
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Programming Languages and Principles for
Read–Write Linked Data

by

Ross J. Horne

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Physical and Applied Sciences

School of Electronics and Computer Science

November 2011

http://soton.ac.uk
mailto:rjh06r@ecs.soton.ac.uk
http://ecs.soton.ac.uk
http://ecs.soton.ac.uk

ABSTRACT

This work addresses a gap in the foundations of computer science. In particular, only a limited

number of models address design decisions in modern Web architectures. The development of

the modern Web architecture tends to be guided by the intuition of engineers. The intuition of

an engineer is probably more powerful than any model; however, models are important tools to

aid principled design decisions. No model is sufficiently strong to provide absolute certainty of

correctness; however, an architecture accompanied by a model is stronger than an architecture

accompanied solely by intuition lead by the personal, hence subjective, subliminal ego.

The Web of Data describes an architecture characterised by key W3C standards. Key standards

include a semi-structured data format, entailment mechanism and query language. Recently,

prominent figures have drawn attention to the necessity of update languages for the Web of

Data, coining the notion of Read–Write Linked Data [22]. A dynamic Web of Data with updates

is a more realistic reflection of the Web.

An established and versatile approach to modelling dynamic languages is to define an opera-

tional semantics. This work provides such an operational semantics for a Read–Write Linked

Data architecture. Furthermore, the model is sufficiently general to capture the established stan-

dards, including queries and entailments. Each feature is relative easily modelled in isolation;

however a model which checks that the key standards socialise is a greater challenge to which

operational semantics are suited. The model validates most features of the standards while rais-

ing some serious questions.

Further to evaluating W3C standards, the operational semantics provides a foundation for static

analysis. One approach is to derive an algebra for the model. The algebra is proven to be

sound with respect to the operational semantics. Soundness ensures that the algebraic rules

preserve operational behaviour. If the algebra establishes that two updates are equivalent, then

they have the same operational capabilities. This is useful for optimisation, since the real cost

of executing the updates may differ, despite their equivalent expressive powers. A notion of

operational refinement is discussed, which allows a non-deterministic update to be refined to a

more deterministic update.

Another approach to the static analysis of Read–Write Linked Data is through a type system.

The simplest type system for this application simply checks that well understood terms which

appear in the semi-structured data, such as numbers and strings of characters, are used correctly.

Static analysis then verifies that basic runtime errors in a well typed program do not occur. Type

systems for URIs are also investigated, inspired by W3C standards. Type systems for URIs are

controversial, since URIs have no internal structure thus have no obvious non-trivial types. Thus

a flexible type system which accommodates several approaches to typing URIs is proposed.

Contents

Nomenclature ix

Acknowledgements xi

1 Introduction 1
1.1 Architectures for Every-day Applications . 1
1.2 Eternal Human Challenges . 2

1.2.1 Towards an objective model of a subjective problem 3
1.3 The Language Game . 4

1.3.1 Types are not types . 5
1.3.2 Semantics are not semantics . 5
1.3.3 Syntax is syntax . 6

1.4 Tensions to be Expected . 7

2 Read–Write Linked Data Standards 9
2.1 The Setting of Key Web Standards . 9
2.2 The Suite of W3C Standards . 11

2.2.1 Overview of the Resource Description Framework 12
2.2.1.1 Problematic features of RDF. 13

2.2.2 RDF types and schema . 14
2.2.2.1 The vocabulary for classes. 14
2.2.2.2 The vocabulary for predicates. 15
2.2.2.3 Top level classes. 16
2.2.2.4 Three manageable sub-systems of RDFS. 17

2.2.3 Deep ontologies . 18
2.2.4 SPARQL Queries . 20

2.2.4.1 Ask queries. 20
2.2.4.2 Select queries. 21
2.2.4.3 Construct queries. 22
2.2.4.4 Features for expressive queries. 22
2.2.4.5 Extra features of SPARQL Query. 23

2.3 Introduction to SPARQL Update . 24
2.3.1 An example SPARQL Update. 24

2.4 A Syntax for SPARQL Update . 26
2.4.1 A Syntax for RDF Terms . 26
2.4.2 A Syntax for Constraints . 27
2.4.3 A Syntax for SPARQL Update . 27

v

vi CONTENTS

2.4.4 Abbreviations for Common Updates 28
2.5 An Equivalence over RDF Terms . 29

2.5.1 A Structural Congruence . 29
2.6 Commitment Relations for SPARQL Updates 29

2.6.1 The Delete Axiom . 30
2.6.2 The Insert Axiom . 30
2.6.3 The Join Rule . 31
2.6.4 The Select Literal Rule and Select URI Rule 32
2.6.5 The Choose Left Rule and Choose Right Rule 33
2.6.6 The Filter Axiom . 34
2.6.7 The Rules for Iterated Updates . 35
2.6.8 An Example of a Nested Update. 36

2.7 Reduction Relations for Concurrent RDF Stores 37
2.7.1 A Syntax for SPARQL Processes . 37
2.7.2 The Idle Axiom for Unaffected Processes 38
2.7.3 The Action Rule for a Commitment Acting on a Reduction 38
2.7.4 The Local Rule for Handling Blank Nodes 39
2.7.5 A Substantial Example of Concurrent Updates Involving Blank Nodes . 40

2.8 Conclusions on the Specification . 40

3 Reduction Systems for Read–Write Linked Data 43
3.1 Motivating Examples for the Reduction System 44

3.1.1 Simple sentences about Joe Armstrong the footballer 44
3.1.2 Compound sentences enquiring about footballers 45
3.1.3 Motivation for named graph features 47

3.2 The Core Syntax and Semantics . 48
3.2.1 A Syntax for the Resource Description Framework 49

3.2.1.1 An Abstract Syntax for RDF triples. 50
3.2.2 A Syntax and Semantics for Queries and Updates 51

3.2.2.1 An abstract syntax for updates. 52
3.2.2.2 A structural congruence for processes. 53
3.2.2.3 An operational semantics for atomic updates. 54

3.3 Features for Syndication . 60
3.3.1 Extensions for named graphs . 60
3.3.2 An abstract syntax for named graphs 61
3.3.3 SPARQL Update over named graphs 62
3.3.4 Updates for named graphs with blank nodes 63
3.3.5 Feeds as a ubiquitous syndication format 64

3.3.5.1 A history of feeds. 64
3.3.5.2 An example feed. 65

3.3.6 The Atom Publishing Protocol . 66
3.4 A Comparison to Established Process Calculi 68

3.4.1 An established process calculus . 69
3.4.1.1 A syntax for the π-calculus. 69
3.4.1.2 A structural congruence for the π-calculus. 71
3.4.1.3 Reduction semantics for the π-calculus. 72
3.4.1.4 Combining the expressive power of calculi. 74

CONTENTS vii

3.4.1.5 A foundation for Web Service Description Languages. 75
3.5 A Comparison to Established Logics . 78

3.5.1 A syntax for Linear Logic. 79
3.5.2 Linear negation v.s. classical and intuitionistic negation 80
3.5.3 Structural rules of Linear Logic. 81
3.5.4 Multiplicative Linear Logic. 81
3.5.5 Multiplicative Additive Linear Logic. 84
3.5.6 The exponentials of Linear Logic. 86

3.6 Conclusion on the Deductive System . 87

4 Algebra for Read–Write Linked Data 89
4.1 Motivating Examples for the Algebra . 89

4.1.1 Normal forms for processes . 90
4.1.2 A disjunctive and a conjunctive normal form 91

4.2 A Labelled Transition System for the π-calculus. 93
4.2.1 Bisimulations for the π-calculus. 95

4.3 A Labelled Transition System for a Sub-Calculus 97
4.3.1 The sub-calculus considered . 97
4.3.2 The purpose of labels . 98
4.3.3 Labelled transitions for queries . 99
4.3.4 Labelled transitions for an RDF store 100
4.3.5 The operational power of the labelled transition system 102

4.4 Equivalences for the Syndication Calculus . 107
4.4.1 Bisimulation and its congruence property 107
4.4.2 Contextual Equivalence and soundness 111

4.5 A Sound Algebra for Queries . 112
4.5.1 The structural congruence for processes 112
4.5.2 The semiring of queries . 117
4.5.3 The select quantifiers as colimits . 120
4.5.4 The algebra of iteration . 123
4.5.5 Embeddings of Boolean Algebras . 129
4.5.6 The algebra for continuations . 130
4.5.7 Examples of optimisations . 132

4.6 Towards Full Completeness . 132
4.6.1 Weak completeness results . 133
4.6.2 Simulation as a coinductive refinement 135
4.6.3 Some algebraic properties of simulation 137
4.6.4 Weak cut elimination results . 140

4.7 Conclusions on the Algebra . 141

5 Type Systems for Read–Write Linked Data 143
5.1 Motivating Examples for the Type System . 143

5.1.1 Basic XML Schema Data Types . 144
5.1.2 RDFS top level classes as types . 146
5.1.3 RDF classes as types . 148

5.2 An Introduction to Type Systems . 149
5.2.1 An established type system . 150

viii CONTENTS

5.2.2 Structural operational semantics . 152
5.3 Light Types for URIs and Literals . 152

5.3.1 A Standardised Type System for Literals 153
5.3.2 Light Propositional Types for RDF . 154

5.3.2.1 The syntax of propositional types. 155
5.3.2.2 A subtype system based on RDFS. 157
5.3.2.3 Cut Elimination for the Subtype System. 158
5.3.2.4 Interoperability of Subtype Systems. 161

5.3.3 A compromise between light typing and no typing 161
5.3.3.1 Common misunderstandings about types. 163

5.4 The Typed Syndication Calculus . 163
5.4.1 Type Rules for Linked Data and Updates 164

5.4.1.1 Type Environments for names and literals. 164
5.4.1.2 Axioms, weakening, subsumption and literals. 165
5.4.1.3 Type rules for triples and simple RDF content. 165
5.4.1.4 Type rules for blank nodes. 166
5.4.1.5 Type rules for named graphs. 167
5.4.1.6 Type rules for updates and queries. 167
5.4.1.7 Type rules for select quantifiers. 168
5.4.1.8 Type rules for literals in filters and selects. 168
5.4.1.9 Type rules for tensor, choice and iteration. 169

5.4.2 Algorithmic Typing for the Calculus 169
5.5 The Typed Operational Semantics . 172

5.5.1 The Structural Congruence for Typed Linked Data 173
5.5.2 Typed Atomic Commitments . 174

5.5.2.1 Type safe commitments. 175
5.5.2.2 The dynamically typed select quantifier. 176
5.5.2.3 The tensor product of commitments with non-empty context. 176
5.5.2.4 Dynamic type checks for selected literals. 177
5.5.2.5 Typed Commitments involving Choice. 177
5.5.2.6 Iterated updates and dynamic types. 178
5.5.2.7 Commitments for typed blank nodes. 178

5.5.3 Type Preservation for Commitments 178
5.5.3.1 Monotonicity of contexts. 181
5.5.3.2 Recovering the untyped calculus. 181

5.6 Type Inference Algorithms . 182
5.7 Conclusions on the Type System . 183

6 Conclusions 185
6.1 Evaluation of the Model as Justification for Standards 185
6.2 Useful Tools Enabled by the Model . 187
6.3 Evaluation of the Model as a Process Calculus 189
6.4 Final Remarks . 190

Bibliography 191

Nomenclature

⊗ or JOIN The tensor product or the join keyword

⊕ or CHOOSE The additive disjunction, external choice or the choose keyword∨
or SELECT The additive existential quantification or the select keyword∧
or LOCAL The additive universal quantification or the blank node quantifier

∗ or DO Iteration or the do keyword

M or , The multiplicative disjunction or parallel composition

⊥ or NOTHING The multiplicative zero or the empty process

I ⊕ U or OPTIONALU The optional keyword and its encoding
(.)⊥ or DELETE Linear negation or delete
(.) or INSERT Insert

FILTER Explicit embedding of Boolean algebras

I or true The multiplicative unit or the Boolean value true

0 or false The additive zero or the Boolean value false

∧ or && Classical conjunction

∨ or || Classical disjunction

¬ or ! Classical negation

Ga The named graph modality

p The predicate type constructor

> The resource type

∪ The union type constructor

The container type constructor

� The satisfiability relation for Boolean algebras

� The atomic commitment relation
l I The labelled transition

≡ Structural congruence

∼ Bisimilarity

' Contextual equivalence

` The typing relation

 The algorithmic typing relation

≤ The subtype relation and the refinement relation

� Simulation

v The preorder over names

ix

x NOMENCLATURE

Acknowledgements

I have been lucky to discuss ideas with many stimulating people. I have tried to accommodate the

perspectives of as many of these people as possible. I would like to acknowledge the following

people in particular.

Thanks to Vladimiro Sassone for his supervision and broad perspectives. His direction has

helped me focus on research that matters. Thanks to the examiners of this thesis, Alessio

Guglielmi and Corina Cı̂rstea, for challenging my basic assumptions.

Thanks to John Colley for discussions on a tolerant philosophy for computer scientists. Thanks

to Hugh Glaser for introducing me to Linked Data and steering me clear of ontologies. Thanks

to all other members of the Dependable Systems and Software Engineering group for some

memorable years.

xi

In loving memory of Claire Horne.

xiii

Chapter 1

Introduction

The real goals of this work are human: to mediate between people who do not usually collabo-

rate. To set the tone for this challenge, three themes are discussed. The first theme is the motiva-

tional issue of the broad setting of this work. Clarifying the setting emphasises the pressing need

for the investigation which is embarked upon. The second theme deals with expectation. The

balanced nature of this work means that a completely fulfilling subjective or objective truth will

not be achieved, since such goals are fundamentally at odds with each other. The third theme

deals with misunderstandings due to language. Language problems occur when similar words

are used by different people in different contexts, and are exasperated when both people claim

expertise. Thus the form of the subsequent chapters should be less of a surprise.

1.1 Architectures for Every-day Applications

This work was first inspired by some recent advances which are now evident in most daily lives.

The advances were enabled by the adoption of a Model-View-Controller architecture for Web

applications.

The View in this architectural style provides the user interface for an application. The key

advance to enable the View was Ajax, which allows messages to be passed asynchronously

between the client and the server [52]. This simple extension demonstrated that most every-day

user interfaces could be ported to the Web.

The Model in the Model-View-Controller architecture consists of some semi-structured data

which represents the content of an application. The data is delivered by a protocol, which allows

the content to be read and sometimes updated. The Model uses a standardised format, so that

content can be shared across multiple applications. In this architecture, the Model and the View

are independent.

1

2 Chapter 1 Introduction

The Controller is a program which implements an application by coordinating the Model and

the View to fulfil the requirements of the application. The Model-View-Controller architecture

has been widely adopted in industry with minimal input from computer science.

In computer science, exactly one generation has passed. Consider just two great figures from

the first generation: John Backus (1924–2007) and Peter Landin (1930–2009). Each introduced

a corner stone of computer science. The insight of Backus was to adapt the approach of Chom-

sky, from the syntax of natural languages to the syntax of programming languages [10]. The

insight of Landin was adapt approach of Church, from the foundations of mathematics to the

foundations of programming languages [86].

The maturity of these established approaches to programming languages is evident in the mod-

ern tools. When a grammar is specified, as would be done on a piece of paper, the parser is

generated. Similarly, an accurate specification of a transformation matches the corresponding

functional program, which then works. These tools are extremely effective only because they

are based on elegant well understood models.

Recent advances such as the Model-View-Controller architecture present fresh problems, which

challenge traditional models of computing. The recent advances in the decoupling of the View

from the Model, along with with advances in commodity portable hardware, demonstrate that

isolated desktop computing was an era of little more than a couple of decades.

Concurrency was of course a problem in desktop computing, where it is was sufficient to treat

concurrent processes by interleaving sequences of their actions. However, the problems of con-

currency are now more subtle. Applications can now be delivered by distributed server farms.

Each server farm consists of many machines. Each machine has many processors. This set up

does not fit the old interleaving model of concurrency. The interleaving model relies on there

being one place where one observer witnesses everything happening sequentially. Where would

an observer stand in the set up of modern computing?

It is clear that an understanding of true concurrency is required. For readers who claim that true

concurrency is understood, they are invited to demonstrate tools that match the parser generator

or functional programming compiler exemplified above. The absence of these tools is the first

indication of the gap to fill.

1.2 Eternal Human Challenges

There are still people saying that in order to make computer science one essentially

needs a soldering iron.

Jean-Yves Girard 1987 [55]

The gap to fill in modern computing is partly human. For each of the advances highlighted in the

Model-View-Controller architecture there is the human problem of agreeing standards, which is

Chapter 1 Introduction 3

a human process with no definitive answers. There are however more basic human challenges

in computer science itself.

It appears that there are two polarised views on the role of computer science when on the Web.

This first says that the Web is ‘practical’ and should be tackled by the metaphorical soldering

iron. The second says that the Web is abound with buzz and void of substantial ‘theory’, evoking

again the metaphorical soldering iron as the most sophisticated tool. Should a reader approach

this work wondering whether this is ‘theoretical’ or ‘practical’ work, then the answer is to ask

a better question. Each terms suggests a disregard of the subjective truth or objective truth,

respectively.

Subjective truth is based on sense experiences of what someone perceives to be reality. Objec-

tive truth is based on what someone perceives to be an aesthetic model. In this work we appeal

philosophically to both subjective and objective truths, preferring neither. Philosophy is as old

as the written word and inseparable from science; thereby we benefit from the maturity of thou-

sands of years of human thinking. Indeed the interplay between subjective and objective truth

are is characterised by the Aristotelian and Platonic views respectively. Thus such notions are

at the foundation of Western science. Famous counterpoints of the past remain relevant to the

problems of today.

1.2.1 Towards an objective model of a subjective problem

The development of a model can be simultaneously approached from two directions. The first

direction is to take subjective observations and attempt to construct an objective model which

captures the subjective observation. The other approach is to take an objective model and at-

tempt to fit subjective observations to the model. Both approaches are rarely conclusive, thus

modelling problems combine both approaches.

In this work we begin with the subject. The initial subject matter encompasses all Web standards

which aim to contribute to a Web of Data. The initial question is what standards, and what

aspects of the standards, are “in use.” A lot of features of standards are either rarely used, are

of secondary value so used in only a few applications, or are unfit for their intended purposes.

A lot of features can therefore be immediately ignored. However this approach depends mainly

on the opinions of people, which are based on their personal experiences.

Having subjectively selected key standards and features, the next thing is construct an ad-hoc

model of the standards. Each standard is relatively easy to model in isolation but the models

are often most easily expressed using different modelling frameworks. This results in several

informally connected models. A framework must be found in which the standards which work

directly together can be expressed. Some features socialise as intended while others do not.

Thus further features of standards can be constrained or entirely ignored. This attaches a weak

objective justification to design decisions.

4 Chapter 1 Introduction

A model exposes glimpses of the objective nature of standards. Parts of logical systems with

familiar rules appear, where they were not expected. But if a full shift is made to any such

objective model, then the subject matter is immediately blurred. Some features are lost and

some new features appear which would be too surprising to present subjectively. Thus a full

objective truth, or aesthetic external reality, is never expected to be discovered.

It is difficult to reject outright the existence of an objective truth, even if it cannot be found in

any conclusive sense. The objective truth is always there as a tantalising guide. Perhaps the

most promising glimpses that are exposed by this work are in algebraic properties, since similar

algebraic properties have arisen in searches for objective models of nature, through physics and

linguistics.

But the models presented stop short of exploiting these potential tantalising links. Instead the

focus is returned to the subject matter where opinions still dominate. But this will never change

as even Poincaré experienced when he stepped out of his objective reality to consider a subjective

source.

But it is to the opposite side — the side of nature — against which we must direct

the main corps of our army. There we meet the physicist or the engineer who says

to us: “Can you integrate for me such a differential equation? I must have it within

eight days because of a certain construction which must be finished by that time.”

“That equation,” we reply, “is not of an integrable type; you know there are many

like it.” “Yes, I know that; but of what use are you then?”

Henri Poincaré (1908) [113]

If even Poincaré experienced hostility to crossing between the object and the subject, then what

hope does anyone else have of easing tensions? Perhaps this explains why polarised communi-

ties that rarely reach out to each other exist. Any attempt in either direction, to match a subject

with an object, or vice versa, tends to dilute one aspect and falls short of expectations. But such

human challenges should not halt all communication between communities. Surely the most

interesting problems lie where opinions clash.

1.3 The Language Game

I shall also call the whole, consisting of language and the activities into which it is

woven, a “language game.”

L. Wittgenstein 1945 [133]

Language itself presents significant challenges. This is not only a reference to programming lan-

guages, but also to the natural language in which computer scientists communicate. Challenges

Chapter 1 Introduction 5

posed by language are tackled in this work by considering the work of communities whose mu-

tual interests are clouded by misunderstandings. Closed communities tend to establish their own

language to refer to the concepts they experience.

This work is particularly concerned with Web standards. A standard is not a physical product.

It is a document which proposes a standard language to tackle a problem. The language in a

standard is created by a community of people with different perspectives on the problem. There

is rarely a canonical answer to what the language of a specification should be, so there always

remains scope for misunderstandings in the language used.

1.3.1 Types are not types

A significant misunderstanding in the standards concerns the word ‘type.’ The origin of the prob-

lem appears to be in an early version of a Web standard originating from research at Nokia [87].

In this first standardised version of the Resource Description Framework, the type predicate is

used to connect a resource to a class. A resource is anything being described; while the class is

part of the description of that resource. The original document does not venture much further in

defining a type in this context.

The idea of a resource being typed corresponds to many established ideas. Historically, types

were introduced to avoid paradoxes in the foundation of mathematics. A mathematical entity

cannot just exist in the universe. The universe is too large to discuss. However, given a world

with boundaries it becomes more reasonable to discuss the existence of an entity. A world in

which an entity exists is a type for the entity.

None of the potential models for types are suggested in the specification of RDF. The result is

that different communities have interpreted types in different ways. The slogan which cannot

be emphasised enough is the following irreflexive statement: types in RDF are not necessarily

types.

1.3.2 Semantics are not semantics

Another killer misunderstanding in the community embroils the word semantics. Misunder-

standings surrounding the word semantics are much more severe than those surrounding types.

With types there are different models for different scenarios. For some models of types, sets of

all entities of a given type can be constructed. For other models types are treated algebraically.

However, the idea behind types of controlling the world in which an entity exists is consistent.

In contrast, there is no consistent theme to semantics.

Misunderstandings surrounding the word semantics are so severe that the key project has changed

its name from the Semantic Web. The Semantic Web project was introduced in an article which

enthusiastically describes a future where data is available on the Web [24]. Machines would

6 Chapter 1 Introduction

know the meaning of data, so would use the data to perform basic tasks making our daily lives

easier! The semantics were the meaning of the data which machines would understand.

The Semantic Web project attempted to fix one notion of semantics into which everything can

be interpreted. However, even for long established languages, a definitive semantics cannot

be fixed. There is a vast volume and diversity of research behind the semantics of languages.

Nowhere has a unified framework for semantics ever been established.

The Semantic Web project was revisited several years later by which time the initial proposal was

clearly experiencing difficulties [128]. The difficulties experienced included issues associated

with the interpretation of semantics. The notion of semantics adopted was that of an ontology,

where even the word ontology was not used in its traditional philosophical sense. This resulted

in an emphasis in producing ‘deep ontologies’ which enforce heavy constraints on structures.

The project review suggested that ‘shallow ontologies’ should be used to achieve the intended

levels of scalability. This is the first step towards a shift in emphasis from semantics to data.

This change of emphasis was clarified by a sensible change in the name of the project. The

project is currently referred to as the Web of Data or the Web of Linked Data to emphasis the

rôle of URIs for establishing links [28].

By using the word ‘data’ the misunderstandings associated with the word ‘semantics’ are avoided.

The following irreflexive statement sums up the issue that the original notion of semantics ex-

cludes clearer notions of semantics: semantics in the Semantic Web are not necessarily seman-

tics.

1.3.3 Syntax is syntax

Profound and unavoidable misunderstandings arise in the syntax of any language used to notate

the subject matter. To effectively discuss a model at some point a syntax must be introduced. A

syntax may be chosen to highlight some aspect of the framework. One syntax may emphasise

communication and another may emphasise data.

A syntax may also be chosen to ease the understanding of an idea for a particular community.

The language of the foundations of mathematics is quite different from the language of compiler

design. However there is a vast overlap between the subject areas. A compiler writer may

prefer an ASCII syntax that can be entered into a text editor with recognisable key words. The

mathematician may prefer a concise syntax that can be easily manipulated on a sheet of paper

with recognisable symbols. A programmer may prefer a sugared syntax which encodes common

tasks in a familiar style. No single syntax presents a universal solution. However all syntaxes

which play a role in some activity are valid, hence the following statement is reflexive: a choice

of syntax is just a choice of syntax.

The variations in syntax for different emphasis and different communities was highlighted in the

later work of Wittgenstein. First Wittgenstein rejected the idea that there is an external semantics

Chapter 1 Introduction 7

associated with language. Instead he emphasises the importance of the language game. The

meaning of language is not fixed; it varies with the activity in which the language is used.

Data on the Web can engage in a wide range of activities at different levels of abstraction. Thus

a single language cannot be found to communicate all activities. Despite this Web standards

attempt to fix a language for global activities. Ultimately standards will always be succeeded

by new standards, as activities evolve. For machines however something has to be fixed for the

data to be understood, so agreeing standards for data exchange is not futile. Furthermore, to be

understood by one community a choice of syntax may be made; while, to convey the intention

of a standard to another community a different syntax may be chosen.

1.4 Tensions to be Expected

This work endeavours to play the language games of a number of communities. Each of these

communities have a significant rôle in the development of mechanisms for the Web of Data.

One community is addressed in Chapter 2; another community is addressed in Chapter 3. Both

of these chapters are primarily concerned with subjective issues which are illustrated through

examples. A weak objective justification is provided by demonstrating the existence of a concise

operational semantics. Chapters 4 and Chapter 5 make steps towards a stronger objective justi-

fication for the standards, by investigating the strength of their correspondence with algebra and

type systems respectively. The algebra and type systems retain a strong subjective interpretation,

or purpose, in the application domain.

