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Many of the specific functions of intrinsically disordered protein segments are mediated by Short

Linear Motifs (SLiMs) interacting with other proteins. Well known examples include SLiMs that

interact with 14-3-3, PDZ, SH2, SH3, and WW domains but the true extent and diversity of

SLiM-mediated interactions is largely unknown. Here, we attempt to expand our knowledge of

human SLiMs by applying in silico SLiM prediction to the human interactome. Combining data

from seven different interaction databases, we analysed approximately 6000 protein-centred and

1600 domain-centred human interaction datasets of 3+ unrelated proteins that interact with a

common partner. Results were placed in context through comparison to randomised datasets of

similar size and composition. The search returned thousands of evolutionarily conserved,

intrinsically disordered occurrences of hundreds of significantly enriched recurring motifs,

including many that have never been previously identified (http://bioware.soton.ac.uk/slimdb/).

In addition to True Positive results for at least 25 different known SLiMs, a striking number of

‘‘off-target’’ proteins/domains also returned significantly enriched known motifs. Often, this was

due to the non-independence of the datasets, with many proteins sharing interaction partners or

contributing interactions to multiple domain datasets. The majority of these motif classes,

however, were also found to be significantly enriched in one or more randomised datasets. This

highlights the need for care when interpreting motif predictions of this nature but also raises the

possibility that SLiM occurrences may be successfully identified independently of interaction data.

Although not as compositionally biased as previous studies, patterns matching known SLiMs

tended to cluster into a few large groups of similar sequence, while novel predictions tended to be

more distinctive and less abundant. Whether this is due to ascertainment bias or a true functional

composition bias of SLiMs is not clear and warrants further investigation.

Introduction

Since the discovery of the first domains, protein modularity

has been central to the understanding of protein function. The

basic functionality of the majority of proteins is mediated by

the interaction of its modules with various other proteins. The

range of functions a protein can carry out is closely linked to

the number of modules it contains, be they domains,1–3 short

linear motifs (SLiMs or LMs),4,5 or other molecular

recognition features (MoRFs).6 Protein domains, particularly

those forming distinct three-dimensional structures, are relatively

easy to find in silico and have rapidly accumulated in the

literature over the past few decades, such that the majority of

domains have now been discovered.1–3 Focus is now increasingly

not only on structured regions of the proteome, but also on

disordered regions7 in search of the more elusive modules.

Many of the specific functions of intrinsically disordered

protein segments are mediated by Short Linear Motifs

(SLiMs). SLiMs are functional peptide microdomains,

typically 3–10 amino acids in length, which usually occur in

regions of intrinsic disorder.8,9 They are known to mediate

many important protein-protein interactions in a variety of

scenarios, including protein scaffolding (e.g. 14-3-3),

intra- (e.g. PDZ) and extra-cellular signalling (e.g. integrin-binding

RGD), control of gene expression (e.g. PBX Homeobox

ligand), subcellular localisation (e.g. Golgi to ER retrieval),

post-translational modification (e.g. phosphorylation) and

cleavage (e.g. Taspase1).9 Through transient and low-affinity

interactions, SLiMs can function as molecular switches and
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cooperatively regulate dynamic cell signalling events.10 Their

ubiquity and importance has made them critical molecular

targets for pathogens and predators, particularly viruses,

which are known to mimic over 50 different eukaryotic host

SLiMs.11 As key players in signalling pathways, SLiMs also

represent important targets for diseases, both in terms of

causal mutations and potential therapeutics.12

Annotation efforts over the last decade have provided high

quality data for known SLiMs, with databases specifically

focusing on phosphorylation13 and cleavage sites,14,15 in addition

to classical ligand-binding SLiMs.4,5 With the exception of a

few well-studied examples, however, we still know comparatively

little about the abundance and variety of functional motifs. It

is therefore of great interest to discover new interaction motifs

that may form the basis of future reagents, including drugs, to

disrupt or regulate important interactions.

Currently there is a disproportionate number of known

domains (B10000) compared to known SLiMs (B200), suggesting

that the difficulty involved in SLiM discovery is reflected in

our knowledge of them. It was estimated that 15–40% of

protein-protein interactions may be mediated by SLiMs8 but

protein-protein interaction data does not reflect this; only 1%

interactions detected in genome-scale human yeast-2-hybrid

experiments12 and as little as 5% of all interactions contained

in the Human Protein Reference Database (HPRD),16 which

includes data derived from many low throughput SLiM

discovery experiments, are mediated through known SLiMs.12

Previous attempts could explain only 19% of known

interactions by known domain-domain interactions.17 This

proportion will undoubtedly increase as more complex structures

are solved experimentally but the capacity for SLiM-mediated

interactions remains extensive. Furthermore, it is not unrealistic

to hypothesise that a larger proportion of the undiscovered

interactome may be SLiM-mediated than current trends

suggest, since their low affinity and temporally transient activity

may make them much more difficult to discover experimentally

by current methods than domain-mediated interactions.

Despite these challenges, advances in motif statistics,18,19

motif enrichment,20 dataset design21 and motif classification22,23

are enabling rapid motif discovery with ever-increasing accuracy.

These tools are ideally suited to aid in the annotation of

interaction data. The potential of interactome-wide in silico

predictions of interaction motifs was demonstrated by Neduva

et al.24 when they applied their LMD (a.k.a. DILIMOT25)

motif prediction tool to the known interactomes of human,

Drosophila melanogaster, Caenorhabditis elegans and yeast. Of

the potential motifs returned, they validated two of the

predictions using fluorescent polarisation to demonstrate specific

binding between hub proteins and peptides corresponding to

the predicted motif. This pioneering study, however, had

several shortcomings: LMD does not allow amino acid ambiguity

or flexible lengths in its returned motifs. Secondly, it returns

the probability of a given motif occurring by chance, but not

the chance of any motif occurring. More recent software,

SLiMFinder,19 addresses these issues directly by incorporating

ambiguity into SLiM predictions and calculating a significance

value for each motif, which estimates with reasonable accuracy

the probability of the dataset returning an apparently convergently-

evolved motif of the same or greater over-representation by

chance. This method has recently been improved by incorporating

evolutionary information to mask residues based on their

relative conservation.20

In this paper, we describe an attempt to mine the known

interaction data for interacting modules by focusing on the

discovery and rediscovery of SLiMs using these latest develop-

ments in SLiM prediction. We also enlarge the search space in

humans by incorporating additional interaction data with eight

distinct strategies of dataset compilation. We highlight important

issues to be considered during in silico SLiM discovery and have

made our results available as a navigable online resource, which

can be mined for predictions for specific proteins and provides an

invaluable reference for future studies.

Results and discussion

Enrichment of significant results vs. expectation

To investigate the affects of dataset quality on the return of

motifs, four different strategies were used to compile protein-

protein interactions (PPI) for both protein- and domain-

centred interactomes, giving eight different compilation strategies

in total (Table 1). From hereon, these will be referred to as

‘‘ppi’’ (all known interactions), ‘‘y2h’’ (yeast-two-hybrid only),

‘‘bin’’ (binary-enriched) and ‘‘com’’ (complex-enriched), with

the suffix ‘‘dom’’ indicating domain-centred datasets. (See

Methods for details.)

The proportion of datasets returning motif predictions with

a SLiMChance significance of p o 0.05 varied from

3.9%–8.0% for protein-centred datasets, and 13.8%–27.6%

for domain-centred datasets (Table 1). Expected numbers of

motifs returned at a given p value can be estimated by a simple

product of the p value and the number of datasets analysed.

Enrichment can then be defined as the ratio of observed results

at a given p value to this random expectation. This expectation

assumes that the SLiMChance algorithm is completely accurate

in its estimation of significance on real data. In reality, SLiM-

Chance is slightly stringent and has a tendency to under-

estimate significance.18 Therefore, we also analysed datasets

Table 1 PPI compilation strategies

PPI type Datasetsa Protein hubs analyseda Significanta Datasetsa Domain hubs analyseda Significanta

ppi 12 207 7346 590 (8.0%) 1759 1660 458 (27.6%)
y2h 7392 2956 116 (3.9%) 1255 1129 166 (14.7%)
bin 10 247 4880 193 (4.0%) 1572 1539 212 (13.8%)
com 8853 4832 266 (5.5%) 1468 1342 294 (21.9%)

a Numbers of datasets for each PPI compilation strategy: Datasets, in total; Analysed, analysed with SLiMFinder (o = 1000 sequences, 3+

unrelated); Significant, returning 1+ significant results (p o 0.05).
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of equal size to the real data constructed using two different

strategies: ‘‘rseq’’, in which sequences were selected from the

human proteome at random, and ‘‘rupc’’ in which clusters of

related sequences from the ‘‘real’’ data where randomly

shuffled to make new datasets. (See Methods for details.)

