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Abstract Holothuroidea represent the dominant benthic

megafauna in hadal trenches (*6,000–11,000 m), but little

is known about their behaviour and functional role at such

depths. Using a time-lapse camera at 8,074 m in the Peru–

Chile Trench (SE Pacific Ocean), we provide the first in

situ observations of locomotory activity for the elasipodid

holothurian Elpidia atakama Belyaev in Shirshov Inst

Oceanol 92:326–367, (1971). Time-lapse sequences reveal

‘run and mill’ behaviour whereby bouts of feeding activity

are interspersed by periods of locomotion. Over the total

observation period (20 h 25 min), we observed a mean

(±SD) locomotion speed of 7.0 ± 5.7 BL h-1, but this

increased to 10.9 ± 7.2 BL h-1 during active relocation

and reduced to 4.8 ± 2.9 BL h-1 during feeding. These

observations show E. atakama translocates and processes

sediment at rates comparable to shallower species despite

extreme hydrostatic pressure and remoteness from surface-

derived food.

Introduction

Deposit feeding invertebrates, such as the Holothuroidea,

dominate benthic megafaunal communities in the deep sea in

terms of abundance and biomass (Rice et al. 1982; Ohta

1983; Sibuet 1985; Billett 1991). A consistent feature of

holothurian communities, irrespective of location, is the

marked increase in diversity at abyssal depths (3,000–

6,000 m) (Billett 1991) relative to bathyal (1,000–3,000 m)

(Hansen 1975) and hadal depths ([6,000 m) (Hansen 1957;

Belyaev 1989). Frequently observed mass abundances of

holothurians, particularly in trenches associated with high

productivity in temperate and sub-Antarctic latitudes, have

led some authors to refer to the hadal zone as ‘‘the kingdom of

Holothuroidea’’ (sensu Belyaev 1989), a view that has been

reinforced by trawl-catch frequencies of 88% at depths

[6,000 m (comparable only to Polychaeta) and high levels

of dominance (75–98% in number of all organisms retrieved,

[90% biomass) at depths [7,500 m (Belyaev 1989).

Although such high returns tend to be associated with trawls

confined to the bottom of the axial part of the trenches, where

the greatest quantity of organic matter accumulates (Otosaka

and Noriki 2000; Danovaro et al. 2003; De Leo et al. 2010;

Jamieson et al. 2010), it follows that the cumulative contri-

bution of the Holothuroidea to deep ocean benthic process

and functioning must be considerable (Amaro et al. 2010).

Despite such high levels of abundance, intra- and inter-

specific competition is thought to be low because indi-

vidual species of holothurians adopt different feeding

strategies, including preferential feeding on nutritionally

rich patches (Hauksson 1979; Hudson et al. 2005) and/or

subtle differences in mobility or feeding behaviour

(Hudson et al. 2005; Godbold et al. 2009) that allow them

to utilise different fractions of the same detrital food

source (Uthicke and Karez 1999; Miller et al. 2000). It is

also known that differences in feeding rates (compare, for

example, Hudson et al. 2005; Godbold et al. 2009) alter

the gut residence time of a food parcel, leading to more

efficient digestion and rates of assimilation (Hiratsuka and
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Uehara 2007). Whilst these physiological and behavioural

adaptations influence holothurian activity, much of the

ingested material is of low nutritional value (Lopez and

Levinton 1987), leading to foraging activity that results in

significant levels of surficial bioturbation that has seldom

been quantified (Sibuet and Lawrence 1981; Bett and Rice

1993; Uthicke 1999; Roberts et al. 2000; Bett et al. 2001).

Indeed, a recent review of invertebrate bioturbation (Teal

et al. 2008) indicates a paucity of such data from bathyal

or abyssal depths (maximum depth data obtained =

5,654 m, Yang et al. 1986) and a complete absence of

information from hadal depths. Hence, it is clear that the

ecological consequences of particle redistribution follow-

ing holothurian foraging and feeding activities are not

known despite the importance of this group in deep ocean

ecosystems.