Chapter 2

Read–Write Linked Data Standards

This section begins by providing an overview of key ideas behind Linked Data. It provides a

discussion of the semi-structured data format, query language and reasoning mechanisms which

have been standardised by the W3C. The discussion makes use of examples in the most prevalent

syntaxes for these standards, so should be easily understood by users of these standards. The

discussion justifies why the standards have been chosen, whilst highlighting issues with design

decisions.

The first formal rules are introduced to describe an update language for Linked Data. Such an

update language is a requirement for enabling Read-Write Linked Data, as heralded by Tim

Berners-Lee. The update language is defined using a ASCII syntax with curly brackets, so

that it is similar to the syntax of common engineering languages. The language is then defined

using simple logical rules, explained using clear simple examples. The rules of the language

are presented without any meta-syntax or theory; only the concise syntax of the language and

English are used. The point made is that there is nothing complicated or obscure about this

work.

2.1 The Setting of Key Web Standards

There is an architecture in which a few existing or Web protocols are gathered to-

gether with some glue to make a world wide system in which applications (desktop

or Web Application) can work on top of a layer of commodity read-write storage.

The result is that storage becomes a commodity, independent of the application

running on it.

Tim Berners-Lee 2010 [22]

The model presented is a contribution to understanding the principles of the architecture of

modern Web applications, which has changed significantly due to recent developments in in-

frastructure. Web applications can now deliver user interfaces comparable to many traditional

9

10 Chapter 2 Read–Write Linked Data Standards

applications. Consequently, mainstream application engineering and Web application engineer-

ing are increasingly interlinked. User interface concerns can be isolated in the View of an

application. The problem of moving a View onto the Web was solved by presenting the View

using Web standards. Web standards are a product of transparent negotiations between industry

and standards bodies.

The View is one component in the Model-View-Controller architecture, which is widely adopted

for application development. Another component, the Model, provides data which forms the

subject of the application. The Controller coordinates interactions with the Model to achieve

some objective. Having successfully moved the View onto the Web, standards bodies are tack-

ling the problem of moving the Model onto the Web. The common motive for data standards is

that moving the Model onto the Web allows common subject matter to be shared between appli-

cations. Evidence of the potential of sharing data on the Web is the ubiquity of feeds, e.g., RSS

and Atom [125]. Feeds are now a primary technology used to deliver data on demand between

news sources and consumers.

Making data available on the Web gives the potential for data to link across traditional bound-

aries. This is enabled by using the URI as a standardised naming system for identifiers in data.

By naming the identifier of a resource with a URI the resource can be referred to from any other

location. Efforts to exploit these links between data sources have resulted in several proposed

standards. The common aim of proposed standards is often referred to as establishing a Web

of Data [27]. Data which exploits the link structure of the Web is distinguished by the term

Linked Data [21]. The Linked Data initiative is supported by W3C recommendations and work-

ing drafts, which reflect a consensus on the aims of the initiative [78, 33, 115]. This work draws

from key standards for Linked Data and presents an executable model in which the standards

coexist.

At a low level, Linked Data is delivered as messages in a semi-structured data format. The

Resource Description Format (RDF) is the leading standardised semi-structured data format

for Linked Data [78]. At this level, an HTTP request to a URI produces some RDF which

describes the resource represented by the URI. No requirements are enforced on how the RDF

is produced or what is done with the RDF. Message passing on channels is modelled by many

process calculi [98, 31, 1, 37].

At a higher level, Linked Data can be gathered in stores which are accessed using queries.

A store responds to queries as prescribed by the SPARQL Query standard [126]. Rich data

sources are now published as stores, notably the UK Government Data and DBpedia [28, 80].

These examples gather data, from UK Government Databases and Wikipedia respectively, then

prepare the data for queries. No requirements are placed on the method of preparation. SPARQL

Query has been modelled as a graph query language and using relational algebra [110, 43].

The executable model presented here is tailored to problems introduced by an update mech-

anism. Challenges associated with updates are highlighted by Tim Berners-Lee in a note on

Read-Write Linked Data. Updates are considered at several levels of granularity. At a coarse

Chapter 2 Read–Write Linked Data Standards 11

granularity of update the contents of a store are replaced periodically. Periodic updates are ad-

equate when data changes infrequently. An intermediate granularity is achieved by dividing a

store into regions, where each region is updated independently. This idea is captured by named

graphs for RDF [38]. A protocol for updating named graphs is under development [105]. Feeds

and standardised protocols for feeds also work at a similar level of granularity [104, 59].

The primary challenge is to model fine grained updates at the level of triples. Triples are the basic

components of RDF which resemble simple sentences in natural language of the form subject–

verb–object. Fine grained updates account for exactly the triples required to perform an update.

Updates which use disjoint triples may occur concurrently. By using minimal resources, an

update causes minimal interruption to a store. This approach avoids regions, which are difficult

to design when the long term behaviour cannot be predicted. Fine grained updates are known

to present conceptual difficulties, as highlighted by Reynolds in the traditional setting of shared

memory [118]. The model is a contribution to the understanding of fined grained updates for

Linked Data.

Implementing Read-Write Linked Data is necessary for using Linked Data in modern applica-

tions. For instance, in wikis or social media users increasingly write data. In contrast, existing

Linked Data applications tend to be limited to reading data. Furthermore, without an update

mechanism for the Model, the Model and the Controller in the modern application architecture

cannot be decoupled. A Controller instead requires lower level access to the Model to perform

updates. This work therefore supports efforts towards a standardised approach to Read–Write

Linked Data [53].

2.2 The Suite of W3C Standards

The W3C has introduced many standards to address a range of applications which are delivered

over the Web. The standards introduced here are particularly relevant for Linked Data. This

section presents examples in the standard formats for the semi-structured data format RDF, the

RDFS vocabulary description language, the SPARQL Query language and the OWL ontology

description language.

There are many design issues associated with the W3C standards. None of the standards claim

to be canonical. Some of the features of the standards are widely accepted to be a good idea

and are widely adopted. Some features have technical issues which gives rise to conflicting

interpretations and small deviations from the published recommendations. Some features have

barely been adopted and rarely appear in implementations. The main purpose of this section is

to highlight which features of the languages are core, which features are secondary and which

features remain controversial.

Note that the following namespaces abbreviate URIs for readability. person: eprint: soton:

rdf: rdfs: owl: foaf: dc: dc11: xsd: res: postcode: vcard: eg: .

http://eprints.ecs.soton.ac.uk/id/person/ext-
http://eprints.ecs.soton.ac.uk/id/eprint/
http://id.ecs.soton.ac.uk/person/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://xmlns.com/foaf/0.1/
http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/
http://www.w3.org/2001/XMLSchema
http://dbpedia.org/resource/
http://data.ordnancesurvey.co.uk/id/postcodeunit/
http://www.w3.org/2001/vcard-rdf/3.0
http://example.org/

12 Chapter 2 Read–Write Linked Data Standards

Most examples in this section are in the Turtle syntax for RDF [16]. The Turtle syntax is a simple

format for RDF triple which is designed to be clearly readable. Turtle is the prevalant syntax

for RDF, rather than the standardised XML syntax for RDF which has fallen out of favour. The

XML syntax is difficult to read and has no XML Schema, which means that few of the benefits

of using XML can be exploited.

2.2.1 Overview of the Resource Description Framework

The Web of Linked Data is concerned with resources identified by URIs. The relationship

between URIs are indicated using RDF, a standardised loosely structured data format. RDF

extends the traditional links of the Web, which can be seen as pairs of URIs, to triples of URIs.

Such triples of URIs consist of a subject, predicate and object, where the predicate indicates

how the subject and object are related. Triples are built from URIs, literals and blank nodes.

The following RDF triple indicates that one person knows another person. The people are

identified by URIs. The predicate which relates the two people is indicated by a URI from a

common metadata vocabulary. This example is expressed in the Turtle format for RDF [16],

triples are terminated by full stops.

person:9724 foaf:knows person:10511 .

Further to indicating relationships between URIs, triples can also represent relations between

URIs and literals. The object of a triple can be a literal. A literal is some basic data, such as a

string of characters or a date. In most RDF formats the type of the literal is indicated along with

its representation as a string. The following example indicates the date of birth of the subject,

where the predicate is drawn from the popular Friend of a Friend (FOAF) vocabulary. The type

of the literal is indicated to distinguish the date from a plain string. The range of types for literals

is borrowed from the XML Schema Datatypes standard [25].

person:10511 foaf:birthday "1983-06-05"ˆˆxsd:date .

To allow further structure to be encoded in RDF, triples may include blank nodes. Blank nodes

are identifiers which are not URIs, but can be used in place of URIs. A blank node is indicated

by the prefix : followed by an identifier. A blank node can appear as the subject or the object

of a triple. Although, to simplify definitions, this work allows blank nodes to also to appear as a

predicate. For instance, the following example represents an address using a blank node.

person:10511 eg:address :a .

:a eg:city res:Southampton .

:a eg:postcode postcode:SO171BJ .

http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://xmlns.com/foaf/0.1/knows
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://xmlns.com/foaf/0.1/birthday
http://www.w3.org/2001/XMLSchema#date
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://example.org/address
http://example.org/city
http://dbpedia.org/resource/Southampton
http://example.org/postcode
http://data.ordnancesurvey.co.uk/id/postcodeunit/SO171BJ

Chapter 2 Read–Write Linked Data Standards 13

The main difference between a URI and a blank node is that the URI is global whereas the blank

node is local. If the same blank node appears in two different datasets, then the two blank nodes

are different. Thus one dataset cannot refer directly to blank nodes in another dataset. Blank

nodes can be renamed without changing their meaning, which allows datasets to be merged

without clashes of blank nodes.

2.2.1.1 Problematic features of RDF.

A controversial feature is reification. Reification allows triples to be described using triples. For

instance, the first example in this section can be reified as follows.

:triple1 rdf:type rdf:Statement .

:triple1 rdf:subject person:9724 .

:triple1 rdf:predicate foaf:knows .

:triple1 rdf:object person:10511 .

Reification introduces a URI for a triple, which allows the triple itself to be described using

RDF. This can be useful for assigning properties to triples describing their provenance, or access

policy. Reification is however confusing as the triples and the reified triples must be considered

separately, adding conceptual difficulty. Reification has been superseded by named graphs which

provided named locations for triples, so provenance information and access policies can still be

discussed collectively at a coarser more manageable level of granularity [38]. Named graphs are

discussed in Sec. 3.3.

The RDF standard introduces a number of data structures for organising resources. In particular

list and three types of containers are introduced — bags for unordered collections, sequences

for ordered collection and alternatives for collection of resources where only one resource can

be chosen. For instance, the following is a representation of a list of two resources in RDF.

:a rdf:type rdf:List .

:a rdf:first person:10511 .

:a rdf:rest :b .

:b rdf:type rdf:List .

:b rdf:first person:9724 .

:b rdf:rest rdf:nil .

Unfortunately RDF lists are not really lists. There can be multiple heads, tails, cycles and

incomplete information, which are forbidden in conventional lists. Furthermore, the type rdf:List

does not support polymorphism. It is conventional in typed list processing languages to have

polymorphic lists, where the parameter indicates the type of data to be found in the list. Similar

issues apply to containers.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://xmlns.com/foaf/0.1/knows
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

14 Chapter 2 Read–Write Linked Data Standards

Steps have been taken to tackle this problem in N3 Logic [23], where constraints are imposed

on the structure of lists, using first order logic. Also, lists are primitive in the Turtle RDF

format [16], which offers a more conventional solution. It is not clear that lists and containers are

widely adopted, except in technical encodings. For many scenarios where containers might be

used named graphs can be used. Named graphs introduce clear explicit primitives for organising

triples [38].

2.2.2 RDF types and schema

A key feature of the core vocabulary of RDF is the predicate rdf:type . The meaning of rdf:type

is elaborated by the RDF Schema (RDFS) standard [33]. RDFS introduces extra vocabulary

for describing the relationships between classes and predicates along with inference rules. The

roles of RDF Schema and XML Schema should not be confused. XML Schema is clearly a type

system for XML thus constrains the shape of XML data [35]; whereas RDF Schema is used to

infer new information.

2.2.2.1 The vocabulary for classes.

Classes are URIs which can be used as the object of the predicate rdf:type . Classes are guides

for how a URI is intended to be used. Since URIs have no internal structure, RDFS classes

are unlike conventional types for data such as XML Schema datatypes [25]. The triple below

indicates that the subject is an instance of a the class foaf:Person .

person:10511 rdf:type foaf:Person .

Classes are just URIs which means that triples can be used to describe classes. Thus a class can

be described using triples, just like any other resource. The triples associated with a class can

guide how the predicate is used, as follows.

foaf:Person rdfs:comment "The class of people." .

Classes can be structured using the rdfs:subClassOf predicate. The relation indicates that any

instance of the first class is an instance of the second class. For instance, in the FOAF vocabulary

foaf:Person the class of people, while in the Dublin Core vocabulary dc:Agent is the class

of “things that can act.” The Dublin Core vocabulary provides a description, “Examples of

Agent include person, organization, and software agent.” So the following sub-class relationship

between the two vocabularies can be assumed.

foaf:Person rdfs:subClassOf dc:Agent .

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/Person
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://xmlns.com/foaf/0.1/Person
http://purl.org/dc/terms/Agent
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://purl.org/dc/terms/Agent

Chapter 2 Read–Write Linked Data Standards 15

The sub-class relation is a preorder: it is transitive and reflexive. The specification does not

determine whether the relation is irreflexive (a ≤ b and b ≤ a yields a = b), since no ex-

plicit equality predicate for classes is provided in the RDFS specification. For instance, do the

following triples mean that the classes foaf:Person and dbp:Person are equal?

foaf:Person rdfs:subClassOf dbp:Person .

dbp:Human rdfs:subClassOf foaf:Person .

The answer to this question depends on the application and choice of model for RDFS.

2.2.2.2 The vocabulary for predicates.

The RDFS standard provides vocabulary to describe URIs which are used as predicates. Infer-

ence rules specify how the vocabulary for predicates are interpreted. Two features are enabled.

Firstly, predicates can be ordered using the rdfs:subPropertyOf predicate. The ordering of

predicates is important for interoperability of vocabularies. Secondly, rules are provided to in-

dicate the domain and range of a property. The domain and range of a predicate are intended to

infer incomplete type information.

The sub-property predicate is similar to the sub-class predicate. It states that the subject of the

predicate is stronger than the object of the predicate. For instance, the following triple indicates

that the predicate eg:colleague is stronger than the predicate foaf:knows .

eg:collegue rdfs:subPropertyOf foaf:knows .

So, suppose that eg:colleague appears in a triple, as follows.

person:10511 eg:colleague person:9724 .

Then the sub-property triple can be used to infer that the following triple holds. Which is weaker

than the triple above.

person:10511 foaf:knows person:9724 .

The sub-property predicate defines is a preorder over URIs, since it is reflexive and transitive.

As with the sub-class predicate, the sub-property predicate does not necessarily form a partial

order. This relation will be explicitly formalised as a preorder in this work. Sub-properties are

useful for structuring predicates in vocabularies, and are particularly useful for the integration

of vocabularies which use different URIs for similar purposes.

The domain and range of a predicate can be indicated using rdfs:domain and rdfs:range . The

rdfs:domain predicate indicates the class of URIs which may appear as the subject of a predicate

in a triple. Similarly, the rdfs:range predicate indicates the class of URIs which can be used

as an object. The range can also indicate a datatype when a literal is used as the subject of a

predicate. For instance, the triples below indicates that foaf:knows is predicate which relates

http://xmlns.com/foaf/0.1/Person
http://dbpedia.org/ontology/Person
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Human
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://example.org/colleague
http://xmlns.com/foaf/0.1/knows
http://example.org/collegue
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://xmlns.com/foaf/0.1/knows
http://example.org/colleague
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://example.org/colleague
http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://xmlns.com/foaf/0.1/knows
http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://xmlns.com/foaf/0.1/knows

16 Chapter 2 Read–Write Linked Data Standards

one foaf:Person to another foaf:Person .

foaf:knows rdfs:domain foaf:Person .

foaf:knows rdfs:range foaf:Person .

The standardised inference rules for rdfs:domain and rdfs:range are unconventional. The

rules allow the types of URIs to be inferred when they are used in a triple where the domain or

range of the predicate of the triple is prescribed. For instance, consider the following triple in

the presence of the triples above.

person:10511 foaf:knows person:9724 .

It can be inferred that the following triples hold.

person:10511 rdf:type foaf:Person .

person:9724 rdf:type foaf:Person .

A more conventional type system would work by checking that the domain and the range of the

predicate matches the types of the subject and object. In such a type system the above rules

would be type inference rules, which infer incomplete type information. However such a type

system is completely missing from the specification. In Chapter 5 a candidate type system is

suggested, but mismatches cannot be avoided. Elsewhere in this work the rules for the domain

and range of predicates are ignored. Thus the domain and range predicates are secondary con-

cerns, whereas sub-properties are essential for interoperability of vocabularies.

2.2.2.3 Top level classes.

RDFS introduces several top level classes notably, rdfs:Resource , rdf:Property and rdfs:Class

. Each top level class corresponds to the main roles of a URI or blank node. The class

rdfs:Resource is the very top level class that contains all URIs, thus all URIs are resources. The

classes rdf:Property and rdfs:Class also range over URIs, so are sub-classes of rdfs:Resource

. The class rdf:Property is class of URIs which are used in the predicate position of a triple.

The class of classes, rdfs:Class is the class of URIs which appear as the object of the predicate

rdf:type .

The choice of top level types is controversial. Since rdfs:Class is a class, it is of type class.

Also, rdfs:Resource is a class so is of type class rdfs:Class and rdfs:Class is a sub class

of rdfs:Resource . Hence, rdfs:Resource is of type rdfs:Resource . By interpreting classes as

sets of URIs a ∈ a must hold, but this violates the axiom of foundation in set theory. Therefore

classical model theory can never fully capture RDF Schema. Also in type theory, if the top

element is a type of itself then problems such as the Burali-Forti paradox arise. Such a paradox

was demonstrated, by Girard, to exist in an early formulation of intuitionistic type theory [94],

http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/knows
http://www.w3.org/2000/01/rdf-schema#domain
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/knows
http://www.w3.org/2000/01/rdf-schema#range
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://xmlns.com/foaf/0.1/knows
http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/Person
http://eprints.ecs.soton.ac.uk/id/person/ext-9724
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource

Chapter 2 Read–Write Linked Data Standards 17

which also featured nested levels of types. Thus a model of RDF Schema must take some care

and liberty when the standard rules of RDFS are interpreted.

Conceptual problems with the standard semantics follow from the lack of distinction between

types and terms, which results in an infinite nesting of layers. This is conceptually difficult for

both the user and for models to capture, so is considered to be an oversight. This oversight

originates in early RDFS working drafts which draw analogies between RDFS and classes in

Java. Java classes suffer from similar issues, by mixing concepts conventionally distinguished as

terms, types and classes, which makes the full language immune to formal models and difficult

to clearly conceptualise [75].

2.2.2.4 Three manageable sub-systems of RDFS.

The RDFS standard is not conclusive. It contains some essential ideas, but a few unhelpful

design decisions were made. The problems introduced by the design decisions can be cleaned

up in various contexts. Here three different options for clarifying RDFS, with little loss of

functionality are explained. The first, due to Pan and Horrocks, is to constrain RDF so that it

fits a Tarski-style model theory. The second is to to constrain RDF so that it fits a type system,

as pursued in Chapter 5. The third is to forget all but the essential features and treat RDFS as a

simple preorder over URIs, as described in Chapter 3.

A Tarski style model theory for RDFS can be provided, which provides an interpretation of

features of RDFS in set theory [108]. However, to obtain the model theory the standardised

rules of RDFS must be modified. Pan and Horrocks introduce four layers, one for instances, one

for classes and other for meta-classes and a fourth top ‘meta-meta-class’ containing everything.

Classes are then mapped to sets of instances, and meta-classes are mapped to sets of classes.

Predicates are mapped to pairs of sets of instances. This approach to RDFS works, but the

model theory does not easily extend to models of programming languages which use RDFS,

such as those considered in this work.

Another approach is to provide a type system which agrees with RDFS. A type system requires

the type information, which is indicated by rdf:type , rdfs:domain and rdfs:range , to be

separated from other triples. A type system also means that the top level types must be treated

differently. The advantage of using a type system is that the sub-class relation can be recov-

ered by a subtype system. Also, the domain and range properties can be recovered using type

inference.

The type theoretic approach can be tackled in at least two ways. The more complex but com-

prehensive approach would be to introduce a higher-order type system which allows nesting of

layers of types. Higher-order type systems are excessively complex for this relatively simple

application and cannot be expected to be understood by most users [49]. Another approach is

to use a simple type system. A simple type system provides a more natural explanation for the

concepts in RDFS. Such a simple type system is the basis of Chapter 5.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range

18 Chapter 2 Read–Write Linked Data Standards

A much simpler approach is to first ask some fundamental questions. What features of RDFS

are really required? Is it useful to be able to infer that any URI is of type rdfs:Resource ? Is it

helpful when a user goes to a data set asks for the subjects and objects of the predicate rdf:type

and receives hundreds of results asserting that each URI in the dataset is a resource? Almost

certainly not. Also are the domain and range inferences essential? These inferences appear

to contribute no more than any other ad-hoc choice of inference mechanism to the usability of

Linked Data.

Thus almost all features of RDFS can be ignored. The key features that remain are the sub-class

and sub-property relations. These are essential for integrating datasets which use different URIs

for predicates and classes which are related. Thus all that is left is two relations which are both

preorders over URIs.

The suggestion is that the final ultra light weight approach using preorders over URIs is easy to

understand, easy to work with and is all that is required for many applications. Furthermore, the

simply typed approach and the preorder approach can coexist without much difficulty. Also, the

model theoretic approach can be used when RDFS is used in isolation [107]. Thus a manageable

model for RDFS can be chosen depending on the application.

2.2.3 Deep ontologies

The Web Ontology Language (OWL) is intended as a fundamental technology for the Semantic

Web. The aims of OWL are to provide a rich but tractable ontology for describing relationships

between concepts. Ontologies are often used to place constraints on the shape of data. Ontolo-

gies are useful in complex applications such as medical knowledge bases, where an ontology

can detect inconsistencies between the data and the ontology [116].

There is a large body of work, which has supported the development of ontologies for the Web.

Much of the work is at the convergence of ad-hoc knowledge representation and modal logics,

which has resulted in Description Logics. Description Logics are tractable logics over relations,

which are generally accompanied by Tarski-style model theory [74]. More recently Description

Logics have been provided with a co-algebraic semantics, which is a natural approach to modal

logics [58].

A considerable amount of expertise is required to build a rich ontology [128]. As a result, De-

scription Logics have not played such a prominent role in the more recent Linked Data move-

ment, which aims to produce tools for Web developers rather than scientists. Instead a few

features of Description Logics which are easy to understand have been applied intuitively.

The most prevalent feature of OWL used by the Linked Data community is the owl:sameAs

predicate [45, 57]. The owl:sameAs predicate is used to indicate that two URIs represent the

same resources. However, subtleties mean that owl:sameAs is often not used according to

the OWL specification. Investigations into the use of owl:sameAs in published datasets have

http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs

Chapter 2 Read–Write Linked Data Standards 19

concluded that owl:sameAs is not necessarily a transitive, symmetric relation which holds in

all contexts [65].

Consider an example where the symmetry of owl:sameAs is brought into question. This sub-

tlety can be seen by considering two URIs related by owl:sameAs . The triple below indicates

that the URI person:10511 is the same as the URI soton:10511 .

soton:10511 owl:sameAs person:10511 .

Now suppose that also the following two triples hold.

eprint:21769 dc:author person:10511 .

soton:10511 foaf:knows res:Hosni Mubarak .

It is reasonable to assume that a further triple, below, can be inferred.

eprint:21769 dc:author soton:10511 .

This inference follows under the assumption that all triples which refer to the object of the

owl:sameAs predicate are also relevant the subject. However, the owner of the triple per-

son:10511 may not want all triples of the information related to soton:10511 (which describes

personal information) to be associated with person:10511 (which describes professional infor-

mation). By assuming that owl:sameAs is not symmetric, this flexibility is permitted.

Consider two examples of asymmetry in practice. Suppose that a redirect, from a source URI

to a target URI, produces an owl:sameAs triple. The redirect endorses the information about

the target resource to be used for the source resource. However, the redirect does not necessar-

ily endorse information about the source resource to be used for the target resource, since the

redirect could be performed from anywhere. A different example context may instead insist that

owl:sameAs is symmetric.

Few examples however would disagree that owl:sameAs is reflexive, since a URI is always

the same as itself. It is also reasonable to assume that owl:sameAs is transitive. For instance,

suppose that the following triple also holds further to the triples above.

person:10511 owl:sameAs soton:10511 .

Then inference can be applied twice to obtain the triple.

eprint:21769 dc:author person:10511 .

Under the assumptions of reflexivity and transitivity owl:sameAs is a preorder over URIs. Notice

that the key features of RDFS are also preorders. So, also treating owl:sameAs as a preorder

simplifies models for Linked Data. The mechanisms for owl:sameAs , rdfs:subProperty and

rdfs:subClass can all be treated simultaneously. For instance, the following triple is often

http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://id.ecs.soton.ac.uk/person/10511
http://id.ecs.soton.ac.uk/person/10511
http://www.w3.org/2002/07/owl#sameAs
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://eprints.ecs.soton.ac.uk/id/eprint/21769
http://purl.org/dc/terms/author
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://id.ecs.soton.ac.uk/person/10511
http://xmlns.com/foaf/0.1/knows
http://dbpedia.org/resource/Hosni_Mubarak
http://eprints.ecs.soton.ac.uk/id/eprint/21769
http://purl.org/dc/terms/author
http://id.ecs.soton.ac.uk/person/10511
http://www.w3.org/2002/07/owl#sameAs
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://id.ecs.soton.ac.uk/person/10511
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/2002/07/owl#sameAs
http://id.ecs.soton.ac.uk/person/10511
http://eprints.ecs.soton.ac.uk/id/eprint/21769
http://purl.org/dc/terms/author
http://eprints.ecs.soton.ac.uk/id/person/ext-10511
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2000/01/rdf-schema#subProperty
http://www.w3.org/2000/01/rdf-schema#subClass

20 Chapter 2 Read–Write Linked Data Standards

considered valid if the two URIs are just URIs, but is not valid in a model where the two URIs

are a classes.

foaf:Agent owl:sameAs dc:Agent .

