
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2 Curves on surfaces

We begin by stating Horowitz’s original result. Recall that a primitive element of a (finitely
generated) free group F is an element that belongs to a free basis of F , where a free basis for a
(finitely generated) free group is a generating set of minimal cardinality. We wish to consider all
realisations of F as a subgroup of SL2(C), so we define the representation space

R(F ) = {ρ : F → SL2(C) | ρ is a homomorphism},

with the natural topology induced by choosing a free basis {f1, . . . , fr} for F and realizing R(F )
as a subset of (SL2(C))r via the map ρ 7→ (ρ(f1), . . . , ρ(fr)).

Each non-trivial element f ∈ F induces a character, which is the function χ[f ] : R(F ) → C given
by

χ[f ](ρ) = tr(ρ(f)).

In his original paper, Horowitz [18] proved the following result for (finitely generated) free groups.

Theorem 2.1 (see Theorem 7.1 and Corollary 7.2 of Horowitz [18]) Let u be an element
of a free group F . If χ[u] = χ[ambn], where m and n are integers (allowing the possibility that
either m or n be 0) and a and b are primitive elements of F , then u is conjugate to (ambn)±1.

It is unclear what is the cleanest algebraic generalisation of Theorem 2.1 to more general words in a
finitely generated free group F . Along these lines, we highlight the work of Ginzburg and Rudnick
[14], who develop the following condition. Let w = am1bn1 · · · ampbnp be any word in the free
group F = free(a, b) of rank two. They first observe that the word w′ = I(w) = bnpamp · · · bn1am1

obtained by writing w backwards has the same character as w; that is, χ[w] = χ[I(w)] for all
w ∈ F . Define the vector R = (r1, . . . , rp) of non-zero integers to be non-singular if rk 6=

∑
j∈S rj

for every 1 ≤ k ≤ p and every subset S ⊂ {1, . . . , p}, S 6= {k}. They then show that if both the
exponent vector (m1, . . . ,mp) for the powers of a in w and the exponent vector (n1, . . . , np) for the
powers of b are non-singular, then (up to inverse and conjugacy) the only possible word with the
same character as w is I(w).

At this point, we shift our focus to the analogous question for lengths of curves rather than char-
acters. Let Σ be a compact, orientable surface of negative Euler characteristic, possibly with
boundary, whose interior S = int(Σ) then admits a hyperbolic structure, by which we mean a com-
plete Riemannian metric of curvature −1, possibly of infinite area; where relevant, we let Sx denote
S equipped with the hyperbolic structure x.

A non-trivial element c ∈ π1(S) is maximal if it is not the proper power of another element of π1(S),
or equivalently if 〈c〉 is a maximal cyclic subgroup of π1(S). (We will participate in the standard
abuse of notation and normally repress the base-point when discussing fundamental groups.) We
note that every non-trivial element of π1(S) is either maximal or a proper power of a maximal
element, as elements of the fundamental group of a surface are not infinitely divisible.

A curve C on S is the free homotopy class corresponding to a maximal element c ∈ π1(S) = π1(Σ),
so that in particular we are explicitly excluding proper powers cn for |n| ≥ 2 in this definition.
We work throughout with unoriented curves, so that for a maximal element c ∈ π1(S) with its
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corresponding curve C, we have that C is also the curve corresponding to c−1. Since curves are free
homotopy classes of elements of π1(S), the curves on S naturally correspond to conjugacy classes
of maximal cyclic subgroups of π1(S).

A curve C on S is simple if it contains a simple representative, by which we mean a non-self-
intersecting, closed loop. Otherwise, if no such simple representative exists, the curve C is non-
simple. A curve C on S ⊂ Σ is peripheral if C is freely homotopic to a component of ∂Σ. Note
that peripheral curves are necessarily simple.

For a non-simple curve C, the self-intersection number of C is the minimum number of times any
representative in the free homotopy class C intersects itself.

Two curves C and C ′ are disjoint if they contain disjoint representatives; otherwise, no such disjoint
representatives exist and the curves intersect. Note that a peripheral curve on S is necessarily
disjoint from every other curve on S.

A useful property of hyperbolic structures is that for each non-peripheral curve C on S and each
hyperbolic structure x on S, there exists a unique closed geodesic C∗ on Sx in the free homotopy
class C. Moreover, the self-intersection number of the free homotopy class C is realised by the
self-intersection number of the geodesic representative C∗ of C.

The situation for peripheral curves is slightly more complicated. Namely, there are two possible
types of end for S with a given hyperbolic structure x. One type of end is a funnel, so that there
exists a simple, closed geodesic bounding an exponentially flaring end of Sx homeomorphic to an
annulus. Such an end exists if and only if Sx has infinite area. The convex core of the surface Sx is
the result of cutting Sx along the simple closed geodesics bounding the funnel ends and removing
the open funnels.

The other type of end is a cusp, which is conformally equivalent to a punctured disc. For a peripheral
curve C homotopic into a cusp on Sx, there is no closed geodesic in the free homotopy class C;
instead, there exist a sequence of representatives of C whose lengths on Sx go to zero. The cusp
ends of a hyperbolic surface are contained in the convex core of the surface.

Phrased in terms of geodesics, two non-peripheral curves C0 and C1 on S intersect if and only if
their geodesic representatives C∗0 and C∗1 intersect for some, and hence every, hyperbolic structure
on S.

We now consider the space of marked hyperbolic structures on S. A Fuchsian group Φ is a dis-
crete subgroup of the group Isom+(H2) ∼= PSL2(R) of orientation-preserving isometries of the real
hyperbolic plane H2. Let D(π1(S)) be the space of realisations of π1(S) as a Fuchsian group, so
that

D(π1(S)) = { ρ : π1(S)→ PSL2(R) | ρ(π1(S)) is Fuchsian

with quotient H2/ρ(π1(S)) homeomorphic to S}.

(The restriction that H2/ρ(π1(S)) be homeomorphic to S is necessary here as we may be in the
case that S is not closed, in which case π1(S) is free and there may be multiple topological types of
such surfaces with isomorphic fundamental groups.) Where appropriate, we let Sρ be the surface
S with the hyperbolic structure coming from the representation ρ, so that Sρ = H2/ρ(π1(S)).
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Each hyperbolic structure on S arises from a representation ρ ∈ D(π1(S)), which yields both the
hyperbolic structure by taking the quotient Sρ = H2/ρ(π1(S)), together with the marking of π1(S)
by ρ, which allows us to distinguish between curves. To each curve C on S, we associate the
function

`C : D(π1(S))→ R

given by setting `C(ρ) to be the length of the closed geodesic C∗ corresponding to the free homotopy
class C on Sρ = H2/ρ(π1(S)).

If there is no closed geodesic in the free homotopy class C, in the case C is peripheral on S and
homotopic to a cusp of Sρ, or equivalently when ρ(C) is a parabolic cyclic conjugacy class, we set
`C(ρ) = 0. By the above discussion, the function `C is well-defined.

We use the following two important results about the behavior of the lengths of curves on hyperbolic
surfaces. The first is a consequence of the Collar Lemma for hyperbolic surfaces.

Lemma 2.2 (see Corollary 4.1.2 of Buser [9]) Let S be the interior of a compact, orientable
surface of negative Euler characteristic. Let C be a simple curve on S and let C ′ be a curve on S
that intersects C. We then have that

sinh

(
1

2
`C(ρ)

)
sinh

(
1

2
`C′(ρ)

)
> 1

for every ρ ∈ D(π1(S)).

The main use we make of the Collar Lemma is to show that two intersecting curves cannot both
be represented by short geodesics in any hyperbolic structure on the surface.

The second result concerns the behavior of non-simple curves. We state the version most relevant
to the discussion at hand, though we do note that this result has been considerably extended. For
this, we refer the interested reader in particular to the papers of Basmajian [5], [6].

Lemma 2.3 (see for instance Hempel [17]) There exists a constant K > 0 so that if S is the
interior of a compact, orientable surface of negative Euler characteristic and if C is a non-simple
curve on S, then `C(ρ) ≥ K for all ρ ∈ D(π1(S)).

The following result is due to McShane [32], and is in a real sense the starting point for the
investigations detailed in this note. A proof for closed surfaces can also be found as Lemma 6.2 in
Anderson [3]. For the sake of completeness, and because some of the arguments herein arise again
in later arguments, we outline the general proof here.

Theorem 2.4 Let S be the interior of a compact, orientable surface of negative Euler character-
istic. Let C be a simple curve on S. If C ′ is a curve on S that satisfies `C(ρ) = `C′(ρ) for all
ρ ∈ D(π1(S)), then C ′ = C.
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Proof Since C is simple, there exists a sequence {ρn} ⊂ D(π1(S)) so that `C(ρn) → 0. One
standard way of constructing such a sequence is to first find a pants decomposition of S containing
C; by a pants decomposition, we mean a collection P of disjoint, simple curves on S so that each
component of the complement of (a collection of disjoint representatives for the curves in) P in
S is homeomorphic to the thrice-punctured sphere. A pants decomposition gives rise to the set
of Fenchel-Nielsen coordinates on the Teichmüller space of S, given by the lengths of the geodesic
representatives of the curves in P and the twists along which these curves are glued together; see
Abikoff [1]. The length of C is then one of the coordinates and can take any value in (0,∞).

Assume first that C ′ is non-simple. By Lemma 2.3, there exists a constant K > 0 so that `C′(ρ) ≥ K
for all ρ ∈ D(π1(S)). However, we have assumed that `C(ρn) = `C′(ρn) for all n and we have from
the previous paragraph that `C(ρn) → 0 as n → ∞, which is a contradiction. Hence, it must be
that C ′ is simple.