For all protein-centred PPI compilation strategies, the

number of significant SLiMFinder predictions (p o 0.01)

dramatically exceeded random expectation for the real data,

whereas for random data it generally did not (Fig. 1). Apparent

enrichment at p o 0.001 in random data was due to a very

small number of datasets and was exceeded in every case by

the corresponding set of real data. Domain-centred datasets

returned a greater proportion of significant motifs than protein-

centred datasets, although this difference diminished with

increasing significance. Randomised domain-centred datasets

show a similar pattern, indicating that dataset size may

influence results. This is not surprising as SLiMChance has

been shown to be more sensitive for larger datasets.19 This

observation could also account for the apparent increased

effectiveness of ‘‘ppi’’ and ‘‘com’’ datasets, which in turn tend

to be larger than the ‘‘y2h’’ and ‘‘bin’’ datasets. To investigate

this further, we compared the size distribution (in terms of

Unrelated Protein Clusters (UPC)) of datasets returning significant

motifs (p o 0.05) with those that do not. As predicted, within

each class of dataset (PPI combination strategy and real/rseq/

rupc), the datasets returning significant motifs tend to be

larger than those that do not (data not shown). This is

especially pronounced in random data.

False discovery rates and motif numbers

For such a large analysis, Bonferroni corrections for multiple

testing can be conservative. Instead, to gauge the overall

enrichment of results, we have considered the False Discovery

Rate (FDR) at a particular significance threshold. FDR is

essentially the inverse of the motif enrichment ratio (See

Methods). In total, 404 datasets across all sixteen PPI

construction strategies returned predicted SLiMs at a FDR

o 0.05. If accurate, this implies that over 380 of these motifs

are genuine significant results. In contrast, from all sixteen

randomisations, only 48 random datasets returned predicted

SLiMs at a False Discovery Rate of 0.05. Of these, the

majority (36) were from random sequence datasets for entire

domain-based PPI networks, which again represent the largest

datasets. FDR is obviously very dependent on the total

number of datasets, which differs considerably between PPI

strategies. When comparing individual predictions from different

strategies, it is therefore more appropriate to use the

Fig. 1 Enrichment of significant results vs. expectation. Log2 enrichment of datasets returning significant motifs vs. SLiMChance expectation is

plotted against decreasing SLiMChance significance for Real (gold), RUPC (cyan) and RSeq (blue) datasets for each ppi compilation strategy.
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SLiMChance ‘‘Sig’’ statistic. These data also violate the under-

lying assumption of independence that corrections for multiple

testing make. For these reasons, we concentrate on the ‘‘Sig’’

statistic for the rest of this paper but caution the reader to be

aware of the underlying multiple testing issue.

Classification of motif predictions

In the absence of laboratory validation, the strongest evidence

for a successful bioinformatics method is the recovery of

known ‘‘True Positives’’ (TP) from realistic biological data.

Each of the 3978 patterns returned by different datasets was

compared to known SLiMs using CompariMotif26 and manu-

ally classified. Hubs returning known motifs were compared to

annotations for known motifs, predominantly using ELM4

and MiniMotif Miner,27 to identify True Positives. This

analysis returned (recognisable variants of) twenty-five known

interaction motifs from interaction datasets assembled for 58

different proteins (22 motifs) and 16 different domains

(15 motifs) (Table 2, and ESI, Table S1z). The 58 TP from

protein-centred datasets represent 22 different known SLiMs,

while the 16 domain-centred TPs represent 15 different known

SLiMs. Given that most SLiMs interact with domains that are

found in multiple proteins, this difference in relative numbers

of datasets compared to returned motifs is not surprising.

The return of TP predictions also mirrors the overall trend

regarding the different PPI compilation strategies, with the full

PPI datasets returning most TP motifs. Interestingly, however,

no single strategy returns all the TP motifs.

Another typical statistic of interest is the return of known

‘‘False Positives’’ (FP), which are predictions known to be

incorrect. At face value, this analysis returns a great number of

motifs that appear to fall into this category. We have identified

numerous different groups of motifs that we have classed as

‘‘Off-target or generic recurring’’ motifs, which are either

returned by multiple datasets, or are known ELMs returned

by the ‘‘wrong’’ dataset (Table 3). However, these are not FP

motifs in the true sense of the term, in that many of them are

either known, or highly likely, to be real SLiMs of biological

importance. The ‘‘false’’ aspect of these predictions lies in the

assumption that they are responsible for SLiM-mediated

interactions with the PPI hub that returned the motif. This

is explored further in subsequent sections.

The PCNA ligand motif as a case study

Often, ‘‘off-target’’ motifs are an artefact of the complex non-

independence of the PPI datasets themselves. (This also makes

the correction for multiple testing very difficult.) This is

exemplified by the PCNA ligand motif, Q...[IL].FF. The

PCNA hub returns the TP ligand motif for two of the four

PPI compilation strategies (‘‘ppi’’ and ‘‘com’’, Table 4). At the

time of writing, ELM4 defines the ligand motif (LIG_PCNA)

as (^{0,3}|Q).[^FHWY][ILM][^P][^FHILVWYP][DHFM]-

[FMY]... and lists nine human occurrences (Fig. 2). Of these,

eight contain occurrences of SLiMFinder predictions that are

variants of the known motif (Fig. 2, and ESI, Table S2z). Of

these, five return the strong Q...[IL]...FF motif, while three

return a weaker [ILV]...[FHY]F or [ILV]...[FWY]F variant. In

all but one case, the predicted motif matches the annotated

ELM. The exception is the Werner syndrome ATP-dependent

helicase WRN, which returns occurrences of weaker variants

at positions 540 and 1407 rather than the annotated occur-

rence at position 144. Curiously, WRN features a reasonably

Table 2 Summary of True Positive SLiM predictions

Motif Description
Full
PPIa Y2Ha Binarya Complexa

LIG_1433 Dominant 14-3-3 ligand motif [HKR][ST].[ST].P 6/1 2/1 2/1 6/1
LIG_AP_GAE Gamma-adaptin ear ligand motif [DE][DE][DE]F.[DE]F 2/1 0/0 0/0 0/0
LIG_BRCT S..F phosphomotif interacting with BRCA1 1/0 0/0 0/0 0/0
LIG_CtBP P.DLS CtBP interaction ligand 1/1 2/0 2/0 1/1
LIG_CYC Cyclin recognition motif, [RK].L 0/1 0/0 0/0 0/1
LIG_Dyn K.TQT Dynein Light Chain ligand 1/0 0/0 0/0 0/0
LIG_EH Canonical Eps15 homology (EH) domain binding motif, NPF 2/0 0/0 0/0 0/0
LIG_GoLoco Part of G-protein G-alpha domain binding motif 0/0 0/1 0/1 0/0
LIG_PABPC1 PABPC1 binding region 1/1 0/0 1/1 1/1
LIG_PCNA Q...[IL]...FF PCNA ligand 1/0 0/0 0/0 1/0
LIG_PDZ Canonical C-terminal PDZ motif [ST].[ILV]$ 24/1 10/2 18/2 8/2
LIG_PP1 PP1 docking motif [RK].{0,1}[IV][^P][FW] 1/0 1/0 1/0 0/0
LIG_PTB NP.Y Phosphotyrosine binding (PTB) motif 1/0 0/0 0/0 1/0
LIG_SH2 SH2 domain ligand. Strongest Y.N, Y..Q and Y..P motifs only 4/0 0/0 0/0 5/1
LIG_SH3 Canonical P..P SH3 ligand motif 1/0 0/0 0/0 0/0
LIG_WW_1 PP.Y WW ligand motif 0/1 0/0 0/1 0/0
MOD_CAAXbox Generic CAAX box prenylation motif C.[ILMV].$ 1/1 0/0 1/0 0/0
MOD_CK1 S..[ST] Motif recognised by CK1 for Ser/Thr phosphorylation 2/0 0/0 0/0 1/1
MOD_CK2 CK2 phosphorylation motif. [ST]...[DE] 2/1 0/0 0/0 0/1
MOD_GSK3 [ST]...[ST] Site recognised by GSK3 for Ser/Thr Phosphorylation 0/0 0/0 0/0 2/0
MOD_PKB R.R...[ST][^P] PKB Phosphorylation site 2/1 0/0 0/0 1/0
MOD_PKC PKC phosphorylation motif, [ST].[KR] 0/0 0/0 1/1 0/0
MOD_STP Common recurring phosphorylation motif [ST]P 7/2 1/1 2/1 2/1
MOD_SUMO Canonical sumoylation motif, [AILMV]K.E (ELM MOD_SUMO) 1/0 0/0 0/0 0/0
Yxx# Multifunctional Y..[ILMVF] motif, which includes ITAM, ITIM, ITSM, SH2 and en-

docytic targeting motifs
8/1 2/0 2/0 5/2

a No. gene/domain hubs returning significant predicted SLiM matching known motif.
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Table 3 Numbers of off-target and generic recurring ‘‘True Positive’’ motifs