Both the rich Description Logic approach and the light intuitive Linked Data approach to OWL

are acceptable. This work falls under the lighter Linked Data style approach. This work assumes

that the Description Logic approach is being tackled by the relevant community, and does not

intend to interfere in that process. As such, OWL does not formally feature in this work, but is

acknowledged due to its prominent status in the Semantic Web community.

2.2.4 SPARQL Queries

Perhaps the foremost mechanism for interacting with RDF is SPARQL Query. SPARQL Query

stands for SPARQL Protocol and RDF Query Languages. The query language introduces con-

structs for observing patterns in an RDF store. The protocol describes the HTTP mechanisms

and exchange formats for interacting with an endpoint of RDF store, by sending queries and

receiving results. SPARQL Query is a major focus for this work. It is used as the basis of a high

level language where queries and results can be tightly integrated, which allows the protocol to

be hidden from the programmer. This section provides and overview of the standard syntax of

queries.

SPARQL Query is based on basic patterns. A basic pattern is just some RDF in which variables

may appear in place of URIs and literals. Variables in SPARQL Query are indicated by a ques-

tion mark prefix to distinguish them from URIs. The syntax for basic patterns is in line with the

N3 and Turtle formats for RDF as used in previous sections.

SPARQL Query defines four forms of query. These are ask, select, construct and describe.

The ask, select and construct queries differ only in the format of results which are returned. A

describe query is expected to return some RDF about a URI. Details of the describe queries are

not formally specified, so are dependent on the implementation so ignored in this work. Note

that describe queries are similar to dereferencing, which is an important feature of Linked Data.

So dereferencing is also ignored in this work. This work focusses on ask and select queries.

2.2.4.1 Ask queries.

Ask queries are queries which can be answered by a straight forward yes or no. A yes answer

indicates that a basic pattern can be matched. A no answer indicates that the query has failed to

answer a query. For instance, the following query can be answered in the presence of the given

data.

Data:

eg:Hamish foaf:name "Hamish" .

http://xmlns.com/foaf/0.1/Agent
http://www.w3.org/2002/07/owl#sameAs
http://purl.org/dc/terms/Agent

Chapter 2 Read–Write Linked Data Standards 21

Query:

ASK { ?a foaf:name "Hamish" }

The variable in the query is implicitly existentially quantified. It is asking, “does there exist an

?a such that the basic pattern can be matched?” The existential quantifier will treated explicitly

in this work.

2.2.4.2 Select queries.

Select queries return some results instead of just yes. The results returned are the possible

bindings for selected variables. For instance, the following query explicitly selects two variables

in a basic pattern. The result is two possible bindings for the selected variables.

Data:

eg:Alice foaf:name "Alice" .

eg:Alice foaf:knows eg:Bob .

eg:Bob foaf:knows eg:Alice .

eg:Bob foaf:name "Bob" .

Query:

SELECT ?namex ?namey WHERE {

?x foaf:knows ?y .

?x foaf:name ?namex .

?y foaf:name ?namey .

}

Results:

{?namex -> "Alice", ?namey -> "Bob"}

{?namex -> "Bob", ?namey -> "Alice"}

As with the select query the variables ?x and ?y are implicitly existentially quantified. The vari-

ables ?namex and ?namey are explicitly quantified, as indicated in the first part of the select

query. This is also an form of existential quantification, however the explicitly quantified vari-

ables are used in the query results. The results of the query are the substitutions required to

verify the existential quantification.

In this work, the results of a select query are modelled by immediately passing them as substitu-

tions to some continuation. The continuation represents that program which uses the results. In

this way the results of a query are hidden from the programmer. In the example above the two

possible bindings are generated. The results can be seen as a choice of possible bindings, where

22 Chapter 2 Read–Write Linked Data Standards

the result to be used in a continuation process could be chosen either non-deterministically or

by some external user interaction.

This work also considers an alternative approach to the results returned, which accounts for the

triples used in a query. Accounting for triples reduces repetition in query results, by ensuring

that each result draws from distinct data sources. This approach is also natural for concurrency,

where separate results are used simultaneously in parallel by continuation processes. This al-

ternative (multiplicative) resource sensitive approach to query results is explained throughout

Chapters 3 and 4.

2.2.4.3 Construct queries.

A construct query allows some RDF to be constructed according to a query. This corresponds

to using the results of a select query as a substitution in a basic pattern. The result of the

substitution is then returned as a result.

Data:

eg:Hamish foaf:name "Hamish" .

Query:

CONSTRUCT { ?x vcard:FN ?name }

WHERE { ?x foaf:name ?name }

Result:

eg:Hamish vcard:FN "Hamish" .

Construct and describe queries are be covered implicitly by continuations in this work. A con-

tinuation may be a program which uses the RDF returned, such as another query. Thus, as with

ask and select, the query results are hidden from the user in a high level language.

2.2.4.4 Features for expressive queries.

More expressive queries can be posed using a number of operations on basic patterns. These

include the binary operator UNION, and the unary operators OPTIONAL and FILTER. In this work

the UNION and FILTER operators are primitive, whereas the OPTIONAL operator is an abbrevia-

tion.

The union operator offers a choice between two patterns. Only one of the patterns is used to

produce a result. For instance, the following select query offers a choice between two patterns.

Data:

Chapter 2 Read–Write Linked Data Standards 23

eg:book dc11:title "SPARQL Query Tutorial" .

Query:

SELECT ?title WHERE {

{ ?book dc10:title ?title } UNION { ?book dc11:title ?title }

}

Result:

{?book -> eg:book1, ?title -> "SPARQL Query Tutorial"}

The keyword FILTER is used to embed constraints in a query. A constraint is something like a

regular expression. Constrains are used to constrain literals in a query. For instance the following

query uses a constraint to ensure that the variable is a string of characters in which a particular

sub string appears.

Data:

eg:book dc11:title "SPARQL Query Tutorial" .

Query:

SELECT ?title WHERE {

?x dc:title ?title

FILTER regex(?title, "ˆSPARQL")

}

Result:

{?title -> "SPARQL Query Tutorial"}

In this work strings are modelled by a Boolean algebra embedded in a query. Some constrains

will not be covered, in particular isBlankNode which has few applications and complicates the

model.

2.2.4.5 Extra features of SPARQL Query.

Some further features of SPARQL Query are considered in this work. The keyword DISTINCT

ensures that the results of a query produce distinct bindings. This work considers queries which

use distinct resources and queries which select names only once. The LIMIT keyword sets

the maximum number of results returned by a query. Limits are only useful when the results

are distinct, so provides further motivation for the control of resources employed in this work.

Named graphs are also primitive in SPARQL Query, indicated using the keyword GRAPH. Named

graphs are considered in Chapters 3 and 5.

24 Chapter 2 Read–Write Linked Data Standards

The latest working draft of SPARQL Query includes new features. These include negation-as-

failure, sub-queries and property paths. The model presented in this work is expressive enough

to model negation-as-failure and sub-queries. Property paths can be captured by introducing a

fixed point operator. These features were still under debate at the time of writing, so will not be

discussed further.

2.3 Introduction to SPARQL Update

In October 2010 the first SPARQL Update W3C working draft with an operational semantics

was released [53]. SPARQL Update is a development of an earlier proposal from Hewlett-

Packard Labs [126]. The language is intended as a counterpoint to the SPARQL Query lan-

guage [115], for fine grained updates on an RDF store.

The recommended semantics for SPARQL Query are based on the work of Pérez et al. [110],

which provides a set based denotational semantics for idealised queries. In contrast, the seman-

tics presented here for SPARQL Update are operational in nature. The difference between a

denotational semantics and an operational semantics is that the former builds an external model

(typically using sets), whereas the later is defined directly over the abstract syntax of the lan-

guage.

There are several advantages of operational semantics. An operational semantics works like an

interpreter, so is at an appropriate level for a compiler engineer (the primary target audience).

Operational semantics is also suited to ad-hoc features which appear in real programming lan-

guages, which SPARQL Update intends to be. Furthermore, operational semantics are suited

to specifying the complex long term behaviour of systems, including concurrency as required

by servers. Denotational semantics for both application driven ad-hoc features and long term

behaviour are notoriously difficult [4]. So operational semantics can easily and insightfully be

adapted to SPARQL Query, but denotational semantics do not extend easily to SPARQL Update.

An analogy may help the reader. All readers are familiar with the concept of a regular expression

or use tools which involve regular expressions. For instance, the replace tool in your text editor

is appropriate for every day updates in text documents. SPARQL Update provides the power

of regular expressions generalised appropriately to RDF. For the sake of clarity, here a core

language is presented where only the default RDF graph is updated. The model can be extended

with named graphs [38]. Also, the model can accommodate updates with respect to entailments,

such as those defined in RDFS [33].

2.3.1 An example SPARQL Update.

No official recommendation of the SPARQL Update language exists at the time of writing. The

drafts are not yet stable. However a concrete syntax similar to the concrete systax of SPARQL

Chapter 2 Read–Write Linked Data Standards 25

Query is under development. Here an overview of the current proposed form for fine grained

updates is provided.

An update consists of three clauses. The delete clause the insert clause and the where clause. The

delete clause specifies the triples to be removed. The insert clause specifies triples to be inerted.

The where clause specifies a query which must be answered for the update to be performed. The

entire update occurs atomically, which ensures that all clauses are satisfied simultaneously.

The following example is adapted from the current working draft [53]. The update deletes triples

where the name Bill is used and inserts a triple where Willian is used instead. The update can

only happen if the subject of the triple is of RDF type person.

Data before:

eg:president1 foaf:givenName "Bill" .

eg:president2 foaf:givenName "Bill" .

eg:president1 rdf:type foaf:Person .

eg:president2 rdf:type foaf:Person .

Update:

DELETE { ?person foaf:givenName "Bill" }

INSERT { ?person foaf:givenName "William" }

WHERE { ?person rdf:type foaf:Person }

Data after:

eg:president1 foaf:givenName "William" .

eg:president2 foaf:givenName "William" .

eg:president1 rdf:type foaf:Person .

eg:president2 rdf:type foaf:Person .

The above update can be expressed in an abstract syntax, to be defined in the next section, as

follows.
DO SELECT ?person {

DELETE {?person foaf:givenName Bill}

JOIN

INSERT {?person foaf:givenName William}

JOIN

ASK {?person rdf:type foaf:Person}

}

The abstract syntax is more compositional than the concrete syntax. The abstract syntax in-

troduces an explicit join operator which forces parts of a query to occur simultaneously. The

explicit join operator allows the three clauses to be defined separately and then joined. The

abstract syntax also introduces a select quantifier, which binds the free variables. This clarifies

26 Chapter 2 Read–Write Linked Data Standards

the scope of variables and leads to a clearer semantics. Finally, the abstract syntax introduces

an explicit interation operator. An explicit interation operator indicates when an update is ap-

plied repeatedly, and allows some updates to be expressed that cannot be achieved using a single

update in the current concrete syntax. The operational semantics are defined over the abstract

syntax. A translation from the concrete syntax to the abstract syntax can be provided.

2.4 A Syntax for SPARQL Update

This section presents an abstract syntax used to define an operational semantics for SPARQL

Update. The abstract syntax is intended for the purpose of compiler engineering (as opposed

to exchange of messages). Three grammars are sufficient to specify an abstract syntax: one for

RDF Terms; one for constraints; and a third for SPARQL Updates. Curly brackets are used to

resolve ambiguity in examples.

2.4.1 A Syntax for RDF Terms

The following grammar presents an abstract syntax for RDF. Several concrete syntaxes have

been proposed for RDF, such as Turtle and N3 for the purpose of tersely presenting RDF to

humans [16, 23]. In contrast, the following abstract syntax for RDF Terms is presented at an

appropriate level for compiler engineering.

object ::= ‘literal’ a literal

| ?variable a variable

| URI a URI

Term ::= NOTHING the empty term

| Term , Term par

| LOCALURI Term a local name

| {URI URI object} a triple

Two forms of triple represent RDF triples, with either a URI or a literal as the object. A variable

indicates an unknown literal. Nothing represents the empty graph, which contains no RDF

triples. The operator par composes RDF Terms, thus for instance two triples can be composed

to form a larger RDF Term. The Local quantifier indicates a local name (which represents a

blank node). The local quantifier binds occurrences of a URI in an RDF Term.1

The following presents two triples which share a common local name (blank node) as their

subject.

1Par is a simple syntactic composition, and does not imply any set theoretic composition (union of graphs for
instance). Similarly, Local is a simple syntactic binding for resolving blank nodes, and is not necessarily existential
quantification. However, graphs may be recovered from this syntax if required by an application [78].

Chapter 2 Read–Write Linked Data Standards 27

LOCAL :a {

{:a foaf:familyName "Carrol"} ,

{:a foaf:knows eg:Klyne}

}

2.4.2 A Syntax for Constraints

Constraints are defined fully in the SPARQL Query recommendation [115], hence a complete

grammar for constraints is not detailed here. The following is enough to suggest that constraints

form a Boolean algebra with built in primitives. Constraints may contain variables and URIs.

Constraint ::= true true

| false false

| Constraint && Constraint and

| Constraint || Constraint or

| !Constraint not

| regex(?variable,RegularExpression) regular expression

| . . . etc.

A constraint is satisfied if and only if it evaluates to true. The evaluation of constraints is

detailed in the SPARQL Query recommendation [115]. Examples of constraints include regular

expressions parametrised on a variable and inequality tests on numbers.

2.4.3 A Syntax for SPARQL Update

The following grammar proposes an abstract syntax for SPARQL Updates. A successful update

results in an atomic change to an RDF store. This abstract syntax allows constructs to be nested.

Update ::= DELETETerm delete a term

| INSERTTerm insert a term

| FILTERConstraint impose a constraint

| Update CHOOSE Update choose a branch

| Update JOIN Update synchronise updates

| SELECTURI Update select a URI

| SELECT ?variable Update select a literal

| DOUpdate iteratively apply an update

28 Chapter 2 Read–Write Linked Data Standards

Delete removes the indicated RDF Term from the store. Insert introduces an RDF Term to the

store. Filter imposes a constraint on an update. Choose offers the choice of either a left or right

update. Join ensures that two updates happen in the same atomic update. Select parametrises

an update on either a URI or a literal which is not known in advance. (Note that in this abstract

syntax, URIs and literals are distinguished in Selects for clarity.) Iteration (DO) performs an

update zero, one, two or more times, in the same atomic update. Without iteration an update is

applied once.

Examples of each construct are provided along with the operational semantics for the construct

in Section 2.6.

2.4.4 Abbreviations for Common Updates

A number of common updates can be defined using the basic updates above. The use of abbre-

viations avoids redundancy in the operational semantics.

A unit update is answered trivially without requiring any RDF term. The unit update can be

defined using the true constraint, which is always satisfied, as follows.

SKIP , FILTER true unit update

An optional update gives the choice of performing an update or not performing an update. The

optional update can be defined by a choice between an update and the unit update as follows.

OPTIONALUpdate , Update CHOOSE SKIP optional update

Successive select queries are can be combined. The combined variables are listed in a single

select quantifier, as follows.

SELECT ?variable0 ?variable1

Update
,

SELECT ?variable0

SELECT ?variable1

Update

In this chapter queries will be encoded naı̈vely, using the unary keyword ASK . The effect of a

query can be achieved by joined insert and delete, as follows.

ASKTerm , INSERTTerm JOIN DELETETerm

The joined delete and insert has the effect of a querying for a term, since the term deleted must

exist for the delete to be applied but the insert immediately replaces the deleted term in the same

atomic operation. Later in this work queries will be primitive, but the focus here is on updates.

Further abbreviations can capture concepts which appear in a standardised concrete syntax.

Chapter 2 Read–Write Linked Data Standards 29

2.5 An Equivalence over RDF Terms

This section identifies equivalent syntax. A syntactic equivalence imposes less constraints on

RDF than any requirement that collections of triples are sets. Instead, obviously equivalent

syntax is considered to serve the same purpose, as defined by a structural congruence.

2.5.1 A Structural Congruence

A structural congruence, written = below, is a relation between RDF Terms. A congruence is

an equivalence relation (reflexive, symmetric and transitive) which holds in all contexts. The

structural congruence satisfies the following equations — unit, commutativity and associativity

respectively.

Unit: Term , NOTHING = Term Commutativity: Term0 , Term1 = Term1 , Term0

Associativity: Term0 , {Term1 , Term2} = {Term0 , Term1} , Term2

Structural congruences can be applied at any point, when evaluating the operational semantics.

Example of Applying the Structural Congruence. The following RDF Data can be used

interchangeably. If one appears in a rule in the next section then it can be replaced by the other.

{eg:book1 ns:price 5} ,

NOTHING ,

{

{eg:book2 dc:title "Linked Data"} ,

{eg:book1 dc:title "Web of Data"}

}

=

{

{eg:book1 dc:title "Web of Data"} ,

{eg:book1 ns:price 5}

} ,

{eg:book2 dc:title "Linked Data"}

Brackets are used similarly for Group Graph Patterns in SPARQL Query [115]. Associativity of

par allows brackets to be omitted for readability.

2.6 Commitment Relations for SPARQL Updates

Commitment relations specify single atomic changes which can be made to an RDF store. Atom-

icity focuses on the local effect of an update. Only the exact RDF Terms which are required to

perform an atomic update are accounted for. An advantage of this approach is that the data in a

commitment reduction is exactly the data to be locked to ensure that an update occurs atomically.

30 Chapter 2 Read–Write Linked Data Standards

A commitment relation consists of the data before an update, an update and the data after an

update. The data before is the exact RDF Term which is consumed by the update. The update is

exactly the update which is applied. The data after is exactly the RDF Term which is expected

to replace the original RDF Term once the commitment has been performed. Commitment

relations are axioms of the form.

Data before: Term Update: Update Data after: Term

Commitment relations can also be derived from rules. The premises of a rule are a number of

commitment relations and the conclusion is a single commitment relation of the above form. The

conclusion holds only if all the premises hold. The axioms and rules which specify operational

semantics for SPARQL Update are defined throughout this section.

2.6.1 The Delete Axiom

The Delete Axiom removes an RDF Term from the store. The committed RDF Term, Term,

and committed delete update, DELETETerm, interact. After the interaction both the term and the

delete update are removed from the store. The data after the update is the empty RDF term.

Data before: Term Update: DELETETerm Data after: NOTHING

Example of the Delete Axiom. The following triple can be removed by the following update

due to the following commitment relation. This commitment relation is an instance of the Delete

Axiom.

Data before:

{eg:book2 dc:title "The Semantic Web"}

Update:

DELETE {eg:book2 dc:title "The Semantic Web"}

Data after:

NOTHING

2.6.2 The Insert Axiom

The Insert Axiom adds a designated RDF Term to the store. The designated RDF Term is

indicated by the INSERT keyword. The data after the update is the inserted RDF Term.

Data before: NOTHING Update: INSERTTerm Data after: Term

Chapter 2 Read–Write Linked Data Standards 31

Example of the Insert Axiom. The two triples below can be inserted into anything (since

nothing is required), due to the following commitment relation. This commitment relation is an

instance of the Insert Axiom.

Data before:

NOTHING

Update:
INSERT {

{eg:book1 dc:title "SPARQL Tutorial"} ,

{eg:book1 eg:price 42}

}

Data after:
{eg:book1 dc:title "SPARQL Tutorial"} ,

{eg:book1 eg:price 42}

2.6.3 The Join Rule

The Delete Axiom and the Insert Axiom allow basic updates to take place where either the exact

RDF Term to be deleted is known, or the exact RDF Term to be inserted is known, respectively.

For more substantial updates, rules are required to build commitment relations. The first of these

rules is the Join Rule.

The Join Rule ensures that two updates occur atomically, in the same commitment relation. If

one update has one effect and another update has another effect, then the join of the updates is

their combined effect. The rule ensures that both updates act on separate RDF Terms. Suppose

that the following commitment relation holds.

Data before: Term0 Update: Update0 Data after: Term2

Also, suppose that the following commitment relation holds.

Data before: Term1 Update: Update1 Data after: Term3

The two commitment relations above can be combined to produce the following commitment

relation.

Data before: Term0 , Term1 Update: Update0 JOIN Update1 Data after: Term2 , Term3

32 Chapter 2 Read–Write Linked Data Standards

Example of Joined Updates. The update below demonstrates three joined updates. The first

two updates remove the two triples present. The third update inserts a triple. Thus the combined

update removes both triples and adds a new triple atomically.

Data before:
{eg:book1 dc:title "SPARQL Tutorial"} ,

{eg:book2 dc:title "The Semantic Web"}

Update:
DELETE {eg:book1 dc:title "SPARQL Tutorial"}

JOIN

DELETE {eg:book2 dc:title "The Semantic Web"}

JOIN

INSERT {eg:book2 dc:title "The Web of Linked Data"}

Data after:

{eg:book2 dc:title "The Web of Linked Data"}

2.6.4 The Select Literal Rule and Select URI Rule

The Select Literal Rule is parametrised on a variable. The variable is bound to the update

indicated (so cannot be referred to from outside the select). The Select Rule allows any literal

which enables a commitment to be substituted for the variable. The data after the commitment

with the variable substituted for a literal is used as the data after the commitment with the

variable bound by a Select. Note that substitution is indicated by square brackets where the

literal on the left replaces the variable on the right. Suppose that the following commitment

relation holds.

Data before: Term0 Update: Update[‘literal’/?variable] Data after: Term1

Given the commitment relation above the following commitment relation holds.

Data before: Term0 Update: SELECT ?variable Update Data after: Term1

The Select URI Rule has the same shape. In the case of URIs, a correct URI to input is substi-

tuted for the temporary URI which is bound in the Select expression. Thus two URIs replace

both the variable and literal in the Select Literal Rule.

Example of the Select Literal Rule. The following example demonstrates how Select can be

used to delete an RDF Term which involves a literal not known in advance. The update deletes

a triple in which the variable ?title appears. The variable can be instantiated with the literal

Chapter 2 Read–Write Linked Data Standards 33

"SPARQL Tutorial". Thus the delete matches the committed triple. Therefore the following

commitment is valid.

Data before:

{eg:book1 dc:title "SPARQL Tutorial"}

Update:
SELECT ?title {

DELETE {eg:book1 dc:title ?title}

}

Data after:

NOTHING

2.6.5 The Choose Left Rule and Choose Right Rule

The Choose Rules allow one of two updates to be committed. The choose rule has a left and

right form, where respectively the left or right update is applied. The data after a choice is the

same as the data after applying the chosen branch. Consider the Choose Left Rule and suppose

that the following commitment relation holds.

Data before: Term0 Update: Update0 Data after: Term1

Given the above commitment relation, the following commitment relation holds.

Data before: Term0 Update: Update0 CHOOSE Update1 Data after: Term1

The rule above chooses the left update. The Choose Right Rule is the symmetric rule which

chooses the right branch instead.

Example of a Choice of Updates. The following demonstrates an update where either the first

delete or second delete may be triggered. The two branches use different versions of the Dublin

Core metadata vocabulary. In this case, the committed RDF Term matches the right branch. The

effect is that the committed triple is deleted.

Data before:

{eg:book dc11:title "SPARQL Protocol Tutorial"}

34 Chapter 2 Read–Write Linked Data Standards

Update:
SELECT ?title {

DELETE {eg:book dc10:title ?title}

CHOOSE

DELETE {eg:book dc11:title ?title}

}

Data after:

NOTHING

2.6.6 The Filter Axiom

The Filter Axiom imposes a constraint on an update. The constraint is disposed only if the con-

straint evaluates to true. If the constraint does not evaluate to true then the update is blocked. The

procedure for deciding whether a constraint holds is specified in the SPARQL Query Recom-

mendation [115]. Given that the constraint evaluates to true the following commitment relation

holds.

Data before: NOTHING Update: FILTERConstraint Data after: NOTHING

An Example of a Filtered Update. The following commitment relation holds. The update

deletes the title of a book, where the title and the book are discovered using Select. The filter

imposes the constraint that the title must also satisfy a regular expression. The literal in the

committed triple does matche the regular expression. The triple is deleted.

Data before:

{eg:book1 dc:title "SPARQL Tutorial"}

Update:
SELECT :a ?title {

DELETE {:a dc:title ?title}

JOIN

FILTER regex (?title, "ˆSPARQL")

}

Data after:

NOTHING

Chapter 2 Read–Write Linked Data Standards 35

2.6.7 The Rules for Iterated Updates

All updates above are applied exactly once. Often the update should be applied wherever pos-

sible in an RDF store. This is achieved by iteration. The rules for iteration are similar to those

for a Kleene star in a regular expression. Regular expressions are commonly used to update text

files. This work is a generalisation of this common technique to RDF stores.2

Updates can be applied any number of times. Iteration is used when the number of times to

apply an update is not known. The Weekening Axiom allows an interated update to be applied

zero times, if there is no term which matches the update. The Weakening Axiom terminates an

iterated update with no effect.

Data before: NOTHING Update: DOUpdate Data after: NOTHING

The Dereliction Rule allows an iterated update to be applied once. Assume that an update can

be committed in the presence of some term resulting another term. Dereliction allows the same

update but iterated to be committed in the presence of the same term with the same resulting

term. Suppose that the following commitment relation holds.

Data before: Term0 Update: Update Data after: Term1

Given the above commitment relation, the following commitment relation holds.

Data before: Term0 Update: DOUpdate Data after: Term1

The Contraction Rule allows two copies of an iterated update to be simultaneously committed.