Suppose now that C and C ′ intersect, and recall that we have a sequence {ρn} ⊂ D(π1(S)) for
which `C(ρn)→ 0 as n→∞. By Lemma 2.2, we have that

sinh

(
1

2
`C(ρn)

)
sinh

(
1

2
`C′(ρn)

)
> 1

for all n and so sinh
(

1
2`C′(ρn)

)
→∞ as n→∞, and hence that `C′(ρn)→∞, again contradicting

the assumption that `C(ρn) = `C′(ρn) for all n.

Hence, we have either that C = C ′ or that C and C ′ are disjoint. However, if C ′ is disjoint
from C, there exists a pants decomposition P ′ containing both C and C ′. Using Fenchel-Nielsen
coordinates for P ′, there exists a sequence {ρn} ⊂ D(π1(S)) for which `C(ρn)→ 0 and `C′(ρn)→∞,
a contradiction. Therefore, we must have that C ′ = C, as desired. QED

We note here that Theorem 2.4 fails at this level of generality if we restrict our attention to only
those hyperbolic metrics of finite area on S. Let Σ be any compact, orientable surface with negative
Euler characteristic and with at least two boundary components, let S = int(Σ), and let

Dfinite(π1(S)) = {ρ ∈ D(π1(S)) |H2/ρ(π1(S)) has finite area}.

Let C and C ′ be peripheral curves corresponding to distinct boundary components of Σ, and
note that for all ρ ∈ Dfinite(π1(S)), we have that ρ(C) and ρ(C ′) are parabolic conjugacy classes
corresponding to distinct cusps on Sρ. In particular, we have that `C(ρ) = `C′(ρ) = 0 for all
ρ ∈ Dfinite(π1(S)), even though C ′ 6= C.

A natural question to ask is the extent to which the condition of simplicity in Theorem 2.4 can
be relaxed. The difficulty with this question is finding an appropriate condition on curves. A
natural notion of complexity to use is the self-intersection number of C. We will show that curves
of self-intersection number one are essentially characterised by their length functions, with one
unavoidable but completely describable exception arising from hyperellipticity.

We build up to the general case gradually, beginning with the case that Σ is a pair of pants. Recall
that a pair of pants is the compact surface whose interior is homeomorphic to the thrice-punctured
sphere.
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Lemma 2.5 Let S be the interior of a pair of pants Σ. Let C be a closed curve with self-intersection
number one on S and let C ′ be a curve on S for which `C(ρ) = `C′(ρ) for all hyperbolic structures
ρ ∈ D(π1(S)). Then C ′ = C.

Proof Let C be a curve on S with self-intersection number one. Up to conjugation in PSL2(R),
there is a unique hyperbolic structure ρ0 ∈ D(π1(S)) so that all three ends of H2/ρ0(π1(S)) are
cusps; the existence of such a hyperbolic structure is standard, arising for instance by doubling
an ideal hyperbolic triangle, and the uniqueness essentially follows from the (oriented) triple-
transitivity of the action of PSL2(R) on the boundary at infinity S1

∞ = R of H2. We call both
the hyperbolic structure ρ0 and the quotient surface H2/ρ0(π1(S)) the thrice-punctured sphere.

We now use the refinement of Lemma 2.3, proven independently by Hempel [17], Nakanishi [35]
and Yamada [39], [40] (see also Rivin [37]), that over all hyperbolic structures over all surfaces of all
(allowable) topological types, the shortest curve is the figure-eight curve on the thrice-punctured
sphere (of which there are three). By a figure-eight curve on S, we mean exactly what the reader
would expect, namely the curve formed by going around once around one peripheral curve of S
and then around a second, distinct peripheral curve of S, crossing itself once in the process.

Since S is a planar surface, it is easy to see (independent of the hyperbolic structure on S) that any
curve with self-intersection number one is in fact one of the figure-eight curves on S. In particular,
the curve C is a figure-eight curve. We now consider the behavior of C in the previously discussed
hyperbolic structure ρ0 on S. By the result mentioned above, ρ0(C) is a shortest curve in any
hyperbolic structure on any surface.

Since `C(ρ0) = `C′(ρ0), we must then have that C ′ is also a shortest curve on the thrice-punctured
sphere, and hence a shortest curve over all hyperbolic structures on all surfaces. Hence, we have
that C ′ is necessarily a figure-eight curve on the thrice-punctured sphere, and in particular C ′ has
self-intersection number one.

Suppose that C 6= C ′, so that C and C ′ are both figure-eight curves made up of different peripheral
curves. Let ρ ∈ D(π1(S)) be a hyperbolic structure for which all the ends of H2/ρ(π1(S)) are
funnels. (We make this choice so that we can vary the lengths of the peripheral geodesics in the
argument that follows.) Lift the representation ρ to a representation R : π1(S)→ SL2(R); by a lift,
we mean that R satisfies the equation Π ◦ R = ρ, after setting Π : SL2(R) → PSL2(R) to be the
canonical projection. In this case, such a lift always exists; we refer the interested reader to Kra
[23] for a proof and for a brief survey of the history of independent solutions to this lifting question.

Fix a basepoint z0 ∈ S for π1(S) and let e1, e2, and e3 be oriented simple loops based at z0, disjoint
except at z0, so that the ej go around the ends of S. (In particular, after forgetting orientation,
the free homotopy classes of e1, e2, and e3 are representatives of the peripheral curves on S.) We
can choose the labels and orientations of the ej so that e3 = e1 · e2 and that C = e1 · e−1

2 , and
C ′ = e1 · e3 = e2

1 · e2. (Here, we are using · to denote the concatenation of loops, read left to right.)

As discussed in Horowitz [18], the traces tr(R(e1)), tr(R(e2)), and tr(R(e3)) are independent vari-
ables. Using (many times) the following basic properties of trace for 2× 2 matrices A and B, that
tr(A) = tr(A−1), that trace is invariant under conjugation, and that tr(AB−1) = tr(A) tr(B) −
tr(AB), we can express the trace of any word in A and B as a polynomial in tr(A), tr(B) and
tr(AB).
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Consider now the value of tr(R(e1 ·e−1
2 ))− tr(R(e2

1 ·e2)). Using the properties of trace noted above,
we have that

tr(R(e1 · e−1
2 ))− tr(R(e2

1 · e2)) = (tr(R(e1))− 1)(tr(R(e2)) + tr(R(e3))).

In particular, we see that by varying tr(R(e1)), tr(R(e2)), and tr(R(e3)) independently, we can
ensure that tr(R(e1 · e−1

2 ))− tr(R(e2
1 · e2)) is non-zero.

There is a subtlety here, in that when we lift, we may not necessarily know the sign of the traces
of the lifted elements. The simple solution is to run through the same argument as just given for
tr(R(e1 · e−1

2 )) + tr(R(e2
1 · e2)), showing that

tr(R(e1 · e−1
2 )) + tr(R(e2

1 · e2)) = (tr(R(e1)) + 1)(tr(R(e2)) + tr(R(e3))).

Hence, the same argument applies, regardless of the sign that arises in the lifting of ρ to R, and so
the same conclusion holds.

A straightforward calculation shows that for a hyperbolic element γ of PSL2(R), the square of the
trace tr2(γ) of γ and the length `(γ) of the corresponding geodesic axis(γ)/〈γ〉 are related by

tr2(γ) = 4 cosh2

(
`(γ)

2

)
.

In particular, since tr2(ρ(ej)) = tr2(R(ej)), we see that elements with equal traces (up to sign)
correspond to geodesics with equal lengths and vice versa.

Since the lengths `C(ρ) and `C′(ρ) depend only on tr(ρ(e1 · e−1
2 )) and tr(ρ(e2

1 · e2)), respectively,
this is sufficient to guarantee that we can find hyperbolic structures ρ on S so that `C(ρ) 6= `C′(ρ).
This completes the proof of the Lemma. QED

We make the following observation about the proof of Lemma 2.5. The important first step is to
show that C being a figure-eight curve then implies that C ′ is also a figure-eight curve, which we
did by considering the hyperbolic structure which gave C its shortest length. However, it is not
necessary to consider the hyperbolic structure on S in which all of the ends are cusps.

By Basmajian [6], we know that among all hyperbolic structures on all surfaces, there is a realised
minimum for the lengths of curves with each self-intersection number greater than one (and that
these minima increase as the self-intersection number increases). Hence, it suffices in the proof
of Lemma 2.5 to consider only those hyperbolic structures on the interior S of the pair of pants
for which the lengths of the figure-eight curves are strictly less than the minima for higher self-
intersection numbers. This observation plays an important role in the proofs of future Lemmas.

We next consider two exceptional cases, which arise from similar considerations that underlie the
result of Ginzburg and Rudnick [14] noted above. (Looking ahead, the connection is that the
isomorphsim on the free group of rank two defined by sending the two generators to their inverses
is essentially the hyperelliptic involution on the torus with a single hole.)

Let Σ be a compact orientable surface (possibly with empty boundary) and let S be the interior of
Σ. We say that a hyperbolic structure ρ on S is hyperelliptic if there exists an orientation-preserving
involution τ of S which induces an isometric involution τρ of Sρ. Note that if ρ is a hyperelliptic
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hyperbolic structure on S, then for every curve C on S, the lengths of C and τρ(C) necessarily
satisfy `C(ρ) = `τρ(C)(ρ).

We extend this definition to say that the surface Σ itself is hyperelliptic if the discussion in the
preceeding paragraph holds for every hyperbolic structure on S = int(Σ), that is, so that there exists
an orientation-preserving (topological) involution τ of S which induces an isometric involution τρ
of Sρ for every hyperbolic structure ρ on S. Where necessary, we refer to τ as the hyperelliptic
involution on Σ.