Motif ppia y2ha bina coma Realb RSeqc RUPCc

LIG_1433 4/7 1/2 2/4 1/2 8/15 4/18 3/16
LIG_AP_GAE 3/1 0/0 0/0 2/2 5/3 0/0 6/2
LIG_CYC 5/3 0/0 2/1 5/1 12/5 0/0 2/2
LIG_CtBP 0/2 0/2 0/2 0/2 0/8 0/1 0/0
LIG_EH 1/0 0/0 0/0 0/0 1/0 1/1 2/0
LIG_FHA 8/3 2/0 2/0 3/0 15/3 7/11 6/10
LIG_IQ 3/9 3/3 3/5 1/5 10/22 11/18 3/7
LIG_PABPC1 0/0 0/0 0/1 0/1 0/2 0/0 0/1
LIG_PCNA 1/0 0/1 0/1 0/0 1/2 1/0 0/0
LIG_PDZ 3/15 2/11 1/10 2/6 8/42 5/15 1/3
LIG_PP1 0/0 1/1 0/1 0/0 1/2 0/1 0/0
LIG_PTB 0/0 0/0 0/0 0/0 0/0 0/1 1/0
LIG_RGD 1/1 0/0 0/0 1/1 2/2 0/0 0/0
LIG_SCF 0/0 0/0 0/0 1/1 1/1 0/0 0/0
LIG_SH2 2/1 1/0 2/0 0/4 4/5 1/3 2/0
LIG_SH3 9/22 2/9 2/18 3/10 16/59 1/18 7/16
LIG_WW_1 1/1 0/0 0/1 0/0 1/2 0/0 0/0
MOD_CAAXbox 0/0 0/0 0/0 0/0 0/0 0/5 1/1
MOD_CK1 5/8 1/3 1/3 2/9 9/23 5/22 21/9
MOD_CK2 10/18 1/5 2/6 6/10 19/49 16/36 10/14
MOD_CamKII 2/1 2/1 2/2 3/0 9/4 3/5 3/1
MOD_GSK3 9/12 0/3 2/6 1/17 12/38 7/24 12/20
MOD_NGLC 5/1 1/0 1/0 3/2 10/3 7/24 5/6
MOD_PIKK 0/0 0/1 0/0 1/0 1/1 2/3 0/0
MOD_PKA 2/0 0/0 0/0 1/0 3/0 1/0 1/0
MOD_PKB 6/5 1/1 1/3 5/2 13/11 0/4 0/6
MOD_PKC 1/1 0/1 0/0 1/0 2/2 3/0 1/1
MOD_PLK 1/0 0/0 0/0 0/0 1/0 2/1 3/1
MOD_SDE 10/20 3/5 2/7 5/17 20/49 11/27 8/8
MOD_STP 16/31 5/10 4/21 4/16 29/78 3/26 10/35
MOD_SUMO 12/17 5/4 5/2 6/11 28/34 1/1 0/1
TRG_KDEL 12/10 2/3 1/2 10/12 25/27 0/0 0/0
Yxx# 3/4 1/0 1/0 0/1 5/5 7/4 5/4
CxxC 3/6 1/3 1/4 1/4 6/17 3/3 3/2
RGR 1/13 0/4 0/2 3/7 4/26 1/1 0/2
WALKER 6/16 0/0 0/0 5/8 11/24 4/5 1/5
diKR 39/72 3/8 6/20 10/46 58/146 24/82 18/41
pST 75/38 14/20 29/18 25/29 143/105 147/137 135/93
pY 16/5 7/2 10/3 7/1 40/11 59/52 34/29
TOTALd 275/343 59/103 82/143 118/227 533/826 337/549 304/336

a No. gene/domain hubs returning significant predicted SLiM matching known motif. b Total number of gene/domain hubs from real interaction

datasets. c No. random gene/domain datasets returning significant predicted SLiM matching known motif. d Note that due to overlapping motifs,

this total is an over-estimate.

Table 4 PCNA hub results

PPIa Nb Cloudc Motifd Rankd Sigd Supportd

Full PPI 112 (74) 1 (9/8) Q...[IL]...FF 1 4.3 � 10�8 8/8/7
Q.[ST].[IL]...FF 2 4.3 � 10�4 4/4/4
TL.SFF 3 0.044 3/3/3

Complex 91 (62) 1 (19/16) Q...[IL]...FF 1 1.5 � 10�8 8/8/7
Q.[ST].[IL]...FF 2 2.7 � 10�4 4/4/4
I...FF 3 0.003 7/7/7
[ILV]...[FWY]F 5 0.006 20/18/15
[ILV]...[FHY]F 6 0.019 20/18/15
TL.SFF 7 0.030 3/3/3
Q...L...FF 8 0.034 5/5/4

2 (13/13) D[FILV].N 4 0.005 14/13/13
Binary 24 (18) — — — — —
Y2H 22 (17) — — — — —

a PPI compilation strategy. b Number of PCNA-interactors in dataset. The number of UP clusters is given in brackets. c Cloud of overlapping

motifs. Numbers in brackets indicate numbers of different sequences and UP clusters containing motifs in the cloud. d Predicted motifs: returned

pattern, rank in dataset, SLiMChance significance, motif support (no. occurrences/no. sequences/no. UP).
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conserved glutamine three positions N-terminal of the leucine

at position 540 (Fig. 3), rather than two residues N-terminal as

in the ELM definition. Whether this represents a new variant

of the PCNA ligand, or is simply a chance occurrence of a

similar conserved pattern, is not clear. The ninth annotated

ELM occurrence, in Cyclin-dependent kinase inhibitor 1

(CDKN1A), is not returned by SLiMFinder because, unlike

the other occurrences of the motif, the central (iso)leucine

([IL]) is a methionine (M) and the second phenylalanine (F) is

a tyrosine (Y) in this protein (ESI, Fig. S1z). The homologous

protein Cyclin-dependent kinase inhibitor 1C (CDKN1C),

however, does return the [ILV]...[FHY]F motifs (ESI, Table S2z).
This occurrence is clearly homologous to the ELM

occuurence in CDK1NA (data not shown) but CDK1NC

has a glycine where the conserved glutamine should be and

so it is not clear whether this occurrence could function as a

PCNA ligand. Indeed, the presence of a proline between the

glutamine and [ILV]...[FHY]F motif raises further doubts over

whether the CDKN1C sequence (GPLISDFF) could bind

PCNA. Crucially for the return of off-target motifs, four of

the proteins containing occurrences of the Q...[IL]...FF motif

also interact with the protein DNA-(apurinic or apyrimidinic

site) lyase (APEX1) (Fig. 2). At least three of the SLiM

occurrences returned by the APEX1 dataset are therefore

‘‘True Positives’’ in the sense of being real functional motifs,

even though they are ‘‘False Positives’’ in the sense that they

interact with PCNA rather than APEX1.

In addition to the five Q...[IL]...FF occurrences that are

known ELM occurrences, the PCNA interactome returns

three additional Q...[IL]...FF occurrences in PCNA-associated

factor p15PAF (KIAA0101), DNA mismatch repair protein

MSH3 and A/G-specific adenine DNA glycosylase (MUTYH)

(Fig. 2). Given the size and composition of the PCNA inter-

actome, the expected number of occurrences of the

Q...[IL]...FF motif is 0.035 (data not shown); it is highly

probable that these represent true PCNA ligand occurrences.

Indeed, one of the three, MSH3, is clearly homologous to an

occurrence annotated in ELM in the yeast MSH3 protein

(data not shown), while MSH3 itself is homologous to MSH6,

which is known to interact with PCNA through the PCNA

ligand SLiM (Fig. 2).