In contrast to shallower environments, where species

can be caught and returned to the laboratory, carrying out

controlled experimental manipulations on hadal specimens

is difficult. Direct in situ experimental manipulations are

possible using remotely operated vehicles (ROVs), but

progress is slow as there is only one vehicle capable of

sampling [6,000 m (Fletcher et al. 2010). A more prac-

tical solution is the use of free-fall baited cameras

(Jamieson et al. 2009a, b) which allow time-lapse or

continuous video recordings of benthic faunal behaviour.

Here, we use such technology to present the first detailed

in situ account of the locomotion and feeding behaviour of

the holothurian Elpidia atakama (Belyaev 1971) (family

Elpidiidae) at 8,074 m in the Richards Deep area of the

Peru–Chile trench. This species has never been seen alive

and appears to be endemic to the Peru–Chile trench. We

compare locomotion speed and feeding behaviour with

abyssal analogues and conclude that the observed patterns

of activity are consistent with the view that the behaviour

of E. atakama reflects exploitation of patchily distributed

resources. We contend that the ability to exploit envi-

ronmental heterogeneity in this way explains, at least in

part, why the holothurians are so abundant and outcom-

pete other deposit feeding species at abyssal and hadal

depths.

Materials and methods

Study site

The Peru–Chile Trench (SE Pacific Ocean) is the longest

trench in the world (5,900 km 9 100 km, Angel 1982) and

runs parallel to the west coast of South America from

Ecuador to central Chile. The trench lies below the

Humboldt Current and the Peruvian upwelling system

(Echevin et al. 2008), a region of high surface productivity

(averaging 269 g C m-2 year-1, Longhurst et al. 1995)

with values reported as high as 3,613 g C m-2 year-1

(Fossing et al. 1995).

Equipment

We deployed Hadal-lander B (Jamieson et al. 2009b), a

free-falling lander equipped with a 5 megapixel digital still

camera (OE14-208; Kongsberg Maritime, UK) and a

Conductivity, Temperature and Depth (CTD) sensor (SBE-

19plus V2; SeaBird Electronic Inc. USA), at 8,074 m in the

Richards Deep, Peru–Chile trench (23� 22.4700S, 71�
19.9730W) on the 13 September 2010. The camera was

mounted vertically (altitude 1 m) providing a visible area

of 62 9 46.5 cm (0.29 m-2). We attached a bait (*1 kg

of Tuna, Thunnus sp.) to a 1-cm-diameter scaled bar in the

centre of the field of view (FOV) and positioned to inter-

sect the sediment–water interface. Time-lapse images were

taken at 60-s intervals. The CTD probe recorded temper-

ature (�C), salinity, and pressure (dbar) every 10 s. Lander

recover was achieved by acoustically jettisoning ballast

weights to initiate the ascent to the surface. CTD data were

averaged, and pressure was converted to depth (m)

following Saunders (1981).

Image analysis

Motion paths of E. atakama were tracked using ImageJ

1.42q, a Java-based public domain program developed at

the USA National Institutes of Health (available at,

http://rsb.info.nih.gov/ij/index.html). Images were cali-

brated and analysed in chronological order. We used the

X–Y coordinates at the base of the central feeding tentacle

as a location marker and calculated the distance (cm) an

individual travelled per time step to determine the absolute

locomotion speed (cm h-1) as follows:

a ¼ d

t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2�X1ð Þ2þ Y2� Y1ð Þ2
q

t
ð1Þ

where ã = absolute locomotion speed, cm h-1; d = dis-

tance, cm; and t = time interval (here, 60 s).

We also explore how differences in time-lapse interval

alter ecological interpretation by re-calculating the absolute

locomotion speed (and percentage deviation in error rela-

tive to the highest resolution of observation) for E. atakama

at 1-, 2-, 5-, 10-, 20- and 60-min intervals and place our

results within the context of other findings published in the

scientific literature.