Contraction can be applied repeatedly, along with the Join Rule and Dereliction Rule, to si-

multaneously commit any number of copies of an iterated update. Suppose that the following

commitment relation holds.

Data before: Term0 Update: DOUpdate JOIN DOUpdate Data after: Term1

Given the commitment relation above, the following commitment relation holds.

Data before: Term0 Update: DOUpdate Data after: Term1

The combination of the Weakening, Dereliction and Contraction rules allow zero, one, two, or

more copies of an iterated update to be atomically committed. The use of Join in the Contraction

Rule ensures that disjoint RDF Terms are used for each copy.
2Generalisations of regular expression date back to the commutative regular algebras of J. H. Conway [41], and

remain a prominent rejuvinated area of research. The majority of computer scientists and engineers use regular
expressions or tools based on regular expressions.

36 Chapter 2 Read–Write Linked Data Standards

An Example of an Iterated Update. The following demonstrates an iterated update. The

update replaces occurrences of the predicate dc11:title with the predicate dc:title. The iteration

of this update means that the update can be applied twice. The result is that two triples are

committed and replaced by two new triples.

Data before:
{eg:book1 dc11:title "Query Tutorial"} ,

{eg:book2 dc11:title "Update Tutorial"}

Update:
DO SELECT :a, ?x {

DELETE {:a dc11:title ?x}

JOIN

INSERT {:a dc:title ?x}

}

Data after:
{eg:book1 dc:title "Query Tutorial"} ,

{eg:book2 dc:title "Update Tutorial"}

2.6.8 An Example of a Nested Update.

This example, firstly, demonstrates most of the constructs combined to answer a larger update.

Secondly, it demonstrates a common scenario which is enabled by nested selects and nested

explicit iteration, which is impossible to express as an atomic update in initial proposals for

SPARQL Update [126, 53]. Consider the following commitment, which removes all foaf:knows

links to people younger than 21.

Data before:
{eg:youth0 eg:dob 01-01-2010} ,

{eg:youth1 eg:dob 01-02-2010} ,

{eg:person foaf:knows eg:youth0} ,

{eg:person foaf:knows eg:youth1} ,

{eg:youth0 foaf:knows eg:youth1} ,

Chapter 2 Read–Write Linked Data Standards 37

Update:
DO SELECT :a ?dob {

DELETE {:a eg:dob ?dob}

JOIN

INSERT {:a eg:dob ?dob}

JOIN

FILTER (current-year − year(?dob) < 21)

JOIN

DO SELECT :b {

DELETE {:b foaf:knows :a}

}

}

Data after:
{eg:youth0 eg:dob 01-01-2010} ,

{eg:youth1 eg:dob 01-02-2010}

Without the nested iteration and selects, the effect of the above update could only be achieved

using two updates. This means that the update would not be atomic. The above update is

correct and atomic. This example highlights a common problem which also appears in the first

SPARQL Query recommendation [115]. This illustrates an improvement made by this work to

the expressiveness of the language.

2.7 Reduction Relations for Concurrent RDF Stores

An RDF store deployed on servers requires many updates to occur concurrently. The behaviour

of multiple updates can be specified by a reduction relation. The reduction relation provides a

context for applying many commitment relations to an RDF store. The reduction relation also

specified how blank nodes are treated by updates.

2.7.1 A Syntax for SPARQL Processes

A syntax for processes internalises RDF Terms and SPARQL Updates. Processes represent the

state of part of an RDF store.

38 Chapter 2 Read–Write Linked Data Standards

Process ::= NOTHING nothing

| Process , Process par

| LOCALURI Process block

| Update query

| Term resource

A reduction relation consists of two processes: the process before the reduction; and the process

after the reduction. Reduction relations are defined by the axioms and rules in this section.

2.7.2 The Idle Axiom for Unaffected Processes

The Idle Axiom allows a process to do nothing. This axiom indicates that a reduction has no

effect on the part of the store described by the process.

Before: Process After: Process

Note that other structural axioms and rules may be added to specify further behaviour of a store.

The Idle Axiom is the minimum required.

2.7.3 The Action Rule for a Commitment Acting on a Reduction

The Action Rule allows a local update to be applied to part of the store. The Action Rule indi-

cates that a commitment relation (representing a local update) can be performed in the presence

of some reduction relation (representing the behaviour of a separate part of the store). The

commitment and the reduction do not interfere. Firstly, assume that the following commitment

relation holds.

Data: Term0 Update: Update Result: Term1

Secondly, assume that the following reduction relation holds.

Before: Process0 After: Process1

Given the above commitment relation and the above reduction relation, the following reduction

relation holds.

Before: Term0 , Update , Process0 After: Term1 , Process1

Chapter 2 Read–Write Linked Data Standards 39

The action rule can be applied repeatedly to capture any number of concurrent updates on an

RDF store.

An Example of the Action Rule and the Idle Axiom. The following demonstrates an action

on a small part of a store. The Idle Axiom allows one triple not to be touched. Another triple

is updated by a commitment relation. The commitment relation is applied by the Action Rule.

This simple pattern can be extended to an entire RDF store.

Before:
{

DELETE {eg:book2 dc:title "The Semantic Web"}

JOIN

INSERT {eg:book2 dc:title "The Web of Linked Data"}

} ,

{eg:book2 dc:title "The Semantic Web"} ,

{eg:book2 eg:price 23}

After:
{eg:book2 dc:title "The Web of Linked Data"} ,

{eg:book2 eg:price 23}

2.7.4 The Local Rule for Handling Blank Nodes

The Local Rule is used for updates which involve blank nodes. The trick is to choose a temporary

URI, which in the premise of the rule replaces the URI bound by Local. The temporary URI

must not appear free in the conclusion of the rule. Suppose that the following reduction relation

holds, where :e is a temporary URI.

Before: Process0 , Process1[:e/:a] After: Process2 , Process3[:e/:b]

Given that the above reduction relation holds and that :e does not appear free below, then the

following reduction relation holds.

Before: Process0 , LOCAL :a Process1 After: Process2 , LOCAL :b Process3

An Example of the Local Rule. The following example demonstrates a blank node updated.

A temporary URI can represent :a in the premise of the Local Rule. This allows the update to be

considered as if :a is not bound. One triple is deleted by a commitment relation, which discovers

the temporary URI. However, the conclusion of the Local Rule still binds :a. This has the effect

of discovering the blank node and using it in an update.

40 Chapter 2 Read–Write Linked Data Standards

Before:
SELECT :b

DELETE {:b foaf:mbox mailto:alice@example.org} ,

LOCAL :a {

{:a foaf:name Alice} ,

{:a foaf:mbox mailto:alice@example.org}

}

After:

LOCAL :a {:a foaf:name Alice}

2.7.5 A Substantial Example of Concurrent Updates Involving Blank Nodes

The following demonstrates two updates, which happen concurrently despite not being joined.

One triple is idled. The Action Rule is applied twice to trigger the two updates. There is also a

blank node which is selected and used in both updates. Notice that the scope of the blank node

is maintained after the reduction.

Before:

SELECT :a

DELETE {:a foaf:name Alice} ,

DO SELECT :b {

DELETE {eg:Boss eg:employee :b}

JOIN

INSERT {:b eg:employer eg:Boss}

} ,

LOCAL :c {

{eg:Boss eg:employee :c} ,

{:c foaf:name Alice} ,

{:c foaf:mbox mbox:alice@example.org}

} ,

{eg:Boss eg:employee eg:Bob}

After:
LOCAL :c {

{:c eg:employer eg:Boss} ,

{:c foaf:mbox mbox:alice@example.org}

} ,

{eg:Bob eg:employer eg:Boss}

All examples are entirely specified by the operational semantics in this paper.

2.8 Conclusions on the Specification

This chapter proposes an operational semantics for SPARQL Update. A fine grained update

language is essential for using RDF stores in modern Web applications, where contributing

Chapter 2 Read–Write Linked Data Standards 41

content is as important as consuming content. This proposal is a close counterpoint to the

SPARQL Query recommendation, from which examples are adapted [115]. This proposal for

an update language allows fine control of updates, as found in regular expressions. Updates

are covered which cannot be expressed atomically in existing proposals, such as the example in

Section 2.6.8. The finer control ensures that common updates can be performed atomically.

The rôle of this chapter in the context of this work is to demonstrate that an operational se-

mantics can be presented without any meta-theory. The abstract syntax is purely ASCII so can

be implemented directly. The operational semantics are described using only English and the

abstract syntax itself, so no meta-symbols for the sole purpose of expressing the operational

semantics are required. Furthermore, the operational semantics are defined so that the updates

that hold are expressed in the same intuitive form as examples in the recommendation, which

clearly indicate the data before the update, the update and the data after the update. Thus all

correct examples are directly derived by the operational semantics. The intention is to find a

presentation which can be understood by compiler engineers with diverse backgrounds.

Chapter 3

Reduction Systems for Read–Write
Linked Data

This section defines an operational semantics of a high level programming language for Linked

Data. The operational semantics are defined using a deductive system, where the atomic tran-

sitions permitted are provable using the deductive system. The deductive system allows key

features of a programming language for Linked Data to be captured simultaneously, including

queries, updates, reasoning and constraints. The concept of a region, modelling named graphs

and feeds is also investigated.

The background material for this section is provided retrospectively, by comparing the model

developed to existing models. The operational semantics presented was produced iteratively, by

directly modelling the operational behaviour of real languages for Linked Data, as described in

the previous chapter.

Existing models have also provided inspiration for design decision, including process calculi [20,

99] and Linear Logic [55]. A famous process calculus, the π-calculus, is compared to the syn-

dication calculus. In particular, it is demonstrated that the π-calculus can be expressed using

the same connectives as the syndication calculus; thus both calculi can be tightly integrated in

one powerful framework for operational semantics. Another inspiration for the model is Lin-

ear Logic. The connectives of Linear Logic are compared to the analogous connectives of the

syndication calculus.

Although neither the π-calculus nor Linear Logic are used directly to produce the syndication

calculus, they provide inspiration for design decisions. Like the syndication calculus, both the

π-calculus and Linear Logic provide deductive systems which can be applied to reason about

interacting concurrent systems. Thus an intermediate calculus provides further insight into the

connection between these two systems [3, 98, 18, 17].

The background material clarifies that classical logic is not being applied in this work. Most

logical systems considered for the Web have been justified using classical model theory [74];

43

44 Chapter 3 Reduction Systems for Read–Write Linked Data

yet modern logics for computer science rarely fit into the classical box. Modern logics have been

driven by common problems in computer science, including typing computable functions [42],

accounting for resources [119], and understanding communication and concurrency [61]. Such

problems are evident when considering the Web of Data. Thus the deductive system presented

in this chapter, is a step towards a modern and appropriate logic for the Web of Data.

3.1 Motivating Examples for the Reduction System

This chapter systematically introduces a syntax and operational semantics for a high level lan-

guage for Linked Data. The language tightly combines the key technologies for Linked Data,

including queries, updates and reasoning. The language is concurrent, which is appropriate for

servers on which systems which use Linked Data are deployed. Before embarking on a system-

atic definition and explanation, some examples are provided along with their intuition.

3.1.1 Simple sentences about Joe Armstrong the footballer

Firstly, consider some Linked Data presented in RDF. This particular data set is taken from

DBpedia which lifts RDF data from Wikipedia [28]. The data presents triples where the subject

is a retired footballer called Joe Armstrong. The URI for Armstrong provided by DBpedia

is http://dbpedia.org/resource/Joe Armstrong (footballer), which is identified by Armstrong in

examples. This allows this footballer to be disambiguated from, amongst others, Joe Armstrong

the programmer, who is assigned a distinct URI.

The data obtained from Wikipedia is interpreted as RDF triples. To do so, a URI for a predicate

has been created to distinguish each piece of information about Armstrong. Where possible, a

predicate from a popular metadata vocabulary has been chosen. For instance, the FOAF vocabu-

lary provides a predicate for the name of a person. Other predicates have been created specially

to correspond with the data obtained from Wikipedia. For instance, predicates are provided for

the position, birthPlace, caps, etc, in a name space owned by DBpedia. The name spaces used

are the following.

foaf: http://xmlns.com/foaf/0.1/

res: http://dbpedia.org/resource/

p: http://dbpedia.org/property/

dbp: http://dbpedia.org/ontology/

Some predicates indicate literal values. For instance, the name predicate indicates a string, the

caps predicate indicates a natural number and the birthDate predicate indicates a date. Other

predicates indicate other resources identified by URIs. For instance, both the city Newcastle-

upon-Tyne and the football club Gateshead F.C. have URIs. A special predicate – rdf:type –

from the core RDF vocabulary is used. This predicate is used to indicate that Armstrong is a

http://www.dbpedia.org
http://www.wikipedia.org
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://xmlns.com/foaf/0.1/
http://dbpedia.org/resource/
http://dbpedia.org/property/
http://dbpedia.org/ontology/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 3 Reduction Systems for Read–Write Linked Data 45

footballer. The class of footballers has a URI which can be treated like any other URI. In the

syntax of this chapter, the data set can be represented as follows.

(Armstrong foaf:name ‘Joe Armstrong’) ,

(Armstrong rdf:type dbp:SoccerPlayer) ,

(Armstrong dbp:position res:Inside forward) ,

(Armstrong dbp:birthPlace res:Newcastle upon Tyne) ,

(Armstrong dbp:birthDate ‘29-01-1939’) ,

(Armstrong p:clubs res:Gateshead F.C.) ,

(Armstrong p:caps 22) ,

(Armstrong p:goals 9)

Extra information is also provided which allows some further information to be inferred from

the data above. Given that someone is a footballer, it can be inferred that the person is an athlete.

It can also be inferred that the an athlete is indeed a person. Thus the two relationships below

can be assumed. These relationships define a preorder over URIs which can be used when

performing queries and updates.

dbp:SoccerPlayer v dbp:Athlete dbp:Athlete v foaf:Person

Similarly, a distinct URI may identify Newcastle-upon-Tyne. For instance, a search on the Web

site sameAs.org [57] suggests that almost 100 different URIs can be used to identify Newcastle-

upon-Tyne, including http://data.ordnancesurvey.co.uk/id/7000000000009784. Us-

ing the same preorder relationship the URIs for Newcastle-upon-Tyne can be related in both

directions. This allows the URIs to be used interchangeably in queries and updates. The formal

definition shall make precise how RDF triples are defined and how the preorder over URIs is

used to reason over RDF triples.

3.1.2 Compound sentences enquiring about footballers

This section considers some queries over the example data provided. Processes are constructed

using a number of operators. Each operator is simple, but the combined result is a highly ex-

pressive language. Some common constructs are employed to provide the intuitive examples in

this section. The constructs will be considered in detail later in this chapter. In the meantime,

we consider again the footballer Joe Armstrong.

One way to find Armstrong from a store, which includes the data given in the previous section,

would be to pose a query. The example query below asks for a footballer associated with the

Gateshead Football Club. The query consists of two triple patterns to match, which are joined

together to indicate that they must be answered in the same atomic step. A quantifier indicates

that the subject of both triples should be the same. The query is triggered by the two triples

http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Inside_forward
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/clubs
http://dbpedia.org/resource/Gateshead_F.C.
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/caps
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/goals
http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/ontology/Athlete
http://dbpedia.org/ontology/Athlete
http://xmlns.com/foaf/0.1/Person
http://sameAs.org
http://data.ordnancesurvey.co.uk/id/7000000000009784

46 Chapter 3 Reduction Systems for Read–Write Linked Data

provided. The state before the atomic step is indicated on the left of the triangle and the state

after the atomic step is indicated on the right of the triangle.

(Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

∨
a.


|(a p:clubs res:Gateshead F.C.)|

|(a rdf:type dbp:SoccerPlayer)| ;

P


�

(Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

P
{
Armstrong/a

}

Notice that after this reduction, the continuation process has the URI for Armstrong. Thus the

URI can be used in that process. The URI may be used to access further information from

the example data above; or used to manipulate the data using an update; or, perhaps, used to

perform some other operation such as passing the URI to another process on a channel. The

URI is passed to the continuation process because the continuation process is bound by the

quantifier which discovers the URI.

Using DBpedia, a description of the resource identified by res:Inside forward can be obtained

by using a query. This description provides the information that an inside forward was a position

in football popular until the first half of the 20th century. Instead of an inside forward modern

football teams now use an attacking midfielder. This provides a rationale for the example be-

low. The following process is an update which turns all inside forwards born before 1950 into

attacking midfielders. The state before the update is on the left of the triangle and the state after

the update is on the right of the triangle.

(Armstrong dbp:birthDate ‘29-01-1939’) ,
(Armstrong dbp:position res:Inside forward) ,

∗
∨

a.


∨

x.

 |(a dbp:birthDate x)|
(x ≤ ‘01-01-1950’)


(a dbp:position res:Inside forward)⊥

(a dbp:position res:Attacking midfielder)


� (Armstrong dbp:birthDate ‘29-01-1939’) ,

(Armstrong dbp:position res:Attacking midfielder)

The form of the update is similar to the query above. The update consists of triples composed

together. However, for updates the triples are distinguished in three ways. The first triple above

finds a birth date, so is a query; the second triple above removes the position inside forward, so

is a delete; the third triple above includes the position attacking midfielder, so is an insert. There

is also a constraint on the birth date composed with these triples. All of these components —

the query, delete, insert and constraint — are performed in the same atomic step. This means

that the insert can only take place if the query and constraints are satisfied and the delete is

successful.

The operator for composition, the tensor product, is the main feature for composing compound

atomic actions, which provides the necessary expressive power for the update language. The

http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/clubs
http://dbpedia.org/resource/Gateshead_F.C.
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/property/clubs
http://dbpedia.org/resource/Gateshead_F.C.
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/clubs
http://dbpedia.org/resource/Gateshead_F.C.
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/resource/Inside_forward
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Inside_forward
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Inside_forward
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Attacking_midfielder
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Attacking_midfielder

Chapter 3 Reduction Systems for Read–Write Linked Data 47

tensor product is defined and discussed in this chapter. The star in front of the update above

indicates that this update can be applied multiple times, meaning that more than one insider

forward may be updated to an attacking midfielder in one atomic step.

Another larger example is provided. This example demonstrates how operators of the language

can express complex queries. The query below asks for either artists or athletes. The query

also asks for people with the surname Armstrong and a forename beginning with the character

‘J’. The name of the person can be obtained in two ways: either from a single name predicate

or by combining first name and last name predicates. For this query it is also assumed that

dbp:SoccerPlayer v dbp:Athlete. This allows the more specific information that Armstrong is

a footballer to be used to answer the part of the query which asks whether he is an artist or an

athlete.

(Armstrong foaf:name ‘Joe Armstrong’) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

∨
a.



∨
z.




∨

x, y.


|(a foaf:givenName x)|

|(a foaf:familyName y)|
(z = x + ‘ ’ + y)


⊕

|(a foaf:name z)|


(z ∈ ‘J.* Armstrong’)


|(a rdf:type dbp:Athlete)|
⊕

|(a rdf:type dbp:Artist)|

 ;

P


�

(Armstrong foaf:name ‘Joe Armstrong’) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

P
{
Armstrong/a

}
A single language which includes all the features of queries and updates and continuation pro-

cesses, with concurrency is proposed. The example atomic transitions of this section can all be

derived using the deductive system introduced in this chapter. The final example above will also

be used as a running example in subsequent chapters, to motivate results in those chapters.

3.1.3 Motivation for named graph features

This chapter also introduces the idea of a named graph, which is argued to be closely related

to the idea of a feed. For now consider the idea that some applications need to know where

information comes from i.e. the provenance of data.

For an intuitive motivation for named graphs, the football running example is continued. This

example demonstrates an update involving a named graph. The data provided includes a triple

where the provenance of the triple is indicated by an extra URI (the name of the ‘graph’ from

http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/ontology/Athlete
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/SoccerPlayer
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/SoccerPlayer
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29

48 Chapter 3 Reduction Systems for Read–Write Linked Data

which the triple is obtained). The URI for the graph is described, using triples. The description

indicates that the graph contains player statistics for October 1962.

Now, suppose that the player goal count for this month was not included in the goal tally of the

players. The following update rectifies this missing information as follows. It finds a named

graph which contains the player statistic for that month. It also updates the goal tally of the

player, by adding the number of goals scored that month to the running total. The result is the

the following atomic transition.

(Armstrong p:goals 9) ,

Geg:results Oct1961(Armstrong p:goals 2) ,
(eg:results Oct1961 eg:month 10) ,
(eg:results Oct1961 eg:year 1963) ,
(eg:results Oct1961 rdfs:comment eg:player stats) ,

∨
b, y.



∨
a.


|(a eg:month 10)|

|(a eg:year 1963)|

|(a rdfs:comment eg:player stats)|

|Ga(b p:goals y)|


∨

x, z.


(b p:goals x)⊥

(b p:goals z)

(z = x + y)




� (Armstrong p:goals 11) ,

Geg:results Oct1961(Armstrong p:goals 2) ,
(eg:results Oct1961 eg:month 10) ,
(eg:results Oct1961 eg:year 1963) ,
(eg:results Oct1961 rdfs:comment eg:player stats)

Thus the language is easily extended to handle features for provenance. The provenance of

data is particularly significant in modern applications [38]. Thus provenance is given special

consideration in this chapter.

3.2 The Core Syntax and Semantics

A new calculus for Linked Data is considered. The focus of the calculus is the key standards

for Linked Data, introduced in the previous chapter. Primarily, the core of the semi-structured

data format RDF and the core of the SPARQL Update language are captured. The approach is

that of structural operational semantics. An abstract syntax is defined, then the operational se-

mantics are defined by a deductive system which derives relations over the abstract syntax. The

operational semantics specifies the runtime behaviour of a high level programming language.

http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/goals
http://example.org/results_Oct1961
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/goals
http://example.org/results_Oct1961
http://example.org/month
http://example.org/results_Oct1961
http://example.org/year
http://example.org/results_Oct1961
http://www.w3.org/2000/01/rdf-schema#comment
http://example.org/player_stats
http://example.org/month
http://example.org/year
http://www.w3.org/2000/01/rdf-schema#comment
http://example.org/player_stats
http://dbpedia.org/property/goals
http://dbpedia.org/property/goals
http://dbpedia.org/property/goals
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/goals
http://example.org/results_Oct1961
http://dbpedia.org/page/Joe_Armstrong_%28footballer%29
http://dbpedia.org/property/goals
http://example.org/results_Oct1961
http://example.org/month
http://example.org/results_Oct1961
http://example.org/year
http://example.org/results_Oct1961
http://www.w3.org/2000/01/rdf-schema#comment
http://example.org/player_stats

Chapter 3 Reduction Systems for Read–Write Linked Data 49

The rôle of the abstract syntax differs from the rôle of common concrete syntaxes for RDF [38].

A concrete syntax is intended for human readability or message exchange. In contrast, the ab-

stract syntax is for the purpose of compiler engineering. It captures the essence of the languages,

with minimal redundancies. The symbols for connectives are chosen to highlight connections

with connectives in related systems. Brief examples of the concrete syntax are provided, then

the abstract syntax is fully defined.

3.2.1 A Syntax for the Resource Description Framework

The Web is based on documents, represented by one URI, which link to other documents, rep-

resented by another URI. The link structure of the Web can therefore be represented by pairs of

URIs. This link structure has been exploited by organisations such as Google [77]. The source

and target URIs are the subject and the object of the link, respectively.

RDF extends the link structure of the Web to the power of simple sentences. In natural lan-

guages, a verb indicates how a subject is related to an object. In English for instance the struc-

ture of a simple sentence is subject–verb–object e.g. “Kleinberg wrote Authoritative Sources in

a Hyperlinked Environment.” RDF extends the link structure of the Web to include a predicate.

The predicate serves the same rôle as a verb, by indicating the nature of the connection between

a subject and an object.

Like the subject and the object, the predicate is also a URI. A URI is a standardised global

identifier for any resource, so need not identify a document. Thus the URI of a predicate is just

a global identifier from some vocabulary. Similarly, the URI of the subject and the object need

not refer to a document. Instead the URI could provide a global reference to some resource

which, in a traditional setting, would normally be a local identifier in a database. The following

is an example of two triples.

soton:9724 foaf:knows soton:10511 .

eprint:21769 dc:creator soton:10511 .

Note that soton: eprint: foaf: and dc: represent URI prefixes http://id.ecs.soton.ac.uk/

person/, http://eprints.ecs.soton.ac.uk/id/eprint/, http://xmlns.com/foaf/

0.1/ and http://purl.org/dc/elements/1.1/ respectively. The first and second are names-

paces used for people affiliated with Southampton University and publications on EPrints. The

third and fourth are namespaces used for terminology in the Friend-of-a-Friend and Dublin Core

metadata vocabularies.

Another notion generalised by RDF is the idea that a URI is associated with a document on the

Web. RDF allows several pieces of traditional data to be associated with a URI. As with links

between resources a predicate indicates how a URI is related to a piece of traditional data. Again

this resembles simple sentences in natural language. The following is an example of two triples.

http://id.ecs.soton.ac.uk/person/
http://id.ecs.soton.ac.uk/person/
http://eprints.ecs.soton.ac.uk/id/eprint/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://purl.org/dc/elements/1.1/

50 Chapter 3 Reduction Systems for Read–Write Linked Data

oF v literal
| x variable
| a name

C F (a a o) triple

Figure 3.1: A syntax for objects and RDF content.

soton:doc1 dc:title "Tae a Link" .

soton:doc1 dc:description "Some poem." .

The examples above are written using the Turtle syntax for RDF. Turtle is one of several concrete

languages for presenting RDF. Here an abstract syntax captures the essence of these formats,

without redundancy.

3.2.1.1 An Abstract Syntax for RDF triples.

For the purpose of defining operational semantics, an abstract syntax for RDF triples is defined.

The abstract syntax captures the idea that RDF consists of triples of the form subject–predicate–

object, as presented in Fig. 3.1.