With this definition, there are two hyperelliptic surfaces, the closed orientable surface Σ2 of genus
two and the torus with a single hole Σ1,1. (For more information on hyperelliptic surfaces, we refer
the reader to any introductory text on Riemann surfaces, such as Farkas and Kra [12].) On Σ2, we
have a complete understanding of how the hyperelliptic involution behaves with respect to simple
curves.

Theorem 2.6 (Haas and Susskind [15]) Let τ be the hyperelliptic involution on a closed Rie-
mann surface S of genus two. We then have that τ(C) = C for every simple curve on S. Moreover,
let α be a simple closed geodesic on S. If α is a separating geodesic, then τ preserves the orientation
of α, and if α is non-separating, then τ reverses the orientation of α.

There are two possible types of pants decompositions of the closed, orientable surface Σ2 of genus
two. One consists of two pairs of pants, where each boundary component of each pair of pants
is a non-separating curve on Σ2. The other consists of two tori each with a single hole, where
the boundary component of each torus is a separating curve on Σ2 and where the curves of the
pants decomposition are the common boundary of the two tori, along with a simple non-separating
curve on each torus. One particular consequence of Theorem 2.6 is that in the former case, the
hyperelliptic involution τ on Σ2 interchanges the interiors of the two pairs of pants. In the latter
case, the hyperelliptic involution takes each of the tori to itself.

Combining this observation with Lemma 2.5 yields the following partial result.

Lemma 2.7 Let Σ2 be the closed, orientable surface of genus two, and let τ be the hyperelliptic
involution on Σ2. Let C be a curve on Σ2 with self-intersection number one, and assume that C
is contained in the interior of a pair of pants P ⊂ Σ2 for which every boundary component of P
is a non-separating curve on Σ2. If C ′ is any curve on Σ2 with `C(ρ) = `C′(ρ) for all hyperbolic
structures ρ on Σ2, then either C ′ = C or C ′ = τ(C).

Proof Since for this pants decomposition the hyperelliptic involution interchanges the interiors
of the two pairs of pants, we have that C and τ(C) are disjoint.

We first observe that if C ′ is any curve on Σ2 with `C(ρ) = `C′(ρ) for all hyperbolic structures ρ
on Σ2, then C ′ is disjoint from ∂P . Indeed, if there is a component γ of ∂P which intersects C ′,
then consider any sequence {ρn} of hyperbolic structures on Σ2 for which `γ(ρn) → 0 as n → ∞
and along which the lengths of the other 2 curves in ∂P remain constant as n → ∞ (constructed
as above in the proof of Lemma 2.4). By Lemma 2.2, we then have that `C′(ρn)→∞ as n→∞,
while `C(ρn) remains bounded as C is disjoint from γ, a contradiction.
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Therefore, either C ′ ⊂ P or τ(C ′) ⊂ P . In either case, we complete the proof using Lemma 2.5 (and
the remark immediately following its proof), together with the observation that (as a consequence
of hyperellipticity), there is a one-to-one correspondence between hyperbolic structures on P for
which all ends are funnels and hyperbolic structures on Σ2. Indeed, any hyperbolic structure ρ on
P for which all ends are funnels can be doubled across the convex core of Pρ using τρ to obtain a
hyperbolic structure on Σ2, and by hyperellipticity, every hyperbolic structure on Σ2 arises in this
way.

In the case that C ′ ⊂ P , we have that C and C ′ are two curves in the pair of pants P , where C has
self-intersection number one and `C(ρ) = `C′(ρ) for every hyperbolic structure ρ on P for which
the ends of Pρ are all funnels. By Lemma 2.5, we then have that C = C ′.

In the case that τ(C ′) ⊂ P , then the argument just given yields that C = τ(C ′), and by applying
τ again, we obtain that C ′ = τ(C). QED

The remaining preliminary case before we address the general discussion is that C is contained in
a torus with a hole.

Lemma 2.8 Let Σ1,1 be the torus with a single hole with interior S and let τ be the hyperelliptic
involution on Σ1,1. Let C be a curve on S = int(Σ1,1) with self-intersection number one. Then, for
any curve C ′ 6= C on S with self-intersection number one and with `C(ρ) = `C′(ρ) for all hyperbolic
structures ρ on S, we have that C ′ = τ(C).

Proof Since C has self-intersection number one, a representative loop γ in C is the concatentation
γ = γ0 · γ1 of two homotopically non-trivial and homotopically distinct (oriented) simple loops γ0

and γ1 on S. Working in a hyperbolic structure ρ on S of infinite volume, so that its end is a
funnel, let C0 be the curve determined by γ0 and C1 the curve determined by γ1. As before, let C∗k
be the closed geodesic representative of Ck and hence the simple closed geodesic freely homotopic
to γk.

Note that since γ0 and γ1 are freely homotopic to disjoint loops on S, which is easily seen by per-
forming the required cut and paste operation in a small neighborhood of their point of intersection,
we have that their corresponding curves C0 and C1 are either disjoint or equal, as are the simple
closed geodesics C∗0 and C∗1 . Up to relabelling, there are three possibilities, which we take in turn.

All three possibilities use the same basic argument we’ve used before, with minor variations. Given
the curve C, we find a curve E so that either E is disjoint from C and intersects C ′, which allows
us to construct a contradiction to the assumption that the lengths of C and C ′ are equal over all
hyperbolic structures on S by letting the length of E go to 0, or both C and C ′ are disjoint from
E, in which case cutting along E reduces us to the case of S being a three-holed sphere and we can
then use the argument from Lemma 2.5 and the paragraphs following its proof.

The first possibility is that C∗0 and C∗1 are both separating simple closed geodesics. On Σ1,1, there
cannot exist two disjoint separating curves, by a straightforward Euler characteristic argument,
and so we must have that C∗0 = C∗1 and C0 = C1. Moreover, we have that τ(C) = C and that τ
preserves the orientation of (the geodesic representative of) C.
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As C0 and C1 are both separating, and hence peripheral, there exists a non-separating simple curve
E which is disjoint from both γ0 and γ1, and hence disjoint from C. If E intersects C ′, then we
construct a sequence of hyperbolic structures on S in which the length of E goes to 0 while the
length of C remains bounded. However, the length of C ′ goes to∞ as the length of the intersecting
curve E goes to 0, which yields a contradiction.

Hence in the case that both C0 and C1 are separating, we see that every non-separating simple curve
E disjoint from C is also disjoint from C ′. Cutting S along such an E yields a three-holed sphere
Z for which the two peripheral curves that arise from E∗ have equal positive length. On Z, we
have that C is a figure-eight curve, as it has a single point of self-intersection, and for all hyperbolic
structures on Z for which the two peripheral curves that arise from E∗ have equal positive length,
we have that C and C ′ have equal length.

We now follow the argument from the proof of Lemma 2.5, together with the observation immedi-
ately following that proof, to conclude that C ′ also has self-intersection number one. Moreover, by
varying the two available lengths, we have that both C and C ′ go around the end of Z determined
by C0 (or equivalently C1) and one of the other two ends. Since the other two ends of Z have
the same length over all of the relevant hyperbolic structures, we have that `C(ρ) = `C′(ρ) for all
hyperbolic structures ρ on S.

It remains only to show that C ′ = τ(C) = C. This however follows from the observation that on
Z, we have that C ′ and C are both curves on Z with self-intersection number one that pass around
the same two ends of Z, and hence are the same figure-eight curve.

The second possibility is that both of the geodesics C∗0 and C∗1 are non-separating simple closed
geodesics. On Σ1,1, there cannot exist two disjoint non-separating curves, since the complement in
S of one non-separating simple curve is a three-holed sphere which itself contains no non-separating
simple closed curves, and so we must have that C0 = C1. Moreover, we have that τ(C) = C and
that τ preserves the orientation of (the geodesic representative of) C.

We note that by construction C and C1 are disjoint. Moreover, given any hyperbolic structure on S,
cutting S along the simple closed geodesic representative C∗1 of C1 yields a hyperbolic structure on
the three-holed sphere Z for which two of the peripheral curves have equal lengths. The hyperbolic
structures on S are in one-to-one correspondence with the hyperbolic structures on the three-
holed sphere Z for which the two peripheral curves that arise from C∗1 have equal positive length.
Moreover, C is a figure-eight curve on Z.

We now note that C ′ must also be disjoint from C1, as otherwise, we can find (as we have done
several times up to this point in the argument) a sequence of hyperbolic structures on S in which
the length of C1 goes to zero, thereby forcing the length of C ′ to go to infinity, while the length of C
remains bounded, which is a contradiction to our assumption that `C(ρ) = `C′(ρ) for all hyperbolic
structures ρ on S. In particular, C ′ is a curve on Z. We now follow the same argument as given in
the previous case.

The third and final possibility is that C∗0 is separating and C∗1 is non-separating. By Theorem 2.6
(after doubling Σ1,1 across its boundary and extending the hyperelliptic involution on Σ1,1 to the
hyperbolic involution on Σ2), we have that τ(Ck) = Ck for k = 0 and k = 1. However, we also have
that τ preserves the orientation on γ0 and that τ reverses the orientation on γ1. In particular, we
must have that τ(C) 6= C, because we cannot have that τ preserves the orientation on one part of
C and reverses the orientation on the other part of C.
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Since C0 is peripheral, we have that C0 and C1 are disjoint, and hence that C and C1 are dis-
joint. Moreover, given any hyperbolic structure on S, cutting S along the simple closed geodesic
representative C∗1 of C1 yields a hyperbolic structure on the three-holed sphere Z for which two of
the peripheral curves have equal lengths. The hyperbolic structures on S are in one-to-one corre-
spondence with the hyperbolic structures on the three-holed sphere Z for which the two peripheral
curves that arise from C∗1 have equal positive length. Moreover, C is a figure-eight curve on Z.