In order to account for body size, we divided ã by body

length (BL = longest axis of specimen) to provide a size-

specific speed (BL h-1).
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Results

We recorded 1,225 images (20 h 25 min) at a calculated

depth of 8,072 m (=8,276 dbar). At this depth, water

temperature was 2.25�C and salinity was 34.68. Sequences

included observations of the holothurian, Elpidia atakama,

and three species of scavenging gammarid amphipods:

Eurythenes gryllus, (Thurston et al. 2002), Hirondellea

sp.nov. (Perrone et al. 2002) and an unidentified species.

After 20 h, the bait remained present but had been signif-

icantly reduced by scavenging amphipods (Fig. 1).

E. atakama was observed (starting at 48 min elapsed

time) on three occasions (Period A, 218 images or 3 h

38 min; Period B, 138 images or 2 h 18 min; and Period C,

219 images or 3 h 44 min; total = 9 h 40 min; Fig. 1),

which were separated by periods of time when the indi-

vidual moved out of the field of view (2 h 18 min and

20 min, respectively). Within these sequences, the number

of images in which E. atakama was present varied,

ranging from 76 images (1 h 16 min) in Period B, 140

images (2 h 20 min) in Period A, to 203 images (3 h

23 min) in Period C. The individual was not always fully

visible within the field of view; hence, only images where

the head was clearly visible were used to track holothurian

activity. We matched exit to entrance positions between

sequences and checked body size measurements (*5.1 9

2.3 cm) and confirmed that all appearances were the same

individual.

The distance that E. atakama traversed varied over time,

but the rate of movement did not appear to be related to the

length of time the individual was observed. Maximal

locomotion speed was attained during Period A (96.5 cm in

140 min, = 41.36 cm h-1 or 8.1 BL h-1), with lower

rates of movement observed in Periods B (37.3 cm in

76 min, = 29.45 cm h-1 or 5.8 BL h-1) and C (133 cm in

203 m, = 33.6 cm h-1 or 6.6 BL h-1). When averaging

these together, ã = 35.5 ± 29.3 cm h-1 (7.0 ± 5.7 BL

h-1), giving a mean swept area rate (ã 9 body width 9

distance/t) of 81.6 cm-2 h-1. The speed and direction of

movement was neither constant nor unidirectional (Fig. 2),

reflecting a ‘run and mill’ movement pattern (Kaufmann

and Smith 1997), i.e. relatively large distances are achieved

with minimal changes in speed and direction (routine

locomotion) and are interspersed with bouts of localised,

closely spaced turns that allow sediment processing and

feeding (milling activity, sensu Smith et al. 1993; Fig. 2).

Closer examination of our images suggests that feeding

does not take place during routine locomotion (all feeding

tentacles protrude forward clear of the sediment–water

interface), rather feeding tentacles only contact the sedi-

ment–water interface during milling activity (Fig. 3). This

demarcation of behaviour alters the locomotion ability of

the organism and leads to temporally distinct activity

periods. For example, following its first appearance (Period

A), E. atakama exhibited a locomotion speed of

59.3 cm h-1 for 26 min (11.6 BL h-1) before it began a

bout of feeding (or milling) activity for 55 min in a

localised area, characterised by irregular but short-distance

movements at 17.4 cm h-1 (3.4 BL h-1). On the cessation

of any obvious feeding activity, locomotion speed increased

to 61.7 cm h-1 (12.1 BL h-1) for 53 min before feeding

started again at a speed of 15.4 cm h-1 (3.0 BL h-1) for

6 min. Similar observations were also observed in the

second period (Period B), where E. atakama fed for

the first 49 min at a speed of 23.0 cm h-1 (4.5 BL h-1)

before relocating at a speed of 43.6 cm h-1 (8.5 BL h-1)

for 27 min until exiting the field of view. In the third

appearance (Period C), E. atakama fed for the majority of

time (152 min) with two small periods of routine move-

ments (31 and 20 min). The locomotion speed during bouts

of relocation was 54.0 cm h-1 (10.6 BL h-1), but during

feeding, reduced to 27.1 cm h-1 (5.3 BL h-1). In total,

Fig. 1 a Full field of view image from 8,075 m showing the tuna bait parcel in the centre with four scavenging amphipods (Eurythenes gryllus)

beginning to feed. In the centre, middle is the holothurian Elpidia atakama. b Close-up of E. atakama. Scales bars = 5 cm
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E. atakama spent 150 min relocating and 267 min feeding