The PCNA dataset is also informative about how small

changes to the composition or masking of the interaction

datasets can affect the SLiM predictions returned. Whilst both

the ‘‘ppi’’ and ‘‘com’’ datasets return the core Q...[IL]...FF

motif and two other variants (Q.[ST][IL]...FF and TL.SFF)

with similar significance, the ‘‘com’’ dataset also returns

another four variants of the PCNA ligand as well as an

unknown motif D[FILV].N (Table 4, and ESI, Table S2z).
Since, by definition, the full PPI dataset contains all the

proteins returning these motifs, the shift into significance for

these motifs is purely the result of a reduction in the number of

proteins not containing the SLiM. On the other hand, the

‘‘bin’’ and ‘‘y2h’’ datasets do not return any significant motifs,

including the Q...[IL]...FF TP, which is a result of losing a

number of ligand-containing interactors through the inter-

action filtering (Table 4, Fig. 2).

The importance of quality input data

SLiM discovery from PPI data is a fine balance between the

signal provided by interactors that contain the SLiM and the

noise of randomly recurring motifs returned (or, more accurately,

expected) from all interactors, whether they contain the true

SLiM or not. Over-zealous inclusion of predicted interactors

that, in reality, are not true direct interactors of the hub (and

therefore cannot interact with it through a SLiM) serve to add

noise, which can drown out the signal; on the other hand,

over-zealous removal of proteins not known to be direct

interactors can remove too much of the signal (ESI, Fig. S2z).
In an attempt to investigate this affect, four different PPI

compilation strategies were applied to the human PPI data

(ESI, Fig. S3z). Datasets constructed with all four strategies

successfully return known motifs (Table 2, and ESI, Table

S1z). The simplest approach (‘‘ppi’’), in which all interactors

are included, seems to be the most successful, returning the

most True Positives (Table 2) and the highest proportion of

significant results in total (Table 1, Fig. 1). These datasets

obviously have more proteins than the other strategies and this

result indicates that SLiMFinder is more sensitive to a reduction

in signal than a reduction of noise.

The increased return of significant results from larger

datasets also raises the possibility that many of the datasets

are right on the cusp of motif detection. This is exemplified by

the return of the CAAX box motif (C.[IL].$) from PDE6D

(Table 2, p = 3.33 � 10�6, FDR = 0.001). Of the 26 PDE6D

interactors, nine returned occurrences of the CAAX box motif

(Fig. 4). However, only one of the three subset strategies

returns the motif with significance (p o 0.05, Table 2). This

is because, in each case, interactors returning the motif are

removed by the filtering process (ESI, Fig. S3z) and, even

Fig. 2 Subset of PCNA interaction dataset returning LIG_PCNA

ELM. Selected proteins that interact with proliferating cell nuclear

antigen (PCNA) with evidence types. Black double-line, ‘‘complex-

enriched’’ interaction; green dashed line, yeast-two hybrid; single black

line, other interaction evidence. With the exception of APEX1, inter-

actions between spokes are not shown. Spokes containing annotated

occurrences of the ELM LIG_PCNA are highlighted in green.

Variants of the LIG_PCNA SLiM returned by SLiMFinder analysis

are shown next to each hub. *, WRN returns LIG_PCNA variants but

the positions of the two occurrences do not match that in the ELM

database.
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though a number of occurrences remain in each case (‘‘bin’’,

6/23; ‘‘y2h’’, 5/22; ‘‘com’’, 3/6), there is not enough signal to

overcome the random expectation. This emphasises the

importance of interactome coverage and the need for care to

be taken when filtering proteins out of the interaction data.

Enrichment of significant motifs in domain-based datasets

Domain datasets yield considerably more significant results (as

a percentage) than protein-based datasets. Worse, randomised

domain-based datasets yield more motifs than expected by

chance, whereas protein-based datasets generally do not

(Fig. 1). This can be explained to an extent by the relationship

between dataset size (UP) and return of significant motifs. The

effect is especially pronounced in random data, supporting the

notion that many of these results might in fact be the random

bringing together of genes containing frequently recurring

biological motifs – the larger the dataset, the more chance of

bringing together such sequences.

The second factor in the enrichment of motifs in the real

domain-based datasets is the multi-domain nature of many

human proteins and recurring domain architecture, which

means that many domain-based datasets will return motifs

that interact with different domains that co-occur in proteins.

This explains the even more pronounced return of off-target

and generic recurring motifs from domain datasets compared

to protein datasets; even though there are less domain data-

sets, more of them (in absolute terms) return such motifs

(Table 3).

Results for real datasets are enriched for novel motifs

Apart from the enrichment related to dataset size, are the

different PPI strategies returning results that are qualitatively

different in nature to each other, or the random data?

Although the presence of predictions with highly significant

FDR indicates that they are, a major drawback of the FDR

calculation is that it can be artificially inflated by the presence

of True Positives. To assess this, any motifs identified as True

Positives, off-target motifs or generic recurring motifs were

removed. (Obviously, random data only has the latter two

types of motif.) The ratio of real:random motifs returned at

different levels of SLiMChance significance was then used to

investigate whether there was still an enrichment of motifs

from the real data, indicating that there might be genuine

novel motifs in the results. Because the high significance motifs

(p o 0.001) are dominated by True Positives and off-target

known motifs, it is not surprising that there is little or no

Fig. 3 Predicted LIG_PCNA occurrence in WRN. The upper panel shows an alignment of a region of human Werner syndrome, RecQ helicase-

like (WRN) with predicted vertebrate orthologues, centred on the SLiM occurrence. The lower panel plots Relative Local Conservation (RLC) and

IUPred disorder prediction scores for each residue. Residues designated ‘‘unconserved’’ (RLC o 0) and/or ‘‘disordered’’ (IUPred o 0.2) were

masked out of the analysis (X in the ‘‘Masking’’ row of the alignment).
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enrichment at this stringency once these motifs have been

removed. In the mid range of significance values (0.001o po
0.01), however, real results are enriched by up to one order of

magnitude over random datasets, with the yeast-2-hybrid and

binary-enriched datasets being most enriched (data not

shown). The exception seems to be the ‘‘ppidom’’ datasets,

which have proportionally few motifs left once the True

Positives, off-target and generic motifs have been removed.

Candidate novel motifs

It is beyond the scope of this paper to examine specific novel

motif predictions in detail; without laboratory experimental

validation, support for individual predictions can be anecdotal

at best. One of the major challenges of validating predictions

from this study comes from the highly interconnected nature

of the interactome previously discussed; just as known motifs

are returned by ‘‘off-target’’ hubs, we cannot have the desired

confidence that the hubs returning novel motifs are likewise

not ‘‘off-target’’ even if the motif itself is a functional SLiM. It

is also inevitable that, with a study of this size, a number of the

novel motif predictions will turn out to be false positives in the

true sense. This is not to say, however, that we do not feel there

are any genuine novel motifs within the results.

Although it is obviously tempting to equate SLiM predic-

tions from randomised datasets with ‘‘random noise’’, this is

not strictly true. Just as the results from real datasets are

dominated by ‘‘off-target’’ and ‘‘generic’’ motifs that represent

genuine SLiMs, albeit SLiMs that do not (as far as we know)

interact with the specified hub protein/domain, it is important

to conceptually distinguish stochastic over-representation of a

genuine SLiM versus pure noise in randomised datasets. In the

former case, the random element driving the false discovery is

the combination by chance of a number of proteins containing

the same real SLiM (e.g. the WALKER motif). In the latter

case, the random element is coincidental combinations of

amino acids. Because over-representation of a SLiM in a

whole proteome is going to increase its chances of stochastic

over-representation in a subset of proteins, it is not surprising

that a substantial proportion of results returned by randomised

datasets correspond to ‘‘off-target’’ motifs. This includes 77%

of the random results at FDR o 0.05. Interestingly, three of

the remaining eleven random motifs (FDR o 0.05) are the

LQxxL motif, returned by different random datasets. In total,

this motif is returned by seven different random datasets and

ten real domain interactome datasets. It is highly probable,

therefore, that this represents another recurring motif of

genuine biological significance. The motif itself shows similarity

to part of the core alpha helical section of the Ubiquitin

Interaction Motif (UIM) PFam domain (ESI, Fig. S4z) and
LQxxL is the top ranked motif returned by the ubiquitin

domain binary-enriched dataset. Occurrences in ubiquitin

interactors are generally lacking the characteristic charged

flanking regions of the UIM, however, and only one confirmed

UIM protein (ATXN3) is among the 33 LQxxL containing

spokes in this dataset. Given the overall abundance of this

motif, which in total is returned in 435 different spoke proteins

across the 17 significant datasets, it is unlikely to be a specific

ligand although, given the ubiquitous nature of ubiquitin, we

cannot rule out the possibility that it represents a novel core

ubiquitin binding motif that is related to the UIM sequence.