We now note that C ′ must also be disjoint from C1, as otherwise, we can find (as we have done
several times up to this point in the argument) a sequence of hyperbolic structures on S in which
the length of C1 goes to zero, thereby forcing the length of C ′ to go to infinity, while the length of C
remains bounded, which is a contradiction to our assumption that `C(ρ) = `C′(ρ) for all hyperbolic
structures ρ on S. In particular, C ′ is a curve on Z.

We now follow the argument from the proof of Lemma 2.5, together with the observation immedi-
ately following that proof, to conclude that C ′ also has self-intersection number one. Moreover, by
varying the two available lengths, we have that both C and C ′ go around the end of Z determined
by C0 and one of the other two ends. Since the other two ends of Z have the same length over all
of the relevant hyperbolic structures, we have that `C(ρ) = `C′(ρ) for all hyperbolic structures ρ
on S.

It remains only to show that C ′ = τ(C). This however follows from the observation that on Z, we
have that C ′ and τ(C) are both curves on Z with self-intersection number one that pass around
the same two ends of Z, and hence are the same figure-eight curve. QED

Lemma 2.8 has the following consequence. Suppose now that Σ is any compact, orientable surface
of negative Euler characteristic which is not itself a torus with one hole, and let T ⊂ Σ be an
embedded torus with one hole in Σ. By this, we mean that there is a separating curve C on Σ so
that one of the components of the complement of (a simple representative from) C in Σ is a torus
with one hole.

In particular, as no boundary components of Σ can lie in T , we can make the same observation
as made above for hyperbolic structures on pairs of pants. That is, every hyperbolic structure on
the interior S of Σ restricts to a hyperbolic structure on T for which the one end is a funnel, and
conversely, every hyperbolic structure on T for which the one end is a funnel extends (in a highly
non-unique way) to a hyperbolic structure on S.

Hence, for every hyperbolic structure ρ on S = int(Σ), every embedded torus with one hole T ⊂ Σ,
and every curve C in T with self-intersection number one, we are in the situation that if we let τρ
be the hyperelliptic involution for the restriction of ρ to the interior of T , then the curve C ′ = τρ(C)
will necessarily satisfy `C(ρ) = `C′(ρ).

Lemma 2.7 and Lemma 2.8 (and these remarks following the proof of Lemma 2.8) together highlight
several situations in which the length function of a curve with self-intersection number one on
an orientable, hyperbolic surface does not completely characterise the curve. We group these
exceptional situations together as the hyperelliptic exception, as all of them arise in one way or
another from hyperellipticity. The main result of this Section is that these are the only exceptional
situations.
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Theorem 1.1. Let S be the interior of a compact, orientable surface Σ of negative Euler character-
istic. Let C be a curve on S with self-intersection number one. If C ′ is a curve on S that satisfies
`C′(ρ) = `C(ρ) for all ρ ∈ D(π1(S)), then either C ′ = C or we are in the case of the hyperelliptic
exception, so that one of the following holds:

1. We have that S = Σ2 is the closed, orientable surface of genus two with hyperelliptic involution
τ , the curve C is contained in the interior of a pair of pants P ⊂ Σ2 for which every boundary
component of P is a non-separating curve on Σ2, and C ′ = τ(C).

2. There exists an embedded torus with one hole T ⊂ Σ containing C, that τ is the hyperelliptic
involution restricted to T , and that C ′ = τ(C).

Proof The proof of Theorem 1.1 uses many of the same basic facts as does the proof of Theorem
2.4, though the details are significantly different, together with the Lemmas above. Again by using
Fenchel-Nielsen coordinates and Lemma 2.3 as in the proof of Theorem 2.4, we see immediately
that C ′ cannot be simple.

For the sake of concreteness, fix a hyperbolic structure ρ0 on S. (The proof is independent of which
hyperbolic structure is chosen.) Let X be the smallest subsurface of Sρ0 with totally geodesic
boundary containing the geodesic representative C∗ of C, and let Y be the closure of Sρ0 \X, so
that Y is a (possibly disconnected) subsurface of Sρ0 with totally geodesic boundary. By considering
for instance a stable neighborhood of C∗, we see that there are two possibilities for X, namely either
X is a pair of pants or X is a torus with one hole.

In the former case, in which X is a pair of pants, we have already seen that X has three boundary
geodesics. The curve C ′ either intersects one of the boundary geodesics of X, is contained in X, or
is contained in (a component of) Y .

If C ′ intersects a boundary geodesic of X, then as we have done several times, we construct a
sequence of hyperbolic structures on S for which the length of this boundary geodesic goes to
zero, which forces the length of C ′ to go to infinity, while leaving the length of C bounded. This
contradicts our basic assumption that the lengths of C and C ′ are equal for all hyperbolic structures
on S.

If C ′ is contained in X, we have that C ′ = C by Lemma 2.5.

If C ′ is contained in (a component of) Y , then either Y is itself a pair of pants, in which case S
is a closed surface of genus two and by Lemma 2.7 we are in exceptional case (1) in the statement
of the Theorem, or Y contains a non-peripheral simple curve η that intersects C ′. In this latter
case, we construct a sequence of hyperbolic structures on S, all of which are extensions of a fixed
hyperbolic structure on X, for which the length of η goes to zero, so that in turn the length of C ′

goes to infinity, while the length of C remains constant. Again, this yields a contradiction to our
basic assumption that the lengths of C and C ′ are equal for all hyperbolic structures on S.

In the latter case, in which X is a torus with a hole, we have already seen that X has a single
boundary geodesic, which is necessarily a separating curve on S, and so in this case the complement
Y of X is connected and has positive genus. The curve C ′ either intersects this boundary geodesic,
is contained in X, or is contained in Y .
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If C ′ intersects the boundary geodesic of X, then as we have done several times, we construct a
sequence of hyperbolic structures on S for which the length of this boundary geodesic goes to zero,
which in turn forces the length of C ′ to go to infinity, while leaving the length of C bounded. This
contradicts our basic assumption that the lengths of C and C ′ are equal for all hyperbolic structures
on S.

If C ′ is contained in X, then by Lemma 2.8, we are in exceptional case (2) of the Theorem.

If C ′ is contained in Y , there exists a non-peripheral simple curve η in Y that intersects C ′. As we
have done before, we construct a sequence of hyperbolic structures on S, all of which are extensions
of a fixed hyperbolic structure on X, for which the length of η goes to zero, so that in turn the length
of C ′ goes to infinity, while the length of C remains constant. Again, this yields a contradiction
to our basic assumption that the lengths of C and C ′ are equal for all hyperbolic structures on S.
QED

It is not possible to generalise Theorem 1.1 further to higher self-intersection number, as is demon-
strated by the following example. Let S be the torus with a single hole with fundamental group
π1(S) = 〈a, b〉. Horowitz [18] noted that the two elements w = aba2b−1 and w′ = a2bab−1 generate
non-conjugate maximal infinite cyclic subgroups and hence represent non-equal curves, have equal
characters χ[w] = χ[w′], and both have two self-intersection points.

Beyond self-intersection numbers, there are remarkably few topological characterisations of pairs
(or n-tuples) of curves which have the same character; that is, there are remarkably few conditions
P for which the following statement holds true:

Let S be the interior of a compact, orientable surface of negative Euler characteristic. Let C be a
curve on S satisfying the condition P . If C ′ is a curve on S that satisfies `C′(x) = `C(x) for every
hyperbolic structure x on S, then either C ′ = C or we are in one of a small number of explicitly
listed, geometrically natural cases.

An early conjectural such characterisation was that two curves have the same character if and only
if they have the same intersection number with every simple curve on the surface. The necessity
of this characterisation was intuitively straightforward and proved by Leininger [22], who also
gave examples to show of curves whose length functions are not equal but which have the same
intersection number with every simple curve on the surface.

3 3-dimensional preliminaries

The purpose of this Section is to present the background material on 3-manifolds and Kleinian
groups that we will need in future Sections. Standard references for this material are Hempel [16]
for 3-manifold topology in general, and Maskit [25], Kapovich [21], and Matsuzaki and Taniguchi
[28] for Kleinian groups and hyperbolic 3-manifolds. Given these references, we do not always
provide references to the original sources.
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3.1 3-manifold topology

A compact, orientable 3-manifold M is irreducible if every embedded 2-sphere in M bounds a ball in
M . We note that if M is irreducible and has non-empty boundary, then every boundary component
has positive genus.

Let M be a compact, orientable, irreducible 3-manifold. An orientable, embedded surface S ⊂
M is properly embedded if S ∩ ∂M = ∂S. A properly embedded surface (S, ∂S) ⊂ (M,∂M) is
incompressible if π1(S) is infinite and the inclusion S ↪→M induces an injective map on fundamental
groups. A properly embedded surface S ⊂M is essential if S is incompressible and not homotopic
into ∂M .

Similarly, a component S of ∂M is incompressible if the inclusion S ↪→ M induces an injective
map on fundamental groups. A union S = S1 ∪ · · · ∪ Sn of incompressible components of ∂M
is an-annular if there does not exist an essential annulus A in M with both components of ∂A
contained in S, and M is acylindrical if the whole of ∂M is an-annular.

A compact, orientable, irreducible 3-manifold M is atoroidal if every incompressible torus in M is
homotopic into ∂M . A compact, orientable, irreducible 3-manifold M has atoroidal boundary if
every component of ∂M has genus at least two.

A 3-submanifold M of an irreducible 3-manifold N is incompressible if M is irreducible and the
inclusion M ↪→ N induces an injective map on fundamental groups.

3.2 Kleinian groups

A Kleinian group Γ is a discrete subgroup of the group Isom+(H3) ∼= PSL2(C) of orientation-
preserving isometries of the real hyperbolic 3-space H3. The action of Γ on H3 extends to an action
by conformal homeomorphisms (Möbius transformations) on the Riemann sphere C, which is the
boundary at infinity of H3. The domain of discontinuity Ω(Γ) of Γ is the largest open subset of C
on which Γ acts properly discontinuously. The limit set Λ(Γ) is the complement of Ω(Γ) in C, or
equivalently, the closure of the set of fixed points of infinite order elements of Γ. We assume that
all Kleinian groups in this paper are torsion-free.