(a ratio of 1:1.8). By distinguishing between routine

locomotion and feeding locomotion, mean locomotive

speeds were 55.7 ± 36.7 cm h-1 (10.9 ± 7.2 BL h-1) and

24.3 ± 14.8 cm h-1 (4.77 ± 2.9 cm h-1), respectively.

It is important to place the current observations within

the context of other known observations of holothurian

behaviour (Table 1). Whilst it is clear that the rate of

locomotion in E. atakama is faster than many other species,

these differences relate only poorly to increasing depth

(Fig. 4a) or to body size (Fig. 4b). An alternative expla-

nation may be that the rate of locomotion relates to the

quality and reliability of food supply, although this

hypothesis has not been tested explicitly and we

acknowledge that comparisons between studies are difficult

to make given the lack of available data and differences in

methodology (Fig. 5). Re-analysis of our own data showed

that increasing the time-lapse interval over the observation

period results in a rapid (logarithmic) increase in error,

resulting in[55% estimate error when images are taken at

60-min intervals (decreases from 7.0 ± 5.7 BL h-1 to

3.2 ± 0.9 BL h-1; Fig. 5a), relative to the highest resolu-

tion of observations (1 min). Data using 60-min intervals

from Kaufmann and Smith (1997) and Smith et al. (1993)

and 1-min intervals from (Smith et al. 1997) are in good

agreement with our predictions (Fig. 5b). Furthermore, the

measurements of the rate of movement of Elpidia minu-

tissima (Smith et al. 1993; Kaufmann and Smith 1997) are

almost equal to those of E. atakama based on a theoretical

60-min interval.

Fig. 2 Absolute speed

(cm min-1) over time and the

X–Y track for the three

appearances of E. atakama
(a, b, c). Periods of feeding

(milling) activity are shaded.

Trend lines are 10 min moving

averages. In the right hand
panels, S marks the start

position and E the end position
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Discussion

We have documented the feeding and locomotion behav-

iour of a hadal holothurian and shown that the behaviour is

not exceptional; the run and mill pattern of Elpidia atak-

ama exemplifies patterns of behaviour of functionally

analogous abyssal species in the NE Pacific, including

Elpidia minutisima, Staurocucumis abyssorum, Synallac-

tes profundi, Peniagone vitrea and Scotoplanes globosa

(Smith et al. 1993; Kaufmann and Smith 1997), and

locomotion and feeding rates are comparable to holothu-

rians found at shallower depths. However, our findings

provide compelling evidence that E. atakama is a func-

tionally important species that is likely to change its

behaviour in response to localised resource heterogeneity

(Godbold et al. 2009, 2011) and the repackaging of organic

matter (OM; Bett et al. 2001). Also, movement over the

sediment surface associated with relocation constitutes

Fig. 3 The a locomotion and b feeding behaviour of E. atakama.

Feeding tentacles are a positioned to the anterior (the bottom of each

image) and raised above the sediment–water interface during

locomotion and b lowered to intersect the sediment–water interface

during bout of feeding. Frames were selected at random from

successive bouts of locomotion and feeding

Table 1 Summary of measured body length (BL), absolute (ã) and size-specific locomotion speeds for holothurians at a range of depths

Species Depth (m) BL (cm) ã (cm h-1) Size-specific

speed (BL h-1)

Source

Laetmogone violacea 1,000 14.0 102.6 7.3 Smith et al. (1997)