The atoms of the syntax are names, variables and literals. Names represent URIs. For simplicity

of examples, names are presented in italics, e.g. a, b, person:9724, foaf:knows. Names bound by

quantifiers represent place holders for URIs. Literals represent traditional data such as a string

of characters or an integer, such as ‘Authoritative Sources’ or ‘7’. Traditional data is

well understood, so the technicalities of literals are left to the XML datatypes specification [25].

Variables are explicit place holders for literals.

A triple consists of a subject, a predicate and an object. The subject and predicate are names.

The object is either a name, a literal or a variable. A URI as an object generalises the notion of a

link between Web pages. Similarly, the use of a literal as an object generalises the notion of the

document associated with a link. The following demonstrates two triples, the first with a URI

object the second with a literal object.

(doc1 creator Burns) (doc1 title ‘Links’)

Note that the W3C recommendation describes how to obtain labelled directed graphs from the

syntax of RDF [78]. This provides a denotational semantics, which is used by graph query lan-

guages [110]. In contrast, this work is purely syntactic. Denotational semantics for concurrency

are notoriously difficult [4].

Chapter 3 Reduction Systems for Read–Write Linked Data 51

3.2.2 A Syntax and Semantics for Queries and Updates

When data is published openly it is rarely possible to predict how it might be used. It is therefore

difficult to decide a suitable format in which to publish the data. Preferably, the application

which consumes the data should decide. For this reason RDF is a simple semi-structured data

format. Power is regained from this minimal structure by an expressive query language. The

query language enables the consumption of emergent structures conveyed in RDF. In this way

the power is shifted from the producer to the consumer and lowers barriers to publishing Linked

Data.

The language SPARQL Query is the agreed standard for the purpose of querying RDF. The first

SPARQL Query standard has been widely deployed [115, 28]. A second draft for SPARQL

Query learns from the experiences of the first [66]. A SPARQL end point is used to observe an

RDF store. The observer declares the link patterns of interest using SPARQL Query. The query

language also determines the format in which results are presented.

For instance an application may be interested the question, “Obtain names for either products

related to the show or products related to an exhibitor at the show.” The example scenario can

be specified as follows in the SPARQL Query concrete syntax, where eg:show2011 identifies

the show and eg:exhibitor and eg:product identify predicates from some vocabulary.

SELECT ?product WHERE {

{

eg:show2011 eg:exhibitor ?exhibitor .

?exhibitor eg:product ?product

}

UNION

{ eg:show2011 eg:product ?product }

}

An analogy is that queries support compound sentences although RDF only supports simple

sentences. Several simple sentences may be required to verify the truth of a compound sentence.

The returned result is witness to the veracity of the compound sentence in the given context.

While the truth of RDF is subjective, the truth represented by a successful SPARQL Query is

intersubjective [56]. For intersubjective truth there is an subjective agreement between multiple

parties. The parties involved are the client that poses the query (compound sentence) and the

providers of the triples (simple sentences).

Current SPARQL recommendations have no constructs for maintenance. However, there is a

proposal by Hewlett-Packard Labs and a working draft for a language called SPARQL Up-

date [126, 53]. The proposals allow RDF to be inserted and deleted at the level of triples.

Update operations reuse the operations of SPARQL Query for powerful updates.

eg:show2011
eg:exhibitor
eg:product

52 Chapter 3 Reduction Systems for Read–Write Linked Data

φF I true
| 0 false
| φ ∧ φ and
| φ ∨ φ or
| ¬φ not
| . . . etc.

U F |C| ask
| C⊥ delete
| C insert
| φ filter
| U ; P then
| U ⊕ U choice
| U ⊗ U tensor
| ∗U iteration
|

∨
a.U select name

|
∨

x.U select literal

PF ⊥ nothing
| PM P par
|

∧
a.P blank node

| U update

Figure 3.2: A syntax for constraints, updates and processes.

The example above can be extended to specify the update, “For either products related to the

show or products related to an exhibitor at the show, insert a link from another show to that

product.” The extension is to add one clause to the query. The clause inserts a triple which

relates the show to the discovered product.

A model for SPARQL Update is sufficient to model SPARQL Query. However, a model for

SPARQL Update is more subtle than a model for SPARQL Query. Not only is the truth repre-

sented by a successful intersubjective interaction, it is also dependent on time.

3.2.2.1 An abstract syntax for updates.

An update is a declarative specification of the intention of the programmer. The meaning of an

update is independent of a particular implementation. An application expects some behaviour

and an implementation provides a behaviour within the bounds of expectation. The common

interface between the application and the store is the syntax of the language. An abstract syntax

for Updates is provided in Fig. 3.2.

Basic queries are formed by embedding the syntax of RDF. The embedding ‘ask’ is used to

demand that some RDF is matched. This models asking a query, which has no side effects.

The following is an example of asking a query which is satisfied by the example RDF in Sec-

tion 3.2.1.1.

|(doc1 creator Burns)| ⊗ |(doc1 title ‘Links’)|

Basic updates are also formed by embedding the syntax of RDF in two ways. The embedding

‘delete’ demands that some persistently stored RDF should be removed. The embedding ‘insert’

stores some RDF persistently. Unlike queries, both delete and insert have side effects. For

instance the above RDF could be inserted into a store then removed from the store.

Update can be formed using two binary operations, ‘tensor’ and ‘choose’. The tensor product

is the operation which combines two updates to ensure that they happen in the same atomic

Chapter 3 Reduction Systems for Read–Write Linked Data 53

commitment. For instance, a query and an insert can be combined using the tensor product to

ensure that an insert occurs if and only if the query is satisfied. Choose presents an option where

either the left update or the right update occurs. For instance, a choice can be presented between

two possible query patterns. The iteration operation indicates that zero, one, two or more copies

of an update are simultaneously applied.

In Chapter 4 it is proven that the constructs choose, tensor, iterate, true and false form a Kleene

algebra [41]. Hence syntactic conventions for Kleene algebras are adopted for examples. The

operator ⊗ binds stronger than ⊕ and the operator ⊗ can be omitted; hence (U ⊗ V) ⊕ W is

abbreviated UV ⊕W. The following example presents a syntax for the update described in the

previous section. The update is a extension of the query given in concrete syntax. Here the query

is translated into the abstract syntax and an insert is composed with the query using tensor.

∗
∨

a.
∨

b.




|(show2011 exhibitor b)|

|(b product a)|
⊕

|(show2011 product a)|


(show2012 product a)


Updates extend Kleene algebras with quantifiers. The select quantifier binds occurrences of a

name not known in advance. For instance, in the example above the name of the product is not

known. The name is bound in both the query and the insert, so the name discovered by the query

is also the name inserted. Names and literals are disjoint, so a separate quantifier is provided for

variables. Quantifiers highlight the logical content of updates.

The syntax of constraints is embedded in the syntax of updates. A constraint imposes a con-

dition on the update taking place. Typically variables which occur as the object of a triple are

constrained. For instance a variable may represent a string of characters which satisfies a regular

expression, or a numeral within a range of values. Like literals, constraints are well understood,

so technicalities are left to the SPARQL Query standards [115, 66]. It is sufficient to note that

constraints form a Boolean algebra.

3.2.2.2 A structural congruence for processes.

For the purpose of defining operational semantics, a syntax for processes is introduced in Fig. 3.2.

Processes allow updates to be composed in parallel using the ‘par’ operator to establish their

concurrent behaviour. The unit of par is ‘nothing’, which represents the empty process. Pro-

cesses with the par operator and nothing unit form a commutative monoid, as defined by the

structural congruence in Fig. 3.3. The convention, common to sequent style deductive systems,

is that the symbol M is abbreviated with a comma in examples.

A blank node is used in place of a URI when a URI is not explicily assigned. A blank node

is a local identifier which cannot be linked to directly. Blank nodes reduce the barrier between

54 Chapter 3 Reduction Systems for Read–Write Linked Data

Unit: PM ⊥ ≡ P Commutativity: PM Q ≡ QM P

Associativity: PM (QM R) ≡ (PM Q)M R

Eliminate quantifier:
∧

a.⊥ ≡ ⊥ Swap quantifiers:
∧

a.
∧

b.C ≡
∧

b.
∧

a.C

Distribute quantifiers:
∧

a.PM Q ≡
∧

a.(PM Q) a < fn (Q)

Figure 3.3: The structural congruence for processes.

RDF and other data formats, by allowing common data structures to be encoded in RDF without

introducing new URIs. Blank nodes are indicated by a quantifier for names, similarly to N3

logic [23]. The scope of the quantifier indicates the RDF content in which a blank node is

bound. Bound names represent blank nodes, whereas unbound names represent URIs.

The structural congruence is extended to blank node quantifiers in Fig. 3.3. The first rule allows

blank nodes to be eliminated if they bind nothing. The second rule allows the order of two

quantifiers to be swapped. The third rule allows a blank node to be distributed across some RDF

content where the name does not occur. The blank node rules preserve the free URIs in RDF

content.

As standard, bound names can be α-converted. This avoids name clashes between blank nodes.

Content where only blank nodes differ are equivalent, by α-conversion. This is a syntactic

approach to the graph isomorphisms defined in the RDF standards. Like α-conversion, the graph

isomorphisms preserve the structure and URIs but allow the blank nodes to change [78, 13].

3.2.2.3 An operational semantics for atomic updates.

The behaviour of an update at the level of the syntax is captured by operational semantics. A

preliminary draft of an operational semantics for SPARQL Update was published in October

2010 [53]. The operational semantics presented elaborates the draft. A fine grained operational

semantics for updates are specified using atomic actions.

Atomic actions are specified as a relation over processes called the commitment relation. The

process on the left of the relation is exactly the processes used by the action. The process on

the right of the relation is exactly the processes after the action. Thus a commitment relation

describes only the local behaviour of an update.

A similar approach is given by commitment relations in the π-calculus [98], discussed further

in Sec. 3.4. In the π-calculus there is one type of commitment – the passing of a name on a

channel. Coordination of Web Services motivates extending the commitments to include the

Chapter 3 Reduction Systems for Read–Write Linked Data 55

Delete axiom: C v D
C M D⊥ � ⊥

Insert axiom: C � C Query axiom: C v D
|D|MC � C

Filter axiom:
� φ
φ� ⊥

Continuation rule: PM U � R
PM (U ; Q) � RM Q

Choose left rule:
PM U � Q

PM (U ⊕ V) � Q
Choose right rule:

PM V � Q
PM (U ⊕ V) � Q

Select name rule:
PM U

{
b/a

}
� Q

PM
∨

a.U � Q
Select variable rule:

PM U{v/x}� Q
PM

∨
x.U � Q

Tensor rule:
PM U � P′ QM V � Q′

PM QM (U ⊗ V) � P′ M Q′
Weakening axiom: ∗U � ⊥

Dereliction axiom:
PM U � Q
PM ∗U � Q

Contraction axiom:
PM (∗U ⊗ ∗U) � Q

PM ∗U � Q

Context rule: P � P′

PM Q � P′ M Q Blank node rule:
PM Q � P′ M Q′∧

a.PM Q �
∧

a.P′ M Q′
a < fn (Q)
a < fn (Q′)

Figure 3.4: The axioms and rules for atomic commitments.

tensor product of channels [31]. SPARQL provides a compelling reason to extend commitments

to all updates. The commitment relation � is defined in Fig. 3.4.

The delete axioms. A simple interaction is when an update deletes a triple and the triple is

available to delete. For instance, the delete and triple below are expected to interact. The result

of the interaction is that the delete and the matching triple are consumed. The following is an

instance of the delete axiom.

(doc1 creator Burns)⊥ , (doc1 creator Burns) � ⊥

The axioms of Linear Logic and the atomic commitments of CCS are of a similar form [55, 96],

as discussed further in Sec. 3.4 and 3.5. Note the syntactic convention of using a comma for M.

The insert axiom and query axiom. RDF to be stored after an update appears on the right

of a commitment relation. There are two ways in which RDF can appear on the right. The first

scenario is that a triple is inserted into a store. This is captured by the insert axiom. The insert

axiom states that some RDF intended to be stored is stored by a successful update.

The second scenario is that some stored RDF can be used to answer a query. The stored RDF

then returned to the store unaltered. For instance, the following example consists of a stored

56 Chapter 3 Reduction Systems for Read–Write Linked Data

triple and a query asking for that triple. The query is answered and the triple remains stored.

|(doc1 creator Burns)| ,
(doc1 creator Burns)

� (doc1 creator Burns)

The syntax for an insert is the same as the syntax for some stored RDF. Therefore a trivial up-

date which inserts some RDF is used to model stored RDF. Other SPARQL Query results may

be modelled similarly to inserts, by indicating the results on the right of the commitment rela-

tion. Related calculi investigate updates and queries over inserted data as concurrent constraint

satisfaction problems for Web Services [36, 124].

The tensor rule. The tensor rule forces two updates to occur in the same commitment. The use

of tensors meets a requirement of SPARQL Update that a delete and insert can occur atomically.

Atomic actions which combine deletes and inserts avoid the need to reverse an insert, when a

delete fails.

Another requirement met by the tensor product is that updates can be dependent on queries. The

following example demonstrates the tensor product of an insert and a query. The available triple

is adequate for the query, so the insert takes place. Both the stored triple and the inserted triple

persist, so are composed after the transaction. |(doc1 title ‘Links’)|
(doc1 creator Burns)

 , (doc1 title ‘Links’) �
(doc1 creator Burns) ,
(doc1 title ‘Links’)

The tensor rule splits a query into two updates which can be resolved in separate locations. For

instance, in the above query the two parts of the tensor can be resolved on different machines

in a cluster of servers. Thus, the tensor product serves the same purpose as join in relational

algebra [67, 43]. The tensor rule also appears as the rule for multiplicative conjunction (times)

in Linear Logic (discussed further in Sec. 3.5.4), and as atomic commitments in process calculi

for Web Services [31].

The choose rules. Choice allows the programmer to specify several possible updates. The

example below asks for a triple where the predicate is one of two options. The branch with the

query which matches the available data is chosen. This is an external choice dependent on the

available data. 
(doc1 creator Burns)⊥

⊕

(Burns is author of doc1)⊥

 , (Burns is author of doc1) � ⊥

Chapter 3 Reduction Systems for Read–Write Linked Data 57

If both branches of a choice can be enabled, one is chosen non-deterministically. The choose

rules correspond to the rules for additive disjunction (plus) of Linear Logic and an external

choice in process calculi for Web Services [37], see Sec. 3.4 and 3.5.5.

The select rules. Most constructs work at the level of triples. Quantifiers are required to access

names within triples. The select name rule works by substituting a name for the quantified name.

For instance, in the example below the bound name a is replaced by person. This particular

substitution allows the query to be answered and determines the name in the triple inserted.

∨
a.

 |(doc1 creator a)|
(Hamish knows a)

 , (doc1 creator Burns) �
(Hamish knows Burns) ,
(doc1 creator Burns)

The effect above is that the substituted name is passed from the triple to the update. This is also

the effect of the atomic commitments of the π-calculus [98]. The commitments of the π-calculus

are decomposed into: a select which inputs the name; tensor which composes a continuation;

and ask which poses a guard. By replacing triples with channel-value pairs and inserts with

processes, the π-calculus can be recovered, as investigated by Miller [72] and in Sec. 3.4.1.4.

The select literal rule substitutes literals for variables. As above, this captures the passing of

literals from triples to updates. Value passing is achieved by atomic commitments in the applied

π-calculus [1]. The select rules match the rule for first-order existential quantification (some) in

Linear Logic (see Sec. 3.5.5 for discussion).

The continuation rule. The continuation rule is used to provide a high level model of query

results. In official specifications, the SPARQL Query Results Format is used to return the results

of a query as an XML message. The message can then be parsed and used in a process. In

this model, the passing of query results as a message is abstracted away. Instead a continuation

process is provided which receives the results of a query directly as a substitution.

The continuation rule makes the guarded process available after the atomic commitment. For

instance, consider the query below, which is adapted from the concrete query in Section 3.2.2.

∨
a.

∨b.

 |(show2011 exhibitor b)|

|(b product a)|

 ; P

 ,
(show2011 exhibitor Penguin) ,
(Penguin product collection)

�

P
{
collection/a

}
,

(show2011 exhibitor Penguin) ,
(Penguin product collection)

In the above example P represents some continuation process in which the name a appears free.

The name a is bound by a select quantifier, which also binds a name in the query. The result is

that the value which is used to answer the query is also passed to the continuation. The second

select quantifier does not bind the continuation process, hence is used to answer the query, but

not to provide results.

58 Chapter 3 Reduction Systems for Read–Write Linked Data

The constraint satisfaction relation. In general constraints form a Boolean algebra. True

formulae are indicated by � the constraint satisfaction relation. The definition of the constraint

satisfaction relation is left to the SPARQL Query standards [115, 66]. For instance, the constraint

below is satisfied when x is at least 20 years before the current year. Select substitutes x for

‘1987’, enabling the following commitment.

∨
a.
∨

x.


|(a year x)|
(year-now − x > 20)

(a copyright open)

 , (paper year 1987) �
(paper year 1987) ,
(paper copyright open)

An equality comparison over names is another form of constraint. The tensor product of an

equality comparison and an update captures ‘match’ found in common process calculi [98, 1].

The constraints true and false are the top and bottom elements of the Boolean algebra. True

always holds, so true is embedded as the multiplicative unit in Linear Logic (see Sec. 3.5.4 for

discussion). False never holds, so like the additive zero in Linear Logic, no rule can be applied.

The embedding of Boolean algebras in Kleene algebras is elaborated by Kozen [84].

The rules for iteration. Without iteration updates are only applied once. This enables a proto-

col where the programmer requests an update. The user then observes the commitment relation.

If the update was not as the user intended, the update can be revoked. Then the next update is

observed until the user is satisfied. Caution is exercised when the exact update is difficult to

express or the content to update is not certain. When a user is certain that the update is intended,

the update can be applied iteratively. The replace tool in the reader’s text editor probably has

similar functionality.

To apply an iterated update zero times, the weakening axiom is used. To apply an iterated

update once, the dereliction rule is used. To apply an iterated update twice, the contraction rule

creates two copies of the update combined using the tensor product. The tensor product ensures

that both copies occur in the same commitment. The example below demonstrates two nested

iterations. The outermost applies twice, the innermost applies both once and twice.

∗
∨

a.

 |(a status hidden)| ,

∗
∨

b.(a knows b)⊥

 ,
(Alice status hidden) ,
(Bob status hidden) ,
(Alice knows Bob) ,
(Alice knows Chris) ,
(Bob knows Chris)

�
(Alice status hidden) ,
(Bob status hidden)

Iteration is the Kleene star in regular algebra. A classic result is that nested iteration can be

represented by a single iteration [41, 84]. However, quantifiers ensure that the example above

cannot be expressed without nested iteration. The SPARQL Query recommendation does not

have nested iteration, so cannot express the corresponding query [115].

Chapter 3 Reduction Systems for Read–Write Linked Data 59

Iteration is not replication in process calculi. Iteration defines a single commitment of an un-

bounded size; whereas replication persists a process across an unbounded number of commit-

ments [98]. The use of contraction, dereliction and weakening is similar to the exponentials

in Linear Logic (see Sec. 3.5.6), but does not correspond to either. Iteration has been used by

Hoare and Kozen to specify unbounded behaviour, such as while loops [71, 84].

The context rule and blank node rule. To query and update blank nodes, the blank node

rule is introduced. The trick is to replace a quantified name with a temporary free name. This

allows the quantifier to be removed and the rules of the calculus to be applied as if there were no

quantifiers. This makes the traditional process calculus equivalences for quantifiers superfluous;

but they are included anyway to make the calculus more familiar to readers with a background

in process calculus.

The temporary name is chosen to be fresh in the context. By choosing a fresh name, the name

can be tracked before and after the commitments. This ensures that the same name that was

quantified before is quantified after, as expressed by the first blank node rule. The blank node

rule is similar to universal quantification in Linear Logic and new name quantification in the

π-calculus [55, 98].

The example below demonstrates a query which discovers a blank node. The ‘blank node’ rule

uses a temporary name to represent the blank node. The result is that the scope of the blank

node quantifier is extended to include the continuation, which receives the blank node.

∨
c.(|(c creator b2)| ; P) ,∧
a.((a creator b2) , (a status open))

�
∧

a.
(
P
{a/c

}
, (a creator b2) , (a status open)

)
The unused stored triple is idled using the context rule.

Alias assumptions in queries. Working with aliases for URIs is a key problem in Linked

Data [9]. Aliases arise since different data sources use different URIs for similar purposes. For

instance, in the context of a song, predicate lyricist may be more specific than predicate creator

(see subPropertyOf in RDFS [33]). Similarly, song0 and song1 may be URIs for the same song

(see sameAs in OWL [9]). Hence the aliases lyricist v creator and song0 v song1 may be

assumed. The application specific set of alias assumptions is referred to as β. The transitive

reflexive closure of β gives rise to a preorder (v) over URIs, which extends point-wise to triples,

as defined in Fig. 3.5.

The following example demonstrates the interaction of a query with a stored triple, where the

names are not exact matches. The conditions for a match are relaxed by the preorder over triples.

The alias assumptions for this example are those introduced above.∨
a.
(∣∣∣(song1 creator a

)∣∣∣ ; P
)
,
∧

b4.
(
song0 lyricist b4

)
�

∧
b4.

(
P
{
b4/a

}
,
(
song0 lyricist b4

))

60 Chapter 3 Reduction Systems for Read–Write Linked Data

a v a
a v b b v c

a v c
a v b ∈ β

a v b
a v b p v q c v d

(a p c) v (b q d)

Figure 3.5: The preorder over URIs extended to triples: reflexivity, transitivity, alias assump-
tion, and refine triple.

Note that a side condition must be added to the blank node rule to avoid aliases being applied to

bound names. In this example b4 cannot appear in the alias assumptions. i.e. b4 < fn (β). This

could alternatively be achieved, by using distinct identifiers for bound names and URIs.

3.3 Features for Syndication

The core calculus focusses on fine grained updates, where updates act at the level of individual

triples. This section considers a coarser level of granularity. A coarser granularity of data divides

a store into regions, where each region contains triples. Each region can be considered separately

from other regions. Regions impact the querying of data by allowing queries to be directed at

particular regions. Regions also enable a coarser level of update, where entire regions become

atomic units.

This section argues that two key Web technologies work at the granularity of regions — feeds

and named graphs [125, 38]. At a suitable level of abstraction, feeds and named graphs can be

queried and updated in one model. The model demonstrates that several key standards for feeds

and named graphs enable a programming language for Linked Data. Furthermore, prominent

examples of feeds and named graphs suggest several useful scenarios, including syndication

and provenance. Both syndication and provenance have been found to be essential for a Web of

Data, where separate authorities contribute separate data.

3.3.1 Extensions for named graphs

Named graphs are introduced as a minimal extension to RDF such that a large monolithic knowl-

edge base, consisting of a single RDF store can be divided into smaller stores, each individually

named [38]. The name of the graph is a URI, which can be liked to like any other URI. The

RDF associated with the name of a graph, can describe the nature of the knowledge represented

by the graph. Applications including provenance and access control have lead to the widespread

acceptance of named graphs. Named graphs are primitive in SPARQL Query and SPARQL

Update [66, 53].

The following is an example of two named graphs. The example is expressed in the TriG syntax,

an extension of the Turtle syntax [38]. The first graph contains some RDF data. The second

graph contains some RDF data about the first graph. This enables the user make decisions based

Chapter 3 Reduction Systems for Read–Write Linked Data 61

GF GaP named graph
| P default graph
| G MG par
| ⊥ nothing

Figure 3.6: An extended abstract syntax for named graphs.

on the source of the RDF. The user may trust RDF with provenance eg:G1 and use that directly,

ignoring data in eg:G2. Alternatively, the user may trust RDF with provenance eg:G2 on the

subject of whether to use data in eg:G1.

eg:G1 {

_:Monica eg:name "Monica Murphy" .

_:Monica eg:email <monica@murphy.org> .

}

eg:G2 {

eg:G1 eg:author eg:Chris .

eg:G1 eg:date "2003-09-03"ˆˆxsd:date

eg:G1 eg:disallowedUsage eg:Marketing.

}

The above example features URIs and blank nodes. Identifiers with prefix eg: are URIs in

some example namespace. The identifier with prefix : represents a blank node. A constraint

placed on named RDF graphs is that blank nodes are local to each individual named graph. This

preserves the integrity of data structures encoded in named graphs.

3.3.2 An abstract syntax for named graphs

The abstract syntax of RDF content (from Fig. 3.1) is extended with named graphs. The syntax

of graphs indicates both named graphs and unnamed RDF content. Named graphs are repre-

sented by a prefix with a subscript indicating the name, called the naming operator. RDF con-

tent without a naming operator represent the default graph, which allows RDF to be published

without the named graph mechanism. The example from the previous section is expressed be-

low in the abstract syntax. The blank node quantifier binds the name Monica in the first graph.

However, the name G1 is not bound by the naming operator so can be linked to from the second

62 Chapter 3 Reduction Systems for Read–Write Linked Data

Ga(PM Q) ≡ GaPM GaQ

Figure 3.7: The structural congruence extended for naming operators.

graph.

GG1


∧

Monica. (Monica name ‘Monica Murphy’) ,
(Monica email monica@murphy.org)


 ,

GG2


(G1 author Chris) ,
(G1 date ‘2003-09-03’) ,
(G1 disallowedUsage Marketing)


The above example shows that par, abbreviated by comma, is used as before to compose triples

and also graphs. The structural congruence over RDF content, in Fig. 3.3, ensures that par and

nothing form a commutative monoid. The structural congruence extends, in Fig. 3.7 to naming

operators. A named graph can be split into two pieces each with the same name. This is for

the purpose of fine grained updates, as only the part of a graph required for an update need be

considered. The naming operator and the quantifiers do not commute, so blank nodes remain

within their designated graph.

Related work constrains named graphs so that the boundaries of a named graph are fixed [38].

For instance, knowing the boundaries of a named graph enable the named graph to be com-

pletely dropped from a store, as in the drop operation of SPARQL Update [53]. This structural

constraint is a perpendicular concern to this work. Similar constraint on global structure are tack-

led, for instance, in dynamic epistemic logic as structure preserving maps [14]. Stronger preser-

vation of structure is extensively researched in the context of the Web using ontologies [74].