The convex hull hull(Γ) of Γ is the smallest non-empty convex subset of H3 which is invariant under
Γ. Equivalently, the convex hull is the smallest convex subset of H3 containing all of the hyperbolic
lines in H3 both of whose endpoints at infinity lie in Λ(Γ). The quotient of the convex hull is the
convex core core(Γ) = hull(Γ)/Γ of the hyperbolic 3-manifold H3/Γ, which is the smallest convex
submanifold of H3/Γ whose inclusion induces a homotopy equivalence.

A Kleinian group Γ is geometrically finite if some, and hence every, ε-neighbhorhood of core(Γ) has
finite volume, and is convex co-compact if its convex core is compact. Equivalently, Γ is convex
co-compact if and only if either, and hence both, of its associated 3-manifolds (H3 ∪ Ω(Γ))/Γ
and core(Γ) are compact. In this case, we can see that core(Γ) is naturally homeomorphic to
(H3 ∪ Ω(Γ))/Γ.
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3.3 Hyperbolic structures on 3-manifolds and deformation theory of Kleinian
groups

A compact, orientable 3-manifold M is hyperbolizable if there exists a (necessarily finitely generated)
Kleinian group Γ so that int(M) ∼= H3/Γ. We refer to Γ as a Kleinian group uniformizing M . In
general, if Γ is a geometrically finite Kleinian group uniformizing M , then Ω(Γ)/Γ is naturally
identified with a subset of ∂M which is the complement of a finite collection of annuli in ∂M
together with all the torus components of ∂M .

A hyperbolizable 3-manifold is necessarily orientable, irreducible, and atoroidal. We can say slightly
more. For a hyperbolizable 3-manifold M , every maximal Z⊕Z subgroup of π1(M) corresponds to
a torus component of ∂M . By this we mean that if Γ is a Kleinian group uniformizing M and if Θ
is a maximal Z⊕Z subgroup of Γ, then all non-trivial elements of Θ are parabolic and there exists
a (necessarily incompressible) torus component T of ∂M so that Θ = π1(T ) (up to conjugacy).

A finitely generated (torsion-free) group G has naturally associated to it the (possibly empty) space
D(G) of all realisations of G as a Kleinian group, that is

D(G) = {ρ : G→ PSL2(C) | ρ is faithful and ρ(G) is a Kleinian group}.

As before, the natural topology on D(G) comes from choosing a collection {g1, . . . , gp} of elements of
G that generates and realizing D(G) as a subset of (PSL2(C))p via the map ρ 7→ (ρ(g1), . . . , ρ(gp)).
Let

CC(G) = {ρ : G→ PSL2(C) | ρ(G) is convex co-compact.}

It is a fundamental result of Jørgensen [20] that when non-empty, D(G) is closed in the case that G
is the fundamental group of a compact, hyperbolizable 3-manifold with non-empty, incompressible
boundary.

Note that PSL2(C) acts naturally onD(G) by conjugation, yielding the quotient AH(G) = D(G)/PSL2(C).
We will abuse notation and, where it is clear in context, blur the distinction between convergence of
representations in D(G) and classes of representations in AH(G). The connection between conver-
gence of sequences in these two spaces is that a sequence {[ρn]} ⊂ AH(G) converges to [ρ] ∈ AH(G)
if and only if there exists a sequence {hn} ⊂ PSL2(C) converging to the identity so that {hnρnh−1

n }
converges to ρ in D(G).

We have the following consequence of Mostow-Prasad rigidity. Let M be a closed, hyperbolizable
3-manifold. The hyperbolic structure on M is unique, so that AH(π1(M)) consists of a single point.
In the case that ∂M is non-empty, we consider hyperbolic structures on the interior int(M) of M .
Similar to the case of closed 3-manifolds, suppose that M is a compact, hyperbolizable 3-manifold
with ∂M the union of tori. Then we have again that AH(π1(M)) consists of a single point, so that
again the hyperbolic structure on int(M) is unique.

For the remainder of this note, we make the standing assumption that M is a compact, hyperboliz-
able 3-manifold with non-empty, incompressible, atoroidal boundary, so that ∂M is non-empty,
every component of ∂M has genus at least two, or equivalently, so that π1(M) contains no Z ⊕ Z
subgroup. It is possible to extend the results of this note to compact, hyperbolizable 3-manifolds
with incompressible boundary, whose boundaries contain tori; however, considering such manifolds
introduce resolvable but unpleasant complications, some similar in nature to the complications
discussed in the remark following the proof of Theorem 2.4 for surfaces.
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For such M , we have the following description of the structure of CC(π1(M)) and D(π1(M)); see the
Introduction of Canary and McCullough [10] for a more detailed discussion. The space CC(π1(M))
consists of a finite collection of disjoint open subsets of D(π1(M)) parametrised by equivalence
classes of pairs (M0, f0), where M0 is a compact, hyperbolizable 3-manifold and f0 : M →M0 is a
homotopy equivalence, with the relation that (M0, f0) ∼ (M1, f1) if there exists a homeomorphism
g : M0 → M1 with f1 ∼ g ◦ f0. It follows from work of Ahlfors, Bers, Kra, Maskit, Sullivan
and Thurston that CC(π1(M)) is the interior of D(π1(M)). It follows from the resolution of the
Bers–Thurston Density Conjecture by Brock, Canary and Minsky [8], which in turn follows from
their resolution of Thurston’s Ending Lamination Conjecture, that CC(π1(M)) = D(π1(M)).

In particular, given such anM , there is a unique distinguished component CC0(π1(M)) of CC(π1(M))
so that for each ρ ∈ CC0(π1(M)), there is a homeomorphism f : M → core(ρ(π1(M))) satisfying
ρ = f∗. That is, the representations in CC0(π1(M)) are exactly those that give rise to quotient
hyperbolic 3-manifolds naturally homeomorphic to int(M).

In the case that M is acylindrical, we have much more. First, we have that the space of convex co-
compact representations is connected, so that CC(π1(M)) = CC0(π1(M)); this follows immediately
from the result of Johannson [19] that a homotopy equivalence between acylindrical 3-manifolds is
homotopic to a homeomorphism. Second, we have the following case of a fundamental theorem of
Thurston.

Theorem 3.1 (Thurston [38]) Let M be a compact, hyperbolizable, acylindrical 3-manifold with
non-empty, incompressible, atoroidal boundary. Then AH(π1(M)) is compact.

We have an alternate description of the representations in the distinguished component CC0(π1(M))
of CC(π1(M)). Given M , let Γ be a convex co-compact Kleinian group so that H3/Γ is homeomor-
phic to int(M). Without loss of generality, assume that Γ = ρ0(π1(M)) for some ρ0 ∈ CC0(π1(M)).
We can find all other representations in CC0(π1(M)) by conjugating Γ by quasiconformal homeo-
morphisms of C equivariant with respect to the action of Γ; see for instance Section 3.3 of Matsuzaki
and Taniguchi [28]. Rephrased, for any ρ ∈ CC0(π1(M)), there exists a quasiconformal homeomor-
phism ω : C→ C so that ρ(γ) = ωρ0(γ)ω−1 for all γ ∈ Γ.

We will have occasion to make use of the restriction of the realisation of a finitely generated group
G as a Kleinian group to a finitely generated subgroup H of G. Specifically, we need the following
Lemma, which follows immediately from the description of the representations in CC0(G) given
above in terms of quasiconformal deformations, together with Thurston’s theorem (see for instance
Morgan [33], Proposition 7.1) that finitely generated subgroups of geometrically finite Kleinian
groups with non-empty domain of discontinuity are themselves geometrically finite.

Lemma 3.2 Let N be a compact, hyperbolizable 3-manifold with non-empty, incompressible, atoroidal
boundary and let M ⊂ N be an incompressible 3-submanifold with incompressible boundary. If
ρ ∈ CC0(π1(N)), then the restriction of ρ to π1(M) ⊂ π1(N) yields an element ρ ∈ CC0(π1(M)).
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3.4 Curves in hyperbolizable 3-manifolds

As per our standing assumption, let M be a compact, hyperbolizable 3-manifold with non-empty,
incompressible, atoroidal boundary. We mimic the definitions relating to and the basic properties
of curves as given for surfaces in Section 2.

The non-trivial element c ∈ π1(M) is maximal if it is not the proper power of another element
of π1(M), or equivalently if 〈c〉 is a maximal cyclic subgroup of π1(M). As with surfaces, every
non-trivial element of π1(M) is either maximal or a proper power of a maximal element, as elements
of the fundamental group of a hyperbolizable 3-manifold are not infinitely divisible.

A curve C in M is the free homotopy class corresponding to a maximal element c ∈ π1(M). We
work throughout with unoriented curves, so that for an element c ∈ π1(M) with its corresponding
free homotopy class C, we have that C is also the curve corresponding to c−1. Since curves are free
homotopy classes of elements of π1(M), each curve naturally corresponds to a conjugacy class of
maximal cyclic subgroups of π1(M).

The relationship of curves in a compact, hyperbolizable 3-manifold M to the boundary ∂M of M
is more complicated than the corresponding relationship for surfaces. Let C be a curve in M . The
basic distinction is whether a curve C is or is not freely homotopic to a curve on ∂M ; even here,
complications arise, because even in the case that C is freely homotopic to a curve on ∂M , it may
be that C is freely homotopic into more than one component of ∂M or that C is freely homotopic
to distinct curves in the same component of ∂M . Moreover, we have the distinction of whether C
is freely homotopic to a simple or a non-simple curve on ∂M .