Another important implication of these observations is that

the return of a particular motif from random data does not

necessarily rule that motif out as being a stochastic false

positive when it is returned in real datasets. This is embodied

by the PABPC1 interaction motif (S.L...NA.EF) that, in

Fig. 4 Protein-protein interaction network for PDE6D. Full compiled interactome for retinal rod rhodopsin-sensitive cGMP 30,50-cyclic

phosphodiesterase subunit delta (PDE6D) with evidence types. Black double-line, ‘‘complex-enriched’’ interaction; green dashed line, yeast-two

hybrid; single black line, other interaction evidence. Spokes returning the CAAX box motif are highlighted in green.
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addition to being returned by the PABPC1 interactome and

the two domains found in PABPC1 (PABP and RRM_1), is

returned by one random dataset (p = 0.015) that happens to

contain three otherwise unrelated interactors of PABPC1

(ATXN2, PAIP2, TOB1) (ESI, Fig. S5z). A future challenge

of interpretation will be taking candidate SLiMs and predict-

ing their true functional significance. To aid this endeavour, all

motif predictions from this analysis have been made available

as ESIz and an interactive database (http://bioware.soton.

ac.uk/slimdb/). This resource will continue to be updated

and annotated as literature and/or experimental support for

given motifs becomes available. Clues to function may also be

gained by searching the motif against the whole proteome and

looking for enriched biological functions associated with

evolutionary conserved occurrences.28

Recurrence of common core motifs

Visual inspection of the motifs returned identified a trend that

certain amino acid combinations tended to occur in the results

a lot more than others and, furthermore, previously identified

SLiMs tended to occur within larger ‘‘clouds’’ of similar

motifs (see Methods) when compared to candidate novel

motifs. Combinations of serine with charged amino acids are

particularly prevalent, for example. Due to the prevalence of

phosphorylation motifs in the proteome, this bias is not

surprising but the general trend of larger clouds for known

motifs and smaller clouds for novel motifs still needs explain-

ing. At least three factors could be reponsible, either indepen-

dently or in combination:

1. Ascertainment bias. It is inevitable that known SLiMs are

likely to have more examples in the PPI network. This is both

because more abundant SLiMs are more likely to be discov-

ered and, once discovered, knowledge of SLiMs can be used to

identify additional interactors. It is also likely that functional

studies are enriched in regions with an existing known

function, increasing the chance of discovering a second motif

in the same place.

2. Physiochemical bias. A more interesting explanation is

that there is an inherent bias in the combinations of amino

acid that can be successfully employed as a functional SLiM. If

true, many motifs share the same core signature, which might

make it easier to distinguish true SLiMs from randomly

occurring patterns. At the same time, however, it will make

distinguishing motifs much harder as there will be fewer

distinct residues conferring specificity.

3. Regulatory bias. Molecular signalling switches might rely

on competitive binding for overlapping SLiMs. Such motifs

will not only share some common residues but will also co-occur

in the very same proteins, which might make them even harder

to distinguish.

In an attempt to get a better handle on the relationship

between motifs, a network analysis was performed using

CompariMotif26 relationships between the patterns returned by

‘‘Real’’ datasets (p o 0.01) (Fig. 5). As expected from the motif

‘‘cloud’’ data (which, in contrast to CompariMotif, requires

co-occurrence in addition to pattern similarity), several clusters

of patterns were formed (ESI, Table S3z). The largest of these are
dominated by TP motifs. While a subset of novel motifs do

cluster with the TP SLiMs, the majority either form small clusters

with each other or do not cluster with any other motifs. The

contrast between the TP and novel motifs is seen more clearly

when their networks are investigated separately (Supplemental

Fig 7). This favours one of two explanations:

1. There is heavy ascertainment bias in terms of motif

composition for the known motifs; novel motifs represent

entirely new classes of SLiM.

2. Certain amino acid combinations are enriched for functional

reasons; novel motifs with these amino acids are more likely to

be functional SLiMs, while the motifs with a very different

composition are more likely to be false positives.

Fig. 5 MCL clustering of TP and novel motifs based on CompariMotif similarity. Each node represents a motif. Circles, TP; Triangles, Novel.

Each colour is a different MCL cluster. Details of clusters can be found in the ESI, Table S3.z
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Resolving this issue will need more data on the nature of

SLiM-mediated interactions and whether any specific physical or

chemical properties are universally favoured. Such analysis is

beyond the scope of this paper. It is not surprising that the largest

clusters of motifs, spanning many interaction hubs, have been

identified by biochemical means in the past, while the remaining

novel motifs are members of much smaller groupings. A subset

of the novel motifs likely represent false positives, however,

which may be occupying regions of motif space that are not

favourable for ligand-binding motifs. These data do highlight an

important question that has widespread consequences for future

motif discovery: common as they are, are SLiM-mediated PPI

dominated by a handful of common motifs types? Or, is the

current repertoire of known SLiMs just the tip of the iceberg? In

other words, should we concentrate on looking for more of the

same, or are there whole new classes of SLiM out there waiting to

be discovered? Furthermore, if there are no strong constraints on

what sequence can potentially function as SLiMs, can we expect

large numbers of unique motifs that only mediate a single PPI

pairing? Mining the natural interactome for recurring patterns

will never recover such motifs; instead, PPI networks will need to

be supplemented by phage display or peptide library screens to

identify other, non-native, sequences that can bind the same

targets. Alternatively, methods that look for SLiM-like sequence

fingerprints in individual proteins6,29 may be able to identify

singleton SLiMs, even if they cannot predict the PPI partners.

Comparisons with previous analyses

It is of interest to know how these results compare to the previous

analysis of Neduva et al.24 Out of the 690 motif predictions

(422 distinct patterns) provided in Table S1 of Neduva et al.,

only 37 (24 patterns) have an exact match in our analysis. At face

value, this seems like a disturbingly small number. However, it

must be remembered that there are many important differences

between DILIMOT and SLiMFinder. To control the size of the

motif space searched, SLiMFinder (in this analysis) was limited

to a maximum wildcard length of two. This immediately rules

out 271 results (170 patterns) from the Neduva et al. study, which

have wildcard spacers of 3+. Relaxing the match criteria to

allow completely overlapping motifs where one is a subset or

(for degenerate motifs) variant of the other, increases the number

of common predictions to 179 (99 patterns), which is approxi-

mately 25% of their human motifs.

It is also clear that the results of Neduva et al. are biased in a

way that the results presented here are not, with a strong

tendency to return proline-rich motifs. 436/690 (63%) DILI-

MOT predictions (226/422 (54%) patterns) contain one or

more prolines, compared to 379/3990 (9.5%) SLiMFinder

patterns. Serine enrichment is also strong, with 244 (35%)

predictions (149 (35%) patterns) versus 955 (24%) for SLiM-

Finder. Only 118/422 (28%) DILIMOT patterns have neither

a proline or serine, compared to 2862 (78%) SLiMFinder

patterns. The reasons for this are not clear but at least part of

the explanation no doubt lies in the fact that a low complexity

filter was applied to this analysis and both prolines and serines

have a tendency to occur in low complexity runs. Low complexity

motifs of this nature are also more likely to be rediscovered in

homologous proteins than more specific motifs and so are

probably further enriched in the DILIMOT analysis, which

uses rediscovery in mouse to weight results.

Future work

The current analysis uses a fairly indiscriminate compilation of

the interactome databases. The different PPI compilation

strategies used here, including attempts to enrich for binary

interactions, give great insights into the relative trade-offs of

inappropriately adding or removing interaction partners.

There are three key lessons to be learnt from the sensitivity

of some of the results to losing a few interactors (e.g. the

PDE6D CAAX box). First, future methods for compiling

interaction data for SLiM discovery need to be very careful

about the erroneous removal of true interactors. Second, the

addition of one or two extra SLiM-mediated interactors (from

additional interaction data) may, in future, be enough to raise

the signal above the noise for some of the datasets that are

currently not returning motifs. Third, even small improve-

ments in the masking of disorder and/or conservation that add

one or two additional occurrences for a motif might be the

difference between significance and non-significance. Through-

out this analysis, IUPred30 disorder prediction has been used

with a rather conservative cut-off for masking. Being conser-

vative in terms of such masking is sensible for two reasons: (1)

as noted, SLiMFinder is more tolerant of excess noise than

loss of signal; (2) it has been shown that, while SLiMs

generally occur in regions of native disorder, the important

residues have a propensity towards structure,31 characteristic

of disordered ‘‘Molecular Recognition Features’’ (MoRFs)

that undergo a disorder-to-order transition upon binding.6 If

it can be done without losing too much signal, incorporating

techniques that explicitly characterise32 or predict such binding

sites (e.g. ANCHOR29 or PONDR-RIBS33) could substantially

improve disorder masking.