This work focusses on Linked Data without such a global perspective on structure.

3.3.3 SPARQL Update over named graphs

Queries and updates also work in the named graph setting. The abstract syntax for updates,

in Fig. 3.2, is extended to named graphs, by replacing RDF triples (from Fig. 3.1) with quads,

which are triples prefixed by a named graph modality. The same rules for atomic commitments

(in Fig. 3.4) work for named graphs.

The SPARQL Update submission describes an update, where the title of a book is replaced by a

new title [126]. This example is captured by the commitment relation below. The delete axiom

removes a triple from a graph, the insert axiom inserts the new triple in to the graph and the

tensor rule ensures the delete and the insert happen synchronously. The presence of the naming

Chapter 3 Reduction Systems for Read–Write Linked Data 63

GbPM Q � GbP′ M Q′

Gb
∧

a.PM Q � Gb
∧

a.P′ M Q′
a < fn (Q,Q′, b)

Figure 3.8: Commitments extended for blank nodes in named graphs.

prefix makes no difference to the rules. Gstore(book3 title ‘Designs’)⊥

Gstore(book3 title ‘Design’)

 ,
Gstore(book3 title ‘Designs’)

� Gstore(book3 title ‘Design’)

The largest example given in initial SPARQL Update drafts can now be expressed [126]. The

update combines a query which finds the date of a book, a filter which checks the date is in a

certain range, and an iterated update on books in that range. The iterated update will only trigger

if the query and filter are satisfied. The iterated update moves triples about a book across from

one graph to another graph, by combining a delete and insert. The example can be expressed in

the abstract syntax, as follows.

∗
∨

d.
∨

book.
(d ≤ ‘01-01-2000’)

|Gstore1(book date d)|

∗
∨

a.

 Gstore1(book note a)⊥

Gstore2(book note a)



 ,
Gstore1

 (Kidnapped date ‘01-05-1886’) ,
(Kidnapped note classic)


�
Gstore1(Kidnapped date ‘01-05-1886’) ,

Gstore2(Kidnapped note classic)

The above example is compact compared to the example in the draft concrete syntax. The

presentation here is enabled by the constructs in the abstract syntax, whereas a single compound

construct is used in the concrete syntax.

3.3.4 Updates for named graphs with blank nodes

The second blank node rule ensures that a blank node which originates in an named graph is

returned to the same named graph. The extra mix rule allows triples in the scope of a blank node

which are not used in a commitment to idle.

The following example demonstrates an update which involves a blank node in a named graph.

The name of the blank node in the graph is replaced by a temporary name. The temporary name

is discovered by the select quantifier as normal. A new triple with the temporary name is inserted

into the same graph as normal. The blank node rule ensures that the temporary is bound after

64 Chapter 3 Reduction Systems for Read–Write Linked Data

the commitment.∨
person.

∨
x.
∨

y.
∣∣∣Ggraph1(person nickname x)

∣∣∣
Ggraph1(person email y)

(y = concat(x, ‘@soton.ac.uk’))

 ,
Ggraph1

∧
a.(a nickname ‘Rabbie’)

� Ggraph1
∧

a.

 (a nickname ‘Rabbie’) ,
(a email ‘Rabbie@soton.ac.uk’)


In the example the blank node does not leave the graph. Suppose that instead the update inserts

the new triple into a different named graph. In this case the update cannot be applied since the

blank node would appear free in another graph. The side condition would be violated.

3.3.5 Feeds as a ubiquitous syndication format

RDF is the format standardised by the W3C, however feeds are ubiquitous on the Web. Like

RDF, feeds are a semi-structured data format which identifies resources using URIs. The two

ubiquitous feed formats are RSS and Atom. RSS was originally created by Netscape and comes

in several varieties. Atom has the same purpose as RSS but is standardised [125, 104]. Atom has

been adopted by Google for its Google Data protocol, which shares data between applications.

Feeds are particularly suited to syndication. Syndication is the strategy of delivering data to the

intended audience on demand. Feeds typically represent the view point of some authority. A

BBC News feed on Africa contains data representing the viewpoint of the BBC on the topic of

news in Africa. A user who is interested in that viewpoint can obtain that feed on demand. The

user can answer questions such as, “According to BBC News on Africa, what are the headlines

today?”

3.3.5.1 A history of feeds.

The history of feeds highlights the close connection between feeds and named graphs. Feeds

were initially introduced for structuring the metadata about Web sites. The first significant

version was introduced by Netscape in 1999. There have been two major branches of the RSS

format. The first branch explicitly uses and RDF format where as the second branch uses a

more direct XML format. A lot of fuss was made about the technical incompatibilities of the

various formats. However, for the purpose of this work the idea behind all formats is the same.

It is presumed that most technical difficulties can be resolved by the compiler in a high level

language.

Chapter 3 Reduction Systems for Read–Write Linked Data 65

A coherent line of thinking behind feeds can be seen in the work of Guha [62]. His thesis

draws from Cyc project which was an early attempt at computing using knowledge. His thesis

acknowledges some problems associated with a project which attempts to assemble a single

knowledge base of everything that is common sense. The problems highlighted, which are as

old as philosophy, is that knowledge and the language used to describe knowledge, is subjective.

There cannot be one general purpose knowledge base hence. Indeed the idea of a common

sense is an objective myth. Guha’s thesis builds a theory of contexts, where any representation

of knowledge also indicates the context of the given knowledge.

According to Guha, a context structure indicates the context in which some knowledge holds. He

gives the example sentence, “The king of France is bald.” The sentence has little relevance in the

context of modern politics, but is relevant in the context of a play about the French revolution.

Guha then produces a logical theory of knowledge in contexts. The idea of the meaning of

language being dependent on context is central to the Language Games of Wittgenstein which

were later modelled by Hintikka [133, 69]. However the work of Guha is distinguished for its

rôle in computer science. The necessity of contexts was driven by an application which is a

precursor to the Web of Data. In his capacity at Netscape Guha applied the idea in an accessible

form by inventing RSS feeds.

The later work of Guha re-evaluates contexts for their rôle in the Web of Data [63]. This re-

evaluation is performed as part of the TAP project, under the slogan “Towards a Web of Data.”

At this point the language of feeds and the language of the Web of Data fold into one. Feeds

are data on the Web. Feeds were inspired by contexts which were shown to be necessary by

experience in early projects similar to the Web of Data project. The result is that a ubiquitous

form of data on the Web can be found in feeds [60]. This work therefore argues that feeds are

part of the Web of Data.

3.3.5.2 An example feed.

The following is an example of the Atom Syndication Format. Notice that the feed and the entry

are identified by URIs, which are abbreviated here as eg:feed id and eg:entry id. The tags such

as title and updated are also URIs indicated by the XML namespace.

<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example Feed</title>

<link href="http://example.org/"/>

<updated>2003-12-13</updated>

<author>

<name>John Doe</name>

</author>

<id>eg:feed_id</id>

<entry>

66 Chapter 3 Reduction Systems for Read–Write Linked Data

<title>Example Entry</title>

<link href="http://example.org/03"/>

<id>eg:entry_id</id>

<updated>2003-12-13</updated>

<summary>Some text.</summary>

</entry>

</feed>

The above example can be represented using named graphs and blank nodes as follows. The

entries are translated into triples and form the content of a named graph. The triples associated

with the feed are part of the default graph. The XML style above does not indicate a URI for the

author of the feed. Below the implicit author is represented by introducing a blank node.

∧
Doe.

 (Doe name ‘John Doe’) ,
(feed id author Doe)

 ,
(feed id title ‘Example Feed’) ,
(feed id updated ‘2003-12-13’) ,
(feed id link http://example.org/) ,

G f eed id


(entry id title ‘Example Entry’) ,
(entry id link http://example.org/03) ,
(entry id updated ‘2003-12-13’) ,
(entry id summary ‘Some text.’)


The above syntax demonstrates one representation of Atom in RDF, however there is no standard

representation. Some varieties of RSS encode feeds using triples. However, named graphs are

primitive in SPARQL, so are suggested here as a representation of the content of a feed.

3.3.6 The Atom Publishing Protocol

For RSS an application implements its own update mechanism. In contrast, the Atom Publishing

Protocol extends Atom with a standard update mechanism [59]. The publishing protocol allows

new resources to be published and existing resources to be edited. The protocol works at the

low level of passing messages using an HTTP protocol. However, feeds can still be updated at

the high level offered by SPARQL. This section demonstrates a high level update of a feed and

outlines the corresponding low level operations which realise the high level update.

The Atom publishing protocol specification allows variations on the basic protocol. The example

in this section features a main feed of articles and comment feed linked to each entry of an article.

Firstly, a feed is declared such that initially it contains no resources. The data associated with

Chapter 3 Reduction Systems for Read–Write Linked Data 67

the feed indicates the author of the feed and a title for the feed.

(feed author Hamish) ,
(feed title ‘Caucasus reported’) ,

Gfeed⊥

The first update, defined below, creates a new article in the feed and an empty comment feed to

go with the article. The comment feed is linked to the new article. The triple associated with

entry indicates a title and a modification date.

Gfeed


(entry title ‘Invaded’)

(entry updated ‘01-02-2008’)

(entry comments discussion)


(discussion subject entry)

Gdiscussion⊥

A second update, defined below, changes the title and the date the feed was updated. The update

first discovers the old title and old date using select quantifiers. The update then deletes the old

triples and inserts the new triples.

∨
s, d.Gfeed

 (entry title s) ,
(entry updated d)

⊥
Gfeed

 (entry title ‘Ossetia invaded’) ,
(entry updated ‘02-04-2008’)


A third update creates a new comment in the comment feed associate with the entry. A query

discovers the relevant comment feed and a new entry is inserted in that comment feed. The new

comment is identified by a blank node rather than a URI.

∨
discussion.

∣∣∣Gfeed(entry comments discussion)
∣∣∣

Gdiscussion

∧
reaction.
(reaction content ‘Why?’) ,
(reaction author Dmitri) ,
(reaction updated ‘05-04-2008’)



68 Chapter 3 Reduction Systems for Read–Write Linked Data

The updates can be applied to the initial configuration. By applying the operational semantics

the results is the configuration bellow.

(feed author Hamish) ,
(feed title ‘Caucasus reported’) ,

Gfeed


(entry title ‘Ossetia invaded’) ,
(entry updated ‘02-04-2008’)

(entry comments discussion) ,

 ,

Gdiscussion

∧
reaction.
(reaction content ‘Why?’) ,
(reaction author Dmitri) ,
(reaction updated ‘05-04-2008’)


This example demonstrates that the same language for updating named graphs can be used to

update feeds. The underlying operations of a publishing protocol can realise these updates.

Operations of the protocol are described by the verbs post, put and get as found in a REST

protocol [48].

The underlying REST operations can be outlined as follows. The first update corresponds to

posting an entry to the feed and posting a new feed to the store. The second update corresponds

to getting the entry and putting it back in its updated form. The third entry corresponds to getting

the entry, evaluating a query and posting a new entry in the comment feed.

This example demonstrates that other semi-structured data formats, such as Atom, are compati-

ble with RDF. It also demonstrates that SPARQL Update can be realised by the operations of a

lower level protocol. The details of the low level protocol are hidden from the programmer. Re-

lated work demonstrates high level operations encoded using low level operations in the setting

of Web Services [31].

3.4 A Comparison to Established Process Calculi

Concurrency can be modelled in many ways. One of the most prominent methods is to use a

process calculus. Process calculi have the advantage that they are defined syntactically using

techniques accessible to software engineers. This contrast to denotational models of concur-

rency which tend to employ non-standard mathematics which is not universally understood.

The calculus in this work is not an extension of any existing calculus known to the author. It

is however related to many existing process calculi. Here the π-calculus is introduced as an

example of an established process calculus.

Chapter 3 Reduction Systems for Read–Write Linked Data 69

U B aa.P output action
| aa.P input action
| a(x).P bounded input action
| τ.P silent action
| U ⊕ U choice

P B U guarded process
| P ‖ P parallel composition
| 0 the empty process
| νa.P fresh name restriction

Figure 3.9: The syntax of guarded processes (U) and processes (P).

The π-calculus also serves as a reference point to further justify the calculus by demonstrating

that the new calculus introduced is more expressive than the π-calculus. The rules of the π-

calculus decompose into the same basic rules as the syndication calculus, but in a restricted

form. It is therefore necessary to introduce the syndication calculus as a new calculus, rather

than encoding the syndication using existing calculi.

3.4.1 An established process calculus

The π-calculus cannot claim to be definitive; in fact, since it was designed it has

become common to express ideas about interaction and mobility in variants of the

calculus. So it has become a kind of workshop of ideas.

Robin Milner 2001 [123]

For the reader who is less familiar with concurrency theory the most famous calculus is pre-

sented. The π-calculus has received a huge amount of attention since it was introduced by

Milner, Parrow and Walker [99]. The π-calculus was the first concise model of concurrency

with communication which is Turing complete.

Many variants of the syntax have been investigated, including subtle changes to the syntax

and extensions. More significantly, many variation on the semantics of calculus have been

investigated. A reduction semantics provides the most concise definition, which is compared

here to the reduction system of the syndication calculus. An alternative semantics for the π-

calculus, a labelled transition system which enables novel proof techniques, will be presented in

the next chapter.

3.4.1.1 A syntax for the π-calculus.

The syntax for the π-calculus is defined in terms of guarded processes and processes, as defined

in Fig. 3.4.1.1. The basic atoms of the syntax are names, which represent both channels on

which communication takes place and variables. Processes and guarded processes are mutually

recursively defined. This allows processes to appear as continuations to guarded processes.

70 Chapter 3 Reduction Systems for Read–Write Linked Data

Three actions are used to guard processes in the syntax. The actions are either the output action,

the input action or the silent action. A guarded process represents the intention to perform an

action, then proceed with the continuation process.

Input and output Actions. The output action represents the intention to output a name on

a channel. This is represented as a pair of names, where the first name is the channel and the

second name is passed on the channel. For instance, the following process is ready to send the

name b on channel a, and then the name c on channel b. The process P is the continuation after

both actions.

ab.bc.P

Input actions represent the intention to receive a name on a channel. This is represented as a

pair consisting of a name and a variable. The name represents the channel and the variable is a

place holder for any name that is to be received. The variable binds occurrences of the variable

in the continuation process.

For instance, the following process first receives a name on channel a, where the input replaces

the variable x. The name received is then used as a channel to send a name b. The name b is then

used to receive a further name. Both names received may appear in the continuation process.

a(x).xb.b(y).P

Choice and silent actions. A choice can be offered between two guarded processes. Only one

of the branches may proceed, where the chosen branch is determined by the action. For instance,

the following process provides two options. The first branch outputs the name b on channel a

and proceeds with process P. The second branch outputs the name c on channel a and proceeds

with Q.

ab.P ⊕ ac.Q

The silent action τ represents the ability to proceed autonomously. This action is silent because

no input or output need be observed for the action to occur. For instance, the following process

has the option of two silent actions. Because both silent actions are enabled, the process can

non-deterministically proceed with one of the continuations presented. This example is often

referred to as internal choice, since the reason for the choice of branch is unobservable.

τ.P ⊕ τ.Q

Parallel composition. Processes are built from guarded processes and the empty process. The

empty process indicates a terminated process. Parallel composition of processes allows two

concurrent processes to be expressed. Parallel composed processes can behave independently

or choose to interact when complementary actions are performed. For instance, the following

Chapter 3 Reduction Systems for Read–Write Linked Data 71

P ‖ Q ≡ Q ‖ P (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R) P ‖ 0 ≡ P

νa.(P ‖ Q) ≡ νa.P ‖ Q a < fn (Q) νa.νb.P ≡ νb.νa.P νa.0 ≡ 0

Figure 3.10: The structural congruence over processes.

process consists of two guarded processes composed in parallel. The two processes exhibit

complementary actions so are capable of interacting with each other.

a(x).xb.b(y).P ‖ ac.c(z).zd.0

Local names. The fresh name quantifier binds occurrences of a name in a process. The fresh

name quantifier guarantees that the name only occurs in the scope of the quantifier. Any oc-

currences of the same name outside the scope of the quantifier are distinct to occurrences of

the name within the quantifier. For instance, the two processes below each have a fresh name,

which is not known to any other process. In contrast, the name a is global so can be used for

interaction, as in the example above.

νb. (a(x).xb.P) ‖ νc.(ac.c(z).0)

In the example above, notice that the name c is restricted in the second process and also output

on the channel a. This allows the name local to the first process to be communicated to the

second process. To allow this communication the scope of the name c must be extended to the

first process. To understand how this process behaves the operational semantics are required,

which are defined in the next two sections.

3.4.1.2 A structural congruence for the π-calculus.

The reduction semantics for the π-calculus uses a structural congruence. A structural congruence

is a relation over processes which indicates processes which are regarded as equivalent. The

structural congruence assumed here is presented in Figure 3.10. A congruence is an equivalence

relation which can be applied in any context.

Parallel composition forms a commutative monoid with the empty process as a unit. This allows

processes to be reordered and the empty processes to be eliminated. This simplifies rules by

allowing processes which interact to be positioned next to each other in the necessary order.

For instance, in the process below the guarded processes which communicate on channel a are

positioned next to each other.

ab.0 ‖ b(y).Q ‖ a(x).P ≡ ab.0 ‖ a(x).P ‖ b(y).Q

72 Chapter 3 Reduction Systems for Read–Write Linked Data

τ.P −→ P ab.P ‖ ab.Q −→ P ‖ Q

P ‖ ab.Q
{
b/x

}
−→ R

P ‖ a(x).Q −→ R

P ‖ U −→ Q
P ‖ (U ⊕ V) −→ Q

P ‖ V −→ Q
P ‖ (U ⊕ V) −→ Q

P −→ Q
P ‖ R −→ Q ‖ R

P −→ Q
νa.P −→ νa.Q

Figure 3.11: A reduction system for the π-calculus: The τ rule, the communication rule, struc-
ture rule, the par context rule and the fresh name context rule.

The standard rule of alpha conversion can always be applied to names bound by the fresh name

quantifier. Alpha conversion allows name clashes to be avoided. The fresh name quantifier is

also allowed to dynamically change scope. The scope of the quantifier can change as long as

the free names in a process do not change. This is performed by three rules. The distributivity

rule for select quantifiers allows the scope of a name to distribute over a process in which the

name does not occur. The commutativity of quantifiers allows the scope of one quantifier to be

extended beyond the scope of another quantifier. The unit rule allows names quantified to be

eliminate when they quantify nothing.

For instance, in the following configuration the fresh name b is alpha converted so that it does not

clash with the b which appears free in the second guarded process. The name is then extended

over the second process. This means that the input and output on channel a are adjacent.

νb.ab.0 ‖ a(x).b(y).Q ≡ νc.(ac.0 ‖ a(x).b(y).Q) c < f nQ

The rules of the structural congruence can always be applied in rules wherever the parallel

composition and fresh name connectives appear.

3.4.1.3 Reduction semantics for the π-calculus.

The operational semantics of the π-calculus can be defined using a reduction system [73]. The

reduction system is express using relations over processes, written P −→ Q. The process on

the left indicates the process before the reduction; while the process on the right indicates the

process after the reduction.

The interaction rule. This version of the reduction system uses the rules presented in Fig-

ure 3.11. Conventionally, the choose rules, the select rule and communication rule are expressed

as a single rule. This single rule is derived in the following Lemma, using the rules in the figure.

This decomposition of the conventional communication rule into four simpler rules highlights

the close connection between the π-calculus and the new calculi introduced in this work. In this

work queries and updates are similarly decomposed to reveal essentially the same simple rules.

Lemma 3.1. (ab.P ⊕ U) ‖ (a(x).Q ⊕ V) −→ P ‖ Q
{
b/x

}

Chapter 3 Reduction Systems for Read–Write Linked Data 73

Proof.
ab.P ‖ ab.Q

{
b/x

}
−→ P ‖ Q

{
b/x

}
ab.P ‖ a(x).Q −→ P ‖ Q

{
b/x

}
ab.P ‖ (a(x).Q ⊕ V) −→ P ‖ Q

{
b/x

}
(ab.P ⊕ U) ‖ (a(x).Q ⊕ V) −→ P ‖ Q

{
b/x

}
�

The rule derived above defines the interaction between an input action and an output action

which share the same channel. In the interaction both the input action and the output action

are consumed. The name which is output is substituted for the variable in the continuation in

the input process. Thus the passing of a name from the output process to the input process is

modelled.

The following example of a process exhibits three interactions. Notice that two of the names

passed are used as communication channels.

a(x).xb.b(y).P ‖ ac.c(z).zd.0 −→ cb.b(y).P{c/x} ‖ c(z).zd.0

−→ b(y).P{c/x} ‖ bd.0

−→ P{c/x}
{
d/y

}
‖ 0

The silent action. The τ rule allows a silent action to be consumed, without requiring any

process to interact with. For instance, in the following transition the first branch is chosen,

without external communication. Both branches were however enabled so the choice is non-

deterministic.

τ.P ⊕ τ.Q −→ P

Context rules. The other rules could be described as meta-properties of processes calculi in

general. The structure rule allows the structural congruence to be applied to processes at any

point in a derivation. As discussed in the previous section, the structural congruence allows the

full range of interactions to take place. The two context rules allow an interaction to take place

in any process context. The context rules and structural rule allows a process which consists of

many concurrent processes to interact. For instance, the following example demonstrates three

process interaction in two different combinations.

νc.(ac.0) ‖ a(x).bx.0 ‖ b(y).Q −→ νc.(bc.0) ‖ b(y).Q

−→ νc.(Q
{
c/y

}
)

This completes a description of the key ingredients of the π-calculus. The literature on the

π-calculus is vast, so further examples can be readily obtained. The literature includes many

extensions of the calculus to tackle various applications. For instance, recursive processes and

replications of process allows long term behaviour to be described [99]. The calculus can be

74 Chapter 3 Reduction Systems for Read–Write Linked Data

extended to pass data as well as names, then applied to formalise security protocols [1]. More

elaborate extensions include calculi to model locations and XML trees, which has been used

to model Web applications [90]. Further relevant applications of the π-calculus are referred to

throughout this work.

3.4.1.4 Combining the expressive power of calculi.

The π-calculus can be tightly integrated with the syndication calculus introduced in this work.

A calculus more primitive than the π-calculus, such as the syndication calculus, is a powerful

tool for understanding process calculi.

The extension of the syndication calculus to include communication on channels is simple.

Firstly, extend the syntax of the syndication calculus to include channel–value pairs as well as

triples. So the atoms of the syntax for updates, U in Fig. 3.2, include the atoms aa and aa,

where a is a name. The following axiom is then included, extending the reduction semantics in

Fig. 3.4.

abM ab � ⊥

Notice that the above axiom has exactly the same form as the delete axiom. The only difference

is that the atoms are name–value pairs instead of RDF triples.

The π-calculus can now be translated into the extended calculus. Define the lifting, from the

syntax of Fig. 3.4.1.1 to the extended syndication calculus, as follows.

~a(b).P� =
∨

b.(ab ; ~P�)
�
ab.P
�

= ab ; ~P� ~τ.P� = I ; ~P�

~P ‖ Q� = ~P� M ~Q� ~P ⊕ Q� = ~P� ⊕ ~Q� ~0� = ⊥ ~νa.P� =
∨

a.~P�

The following theorem proves that the above encoding of the π-calculus in the extended syn-

dication calculus is correct. Both the π-calculus and its encoding have the same operational

power.

Theorem 3.2. P −→ Q iff ~P�� ~Q�, for π-calculus processes P,Q.

Proof. Lemma 3.1 proves that the compound interaction rule can be decomposed into the rules

provided in Fig. 3.11. Thus it sufficient to consider the reduction semantics for the π-calculus

provided in Fig. 3.11.

The structural congruence carries over immediately, for π-calculus processes. Thus P ≡ Q iff
~P� ≡ ~Q�, where the first structural congruence is in the π-calculus and the second is in the

syndication calculus.

Consider the τ axiom.
I � ⊥

I ; ~P�� ~P� iff τ.P −→ P

Chapter 3 Reduction Systems for Read–Write Linked Data 75

Consider the interaction axiom.

abM ab � ⊥

abM (ab ; ~Q�) � ~Q�

(ab ; ~P�)M (ab ; ~Q�) � ~P� M ~Q�

iff ab.P ‖ ab.Q −→ P ‖ Q

Consider the select rule.

~P� M ab ; ~Q�
{
b/x

}
� ~R�

~P� M
∨

x.(ax ; ~Q�) � ~R�
iff

P ‖ ab.Q
{
b/x

}
−→ R

P ‖ a(x).Q −→ R

The left and right choice rules and the context rule translate directly across. Thus, the remaining

case to consider is the fresh name context rule. Assume that a < fn (Q) ∪ fn (S) and note that

νa. (P ‖ Q) ≡ νa.P ‖ Q and νa. (R ‖ S) ≡ νa.R ‖ S hold.∧
a.~P� M ~Q�� ~R� M ~S �∧
a.~P� M ~Q�� ~R� M ~S �

iff
P ‖ Q −→ R ‖ S

νa. (P ‖ Q) −→ νa. (R ‖ S)

Thus, by structural induction, the π-calculus and the embedding of the π-calculus in the syndi-

cation calculus have the same expressive power. �

Notice that the last case also formalises an observation about the blank node rule. The proof

shows that, in the presence of the rule of the structural congruence which distributes quantifiers

over par, the form of the blank node context rule and the new name quantifiers are equivalent.

The more complex form of the blank node context rule is only required if that distribution rule

is dropped from the structural congruence. If the blank node distribution rule is dropped from

the syndication calculus, then it can still be derived as part of the algebra in the next chapter.