Note that for a curve C in M , if C is homotopic to distinct simple curves in the same component
of ∂M , the curves in ∂M must be disjoint. Moreover, if C is homotopic to curves in distinct
components of ∂M , then C is homotopic to a simple curve on one boundary component if and only
if C is homotopic to a simple curve in every component of ∂M into which it is homotopic.

One additional subtlety is that there exists a compact, hyperbolizable 3-manifold M and a curve
C in M so that C is not itself freely homotopic onto ∂M , but some proper power of C is freely
homotopic to a simple curve on ∂M . However, we will not consider such curves in this note.

Let ρ ∈ CC0(π1(M)), so that int(M) is homeomorphic to H3/ρ(π1(M)). Because we have assumed
that M has atoroidal boundary, π1(M) has no Z⊕Z subgroups, and so ρ(π1(M)) has no parabolic
elements. In particular, each curve C in M is freely homotopic to a (unique) closed geodesic C∗

in H3/ρ(π1(M)). There is a natural correspondence between maximal cyclic subgroups of π1(M),
or equivalently curves in M , on the one hand and closed geodesics in H3/ρ(π1(M)) for some, and
hence for every, hyperbolic structure ρ ∈ CC0(π1(M)) on the other hand.

Unlike the case of hyperbolic surfaces, there is no way to associate adjectives such as simple to a
curve C in M , as the simplicity in H3/ρ(π1(M)) of C∗ depends sensitively on the hyperbolic struc-
ture induced by ρ. In fact, by the discussion above of the structure of CC(π1(M)), the relationship
of a curve C in M to ∂M is also problematic, as the topological type of the hyperbolic 3-manifold
varies over the components of CC(π1(M)). We resolve these issues by starting with the 3-manifold
M and restricting our attention to the (convex co-compact) hyperbolic structures on int(M), which
are precisely the elements of CC0(π1(M)).
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Each curve C in M has associated to it a map `C : CC0(π1(M))→ R given by setting `C(ρ) to be
the (real) length of the associated closed geodesic C∗ in the hyperbolic 3-manifold H3/ρ(π1(M)).
(We note that it is possible to consider these arguments using the complex length associated to
loxodromic elements and their corresponding closed geodesics, but for the purposes of this note,
considering real length is sufficient.)

We make use of the following result, which is an immediate consequence of results from Sections 2
and 3 of Maskit [26], expressed in the language above.

Proposition 3.3 Let M be a compact, hyperbolizable 3-manifold with non-empty, incompressible,
atoroidal boundary and let C be a curve in M freely homotopic to a simple curve on ∂M . There
exists a sequence {ρn} ⊂ CC0(π1(M)) so that `C(ρn)→ 0 as n→∞.

Maskit’s proof proceeds by constructing a sequence of quasiconformal deformations of ∂M for
which the length of C on ∂M goes to 0. These deformations necessarily give rise to a sequence
{ρn} ⊂ CC0(M) for which the length of ρn(C) on ∂M goes to 0, which in turn forces `C(ρn)→ 0. We
note here that the main focus of Maskit’s work is to then establish the convergence of this sequence,
which requires additional hypotheses on M ; however, we do not need here the convergence of the
sequence, and so making use of the first part of Maskit’s construction suffices to yield the desired
sequence.

In fact, Maskit’s argument is but one variant of an observation that follows immediately from the
identification of CC0(π1(M)) with the Teichmüller space T (∂M) of (marked) hyperbolic structures
on ∂M . Given a curve C in M homotopic to a simple curve (again called C) on ∂M , choose a
sequence {ρn} ⊂ T (∂M) so that the length of ρn(C) → 0, where here we are using the natural
hyperbolic length on ∂M = Ω(ρn(π1(M)))/ρn(π1(M)). The existence of such a sequence follows
immediately from the simplicity of C on ∂M and arguments similar to those given in the previous
Section.

We then use McMullen’s formulation (see Proposition 6.4 and Corollary 6.5 of McMullen [31]) of
Bers’ inequality, which states that geodesics on Ω(ρn(π1(M)))/ρn(π1(M)) which are short, are then
homotopic to short geodesics in the hyperbolic 3-manifold H3/ρn(π1(M)), and so correspond to
elements of ρn(π1(M)) that are nearly parabolic. In particular, we have that `C(ρn)→ 0. (Implicit
in this latter argument is the use of the assumptions that ∂M is incompressible and that we are
working with convex co-compact representations to imply that the restrictions of the ρn to the
fundamental groups of the components of ∂M yield quasifuchsian groups.)

4 Topological joinery

In this Section, we present the basic topological constructions that underlie the arguments we use
to prove Theorem 1.2. The main result that underlies the discussion in this Section is Thurston’s
geometrisation theorem for Haken 3-manifolds.

Theorem 4.1 A compact, orientable, irreducible, atoroidal 3-manifold M with non-empty bound-
ary is hyperbolizable.
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With Theorem 4.1 in hand, we begin with the general discussion of the constructions we consider.
Let M1 and M2 be compact, hyperbolizable 3-manifolds, so that in particular both M1 and M2 are
orientable, irreducible and atoroidal. Assume that there exist components S1 ⊂ ∂M1 and S2 ⊂ ∂M2

whose genera satisfy genus(S1) = genus(S2) ≥ 2. Suppose that S1 is incompressible in M1 and
that S2 is incompressible and an-annular in M2. We allow the possibility that the ∂Mk contain
components beyond the Sk for both k = 1 and k = 2.

Let f : S1 → S2 be any (orientation-reversing) homeomorphism. We form a new compact, orientable
3-manifold N by gluing M1 and M2 along S1 and S2 using f ; that is, we take the disjoint union
of M1 and M2 and then form N by identifying x ∈ S1 with f(x) ∈ S2 inside this disjoint union.
Inside N , there is a distinguished surface, namely the image S of S2 = f(S1). For ease of notation,
we write N = M1 ∪f M2.

Alternatively, we can consider the case where S1 and S2 are distinct components of the boundary
of a single 3-manifold M , all satisfying the same hypotheses as the Mk above. In this case, we
glue S1 to S2 via f to obtain a 3-manifold N = M∪f . As we will not use this case of the general
construction to any significant extent, we present the proofs for the case above, noting that similar
arguments apply in this case as well.

The main question we consider in this Section is to determine conditions on M1 and M2, and on
S1 and S2, under which N is hyperbolizable and under which N is acylindrical. We will develop
some finer constructions as well.

We first note the straightforward fact that N is irreducible, which follows directly from the incom-
pressibility of the Sk in Mk by a standard innermost disc argument; we give a sketch of the proof
here. Let Σ be an embedded 2-sphere in N . Isotope Σ so that Σ ∩ S is the finite union of disjoint,
simple, closed loops. Let γ be an innermost one of these loops on Σ, meaning that one of the
components of Σ − γ contains no component of Σ ∩ S. Note that γ bounds a closed disc D in Σ,
namely the closure in Σ of the component of Σ− γ which contains no component of Σ ∩ S. Since
the interior of D is disjoint from S, we have that D is contained in Mk for either k = 1 or k = 2.
Since Sk is incompressible in Mk by assumption, we see that ∂D is a homotopically trivial loop in
Mk. So, we can isotope D into Sk and thereby get rid of γ. Repeating this argument for each loop
in Σ ∩ S in turn, working outward from innermost loops, we can isotope Σ into either M1 or M2.
Since both Mk are irreducible, we see that Σ necessarily bounds a 3-ball in Mk and hence in N . A
similar argument shows that both of the Mk are incompressible in N .

We next note the equally straightforward fact that N is atoroidal, which follows from the incom-
pressibility of S1 in M1 and the incompressibility and an-annularity of S2 in M2; again, we provide
a sketch of the proof. Let T be an incompressible torus in N , and isotope T so that S ∩ T is the
finite union of disjoint, simple, closed loops. Again performing an innermost disc argument, we can
isotope away all the loops in S ∩ T which bound a disc in either S or T , and thus we can assume
that all the loops in S ∩ T are homotopically non-trivial loops on both S and T . Since both S and
T are embedded surfaces in N , the loops in S ∩ T are parallel on T . Moreover, since S separates
N , there must be an even number of loops in S ∩ T .

If S∩T is empty, then T is contained in Mk for either k = 1 or k = 2, and thus by the atoroidality of
the Mk, we have that T is then homotopic in Mk into ∂Mk. Since ∂N = (∂M1\{S1})∪(∂M2\{S2})
and since neither Sk is a torus, we then have that T is homotopic in N into ∂N .
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It remains only to consider the case that S∩T is non-empty. Consider the closure A of a component
of T \{S ∩T} contained in M2. Since the loops in S ∩T are homotopically non-trivial on T , we see
that A is an annulus. Since T is incompressible in N , the boundary loops of A are homotopically
non-trivial loops in ∂M2, and so A is an incompressible annulus in M2. Since S2 is an-anular in
M2, we can homotope A into ∂M2, and hence into M1. Doing this for every other component of
T \ {S ∩ T} starting from A, we can homotope all of T into M1. Since M1 is atoroidal, we can
homotope T into a toroidal component of ∂M1, which is also a toroidal component of ∂N .

Hence, we have shown the following.

Theorem 4.2 Let M1 and M2 be compact, hyperbolizable 3-manifolds with non-empty, incom-
pressible, atoroidal boundary. Assume that there exist components Sk of ∂Mk so that genus(S1) =
genus(S2) ≥ 2 and so that S2 is an-annular in M2. Let f : S1 → S2 be any (orientation-reversing)
homeomorphism. The 3-manifold N = M1 ∪f M2 is a compact, hyperbolizable 3-manifold with
incompressible, atoroidal boundary, and each Mk is an incompressible 3-submanifold of N .