As these methods are honed, the potential of SLiM discovery

will continue to improve by increasing the motif signal. Further-

more, as the level and quality of annotation and cross-talk between

databases increases with the implementation of data standards

(HUPO, PSI etc.), it should be possible to improve things further

by reducing noise and increasing the quality of datasets by

including only directly interacting proteins. Background noise

can be reduced further still by focusing analysis on the specific

protein regions known to be responsible for interacting with the

hub protein/domain. Again, this will become increasingly possible

as the quantity and quality of interaction data continue to improve.

A particular problem with eukaryotic datasets is the presence of

many multi-domain proteins that can draw together several sub-

networks of the interactome into large overlapping interaction

datasets. This contributes greatly to the return of off-target motifs

(Table 3). Methods that can partition protein interactions by

domain should greatly enhance both the sensitivity and specificity

of motif prediction for domain-centred interaction datasets.

Methods

Human sequence data

To maximise genome coverage while minimising redundancy, a

dataset consisting of one protein sequence per protein-coding

gene was constructed from the EnsEMBL human genome,
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release 53.34 This was performed by mapping all EnsEMBL

human peptides onto their genes and assessing them in the

context of the external database entry used as evidence for that

gene. If the external database was SwissProt35 and one of the

peptides has the exact same sequence as the SwissProt sequence,

this peptide sequence was used for that gene. In all other cases,

the longest peptide (in terms of non-X amino acids) was used.

The only exception to this was the rare situation where the ‘‘best’’

EnsEMBL sequence had a run of 20+ consecutive Xs and the

mapped UniProt sequence (SwissProt or TrEMBL) had more

non-X amino acids than it. In this case, the sequence was

replaced by the UniProt sequence.

Orthologous sequence alignments

To assess SLiM conservation, a multiple sequence alignment

(MSA) was constructed for each human sequence and its

putative orthologues. Orthologue MSAs were generated with

GOPHER,36 using a search database that consisted of 45

metazoan EnsEMBL genomes, which had been treated in

the same way as the human dataset to generate a single protein

sequence per gene for each species. GOPHER uses BLAST37

to identify homologues for each sequence, converting BLAST

hits into estimates of global percentage identity using

GABLAM.38 Putative orthologues were retained using the

following criteria:

1. The human query sequence had a minimum global

(GABLAM ordered) similarity of 40% with the orthologue.

2. The query has a higher percentage similarity to the

orthologue than any other sequence of the same species.

3. The orthologue has a higher percentage similarity to the

query than to any other human sequence.

4. If (3) is not met, the orthologue must be ancestral to a

duplication event involving the query. In this case, the closest

human paralogue to the sequence and the query must be more

similar to each other than either is to the orthologue. (See

GOPHER documentation for details.)

Putative orthologues were then aligned using MAFFT.39

Protein-protein interaction data

Protein-protein interaction (PPI) data was downloaded

(5 May 2009) from HPRD,16 BioGRID,40 Domino,41 MINT,42

Reactome,43 DIP44 and IntAct.45 To remove redundancy, all

interactions were mapped onto HGNC gene symbols46 or

EnsEMBL genes, using data downloaded from HGNC, HPRD,

UniProt and EnsEMBL. All genes that could be mapped onto an

EnsEMBL protein in the human genomic dataset were then used

to make datasets of interacting proteins for each gene. In total,

197030 pairwise PPI were compiled for 12266 human genes.

Interaction evidence was then used to generate four different

interaction datasets (Table 1, and ESI, Fig. S3z):
1. All PPI (‘‘ppi’’). All evidence codes were used, except

‘‘indirect_complex’’ and ‘‘neighbouring_reaction’’.

2. Yeast-2-Hybrid (‘‘y2h’’). Only PPI supported by the

following evidence codes were retained: ‘‘2 hybrid’’, ‘‘two

hybrid’’, ‘‘two hybrid array’’, ‘‘two hybrid pooling’’, ‘‘two

hybrid pooling approach’’, ‘‘two hybrid fragment pooling

approach’’, ‘‘two-hybrid’’ and ‘‘yeast 2-hybrid’’.

3. Binary-enriched (‘‘bin’’). All mutually interacting sets of

three proteins (where A interacts with B & C and B also

interacts with C (and A, B & C are all different)) were removed

from the PPI dataset. Any Yeast-2-Hybrid PPI that had been

removed were added back in.

4. Complex-enriched (‘‘com’’). Only PPI supported by the

following evidence codes were retained: ‘‘affinity capture-

luminescence’’, ‘‘affinity capture-ms’’, ‘‘affinity capture-

western’’, ‘‘anti bait coimmunoprecipitation’’, ‘‘anti bait

coip’’, ‘‘anti tag coimmunoprecipitation’’, ‘‘anti tag coip’’,

‘‘coimmunoprecipitation’’, ‘‘coip’’, ‘‘complex’’, ‘‘direct_complex’’,

‘‘gst pull down’’, ‘‘his pull down’’, ‘‘mass spectrometry studies of

complexes’’, ‘‘pull down’’, ‘‘reconstituted complex’’, ‘‘tandem

affinity purification’’ and ‘‘tap’’.

Domain-based datasets

All human proteins were analysed for protein domains using a

HMMER247 search of PFam LS HMMs.1 For any domains

found in 2+ proteins with PPI data, the interactors of proteins

containing that domain were combined into a single domain-

centred dataset. (To reduce unnecessary redundancy, any

domains found in only a single protein with PPI data were

ignored as these datasets would be, by definition, the same as

for the single protein.)

SLiM prediction

SLiMFinder19 was run on each dataset using default settings

unless otherwise stated. In each case the following masking

strategies were applied to the input sequences (SLiMFinder

parameters in square brackets; see SLiMFinder documentation

for details) [masking=T]:

� N-terminal methionines were masked, as were alanines at

position 2, which are also very common [metmask=T

posmask=2:A].

� Because of the large number of datasets being analysed,

the default complexity filter of 5 identical amino acids (aa) in

an 8 aa window was made slightly stricter for this analysis at 4

aa in a 6 aa window [compmask=4,6].

� Disorder masking of regions using IUPred.30 Disorder

was predicted at an IUPred cut-off Z 0.2, with a minimum

(dis)ordered region length of five consecutive residues

[dismask=T iucut=0.2 minregion=5].

� Conservation masking using the Relative Local Conservation

strategy of Davey et al.20 for sequences with 3+ GOPHER

orthologues (see above). Only orthologues with fewer than 10

undefined (‘‘X’’) residues and 20% gaps relative to the query were

used [consmask=T conscore=rel vnematrix=blosum62.bla

minhom=3 homfilter=T maxx=10 maxgap=0.2].

SLiMBuild used the default settings, allowing wildcard

spacers of up to two consecutive wildcards and extending

motifs up to five defined positions [maxwild=2 slimlen=5].

Ambiguous positions were permitted with the following

‘‘equivalency groups’’ of amino acids that could be combined

into a single ambiguous position: ILMVF, FYW, FYH, KRH,

DE, ST. Each ambiguous motif variant had to occur in at least

two unrelated sequences, while each predicted SLiM returned

had to occur in at least three unrelated proteins [ambocc=2

minocc=3]. Flexible-length wildcards were not permitted in
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this analysis [wildvar=F]. The SLiMFinder walltime was

disabled [walltime=0] but analyses were limited to datasets

with less than 1000 proteins [maxseq=1000].

SLiM prediction significance

For SLiMChance probability calculations, post-masking aa

frequencies for eachUPCwere used [maskfreq=T smearfreq=F].

To be returned, a predicted SLiM needed a SLiMChance

significance r 0.05 and more than two non-wildcard positions

(or the equivalent) [probcut=0.05 minic=2.1]. Several studies

have used the motif count-based hypergeometric test against a

background determined by the rest of the proteome to calculate

the significance of motif enrichment.48 However, in our analysis,

we chose to use the SLiMFinder (SLiMChance) treatment of

statistical significance as we were concerned with problems of

false signals arising from the lack of compositional uniformity

of the proteome, and other biases. Protein attributes can vary

greatly between test sets and background sets in terms of

amino acid composition, disorder content and protein length,

thereby distorting motif counts. Furthermore, homologous

groupings of proteins can highly enrich motifs, particularly

rare motifs with high information content. Our previous work

has introduced a binomial test that largely corrects for these

biases, essentially by sampling amino acid composition from

the test dataset, correcting for protein length and weighting

based on protein divergence, resulting in a robust scheme for

motif enrichment significance calculation.