Benthogone rosea 2,012–2,019 17.0 89.0 5.0 Billett (1991)

Staurocucmuis abyssorum 4,100 12.9 12.8 1.0 Kaufmann and Smith (1997)

Staurocucumis abyssorum 4,100 9.7 17.8 1.8 Smith et al. (1993)

Elpidia minutissima 4,100 4.4 11.9 2.7 Kaufmann and Smith (1997)

Elpidia minutissima 4,100 4.1 14.8 3.6 Smith et al. (1993)

Peniagone vitrea 4,100 8.6 10.1 1.2 Kaufmann and Smith (1997)

Peniagone vitrea 4,100 7.3 8.1 1.1 Smith et al. (1993)

Scotoplanes globosa 4,100 9.5 16.3 1.7 Kaufmann and Smith (1997)

Synallactes profundi 4,100 17.4 12.7 0.7 Kaufmann and Smith (1997)

Oneirophanta mutabilis 4,100 15.3 64.6 4.2 Kaufmann and Smith (1997)

Oneirophanta mutabilis 4,100 14.3 84.8 5.9 Smith et al. (1993)

Oneirophanta mutabilis 4,844 16.2 128.9 8.0 Smith et al. (1997)

Elpidia atakama 8,074 5.1 37.3 7.3 Present study
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bioturbation which is qualitatively distinct from bioturba-

tion associated with feeding activity (Bulling et al. 2008),

giving credence to the view that epifaunal species can have

a substantial effect on the properties of the sediment profile

(Solan et al. 2004). It is, however, difficult to assess the

ecological contribution of E. atakama in the absence of

information on the spatial extent and temporal persistence

of this species. There are no abundance estimates for

E. atakama (or any other holothurian) in the Peru–Chile

Trench. However, a review of all-known hadal records up

to 1989 found that the density of both E. uschakovi in the

New Hebrides trench and Elpidia sp. from the Palau trench

was 0.1 ind. m-2 (=1,000 ind. ha-1), whilst the density of

E. solomonensis from the New Britain and Bougainville

Trenches ranged from 0.03 to 0.1 and 0.01 ind. m-2,

respectively (300–1,000 ind. ha-1 and 100 ind. ha-1;

Belyaev 1989). In general, however, the density of the

Elpidiidae family (Elpidia glacialis ushakovi, E. glacialis

solomonensis, Elipida sp., Peniagone purpurea, P. azorica

and Scotoplanes globosa) at hadal depths can range from

0.5 to 10 ind. m-2 (5,000–100,000 ind. ha-1) (Lemche

et al. 1976). More recent reports from the Orkney trench

(Vinogradova et al. 1993; Gebruk 1993) suggest for

E. decapoda, a density of 15 ind. m-2 (150,000 ind. ha-1)

at 6,160 m and 30 ind. m-2 (300,000 ind. ha-1) at 5,580 m.

These estimates are considerably higher than those repor-

ted for the abyssal plains; most reports indicate 15.5–193.3

ind. ha-1, although there are some exceptions, e.g. 370.8

ind. ha-1, E. minutissima in the NE Pacific (Kaufmann and

Smith 1997) and in the NE Atlantic, 8.77–337.92 ind. ha-1

for Amperima rosea, and 43,949 ind. ha-1 for Elpidia

echinata, although there are instances of mass occurrences

Fig. 4 Summary of

observations of size-specific

locomotion speed (BL h-1) for

a water column depth and

b body size of individual

holothurians. Open circles
represent measurements for

E. atakama in the present study,

whilst closed circles represent

the data listed in Table 1

Fig. 5 The effect of increasing the elapsed time between successive

time-lapse images on mean locomotion speeds for the holothurians

listed in Table 1. In a, the degree of estimation error increases rapidly

as time-lapse intervals are extended (recalculated from present study

data). In b, data are shown for E. atakama at 1-, 2-, 5-, 10-, 30-, and

60-min time-lapse intervals (recalculated from present study data)

alongside previously published data (triangles) for the abyssal species

listed in Table 1. Estimates for E. minutissima are denoted by grey
circles
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of Kolga hyaline at 501,701 ind. ha-1 (Billett and

Hansen 1982; Billett 1991; Billett et al. 2001). Never-

theless, using the calculated sweep area and observations

of feeding activity obtained here, we estimate that a

single individual of E. atakama may process 1 m2 of

surficial sediment every 5.1 days, or a population of 123

individuals will turnover 1 m2 of surficial sediment every

hour.