We note the possibility that ∂Mk = Sk for either k = 1 or k = 2, or both, and hence that N may
be a closed 3-manifold. However, this case will not occur in the arguments we make below.

We are now in the position of being able to develop the machinery of topological joinery we will
use in the following Sections. We begin by noting the existence of the basic pieces we will use in
our constructions.

Theorem 4.3 (Section 3 of Fujii [13]) For each σ ≥ 2, there exists a compact, hyperbolizable,
acylindrical 3-manifold Mσ for which ∂Mσ is a closed, orientable surface of genus σ.

In fact, Fujii shows that for each σ ≥ 2, there are infinitely many such 3-manifolds. We note that
this is one particular instance of a collection of more general constructions. Unfortunately, there
is no good extant survey of all ways of constructing hyperbolic 3-manifolds. Such constructions go
back at least to the following Theorem of Myers.

Theorem 4.4 (Myers [34]) Let M be a compact orientable 3-manifold, so that no component
of ∂M has positive Euler characteristic. Then, there exists a link L ⊂ int(M) so that M0 =
M \ nbhd(L) is Haken, atoroidal and acylindrical with incompressible boundary.

Looking ahead to the end of the paper, Theorem 4.4 and Theorem 5.2 allow for the construction
of hyperbolizable, acylindrical 3-manifolds in abundance.

The following Lemma can be viewed as describing how to cap off components of the boundary of
a compact, hyperbolizable 3-manifold without introducing essential annuli.

Lemma 4.5 Let M be a compact, hyperbolizable 3-manifold with non-empty, incompressible, atoroidal
boundary, and let S be a component of ∂M . Let P be a compact, hyperbolizable, acylindrical 3-
manifold with non-empty, incompressible, atoroidal boundary and let B be a component of ∂P
satisfying genus(B) = genus(S). Let f : S → B be any orientation-reversing homeomorphism, and
let Q = M ∪f P . Then Q is a compact, hyperbolizable 3-manifold with incompressible, atoroidal
boundary, and there does not exist an essential annulus joining a component of ∂M \ {S} to a
component of ∂P \ {B}.
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Proof The existence of P follows immediately from Theorem 4.3. By Theorem 4.2, we see that
Q is hyperbolizable, and that ∂Q = (∂M \ {S}) ∪ (∂P \ {B}) is necessarily incompressible and
atoroidal. It remains only to consider possible essential annuli in Q. We use an argument similar to
the argument given above showing that the 3-manifolds produced as in Theorem 4.2 are atoroidal.

So, suppose that there exists an essential annulus A in Q with ∂A = a0 ∪ a1, where a0 ⊂ ∂M \ {S}
and a1 ⊂ ∂P \ {B}. Homotop A in Q so that A intersects the incompressible surface B = f(S) in
a collection of disjoint, simple, homotopically non-trivial closed loops. Since A is incompressible,
these loops are non-trivial on B. Taking the loop closest to a1 along A then yields an essential
annulus in P , contrary to the assumption that P is acylindrical. QED

We note that the constructed 3-manifold Q will contain any pre-existing essential annuli joining
components of ∂M \{S} to one another, although all such annuli must be contained entirely in M .

We next show that there exist 3-manifolds M with a single essential annulus, where we have control
over how the boundary components of this annulus intersect ∂M . We do this in two steps, one for
the case of a separating annulus and one for a non-separating annulus.

Recall that up to homeomorphism, a curve C on a closed, orientable surface S is determined either
by the property of being non-separating (as all simple, non-separating curves are equivalent up to
homeomorphisms of the surface) or by the genera of the components of S \ {C} (as two simple,
separating curves are equivalent up to homeomorphism of the surface if and only if the genera of
their complements are equal).

Lemma 4.6 Given σ ≥ 2, there exists a compact, hyperbolizable 3-manifold M with non-empty,
incompressible, atoroidal boundary so that ∂M = S1 ∪ S2 with genus(S1) = σ, there exists an
essential annulus A ⊂M with one boundary component in S1 and one boundary component in S2,
the boundary component in S1 is non-separating, and every essential annulus in M is homotopic
to A.

Proof By Theorem 4.3, there exists a compact, hyperbolizable, acylindrical 3-manifold P so
that ∂P consists of a single incompressible surface S of genus σ + 1. Let a and b be disjoint,
simple, closed loops on S so that each of a and b is separating and so that S \ {a ∪ b} consists of
three surfaces, two of genus 1 with a single boundary component and one of genus σ − 1 with two
boundary components. Let A and B be embedded annular neighborhoods of a and b, respectively,
with ∂A = {a0, a1} and ∂B = {b0, b1}. Choose the labels so that a0 and b0 bound the surface of
genus σ − 1 with two boundary components.

Let f : A → B be a (orientation-reversing) homeomorphism so that f(a0) = b0 and f(a1) = b1.
The manifold M = P∪f that results from P by gluing A to B via f is then a compact, orientable
3-manifold with ∂M consisting of two surfaces, one of genus two and one of genus σ, and M contains
an essential annulus which is the image of A = f(B) under the gluing.

By construction, this essential annulus A ⊂M has one boundary component in each component of
∂M , and the boundary component of A in the component of ∂M having genus σ is non-separating.

The same argument as given above shows that M is irreducible and atoroidal, hence hyperbolizable.
It remains only to show that M contains only the single essential annulus A. However, this follows
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directly from the assumption that P is acylindrical, along with the same style of argument given
several times already. QED

Lemma 4.7 Given σ ≥ 2 and 1 ≤ k < σ, there exists a compact, hyperbolizable 3-manifold M
with non-empty, incompressible, atoroidal boundary so that ∂M = S1 ∪ S2 with genus(S1) = σ,
there exists an essential annulus A ⊂ M with one boundary component in S1 and one boundary
component in S2, the genera of the components of S1 \ ∂A are k and σ − k, and every essential
annulus in M is homotopic to A.

Proof By Theorem 4.3, there exist compact, orientable, acylindrical 3-manifolds M1 and M2 so
that ∂Mk consists of a single incompressible surface Sk of genus σ. Let ak be a simple, closed loop
on Sk so that the two components of Sk \ {ak} have genera k and σ − k, and let Ak be an annular
neighborhood of ak. Label the boundary components of Ak as bk and ck, where bk bounds the
component of Sk \ {ak} of genus k.

Let f : A1 → A2 be a (orientation-reversing) homeomorphism satisfying f(b1) = c2 and f(b2) = c1.
The manifold M = M1 ∪f M2 that results from M1 and M2 by gluing A! to A2 via f is then a
compact, orientable 3-manifold with ∂M consisting of two surfaces, both of genus σ, so that M
contains an essential annulus which is the image of A = f(B) under the gluing.

By construction, this essential annulus has one boundary component in each component of ∂M and
both components of ∂A decompose their respective boundary components into two subsurfaces of
genera k and σ − k.

The same argument as given above shows that M is irreducible and atoroidal, hence hyperboliz-
able. It remains only to show that M contains only the single essential annulus A. However, this
follows directly from the assumption that M1 and M2 are acylindrical, along with the same style
of argument given several times already. QED

We note here that the proof of the uniqueness of the essential annulus in both Lemmas 4.6 and 4.7
can also be shown either as an immediate consequence of the characteristic submanifold theory of
Jaco–Shalen and Johannson (see Canary and McCullough [10] for a discussion of the characteristic
submanifold theory as it specifically relates to hyperbolizable 3-manifolds) or by considering the
relationship between essential annuli and intersections of subgroups stabilizing components of the
domain of discontinuity of a Kleinian group uniformizing M , using arguments of Maskit [24]. For
the characteristic submanifold theory argument, the essential point is that the base 3-manifolds for
these two constructions are assumed to be acylindrical. Therefore, the characteristic submanifold
of the glued manifold in both cases is the solid torus which results from thickening the annulus
along which the gluing is done, and all essential annuli in M are homotopic into this solid torus.

We are now ready to bring these Lemmas together to show that we can isolate any curve in M
homotopic to a simple curve on ∂M from all other curves in M by embedding M into a larger
hyperbolizable 3-manifold N .
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Proposition 4.8 Let M be a compact, hyperbolizable 3-manifold with non-empty, incompressible,
atoroidal boundary and let C be a curve in M freely homotopic to a simple curve in ∂M . Assume
that M is not an I-bundle over a surface. There exists a compact, hyperbolizable, acylindrical
3-manifold N with non-empty, incompressible, atoroidal boundary so that N contains M as an
incompressible 3-submanifold, the curve C is freely homotopic to a unique simple curve on ∂N , and
if C ′ 6= C is any other curve in M , then C ′ is not freely homotopic into ∂N .

Proof Write ∂M = S1 ∪ · · · ∪ Sn and recall that by assumption, each Sk satisfies genus(Sk) ≥ 2.
By relabelling if necessary, let S1 be a component of ∂M into which C is freely homotopic; if C is
freely homotopic into more than one component of ∂M , then choose one to be S1.

By Theorem 4.3, there exists a collection M2, . . . ,Mn of compact, hyperbolizable, acylindrical
3-manifolds, each with connected, incompressible boundary, each of which satisfies genus(Sk) =
genus(∂Mk) for 2 ≤ k ≤ n. Apply Lemma 4.5 n− 1 times to construct a compact, hyperbolizable
3-manifold P so that ∂P = S1 is incompressible in P . Note that C remains freely homotopic into
∂P .

Even accepting the possibility that C is freely homotopic to multiple curves on ∂P = S1, we know
that should this occur, these curves in S1 are disjoint. (We also know that there cannot exist
two essentially different homotopies of C to the same curve on ∂M , as this would give rise to an
essential torus in M that cannot exist.) So, as above, choose one. We now apply either Lemma 4.7
or Lemma 4.6 as appropriate to construct a compact, hyperbolizable, acylindrical 3-manifold N so
that C is freely homotopic to a unique curve in ∂N but no other curve in M is homotopic into ∂N .