3.4.1.5 A foundation for Web Service Description Languages.

Tightly integrating the π-calculus with the syndication calculus also has a profound effect on

the application domain. It is well known that calculi which pass information on channels model

communication across a network. For instance, several Web Services may send each other

messages on channels. This message passing can be modelled by channel based process calculi,

such as the π-calculus [37]. Thus, by tightly integrating the syndication calculus with the π-

calculus, a foundation for a high level language for both Linked Data and Web Services is

provided. Here two examples of scenarios which can be captured in the extended calculus are

presented.

Passing SPARQL results on channels. The first example below models the passing of results

from queries on channel. The example is adapted from the introduction to this chapter, which

passes a result to a continuation process. Here channels are employed to perform the passing of

76 Chapter 3 Reduction Systems for Read–Write Linked Data

results to a continuation process P. The result of the transition is the same as the example in the

introduction, but more processes are employed to perform the operation.

(Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

eg:endpoint eg:return channel,∨
b.

eg:endpoint b

∨
a.


|(a p:club res:Gateshead F.C.)|

|(a rdf:type dbp:SoccerPlayer)|
b a



 ,∨
a.(eg:return channel a ; P)

�

(Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

P
{
Armstrong/a

}

The example above uses two channels eg:endpoint and eg:return channel, which are both URIs.

The first channel outputs the return channel. The query is composed with an input which receives

a channel on the channel eg:endpoint. This channel received is then used to return the URI

discovered by the query. A process P is guarded by a channel which inputs the URI passed on

the channel eg:return channel. The value passed on eg:return channel is the result of the query

Armstrong. Thus the effect is that the three processes and the stored triples are coordinated, such

that they pass the URI Armstrong to the process P.

In the above example the tensor product is used to combine the input and output channels with

the query. This ensures that all operations — the input, query and output — happen in the same

atomic transition. The above example can be made more asynchronous by using ‘then’ instead

of tensor. The result is the following configuration, which takes three steps to reduce to the same

Chapter 3 Reduction Systems for Read–Write Linked Data 77

configuration instead of one.

(Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

eg:endpoint eg:return channel,∨
b.

eg:endpoint b;∨
a.
|(a p:club res:Gateshead F.C.)|

|(a rdf:type dbp:SoccerPlayer)| ;

b a




,

∨
a.(eg:return channel a ; P)

� (Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

∨
a.


|(a p:club res:Gateshead F.C.)|

|(a rdf:type dbp:SoccerPlayer)| ;

eg:return channel a

 ,∨
a.(eg:return channel a ; P)

� (Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

eg:return channel Armstrong,∨
a.(eg:return channel a ; P)

� (Armstrong p:clubs res:Gateshead F.C.) ,
(Armstrong rdf:type dbp:SoccerPlayer) ,

P
{
Armstrong/a

}
Any transition that the first example above can make, the second example above can make that

same transition in zero or more steps. In this sense, the first synchronous process is stronger

(more deterministic) than the second asynchronous process. Note that this relationship is an

example of weak simulation, which is not investigated further in this work.

Using SPARQL to discover Web Services. The previous example demonstrates using Web

Services to pass information discovered using queries. Now consider the related scenario of

using queries to discover information about Web Services. The Web Service Description Lan-

guage (WSDL) is a W3C standard for publishing data about Web Services [32]. The information

in a WSDL document can easily be lifted to RDF [81]. This means that SPARQL can be used

to query WSDL to discover information about Web Services. The following example demon-

strates a process which uses some WSDL (lifted to RDF) to discover services then coordinate

an operation.

The following is an example of using WSDL to discover two services to used in a transaction.

One endpoint is ready to output a token; the other is ready to input a token. A process discovers

78 Chapter 3 Reduction Systems for Read–Write Linked Data

that the endpoints implement complementary interfaces and causes them to interact. The result

is that the token is passed from one endpoint to another endpoint. The prefix wsdl: abbreviates

http://www.w3.org/ns/wsdl-rdf# from the WSDL to RDF mapping [81].

(eg:serviceA wsdl:endpoint eg:endpointA) ,
(eg:serviceA wsdl:implements eg:offer token) ,
(eg:serviceB wsdl:endpoint eg:endpointB) ,
(eg:serviceB wsdl:implements eg:receive token) ,

eg:endpointA ‘The Token’,∨
y.(eg:endpointB y ; P) ,

∨
a, b, c, d.



|(c wsdl:endpoint a)|

|(c wsdl:interface eg:offer token)|

|(d wsdl:endpoint b)|

|(d wsdl:interface eg:receive token)|∨
x.
(

a x ⊗ b x
)


� (eg:serviceA wsdl:endpoint eg:endpointA) ,

(eg:serviceA wsdl:implements eg:offer token) ,
(eg:serviceB wsdl:endpoint eg:endpointB) ,
(eg:serviceB wsdl:implements eg:receive token) ,

P
{
‘The Token’/y

}
The above example is obviously a very simple example. Many Web Services will engage in

more complex exchanges of messages. Formal models for message exchange patterns have

been investigated as session types [37]. In future work, it would be possible to apply session

types to this extended calculus. Thereby the models of Web Services and Linked Data can be

tightly integrated.

3.5 A Comparison to Established Logics

Instead of teaching logic to nature, it is more reasonable to learn from her.

Jean-Yves Girard [56]

It is widely acknowledged that Linear Logic is one of the most exciting modern developments

in logic [50]. Indeed it challenges the definition of logic itself. Basic assumptions made by the

school of Tarski about the relationship between the syntax and semantics of logic, no longer

apply in Linear Logic [56].

Linear Logic was introduced by Girard [55], due to insight gained from his earlier work on cut

elimination for System F [54]. System F is a second order intuitionistic logic, which extends

intuitionistic logic with polymorphism. Cut elimination is a process of normalising proofs. For

http://www.w3.org/ns/wsdl-rdf#

Chapter 3 Reduction Systems for Read–Write Linked Data 79

b B x variable
| a name

A B (b b b) triples

P B A atoms
| P⊥ linear negation (nil)
| P ⊗ P multiplicative conjunction (tensor)
| PM P multiplicative disjunction (par)
| I multiplicative true (one)
| ⊥ multiplicative false (nothing)
| P & P additive conjunction (with)
| P ⊕ P additive disjunction (plus)
| > additive true (top)
| 0 additive false (zero)
|

∨
x.P additive existential quantification (some)

|
∧

x.P additive universal quantification (any)

Figure 3.12: A syntax for Linear Logic with triples as atoms.

intuitionistic logic, such as System F, normalisation corresponds to the evaluation of functions.

Normalisation of function is the essence of the operational behaviour of functional programming

languages.

Intuitionistic logics, such as System F, controls the use of the structural rules, which determine

the number of times a premise can be used. Linear Logic goes beyond intuitionistic logic by

demonstrating that common connectives can be decomposed into more fundamental operations.

The decomposition allows fine control over the use of structural rules, exposing new connectives.

The insight offered by Linear Logic has proven to be useful for developing logics for real systems

where the resources consumed are important, such as programming languages which manipulate

memory [106, 119]. Hence variants of Linear Logic are an ideal setting for investigating the

subtleties of update languages.

3.5.1 A syntax for Linear Logic.

The syntax of Linear Logic is built from atomic formulae. The choice of the formulae are

dependent on the application. For instance the atoms could be triples of names or variables,

where variables are place holders for names. In examples, triples are used as atoms to emphasise

that Linear Logic applies directly to RDF. This allows a more concrete intuition.

The syntax of Linear Logic with triples as atoms is presented in Fig. 3.12. Linear negation

can be applied to any formula. The meaning of linear negation is very different to negation in

classical and intuitionistic logics, as explained in Section 3.5.2.

The remaining constructs are classified into sub-logics. Firstly, there are the multiplicatives,

which form Multiplicative Linear Logic. Multiplicative Linear Logic is the restriction to the

logic (P, ()⊥,⊗,M, I,⊥), introduced in Section 3.5.4. Multiplicative Additive Linear Logic ex-

tends Multiplicative Linear Logic with the additive constructs (&,⊕,>, 0,
∨
,
∧

), introduced in

80 Chapter 3 Reduction Systems for Read–Write Linked Data

Section 3.5.5. Full Linear Logic is obtained by including the exponentials Why Not and Of

Course (?, !). However, these exponentials are not required for this work, so full Linear Logic is

not presented here.

3.5.2 Linear negation v.s. classical and intuitionistic negation

In Linear Logic any formula can be negated. The notion of negation in Linear Logic is very

different from negation in logics such as classical and intuitionistic logics. Here the differences

are informally discussed.

In classical logic negation is interpreted via Boolean algebras (most generally as the Boolean

algebra of sets that are both closed and open in a suitable topological space [130]). A Boolean

algebra has universe which dominates all other elements. If a formula is interpreted as a set in

a Boolean algebra then its negation is all elements in the universe which are not in the original

set.

For instance, take the universe to be all people affiliated to a research group. Now put all people

that label themselves as ‘practical’ in a set, then go around calling everyone in the complement of

the set ‘not practical.’ This leads to problems, since just because the someone was not explicitly

tagged as ‘practical’ in the data available it does not mean they are ‘not practical.’ Thus classical

negation is only suited to closed systems with complete information.

A problem in logic is that the law of the excluded middle does not necessarily hold. The law

of the excluded middle states that either a formula holds or does not hold. The failure of this

law was confounded by Gödel’s famous incompleteness theorem, which demonstrates that facts

are not necessarily provably true or false. The subtleties of the law had been anticipated by

mathematical philosophers, such as Poincaré and Brouwer [114, 34]. Intuitionistic negation

models negation using a bottom element. The bottom element, false, represents a contradiction.

To say that a formula is false is to say that it is refutable by counter example.

For instance, suppose that it is assumed that being labelled as both ‘practical’ and ‘theoretical’

is intuitionistically negated. Thus, if there is someone labelled both as ‘practical’ and as ‘the-

oretical,’ then a contradiction arises. But clearly there are scenarios where such a statement

should be allowed to hold. So in Linked Data, where a such constraints on data are subjective,

it is possible for constraints to be imposed which are not suited to all parties involved. Thus

intuitionistic negation is not suited to global systems.

Linear negation is more tolerant since no boundaries or constraints are imposed. Linear negation

identifies complementary pairs of formulae. The negation of a formula is the largest formula

which interacts perfectly with the formulae. If a formula demands that ‘you are practical’ then

the linear negation of the formula can simply consumes that information.

Chapter 3 Reduction Systems for Read–Write Linked Data 81

(PM Q)M R ≡ PM (QM R) PM ⊥ ≡ P PM Q ≡ QM P

Figure 3.13: The structural rules of Linear Logic: associativity, unit and exchange.

In the syndication calculus linear negation only applies to atoms. A future aim is to extend linear

negation to the entire calculus. The concept of linear negation has considerable depth as demon-

strated by its use for modelling particles and anti-particles in physics, which are complementary

rather than contradictory [134, 29, 12]. Linear negation is also used in models of hardware,

where linear negation is used to switch the direction of components [129].

3.5.3 Structural rules of Linear Logic.

The subtlety of Linear Logic arises from limiting the structural rules of the logic. The standard

structural rules used in logic are weakening, contraction and exchange. Weakening is dropped,

forbidding unused premises to appear. Also contraction is dropped, forbidding premises to be

used more than once.

Control of structural rules allows control of the number of times a formula is used in a proof.

The control of resources is useful for shared memory concurrency, where only locked resources

are considered. Hence control of structural rules is relevant to the concurrent updates of this

work. Control of resources is also useful for interaction where two endpoint interact, rather than

broadcast.

Having dropped weakening and contraction, the structural rule that remains is exchange. Ex-

change allows formulae which are composed by par to be swapped. Associativity is also per-

mitted for par. The unit of par is ⊥. Thus (P,M,⊥) a commutative monoid. Exchange and

associativity and the unit are captured by a structural congruence over formulae, presented in

Fig. 3.13. The structural congruence can be applied at any point in a logical deduction. This

style of presentation highlights connections with the other calculi introduced this work, which

use an identical structural congruence.

More subtle versions of Linear Logic restrict the use of these structural rules further, such as

non-commutative Linear Logics which can be used to model observations sensitive to time [134,

61]. Furthermore, Lambek discovered applications in linguistics, where restriction of the use of

associativity is required [85].

3.5.4 Multiplicative Linear Logic.

Firstly, consider the subsystem which consist of only the multiplicative connectives. The multi-

plicative connectives are analogues to the classical connectives ‘and’, ‘or’, ‘true’ and ‘false’ —

⊗, M, I and ⊥ respectively. Par and negation define linear implication P (Q B P⊥ M Q. This

82 Chapter 3 Reduction Systems for Read–Write Linked Data

` P⊥ M P
` PM R ` QM S
` (P ⊗ Q)M RM S

` QM P ` P⊥ M R
` QM R

Figure 3.14: A deductive system for multiplicative Linear Logic

definition of linear implication is similar to the definition of classical implication in classical

logic (P → Q B ¬P ∨ Q). The rules of the deductive system for Multiplicative Linear Logic

are presented in Fig. 3.14.

The De Morgan properties of the multiplicatives. The De Morgan properties in classical

logic reveals a duality between ‘and’ and ‘or’ with respect to ‘not’. This duality is lost in

intuitionistic logic; but is recovered again in Linear Logic. The De Morgan properties of Mul-

tiplicative Linear Logic are defined in Fig. 3.15. Each connective is De Morgan dual to another

connective.

The axioms. Given a formula, its linear negation is the weakest formula which interacts per-

fectly with the original formula. The basic axioms state that a formula and its negation inter-

act perfectly. These basic axioms are just the formulae of the form P (P, which are the

pure axioms of many constructive logics, such as Gentzen’s system LJ [51]. For instance,
(Jim is practical) and its negation interact perfectly. Thus their composition using par holds,

as follows.

` (Jim is practical)M (Jim is practical)⊥

The axioms of Linear Logic appears in two forms in this work in communication and in storage.

For communication, a formula ‘You are practical’ represents an output; while its negation repre-

sents the complementary input. The input and output interact consuming each other. For storage,

if the formula ‘You are practical’ represents a stored triple, then its negation is the formula that

deletes that fact. So the interaction of the stored triple and the delete command removes the

triple’. For instance, a delete looks as follows in the syndication calculus.

(Jim is practical)M (Jim is practical)⊥ � ⊥

It is clarified, using algebra in the the next chapter, that the above reduction axiom is equivalent

to the axioms of Linear Logic.

(
A⊥

)⊥
≡ A (PM Q)⊥ ≡ P⊥ ⊗ Q⊥ I⊥ ≡ ⊥

Figure 3.15: De Morgan properties for the multiplicatives.

Chapter 3 Reduction Systems for Read–Write Linked Data 83

The tensor product. The axioms show that par enables interaction. In contrast, tensor forbids

interaction. In the example bellow, the first two atoms are joined using tensor, thus the single

observer of those atoms expects both to be answered using disjoint resources. The third and forth

atoms are negated, hence offer the complementary observations. The par connective allows the

necessary interactions to validate this formula.

`
(
(Jim is theoretical)⊥ ⊗ (Jim is practical)⊥

)
M (Jim is practical)M (Jim is theoretical)

The separation imposed by tensor is useful for concurrency, since each of the premises can

be evaluated independently in parallel. The tensor product is used to synchronously compose

operations in the calculus in this work. For instance, the following reduction results in two

separate triples being synchronously deleted.(
(Jim is theoretical)⊥ ⊗ (Jim is practical)⊥

)
M (Jim is practical)M (Jim is theoretical) � ⊥

The algebra in the next chapter verifies that the tensor in the calculus is equivalent to the tensor

in Linear Logic.

The units. The units I and ⊥ are the units of ⊗ and M respectively. The unit ⊥ can always be

introduced in a formula using the unit rule of the structural congruence. The unit I holds as an

axiom since IM ⊥ is an axiom and IM ⊥ ≡ I.

In subtle variations of Linear Logic the units are equivalent, due to the mix rule [61]. However

in the calculus introduced in this work the units are distinguished. In the calculus, I is the unit

transition and equivalent to the top element of an embedded Boolean algebra. However, ⊥ is the

empty context which makes no transitions. The unit transition interacts perfectly with the empty

context, due to the following axiom instance.

` IM ⊥

The above axiom corresponds to the following reduction. The reduction holds due to the filter

axiom, since true is always satisfied, and since ⊥ is the unit of par.

IM ⊥� ⊥

The cut rule. The counterpoint to the basic axioms is the cut rule. The cut rule allows two

premises to be composed by cancelling out a formula in one premise and its negation the other

premise. The famous cut elimination theorem for Linear Logic states that the resulting conclu-

sion can be obtained without using cut [55]. The proof pushes the cut rule up through the proof

tree, interacting wherever possible, until it can be replaced by basic axioms.

Theorem 3.3 (Cut elimination). In Linear Logic, if a formula holds, then the same formula

holds without using the cut rule.

84 Chapter 3 Reduction Systems for Read–Write Linked Data

` >M P
` PM R

` (P ⊕ Q)M R
` PM R ` QM R
` (P & Q)M R

` P{a/x}M Q
`
∨

x.PM Q
` P{y/x}M Q
`
∧

x.PM Q

Figure 3.16: A deductive system for the additives: Top, Plus, With, Some and Any. y must not
appear free in the conclusion of the rule for Any.

The big question is where the cut rule appear in the syndication calculus. The answer is sub-

tle. In the current form linear negation does not extend to the entire calculus. Linear negation

does however extend to the fragment of the calculus which corresponds to Multiplicative Linear

Logic.

This suggests the following cut rule for the syndication calculus, defined below. P,Q, . . . are

arbitrary processes, while A is a formula in Multiplicative Linear Logic with triples as atoms.

PM A � P′ QM A⊥ � Q′

PM Q � P′ M Q′

This rule will be discussed in the next chapter, Sec. 4.6.4. It is argued that a soundness result in

the next chapter is a weak cut elimination result. The prospect of a full cut elimination result in

an extended calculus is also discussed. A full cut elimination result would demonstrate that the

model is more than just a calculus. . . it is also a logic.

3.5.5 Multiplicative Additive Linear Logic.

Multiplicative Linear Logic can be extended with additives. The rules for the additives have

a different intuition to the multiplicatives. The multiplicatives capture a control of usage of

resources intuition; whereas the intuition for the additives is a control of possible worlds.

Like the multiplicatives, the additives include analogues to classical conjunction, disjunction,

true and false — with, plus, top and zero, respectively. There are also the additive quantifiers

some and any which correspond to existential and universal quantification. The deductive sys-

tem for the additives are defined in Fig. 3.16.

De Morgan properties of the additives. The De Morgan properties of the additives are pre-

sented in Fig. 3.17. These rules state that additive conjunction is De Morgan dual to additive

disjunction, similarly to multiplicative conjunction and disjunction. The De Morgan properties

also apply to the units, where top and zero are De Morgan dual and some and any are De Morgan

dual.

Additive disjunction and conjunction. Plus ⊕ presents two branches, where only one branch

may be selected. Both branches are considered non-deterministically with respect to the same

context, but only one branch is chosen. Plus is choose in the syndication calculus.

Chapter 3 Reduction Systems for Read–Write Linked Data 85

With & presents two worlds that are simultaneously exists, but cannot interact. Both worlds

must hold in the same context. With can be seen as considering two possible computation paths

simultaneously. This can be useful for modelling a suspended choice in conventional computing,

and superposition in quantum computing.

Consider the example below of an additive conjunction and additive disjunction which interact.

With presents two possible worlds, one in which ‘Jim is theoretical’ and the other in which ‘Jim

is practical.’ Both worlds share the same context. The context is a choice of two branches. One

branch deletes ‘Jim is practical’ and the other branch deletes ‘Jim is theoretical.’ In both worlds

there is a suitable branch that can be chosen, so the formula holds.

` ((Jim is theoretical) & (Jim is practical))M
(
(Jim is practical)⊥ ⊕ (Jim is theoretical)⊥

)
It is possible to add the connective With to the syndication calculus. However, the interaction of

With and the continuation operators of the calculus is non-trivial. Hence, for clarity, this work

refrains from including additive conjunction in the syndication calculus. Additive conjunction

is discussed here for purely objective reasons, to show that a more complete calculus can be

obtained.

The additive units. The top element is defined by an axiom. The axiom states that in the

presence of > any formula holds. This axiom can be added to the syndication calculus. It

represents the process which does anything.

The program which does anything would be useful when the calculus is used for logical spec-

ifications. For instance, to ensure that a program deletes ‘Jim is theoretical’ but is also al-

low to simultaneously to anything else, it can be checked the program refines the specification

> ⊗ (Jim is theoretical)⊥.

There is no axiom for zero, which means that zero corresponds to the formula which never holds.

This corresponds to the false constraint in the syndication calculus. The false constraint forces

a deadlock.

The additive first-order quantifiers. The quantifiers Some and Any are the only way of ac-

cessing names and variables in atoms. The quantifiers are De Morgan dual, as with For All and

Exists in classical logic.

Some
∨

represents an infinite choice where the formulae can be satisfied under any substitution

of a variable for a name. This is particularly useful for defining programs which receive a name

(P & Q)⊥ ≡ P⊥ ⊕ Q⊥ >⊥ ≡ 0
(∨

x.P
)⊥
≡

∧
x.P⊥

Figure 3.17: De Morgan properties for the additives.

86 Chapter 3 Reduction Systems for Read–Write Linked Data

from some context. Some is used in the π-calculus for inputting a name, and in the syndication

calculus for discovering a URI in a query.

Any
∧

represents a formula which holds regardless of the choice variable. A temporary variable

is substituted for the quantified variable to represent the quantified name. The side condition

ensures that the temporary variable chosen does not introduce any new interactions; thus any

other variable or name could equally have been chosen. Any corresponds to the blank node

quantifier in the syndication calculus.

The following formula is an example of an interaction between Some and Any. The formula

on the left has two variables bound by the Any quantifier. In the formula on the right the

corresponding variables are bound by the Some quantifier. The two formulae interact. Variables

quantified using Any can only be addressed using Some in the following fashion.

`
∧

x.
∧

y.(x knows y)M
∨

a.
∨

b.(a knows b)⊥

The above formula corresponds to the following reduction in the syndication calculus. The

process demonstrates an update which discovers a triple where the subject and object are blank

nodes. The update then deletes that triple.∧
x.
∧

y.(x knows y)M
∨

a.
∨

b.(a knows b)⊥ � ⊥

The rule for blank nodes in the syndication calculus is slightly more involved. This is due to the

interaction of the blank node quantifier and the continuation operator.

3.5.6 The exponentials of Linear Logic.

Full Linear Logic extends Multiplicative Additive Linear Logic with modalities called exponen-

tials. The exponentials recover the structural rules of weakening and contraction. The exponen-

tials ensures that Linear Logic is sufficiently strong to embed intuitionistic logic.

In the calculi introduced in this work, a different style of exponential is used. Girard himself

acknowledges problems with exponentials, confounded by models of Linear Logic based on

Banach spaces, where exponentials are analytic (limits of power series) [55, 56]. He suggests

that a solution is to modify the rules of the exponential itself.

This work defines exponentials such that coproducts convert to tensor (Why Not converts co-

products to par). This results in exponentials which resemble the Kleene star of Kleene al-

gebra [41]. The Kleene star appears in the calculus as iteration. An alternative would be to

use least and greatest fixed point operators, which would increase the expressive power of the

calculus [11].

Chapter 3 Reduction Systems for Read–Write Linked Data 87

3.6 Conclusion on the Deductive System

The main inspirations for the reduction system are process calculi and Linear Logic. The in-

novation is to extend the sequent calculus of Linear Logic with an extra place holder which

accumulates the continuation process. The rules borrowed from Linear Logic provide a spa-

tial dimension, which allows large synchronous actions and interactions to be expressed. Syn-

chronous actions are required for complex updates. The innovative continuation provides a

temporal dimension to the calculus. Several connections between operational semantics and

Linear Logic have been attempted, but this presentation is new [18, 79, 72].

The match with Linear Logic is not exact, but several rules are almost identical. Half of the rules

borrowed from Linear Logic appear in an identical form on the left. The rules also accumulate

a monoid of continuations on the right of the sequent. These rules are the following: additive

disjunction, which models choice; the tensor product, which models the synchronous join of

updates and additive existential quantification, which models the input of a variable.

A rule similar to additive universal quantification is used to model local variables, called blank

nodes. The rule acts like universal quantification on both sides of the sequent. The additive zero

of Linear Logic appears as a false in the embedded Boolean algebra, while the multiplicative

true of Linear Logic appears as true in the embedded Boolean algebra.

The structural rules of the calculus, which ensure par is a commutative monoid, match the

structural rules of Linear Logic. Also, the basic axiom of Linear Logic appears as the delete

axiom, which permits the interaction of a triple and its complement.

However, par presents the most prominent departure from its Linear Logic analogue. The con-

text rule for par, taken from the π-calculus, means that a resource need not be used in the current

operational step. Instead the resource may be ignored and perhaps used in a subsequent opera-

tional step. This means that there is not an exact duality between tensor and parallel composition,

which is core to Linear Logic.

One way to resolve this is to decompose par into several operators, as in ACP [20]. Parallel

composition can then choose to commit to one of the four operations: a proper par operation

indicating interaction, a left merge operation, a right merge operation or a tensor product in-

dicating true concurrency without interaction. The left and right merge operations are defined

using the continuation operator ‘then.’

The main rule which appear in Linear Logic, but not in the syndication calculus is additive

conjunction. There are several ways to include additive conjunction in the calculus. Additive

conjunction provides interesting models of computation, where the intuition is multiple com-

putation paths which cannot interact. However such a feature is not obviously required for

modelling Linked Data, so is left as a note in this work.

It is worth noting that the section on Feeds is a relic of the original hypothesis of this work. The

original hypothesis was based on the observation that RDF had no update mechanisms, but had

88 Chapter 3 Reduction Systems for Read–Write Linked Data

suitable query languages and inference mechanisms. The Atom Publishing Protocol however

does have a standardised update mechanism, and also the expressive power to deliver RDF. The

idea was to demonstrate that RDF and Atom integrate seamlessly in a high level programming

language. The programming language would take the form of a controller that coordinates Atom

updates and SPARQL Queries, for the back end of a Web application.