Motif ‘‘clouds’’

Frequently, a number of closely related, overlapping, significant

motifs will be returned by a dataset. This is due to the non-

independent nature of motifs, i.e. enrichment of a given motif

will also tend to enrich all other motifs for which that motif is

a component. E.g. The interactomes of CTBP1 return multiple

significant SLiMs that are variations of the CtBP ligand,

including P[IL]DL and D...[IL]DL. To aid interpretation,

motifs are therefore grouped by SLiMFinder into ‘‘clouds’’

based on overlapping instances. To be clouded together, two

motifs must share two non-wildcard positions in at least one

occurrence (i.e. two defined residues in one protein).

MCL clustering of TP and novel motifs

All patterns returned by ‘‘Real’’ datasets at p o 0.01 were

subject to an all-by-all CompariMotif26 motif-motif comparison

using default settings. These data were used to generate a

motif network with each motif as a node and each Compar-

iMotif similarity (min. normalised MatchIC> 0.5) as an edge.

This network was then used as input for an MCL cluster

analysis.49 Individual patterns were designated ‘‘TP’’ if they

were a recognisable variant of a known PPI SLiM in at least

one of the datasets returning that pattern, otherwise they were

designated ‘‘Novel’’. Random data was not used for this

analysis because they are probably enriched for False

Positives.

False discovery rates

False discovery rates (FDR) were calculated using the principles

of Storey50 based on the assumption that the SLiMChance

statistical calculations were robust and that, as a result, 5% of

results returned at p o = 0.05 (and 1% of results at p o =

0.01 etc.) would be false positives. For each significance p,

therefore, FDR was calculated as:

FDR = pN/np,

Where N is the total number of datasets analysed and np is the

number of results returned with a significance value of p or

less. (pN therefore represents the expected number of False

Positives with significance p). Because of the non-independence

of motifs in a motif cloud, this calculation was performed

using the most significant motif from each motif cloud.

Random data

Two random datasets were generated to establish the empirical

background of stochastically occurring over-represented

motifs.

Random sequence datasets

In the first ‘‘Random Sequence’’ dataset, each interaction dataset

was taken in turn and the interactors replaced with an equal

number of human proteins selected at random from the whole

human genome dataset. These datasets therefore have the same

number of proteins as the ‘‘real’’ data but would usually have

more unrelated proteins as the probability of randomly selecting

related sequences was much lower than the probability that a

known hub protein is annotated as interacting with two or more

related proteins.

Random UPC datasets

To overcome any potential bias caused by the Random

Sequence datasets having more UPC (and more singletons)

than the real data, a second randomised dataset was generated

by randomly recombining UPCs from the original data

such that:

� The number of UPCs in the random datasets matched the

number of UPCs from the original datasets

� Each UPC from the original data was used once. (i.e.

random selection without replacement.)

In reality, UPCs from different hubs are not necessarily

unrelated and so some of the random UPC datasets will

actually be reduced in size compared to the original data

(in terms of UPC numbers and, sometimes, even in terms of

absolute sequence numbers if spokes from different hub

datasets are randomly selected for the same random dataset).

This then produced two random datasets with different

attributes and biases: the Random Sequence data tending to

have more UPC than the real data and the Random UPC

datasets tending to have fewer. By framing the real data in this

fashion, any inherent bias due to the underlying UPC distri-

bution should be apparent.

Conclusions

This work represents only the second large scale de novo SLiM

prediction of this nature on human data. Since the first

analysis of Neduva et al.24 a number of improvements have

been made to the underlying methodology, most importantly

in terms of estimating statistical significance, which allows for
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direct comparisons across different datasets. This work has

successfully rediscovered a number of known motifs, demon-

strating the potential of the method but, equally importantly,

has also highlighted some potential pitfalls that only become

obvious with an analysis of this scale. The domination of

significant results by off-target and recurring motifs was

neither something that was expected nor reported by Neduva

et al., although re-interpreting their results in the light of our

discoveries indicates that their analysis was also prone to

similar problems. It is also clear, however, that while such

results present challenges of interpretation, they are not ‘‘False

Positives’’ in the strictest sense and often represent genuine

biologically functional motifs in the proteins containing them.

This is even true of some of the motifs returned by random

datasets, and raises the intriguing possibility that novel sites of

biological importance could be identified by looking for over-

represented motifs in larger datasets up to full proteome level.

Indeed, recent work in yeast has suggested that larger-scale

prediction might indeed be frutiful.51 (This is currently not

possible with SLiMFinder due to limitations with the BLAST-

based evolutionary filtering.) The issue, therefore, becomes not

just one of identifying the functional motifs but also to

correctly assigning their function. This is something that is

outside the scope of this work but it is hoped that the results

presented here will provide the basis for future experimental

analyses of specific predictions. To this end, we have made all

motif predictions available as ESIz and a navigable online

resource (http:// bioware.soton.ac.uk/slimdb/).

This analysis is the largest de novo in silico SLiM prediction

in humans and has identified a number of candidates for novel

functional motifs and/or motif occurrences. This work represents

a major step forward by predicting a number of statistically

over-represented and evolutionary conserved motifs outside of

globular domains. While we have confidence that many of

these represent motifs of true biological functional signifi-

cance, the interdependent nature of the data makes categorical

functional assignment difficult. Nevertheless, this study clearly

identifies a number of areas that can be targeted to further

enhance predictions and move closer to the ultimate goal of

motif prediction with assigned function.

We conclude that SLiMFinder can be an effective tool for

motif discovery. Users should be careful to assemble protein

datasets that are enriched for direct interactors of the proposed

motif binding protein. Ideally, such analyses will be performed

in conjunction with data specifically supporting at least one

such direct interaction, which can be used as a filter for motif

predictions. This information could be provided a priori, using

the ‘‘query’’ option in SLiMFinder to restrict results to a

specific protein or disordered region. Alternatively, coupling

the in silico predictions to in vitro interaction screening will

greatly increase the power of such analyses. The extensive

database of results provided here represent an initial starting

point for exploring motifs in human proteins. Users can

traverse this database in terms of a protein of interest, or a

motif of interest, or a domain of interest. While the most

strongly significant motifs generally represent previously well

known motifs, this should not come as a surprise: the most

complete interaction datasets represent well-studied proteins

and experimental protein biochemists are adept at interpreting

evidence for motifs in such sequences; thus, computational

predictions are likely to be more useful for motifs for which

the evidence is less glaringly obvious. These predicted motifs

can then be further explored in follow-up experiments, to

validate their significance.

Acknowledgements

This work was supported by Science Foundation Ireland

grants 02/IN1/B294 and 08/IN.1/B1864. The authors would

like to thank two anonymous reviewers and Dr Kieren

Lythgow for helpful comments on the manuscript.

References

1 R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger,
J. E. Pollington, O. L. Gavin, P. Gunasekaran, G. Ceric,
K. Forslund, L. Holm, E. L. Sonnhammer, S. R. Eddy and
A. Bateman, Nucleic Acids Res., 2010, 38, D211–222.

2 I. Letunic, T. Doerks and P. Bork, Nucleic Acids Res., 2009, 37,
D229–232.

3 J. McDowall and S. Hunter,Methods Mol. Biol., 2011, 694, 37–47.
4 C. M. Gould, F. Diella, A. Via, P. Puntervoll, C. Gemund,
S. Chabanis-Davidson, S. Michael, A. Sayadi, J. C. Bryne,
C. Chica, M. Seiler, N. E. Davey, N. Haslam, R. J. Weatheritt,
A. Budd, T. Hughes, J. Pas, L. Rychlewski, G. Trave, R. Aasland,
M. Helmer-Citterich, R. Linding and T. J. Gibson, Nucleic. Acids
Res., 2010, 38, D167–180.

5 S. Rajasekaran, S. Balla, P. Gradie, M. R. Gryk, K. Kadaveru,
V. Kundeti, M. W. Maciejewski, T. Mi, N. Rubino, J. Vyas and
M. R. Schiller, Nucleic Acids Res., 2009, 37, D185–190.

6 A. Mohan, C. J. Oldfield, P. Radivojac, V. Vacic, M. S. Cortese,
A. K. Dunker and V. N. Uversky, J. Mol. Biol., 2006, 362,
1043–1059.