As in the proof of Theorem 4.2, the incompressibility of ∂M implies that M is an incompressible
3-submanifold of N . To see that N is acylindrical, assume otherwise. The boundary curves of
any essential annulus in N are disjoint curves in ∂N . However, by the uniqueness of the essential
annulus in the last stage of the construction of N immediately implies that no such essential annulus
can exist.

It remains only to show that if C ′ is any other curve in M with C ′ 6= C, then C ′ is not homotopic
into ∂N . Given how N was constructed, this means we need only show that C ′ is not homotopic
into ∂N = S1, because if C ′ is not homotopic into ∂M , then clearly C ′ is not homotopic into ∂N .
So, we can assume that C ′ is homotopic into S1. However, by assumption, we have that C ′ 6= C. So,
the uniqueness of the essential annulus in the last stage of the construction of N again immediately
implies that C ′ cannot be homotopic into ∂N , and we are done. QED

5 Proof of Theorem 1.2

The purpose of this Section is to complete the proof of Theorem 1.2. The key technical Lemma in
this Section is a direct consequence of Theorem 3.1, which can be viewed as a partial extension of
Lemma 2.3 to 3-manifolds.

Lemma 5.1 Let M be a compact, hyperbolizable, acylindrical 3-manifold with non-empty, incom-
pressible, atoroidal boundary, and let C be a curve in M . If C is not homotopic to a simple curve
in ∂M , there exists a constant K = k(M,C) > 0 so that `C(ρ) ≥ K for all ρ ∈ CC(π1(M)).
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Proof We prove the Lemma by contradiction. Assume that no such constant k(M,C) exists, so
that there exists a sequence {ρn} ⊂ CC(π1(M)) for which `C(ρn)→ 0 as n→∞. By Theorem 3.1,
we see (by extracting the convergent subsequence using Theorem 3.1 and lifting back to D(π1(M)))
that the sequence {ρn} has a subsequence, again denoted {ρn}, so that {ρn} converges to ρ ∈
D(π1(M)). Since `C(ρn)→ 0, standard deformation theory arguments using Jørgensen’s inequality
imply that ρ(C) cannot be trivial and hence we see that ρ(C) must be parabolic.

We need the following definition. Let Γ be a torsion-free Kleinian group and let Φ ⊂ Γ be a
maximal, purely parabolic subgroup. There then exists a horoball associated to Φ, which is an
open Euclidean ball HΦ ⊂ H3 invariant under the action of Φ, so that ∂HΦ intersects the Riemann
sphere C in a single point which is the common fixed point of all of the non-trivial elements of Φ.
As a standard consequence of the Margulis Lemma, there exists a collection H of disjoint horoballs
invariant under the action of Γ so that there exists a horoball associated to each maximal, purely
parabolic subgroup of Γ and each horoball is associated to such a subgroup. In general, the quotient
NΓ = (H3 \ ∪H∈HH)/Γ is then a 3-manifold with boundary, where the boundary is a collection of
open annuli and/or tori.

For the group ρ(π1(M)), the assumption that M has atoroidal boundary implies that π1(M) con-
tains no Z ⊕ Z subgroups, and so the boundary components of Nρ(π1(M)) are open annuli corre-
sponding to the conjugacy classes of maximal parabolic subgroups of ρ(π1(M)). By McCullough
[29], there exists a compact, hyperbolizable 3-submanifold P ⊂ Nρ(π1(M)) so that the inclusion of
P into Nρ(π1(M)) is a homotopy equivalence and each component of ∂Nρ(π1(M)) intersects ∂P in a
single incompressible annulus. In particular, we see immediately that P must be acylindrical and
have non-empty, incompressible, atoroidal boundary.

By construction, ρ(C) is peripheral in Nρ(π1(M)) and hence in P , and in particularly C is freely
homotopic to a simple curve on ∂P ; the simplicity follows immediately from the assumption that
C is maximal.

Since M and P are compact, irreducible 3-manifolds with isomorphic fundamental groups, they
are homotopy equivalent. Since M is acylindrical, we can apply the result of Johannson [19] to see
that M and P are in fact homeomorphic, and so C is freely homotopic to a simple curve in ∂M .
This contradiction completes the proof of the Lemma. QED

We are now ready to prove Theorem 1.2.

Proof [Proof of Theorem 1.2] We are given a compact, hyperbolizable 3-manifold M with non-
empty, incompressible, atoroidal boundary and a curve C in M freely homotopic to a simple curve
on ∂M . Let C ′ be a curve in M satisfying C ′ 6= C.

By Lemma 4.8, there exists a compact, hyperbolizable, acylindrical 3-manifold N with non-empty,
incompressible, atoroidal boundary so that N contains M as an incompressible 3-submanifold, so
that C is freely homotopic to a simple curve on ∂N , and so that C ′ is not freely homotopic into
∂N .

By Proposition 3.3, there exists a sequence {ρn} ⊂ CC(π1(N)) so that `C(ρn) → 0 as n → ∞.
However, by Proposition 5.1, we have that there exists a constant K = k(N,C) > 0 so that
`C′(ρn) ≥ K for all n. Restricting to π1(M), as in Lemma 3.2, we then have a sequence {ρn} ⊂
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CC0(π1(M)) so that `C(ρn) → 0 as n → ∞ and `C′(ρn) ≥ K for all n. This contradicts the
assumption that `C(ρ) = `C′(ρ) for all ρ ∈ CC0(π1(M)).

The case that M is an I-bundle over a surface follows directly from the discussion in Section 2.
QED

Also, it is as yet unknown whether there exists a direct proof of Lemma 5.1 for 3-manifolds con-
taining essential annuli, which would not then require the topological joinery discussed in Section
4 that is used to reduce the general case to the acylindrical case.

We spend the remainder of this Section engaging in some speculation. We start by noting that it
is not possible to make the constant k(M,C) appearing in Lemma 5.1 independent of M . To show
this, we make use of the following simple case of Comar’s variant of the Hyperbolic Dehn Filling
Theorem.

Theorem 5.2 (see Comar [11]) Let M be a compact, hyperbolizable 3-manifold whose incom-
pressible boundary ∂M = S ∪ T is the union of two surfaces, a torus Tand a surface S of genus at
least two. Let N = H3/Γ be a geometrically finite hyperbolic 3-manifold and let ψ : int(M) → N
be an orientation-preserving homeomorphism. Further assume that every parabolic element of Γ
lies (up to conjugacy) in the rank-two parabolic subgroup corresponding to π1(T ). Let (m, `) be a
meridian-longitude basis for T , and let (pn, qn) → ∞ be a divergent sequence of pairs of relatively
prime integers.

Then, for all sufficiently large n, there exists a representation βn : Γ→ PSL2(C) with discrete image
such that

1. βn(Γ) is a geometrically finite Kleinian group without parabolic elements uniformizing the
3-manifold M(pn, qn) obtained from M by performing (pn, qn) Dehn surgery along T ;

2. the kernel of βn ◦ ψ∗ is normally generated by {mpn`qn}; and

3. {βn} converges to the identity representation of Γ.

Moreover, if in : M → M(pn, qn) denotes the inclusion map, then for each n, there exists an
orientation-preserving homeomorphism

ψn : int(M(pn, qn))→ H3/βn(Γ)

such that βn ◦ ψ∗ is conjugate to (ψn)∗ ◦ (in)∗.

As we have already seen, there are many possible hyperbolic structures on 3-manifolds whose
boundary is not the (possibly empty) union of tori, and so it is not clear a priori how to get a
hyperbolic structure on the Dehn surgered manifold M(p, q). One consequence of Theorem 5.2
is that the hyperbolic structure on the original manifold M is used to then impose a hyperbolic
structure on M(p, q); this follows from using Γ and its images under the βn. The other important
consequence of Dehn surgery is that the length of the closed geodesic in the Dehn surgered manifold
M(p, q) homotopic to the core curve of the solid torus glued to M to form M(p, q) goes to 0 as (p, q)
moves farther from (0, 0). These are the two facts that we need to prove the following Lemma.
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Proposition 5.3 For n ≥ 1, there exist compact, hyperbolizable 3-manifolds Mn, each with non-
empty, incompressible, connected, atoroidal boundary; hyperbolic structures xn on int(Mn); and
curves Cn in Mn so that Cn is not homotopic into ∂Mn and `Cn(xn)→ 0.

Proof Let M be a compact, hyperbolizable, acylindrical 3-manifold whose boundary is the union
of two surfaces, a torus T and a surface S of genus at least two. Choose a meridian-longitude basis
(m, `) for T , and let (pn, qn)→∞ be a divergent sequence of pairs of relatively prime integers. Let
M(pn, qn) be the result of performing (pn, qn) Dehn surgery on M , as described in Theorem 5.2.

We have already that there are natural hyperbolic structures on the int(Mn), given a hyperbolic
structure on int(M), so that the lengths of the core curves Cn of the Dehn surgered manifolds are
going to 0. The only thing remaining to show is that the Cn are not homotopic to simple curves
in ∂Mn. In fact, we can see that Cn is not homotopic to any curve in ∂Mn, using the same sorts
of arguments as were given earlier, as such a homotopy would allow for the construction on an
essential annulus in M ⊂ M(pn, qn) with one boundary component of the annulus lying in T and
the other lying in S. QED

Lemma 5.1 raises the interesting question of the extent to which the bound k(M,C) can be made
independent of the curve C in M . At this point, we are willing to conjecture that the answer is Yes
for acylindrical 3-manifolds (though we do not have strong evidence to support this conjecture),
but we are unwilling to advance this conjecture in the case where M contains essential annuli.
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