When considered together, the available estimates of

holothurian density provide anecdotal evidence that holo-

thurians are found in greatest abundance at hadal depths,

rather than at adjacent abyssal areas. Mass abundances of

hadal holothurians are thought to occur at the trench axis

where elevated levels of organic material are likely to

accumulate (Otosaka and Noriki 2000; Danovaro et al.

2003; Jamieson et al. 2010; Itoh et al. 2011). This appears

to reflect a general relationship with topography (Rowe

1971) as concentrations of elpidiids are a common feature

of underwater canyons and other depressions which are

known to contain elevated levels of organic matter and

deposit feeding benthic biomass (De Leo et al. 2010). It has

been shown that density of benthic assemblages in trenches

tends to be related positively to productivity in surface

waters: highest densities in trenches that occur at high

latitudes and/or close to continents (Belyaev 1989). Whilst

it is tempting to speculate that the behaviour we have

observed here is a response to the spatio-temporal vari-

ability in the extent and intensity of food supply (Ruhl

2007; Smith et al. 2009), the study region is eutrophic, and

food resources are plentiful, albeit complicated by inter-

annual phenomena of the region, including the El Nino

Southern Oscillation and the development of oxygen

minimum zones (Thiel et al. 2007). Furthermore, inter-

annual and seasonal variation in abundances of abyssal

holothurians is known to occur (Billett et al. 2001, 2010;

Ruhl 2007; Smith et al. 2009) and will also be likely at

hadal depths. Under these circumstances, it is unlikely that

competition for resources will lead to behavioural differ-

ences in feeding strategy (Godbold et al. 2009). In the

present study, E. atakama spent 150 min relocating and

267 min feeding (a ratio of 1:1.8), suggesting that resource

supply is indeed abundant and that the distance between

patches is relatively short (20–40 min travel time, or

approximately 10 body length distance). This pattern of

movement suggests considerable sensitivity to food con-

centration (McClintic et al. 2008) and implies that the

dynamics and organisation of hadal communities are inti-

mately linked to habitat structure and the distribution of

resources in ways similar to those found in shallower

benthic communities (Levinton and Kelaher 2004;

Dyson et al. 2007; Bulling et al. 2008; Nogaro et al. 2008;

Godbold et al. 2011). Thus, the cumulative response of

hadal species to such small-scale variation is likely to

influence species contributions to ecosystem properties at

much larger scales (Godbold et al. 2011).

Whilst we have been able to describe the likely ecolog-

ical role of E. atakama at hadal depths, the high-resolution

time-lapse sequences also enabled us to highlight some

procedural difficulties that are likely to hinder progress in

understanding the structure and functioning of hadal com-

munities (Jamieson et al. 2010). Reanalysis of our time-

lapse sequences at progressively lower temporal resolution

suggests that the extended time-lapse intervals used in long-

term observatories (Kaufmann and Smith 1997) are likely to

miss the subtleties of holothurian behaviour and grossly

underestimate the locomotion/feeding rates of individual

species, because rest periods and alternative bouts of

behaviour can occur between successive images (typically

\1 h). This source of error makes pairwise comparisons

between different studies, locations or seasons difficult and

hinders generic understanding of ecological phenomena

(Benton et al. 2007). If we are to fully appreciate the

functional role of organisms that inhabit the deepest parts of

our oceans, extended observations are now needed that

appreciate the temporal and spatial scales at which species-

environment interactions occur and which aim to test

unambiguously ecological theory.
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