7 A. K. Dunker and Z. Obradovic, Nat. Biotechnol., 2001, 19,
805–806.

8 V. Neduva and R. B. Russell, FEBS Lett., 2005, 579, 3342–3345.
9 P. Puntervoll, R. Linding, C. Gemund, S. Chabanis-Davidson,
M. Mattingsdal, S. Cameron, D. M. Martin, G. Ausiello,
B. Brannetti, A. Costantini, F. Ferre, V. Maselli, A. Via,
G. Cesareni, F. Diella, G. Superti-Furga, L. Wyrwicz, C. Ramu,
C. McGuigan, R. Gudavalli, I. Letunic, P. Bork, L. Rychlewski,
B. Kuster, M. Helmer-Citterich, W. N. Hunter, R. Aasland and
T. J. Gibson, Nucleic Acids Res., 2003, 31, 3625–3630.

10 T. J. Gibson, Trends Biochem. Sci., 2009, 34, 471–482.
11 N. E. Davey, G. Trave and T. J. Gibson, Trends Biochem. Sci.,

2011, 36, 159–169.
12 V. Neduva and R. B. Russell, Curr. Opin. Biotechnol., 2006, 17,

465–471.
13 H. Dinkel, C. Chica, A. Via, C. M. Gould, L. J. Jensen,

T. J. Gibson and F. Diella,Nucleic Acids Res., 2011, 39, D261–267.
14 Y. Igarashi, E. Heureux, K. S. Doctor, P. Talwar, S. Gramatikova,

K. Gramatikoff, Y. Zhang, M. Blinov, S. S. Ibragimova, S. Boyd,
B. Ratnikov, P. Cieplak, A. Godzik, J. W. Smith, A. L. Osterman
and A. M. Eroshkin, Nucleic Acids Res., 2009, 37, D611–618.

15 N. D. Rawlings, A. J. Barrett and A. Bateman, Nucleic Acids Res.,
2010, 38, D227–233.

16 T. S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar,
S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen,
A. Venugopal, L. Balakrishnan, A. Marimuthu, S. Banerjee,
D. S. Somanathan, A. Sebastian, S. Rani, S. Ray, C. J. Harrys
Kishore, S. Kanth, M. Ahmed, M. K. Kashyap, R. Mohmood,
Y. L. Ramachandra, V. Krishna, B. A. Rahiman, S. Mohan,
P. Ranganathan, S. Ramabadran, R. Chaerkady and A. Pandey,
Nucleic Acids Res., 2009, 37, D767–772.

17 B. Schuster-Bockler and A. Bateman, BMC Bioinformatics, 2007,
8, 259.

18 N. E. Davey, R. J. Edwards and D. C. Shields, BMC Bioinfor-
matics, 2010, 11, 14.

19 R. J. Edwards, N. E. Davey and D. C. Shields, PLoS One, 2007,
2, e967.



This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 282–295 295

20 N. E. Davey, D. C. Shields and R. J. Edwards, Bioinformatics,
2009, 25, 443–450.

21 R. Aragues, A. Sali, J. Bonet, M. A. Marti-Renom and B. Oliva,
PLoS Comput. Biol., 2007, 3, 1761–1771.

22 C. Chica, A. Labarga, C. M. Gould, R. Lopez and T. J. Gibson,
BMC Bioinformatics, 2008, 9, 229.

23 H. Dinkel and H. Sticht, Bioinformatics, 2007, 23, 3297–3303.
24 V. Neduva, R. Linding, I. Su-Angrand, A. Stark, F. de Masi,

T. J. Gibson, J. Lewis, L. Serrano and R. B. Russell, PLoS Biol.,
2005, 3, e405.

25 V. Neduva and R. B. Russell, Nucleic Acids Res., 2006, 34,
W350–355.

26 R. J. Edwards, N. E. Davey and D. C. Shields, Bioinformatics,
2008, 24, 1307–1309.

27 M. R. Schiller, Curr. Protoc. Protein Sci., 2007, ch. 2, Unit 2 12.
28 N. E. Davey, N. J. Haslam, D. C. Shields and R. J. Edwards,

Nucleic. Acids Res., 2011, 39, W56–W60.
29 Z. Dosztanyi, B. Meszaros and I. Simon, Bioinformatics, 2009, 25,

2745–2746.
30 Z. Dosztanyi, V. Csizmok, P. Tompa and I. Simon, Bioinformatics,

2005, 21, 3433–3434.
31 M. Fuxreiter, P. Tompa and I. Simon, Bioinformatics, 2007, 23,

950–956.
32 V. Vacic, C. J. Oldfield, A. Mohan, P. Radivojac, M. S. Cortese,

V. N. Uversky and A. K. Dunker, J. Proteome Res., 2007, 6,
2351–2366.

33 B. Xue, A. K. Dunker and V. N. Uversky, Int. J. Mol. Sci., 2010,
11, 3725–3747.

34 T. J. Hubbard, B. L. Aken, S. Ayling, B. Ballester, K. Beal,
E. Bragin, S. Brent, Y. Chen, P. Clapham, L. Clarke, G. Coates,
S. Fairley, S. Fitzgerald, J. Fernandez-Banet, L. Gordon, S. Graf,
S. Haider, M. Hammond, R. Holland, K. Howe, A. Jenkinson,
N. Johnson, A. Kahari, D. Keefe, S. Keenan, R. Kinsella,
F. Kokocinski, E. Kulesha, D. Lawson, I. Longden, K. Megy,
P. Meidl, B. Overduin, A. Parker, B. Pritchard, D. Rios,
M. Schuster, G. Slater, D. Smedley, W. Spooner, G. Spudich,
S. Trevanion, A. Vilella, J. Vogel, S. White, S. Wilder, A. Zadissa,
E. Birney, F. Cunningham, V. Curwen, R. Durbin,
X. M. Fernandez-Suarez, J. Herrero, A. Kasprzyk, G. Proctor,
J. Smith, S. Searle and P. Flicek, Nucleic Acids Res., 2009, 37,
D690–697.

35 UniProt Consortium, Nucleic. Acids Res., 2009, 37, D169–174.
36 N. E. Davey, R. J. Edwards and D. C. Shields, Nucleic Acids Res.,

2007, 35, W455–459.
37 S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,

W. Miller and D. J. Lipman, Nucleic Acids Res., 1997, 25,
3389–3402.

38 N. E. Davey, D. C. Shields and R. J. Edwards, Nucleic Acids Res.,
2006, 34, 3546–3554.

39 K. Katoh and H. Toh, Briefings Bioinf., 2008, 9, 286–298.
40 B. J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz,

M. Livstone, R. Oughtred, D. H. Lackner, J. Bahler, V. Wood,
K. Dolinski and M. Tyers, Nucleic Acids Res., 2008, 36, D637–640.

41 A. Ceol, A. Chatr-aryamontri, E. Santonico, R. Sacco,
L. Castagnoli and G. Cesareni, Nucleic Acids Res., 2007, 35,
D557–560.

42 A. Chatr-aryamontri, A. Ceol, L. M. Palazzi, G. Nardelli,
M. V. Schneider, L. Castagnoli and G. Cesareni, Nucleic Acids
Res., 2007, 35, D572–574.

43 L. Matthews, G. Gopinath, M. Gillespie, M. Caudy, D. Croft,
B. de Bono, P. Garapati, J. Hemish, H. Hermjakob, B. Jassal,
A. Kanapin, S. Lewis, S. Mahajan, B. May, E. Schmidt, I. Vastrik,
G. Wu, E. Birney, L. Stein and P. D’Eustachio, Nucleic Acids Res.,
2009, 37, D619–622.

44 L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie and
D. Eisenberg, Nucleic Acids Res., 2004, 32, D449–451.

45 S. Kerrien, Y. Alam-Faruque, B. Aranda, I. Bancarz, A. Bridge,
C. Derow, E. Dimmer, M. Feuermann, A. Friedrichsen,
R. Huntley, C. Kohler, J. Khadake, C. Leroy, A. Liban,
C. Lieftink, L. Montecchi-Palazzi, S. Orchard, J. Risse,
K. Robbe, B. Roechert, D. Thorneycroft, Y. Zhang, R. Apweiler
and H. Hermjakob, Nucleic Acids Res., 2007, 35, D561–565.

46 E. A. Bruford, M. J. Lush, M. W. Wright, T. P. Sneddon, S. Povey
and E. Birney, Nucleic Acids Res., 2008, 36, D445–448.

47 S. R. Eddy, Bioinformatics, 1998, 14, 755–763.
48 S. Michael, G. Trave, C. Ramu, C. Chica and T. J. Gibson,

Bioinformatics, 2008, 24, 453–457.
49 A. J. Enright, S. Van Dongen and C. A. Ouzounis, Nucleic Acids

Res., 2002, 30, 1575–1584.
50 J. D. Storey, Ann. Stat., 2003, 31, 2013–2015.
51 D. S. Lieber, O. Elemento and S. Tavazoie, PLoS One, 2010,

5, e14444.