This goal is achieved to a large extent. Unfortunately, there is no related work in the community

which pursues this line of work. Instead the trend, endorsed recently by Tim Berners-Lee is

to pursue updates by extending SPARQL Update [22]. This shift was relatively easy to make,

which explains the emphasis in this work on SPARQL Update rather than the Atom Publishing

Protocol. The SPARQL Update approach and the Atom Publishing Protocol approach provide

different levels of granularity of update, so can both be employed in different scenarios.

Chapter 4

Algebra for Read–Write Linked Data

This chapter investigates the algebraic properties of the syndication calculus. For background

material, the chapter beings with an introduction to the π-calculus, which follows on from the

reduction system for the π-calculus explained in the previous chapter. This introduces the con-

cepts of labelled transition systems and bisimulation equivalences.

These concepts are then applied to the syndication calculus. Due to a wider spectrum of possible

interactions, the syndication calculus demands a more expressive framework than the π-calculus.

The resulting algebra is also richer, uncovering some canonical algebraic structures which fre-

quently appear in computer science applications.

4.1 Motivating Examples for the Algebra

There are several reasons why an algebra for processes is desirable. Firstly, there is equivalence

checking. Equivalence checking is useful to programmers, who need confirmation that writing

a process in different ways has the same meaning. If two programs are not the same, then an

algebra may be used to show that one process is more deterministic than another process. The

more deterministic process is a refinement of the original process; hence can be used in a more

specific situation.

An algebra is important for the development of efficient compilers for languages based on the

calculus. Two programs may have the same operational behaviour, but may differ in efficiency

when deployed on a specific computer architecture. Query planners make use of an algebra,

referred to as relational algebra in relational databases. The algebra is used to rewrite a query so

that it can be executed as efficiently as possible.

The algebra derived in this chapter applies to queries, updates and processes; hence the tech-

niques used for query planning can be applied to more general processes. Furthermore, the

89

90 Chapter 4 Algebra for Read–Write Linked Data

algebra employed is proven to be correct using the modern proof technique of coinduction. This

is the first work to employ such techniques to extend relational algebra to a much broader setting.

Further to enhancing programming techniques and implementations, a good algebra provides

objective justification for the calculus. If an operator satisfies well understood algebraic proper-

ties, then it is more likely to be correct than if its algebraic properties appear to be arbitrary. For

instance idempotent semirings are very common structures in a wide range of applications in

computer science. The fact that idempotent semirings appear is justification that the operators

involved have been correctly defined. Furthermore, since semirings are well understood, the

properties of semirings may be exploited.

4.1.1 Normal forms for processes

The previous chapter introduces data for Joe Armstrong the footballer. Some queries and up-

dates which used the data were considered. This section returns to these examples to consider

the effect of the algebra on the processes. The examples demonstrate the use of algebra for

rewriting processes to normal forms. Rewriting to normal forms is useful for programming and

optimisation.

Firstly, consider the simple update example. This update can be rewritten to a form such that

all quantifiers are pulled to the outside, all deletes are grouped together, then all inserts, then all

queries, then all constraints. This results in the following equivalence.

∗
∨

a.


∨

x.

 |(a dbp:birthDate x)|
(x ≤ ‘01-01-1950’)


(a dbp:position res:Inside forward)⊥

(a dbp:position res:Attacking midfielder)


∼ ∗

∨
a, x.


(a dbp:position res:Inside forward)⊥

(a dbp:position res:Attacking midfielder)

|(a dbp:birthDate x)|
(x ≤ ‘01-01-1950’)


This simple rewrite make use of several rules. Firstly, the scope of the select quantifier which

binds x can be extended over tensor since x does not appear free in the insert or the delete.

Secondly, the tensor operator, which combines the delete, insert, query and constraint, is com-

mutative. This allows the operators to be reordered. This new form clearly corresponds to the

more constrained syntax of updates which was defined in the first proposal for SPARQL Update

from Hewlett-Packard Laboratories [126]. In that proposal the above process would be written

as follows.

DELETE {

?a dbp:position res:Inside_forward

http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Inside_forward
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Attacking_midfielder
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Inside_forward
http://dbpedia.org/ontology/position
http://dbpedia.org/resource/Attacking_midfielder
http://dbpedia.org/ontology/birthDate

Chapter 4 Algebra for Read–Write Linked Data 91

}

INSERT {

?a dbp:position res:Attacking_midfielder

}

WHERE {

?a dbp:birthDate ?x

FILTER (?x <= ‘01-01-1950’)

}

This normal form demonstrates that the update language could be quickly implemented. Updates

in the calculus can be normalised, then rewritten to updates in the original language of HP-Labs.

The HP-Labs language has been implemented; thus the updates can be executed over real RDF

stores. This allows the calculus to be used as a high level language for updating RDF; however

it does not allow the results of this work to be used to verify and optimise updates.

4.1.2 A disjunctive and a conjunctive normal form

Several normal forms are envisioned. The choice of which form to use will depend on the

underlying architecture. Consider the more substantial example from the previous chapter. The

original form of the query is presented below.

∨
a.



∨
z.




∨

x, y.


|(a foaf:givenName x)|

|(a foaf:familyName y)|
(z = x + ‘ ’ + y)


⊕

|(a foaf:name z)|


(z ∈ ‘J.* Armstrong’)


|(a rdf:type dbp:Athlete)|
⊕

|(a rdf:type dbp:Artist)|

 ;

P



http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist

92 Chapter 4 Algebra for Read–Write Linked Data

The query above can be rewritten to the query below. This rewrite shows that the original query

can be written as the disjunction of four queries in a normal form.

∨
a.


∨

given, family.


|(a rdf:type dbp:Artist)|

|(a foaf:givenName given)|

|(a foaf:familyName family)|
(given + ‘ ’ + family) ∈ ‘J.* Armstrong’

 ; P


⊕

∨
a.

∨full.


|(a rdf:type dbp:Artist)|

|(a foaf:name full)|
a ∈ ‘J.* Armstrong’

 ; P


⊕

∨
a.

∨full.


|(a rdf:type dbp:Athlete)|

|(a foaf:name full)|
full ∈ ‘J.* Armstrong’

 ; P


⊕

∨
a.


∨

given, family.


|(a rdf:type dbp:Athlete)|

|(a foaf:givenName given)|

|(a foaf:familyName family)|
(given + ‘ ’ + family) ∈ ‘J.* Armstrong’

 ; P


The above rewrite uses many of the algebraic properties established in this chapter. It uses the

facts that select quantifiers and choice operators are colimits, that colimits distribute over tensor,

that tensor forms a commutative monoid, that the semiring structure of Boolean algebras is a

subalgebra of the semiring structure of Kleene algebras and algebraic properties of continua-

tions. All of these algebraic properties are proven and discussed in this chapter.

By translation to HP Labs implementation of SPARQL Update, each of the four patterns above

can be implemented. Given also an extra mechanism for externally choosing between several

updates, the above full process can be implemented. The disjunctive normal form of updates

and queries described in this section is only one potential normal form. The disjunctive normal

reveals the degree of branching in processes.

A conjunctive normal form may be more useful for concurrency. A conjunctive normal form

would rewrite a process so that it consists of the tensor product of several processes. Each

part of the process decomposed using the tensor product is considered separately using disjoint

resources.

Consider the process above, extended with iteration as a prefix. Suppose that two stores are

queried. Suppose that one uses the name predicate, while the other expresses uses the given-

Name and familyName predicates. Thus the query could be rewritten as as the tensor of two

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName

Chapter 4 Algebra for Read–Write Linked Data 93

simpler queries. Each of the parts can then be executed over the store which uses the appropri-

ate predicates.

∗
∨

a.


∨

given, family.




|(a rdf:type dbp:Artist)|
⊕

|(a rdf:type dbp:Athlete)|


|(a foaf:givenName given)|

|(a foaf:familyName family)|
(given + ‘ ’ + family) ∈ ‘J.* Armstrong’


; P


⊗

∗
∨

a.


∨

full.




|(a rdf:type dbp:Athlete)|
⊕

|(a rdf:type dbp:Artist)|


|(a foaf:name full)|
full ∈ ‘J.* Armstrong’


; P


The above process is equivalent to the previous processes prefixed with iteration. Further to

the algebraic properties used already mentioned, the above example uses properties of iteration.

Iteration is defined as a least fixed point, from which many algebraic properties can be derived.

The property used above is that iteration converts disjunction to tensor. The algebraic properties

of iteration are proven and discussed in this chapter.

4.2 A Labelled Transition System for the π-calculus.

Before considering the new calculus introduced in this work, an established calculus is dis-

cussed. This allows the techniques employed to be introduced. In Section 3.4.1.3, a reduction

semantics for the π-calculus was presented. The π-calculus has an alternative operational se-

mantics to the reduction semantics. The semantics can be expressed as a labelled transition

system.

A labelled transition system is a relation consisting of two process and a label. The first process

is the process before the transition; the label indicates the effect of the transition on the context;

and the second process indicates the process after the transition. A version of the (early) labelled

transition system for the π-calculus is presented in Figure 4.1.

A labelled transition system provided the original semantics of the π-calculus [99]. The labelled

semantics is slightly more complicated than the reduction semantics, but has the advantage of

enabling powerful proof techniques. The proof technique can be used to establish an algebra

over π-calculus processes. Furthermore, for the π-calculus the reduction system and the labelled

transition system are equivalent in expressive power.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/name

94 Chapter 4 Algebra for Read–Write Linked Data

a(x).P abI P
{
b/x

}
a(x).P a(y)

I P
{y/x

}
ab.P abI P τ.P τ I P

U l I P
U ⊕ V l I P

V l I Q

U ⊕ V l I Q
P l I P′

νx.P l I νx.P′
x < n(l) P axI P′

νx.P a(x)I P′
x , a

P l I P′

P ‖ Q l I P′ ‖ Q
bn (l) ∩ fn (Q) = ∅

P abI P′ Q abI Q′

P ‖ Q τ I P′ ‖ Q′
P a(x)I P′ Q a(x)I Q′

P ‖ Q τ I νx.(P′ ‖ Q′)

Figure 4.1: The axioms and rules of the π-calculus labelled transition system: input axiom,
bound input axiom, output axiom, τ axiom, choose left axiom, choose right axiom, fresh name
context rule, open rule, par context rule, The symmetric versions of all the par rules are also

included.

The input labels can take five forms. Firstly, consider the τ label, input label and output label.

The τ label represents a transition without side effects. The input label ab represents the input

of a name b on a channel a. The complementary output label ab represents the output of a

name b on channel a. A complementary input and output label represent two perspectives of an

interaction. The example below demonstrates how a basic communication can be established

using input and output labels.

ab.P abI P a(x).Q abI Q
{
b/x

}
ab.P ‖ a(x).Q τ I P ‖ Q

{
b/x

}
The input and output labels are both positioned on the labels using axioms. The axiom for output

positions the output on the label and eliminates the output from the head of the process. The

axiom for the input proceeds similarly, by positioning the complementary input on the label. The

input label also instantiates the input variable with the name which is input. This instantiation is

performed both on the label and the continuation process. The input label and the output label

then communicate using the communication rule. Since the input and output labels match the

result is a τ label. The τ label indicates that no further communications are required for the

transition to take place.

There is also the complementary pair of input and output labels, represented by a(x) and a(x)

respectively. These represent ability to communicate on channel a where a bound name x is

communicated. A bound name represents a fresh name. The example bellow demonstrates how

a communication which involves a fresh name can be established.

ab.P abI P

νb.ab.P a(b)I P a(x).Q a(b)I Q
{
b/x

}
νb.(ab.P) ‖ a(x).Q τ I νb.(P ‖ Q

{
b/x

}
)

The bound input axiom is used to position a bound input on the label. The bound name is chosen

Chapter 4 Algebra for Read–Write Linked Data 95

to match the bound name to be received, which results in a substitution in the continuation

process. The output is positioned on the label as in the previous example. Since the name passed

is bound by a fresh name quantifier, the open rule is then applied. Open explicitly indicates that

the name is fresh, by indicating that the name is bound on the label. The bound input and bound

output therefore match so the close rule is applied. The close rule works like the communication

rule above except that the bound name encompasses both processes in the continuation. The

result is that the bound name is passed to the process guarded by the input.

The choice rules work by selecting the left or right branch of a choice. The context rules work

as in the reduction system, by allowing transitions to take place in an process context. The

following example demonstrates the use of choice and a context rule.

ac.0 acI 0
ac.0 ‖ bd.0 acI 0 ‖ bd.0

a(x).P acI P{c/x}
a(x).P ⊕ b(y).Q acI P{c/x}

ac.0 ‖ bd.0 ‖ (a(x).P ⊕ b(y).Q) τ I 0 ‖ bd.0 ‖ P{a/x}

In the example above the par context rule allow one of the outputs to occur. The unused output

remains untouched in the continuation. The choice rule is used to choose the branch which is

capable of the complementary input. The input and output labels then interact as normal.

This completes a brief overview of the operational semantics of the π-calculus. For this version

of the π-calculus, and many variants, the labelled transition system and the reduction system

have equivalent expressive power. This means that the natural notion of equivalence in each

system coincides. The equivalence of the two approaches is used to give further justification

that the labelled transition system and the reduction system have been correctly formulated. A

version of this result is proven for the syndication calculus in this chapter.

4.2.1 Bisimulations for the π-calculus.

The labelled transition system is particularly useful as a foundation for novel proof techniques.

A proof technique, known as bisimulation, can be used to demonstrate that two processes have

identical behaviour. Bisimulation can be used to prove that algebraic properties of the π-calculus

hold. Bisimulation is dual to the technique of induction, which is used to prove that algebraic

properties of data-structures hold.

Bisimulation allows processes to be treated equivalently if they exhibit the same observable

behaviour. The observable behaviour of a process is established by considering the labels of

the labelled transition system. Such observations allow two processes to be compared. If a

particular label can be observed for one process, then the same label can be observed for another

process, and vice versa. Furthermore, the continuations of both processes must maintain the

same observational behaviour. Bisimulation can be formalised as follows.

96 Chapter 4 Algebra for Read–Write Linked Data

Definition 4.1. A bisimulation is an equivalence relation over processes ∼0 such that the fol-

lowing holds. If P ∼0 Q and P l I P′ then there exists Q′ such that Q l I Q′ and P′ ∼0 Q′.

Bisimilarity, written ∼ is the greatest bisimulation.

In categorical models bisimulation has been demonstrated to be a canonical concept. In par-

ticular, it is the dual notion to the technique of induction used by every mathematician [120].

The definition of bisimulation above is defined directly over the labelled transition system of

the calculus, so a categorical foundation is not required here. However, a categorical founda-

tion for bisimulation in the π-calculus can be achieved by combining co-algebraic methods with

permutation groups [102].

Induction dismantles data-structures (such as natural numbers or trees) down to some base el-

ement (zero for the natural number for instance), to prove that some property is shared by the

structures. On the other hand co-induction tracks the possibly infinite behaviours of dynamic

systems to demonstrate that some property will always be maintained by regardless of the choice

of computation path. This explains why there is no base case in the definition of bisimulation

above.

Induction is concerned with the least structure satisfying the given properties (the initial algebra).

Dually co-induction is concerned with the largest number of possible behaviours which satisfy

a property (the final co-algebra). This explains why the greatest bisimulation is considered in

the example above.

Many notions of bisimulation have been studied. The above definition is for strong bisimulation,

where the two processes are compared step by step. Other notions include weak bisimulation,

which allows multiple steps to be taken by each process that is being compared using weak

bisimulation. Strong bisimulation is useful when the atomicity of actions in the calculus must

be accounted for. Atomicity is prominent in this application, therefore strong bisimulation is the

appropriate notion of bisimulation.

A complete algebra for the π-calculus is established using bisimulation [99]. Here one exam-

ple of an algebraic identity is provided. The following processes are bisimilar. This can be

established by case analysis.

a(x).P ‖ ab.0 ∼ a(x).(P ‖ ab.0) ⊕ ab.a(x).P ⊕ τ.P

Both processes can make a transition with labels ab, ac, a(c) and τ, for any c, to identical

processes. Identical processes are trivially bisimilar, thus the bisimulation is established.

A famous non-example is provided. The first process below can make a τ transition to ac.0 ⊕

bd.0. The second process can also make a τ transition. However, for either τ transition of the

second process neither continuation is bisimilar to ac.0⊕bd.0, since ac.0⊕bd.0 can still observe

either choice but for both ac.0 and bd.0 the choice is already determined.

τ.ac.0 ⊕ τ.bd.0 / τ.(ac.0 ⊕ bd.0)

Chapter 4 Algebra for Read–Write Linked Data 97

The notion of bisimulation can be weakened, so that it is not necessarily symmetric. This weaker

notion is a preorder called simulation, where the process on the left may have a more determin-

istic behaviour. In the example above the first process simulates the second process, since after

the first observation both ac.0 and bd.0 do simulate ac.0 + bd.0.

Indeed, any trace (sequence of observations) of a process simulates a process and the sum of the

traces simulates the process. However the above example demonstrates the sum of the traces is

not in general bisimilar to the original process. This demonstrates that bisimilarity is a stronger

notion than trace equivalence, as used for CSP for instance [70].

The established techniques for the π-calculus can be applied to the syndication calculus. A

labelled transition system will be formulated and an algebras derived using bisimulation. Many

algebraic properties of the syndication calculus have an analogous algebra in the π-calculus.

However, several more insightful algebraic properties will be established, which are not revealed

by the π-calculus.

4.3 A Labelled Transition System for a Sub-Calculus

The operational semantics of the syndication calculus, introduced in the previous chapter, can

be expressed as a labelled transition system. This provides an alternative operational semantics

to the reduction system. This alternative semantics allows the behaviour of queries and data to

be evaluated separately and then composed. Theorem 4.8 verifies that the labelled transition

system is sound with respect to the reduction system.

4.3.1 The sub-calculus considered

A restricted version of the calculus is considered in this chapter. The focus is placed on queries

and inserted data. This restricted version of the calculus makes the labels easy to understand.

The restriction on the calculus is only allow processes with queries as actions; rather than both

queries and updates as actions.

The restriction is not for any technical reason; a labelled transition system can be provided for

the whole language. An almost identical semantics can be provided where queries are replaced

by updates, or feature along side updates. The only change required is to include more informa-

tion in the labels. Readers familiar with labelled transition semantics will be more familiar with

only one type of communication being handled by the labels. The same algebraic properties

established in this section would hold if instead deletes had been chosen rather than queries.

The restricted syntax for this chapter is presented in Fig. 4.2. The syntax excludes delete updates.

This leaves a query language with continuations. Stored triples are kept separate from queries,

instead of being modelled as a trivial insert operation. The syntax of triples and constraints are

unchanged. Also, the extensions for named graphs are excluded.

98 Chapter 4 Algebra for Read–Write Linked Data

U F |C| asked triple
| φ filter
| U ⊕ U choice
| U ⊗ U tensor
|

∨
a.U select name

|
∨

x.U select literal
| ∗U iteration
| U ; P then

PF ⊥ nothing
| PM P par
|

∧
a.P blank node

| U query
| C stored triple

Figure 4.2: The restricted syntax of queries (U) and processes (P), over triples (C) and con-
straints (φ).

E ::= I unit
| C triple
| E ⊗ E combination

(E ⊗ F) ⊗G ≡ (E ⊗ F) ⊗G E ⊗ I ≡ E

E ⊗ F ≡ F ⊗ E

Figure 4.3: The syntax and congruence for monoids which appear on labels.

The reduction semantics are the same as the previous chapter, in Fig. 3.4. Only the delete axiom

and the insert axiom are no longer required. The reduction semantics are considered to be the

definitive semantics for the calculus. Thus, the alternative labelled transition semantics and

algebraic semantics must be verified to be at least sound with respect to the reduction semantics.

The main results of this section establish that soundness does indeed hold.

4.3.2 The purpose of labels

A labelled transition consists of two processes and a label. The first process is the process before

the transition. The label is a constraint on the context in which a transition can take place. The

second process is the resulting process after the transition.

The labels are formed from a commutative monoid over triples (E,⊗, I), as defined in Fig. 4.3. A

label indicates the inputs and outputs of a process. An input indicates that a process can proceed

if it can receive the triples on the label from its context. An output indicates that a process

outputs the triple on the label to its context. For instance, the query below inputs a triple; while

the stored triple below outputs a triple.

|(b4 knows b3)| ; P (b4 knows b3)I P (b4 knows b3) (b4 knows b3)I (b4 knows b3)

A relevant interpretation is that the first transition above is an action from the perspective of a

client which resolves a query; whereas the second is an action from the perspective of a server

that provides a triple. Two processes composed in parallel with matching inputs and outputs

may interact. For instance, the above processes can be composed, resulting in the following

Chapter 4 Algebra for Read–Write Linked Data 99

C v D

|D| C I ⊥

U E I Q

U ; P E I QM P

U E I P V F I Q

U ⊗ V E⊗FI PM Q

� φ

φ I I ⊥

S E I P
S ⊕ T E I P

T E I Q

S ⊕ T E I Q

S
{
b/a

}
E I Q∨

a.S E I Q

S {v/x}
E I Q∨

x.S E I Q

∗S I I ⊥

S E I P
∗S E I P

∗S ⊗ ∗S E I P
∗S E I P

Figure 4.4: Labelled transitions for queries: input triple, trigger guard, tensor, filter, choose
left, choose right, select name, select literal, weakening, dereliction and contraction.

transition. The unit label indicates an operational step without side effects.

(|(b4 knows b3)| ; P) , (b4 knows b3) I I P, (b4 knows b3)

Output labels can also indicate extruded names. For instance, the example below extrudes the

name a. The extruded names represent blank nodes where the scope of the blank node quantifier

may be extended. This is similar to extrusion of new names in the π-calculus [99].∧
a.(a has paper) , (b2 has stone) a|(a has paper)

I (a has paper) , (b2 has stone)

The commutative monoid rules can always be applied to reorder labels.

4.3.3 Labelled transitions for queries

The input transitions allow the behaviour of a query to be modelled independently. The rules

for queries are presented in Fig. 4.4. The rules accumulate RDF triples on an input label, which

represents contexts in which a query may be answered.

The ‘input triple’ rule poses the triple as an input on the label. The triple on the label may

be strengthened by the preorder over triples. The ‘trigger guard’ rule allows a continuation

process to be triggered exposing the continuation. The following example demonstrates a query

consisting of a single triple and a continuation process, where the preorder colleague v knows

is assumed.

|(b4 knows b3)| ; P (b4 colleague b3)
I P

Select quantifiers are resolved by anticipating the name or literal to input. For instance, the

following labelled transition indicates that the query can be answered in a context where a name

100 Chapter 4 Algebra for Read–Write Linked Data

is chosen. The same name is passed to the continuation process.∨
a.(|(b4 knows a)| ; P) (b4 knows b3)I P

{
b3/a

}
Choices are resolved by anticipating the left or right branch. For instance, the following transi-

tion indicates the label and continuation which results from choosing the left branch.

(|(b4 knows b2)| ; P) ⊕ (|(b4 knows b3)| ; Q) (b4 knows b2)I P

Tensor synchronises two queries, by composing their respective labels and continuations. For in-

stance, the following query simultaneously inputs two triples. The continuations of both queries

are triggered in parallel, with the appropriate substitutions.

∨
a.((|(b4 knows a)| ; P) ⊗ (

∨
x.|(a name x)| ; Q))

(b4 knows b2)⊗(b2 name ‘John’)I P
{
b2/a

}
,Q

{
b2,‘John’/a,x

}
A constraint is disposed when it is satisfied. For instance, in the following query the length of a

selected literal is constrained, but satisfied by the substitution.∨
x.(|(b2 name x)| ⊗ (|x| ≤ 4) ; P) (b2 name ‘John’)I P

{
‘John’/x

}
Iteration anticipates the number of copies of a query to pose using weakening, dereliction and

contraction. For instance, two copies of following query are posed using contraction and dere-

liction. The label indicates the two separate triples which are to be answered simultaneously.

Both continuations are composed in parallel.

∗
∨

a.(|(b4 knows a)| ; P) (b4 knows b2)⊗(b4 knows b3)I P
{
b2/a

}
, P

{
b3/a

}
The rules of the labelled transition system are sufficient to model queries.

4.3.4 Labelled transitions for an RDF store

The behaviour of stored RDF triples can be modelled using output labels. The rules of output

labels are presented in Fig. 4.5. The names extruded on the label are indicated by α, where +

indicates disjoint union of names. The abbreviation
∧
α.P is used to indicate the quantification

of all names in α.

Stored triples can output the triple on the label. The same triple appears in the continuation

unchanged. The preorder over names may be used to weaken the output triple. Names are

extruded on the label using the ‘open scope’ rule. For instance, the following triple outputs a

Chapter 4 Algebra for Read–Write Linked Data 101

C v D

C DI C

P α|EI Q∧
a.P α+a|EI Q

a < fn (β)
P α|EI Q∧

a.P α|EI
∧

a.Q
a < α ∪ fn (E)

P α|EI P′

PM Q α|EI P′ M Q
α ∩ fn (Q) = ∅

P α0 |EI P′ Q α1 |FI Q′

PM Q α0+α1 |E⊗FI P′ M Q′
α0 ∩ fn (Q) = ∅

α1 ∩ fn (P) = ∅

P E⊗FI P′ Q α|FI Q′

PM Q E I
∧
α.(P′ M Q′)

α ∩ (fn (P) ∪ fn (E)) = ∅

Figure 4.5: Process rules: output triple, open, blank node context, par context, parallel outputs
and close. The symmetric versions of the par context and close rule are also assumed. Note

fn (β) is the set of names for which alias assumptions are defined.

triple and extrudes the blank node, using the assumption colleague v knows.∧
b4.(b4 colleague b3) b4 |(b4 knows b3)I (b4 colleague b3)

Output labels composed in parallel can be combined. Extruded names on both labels must be

disjoint to preserve the scope of blank nodes. For instance, the following transition simultane-

ously outputs two triples and extrudes three names.

∧
b4.(

∧
b2.(b4 knows b2) ,

∧
b3.(b4 knows b3))

b2,b3,b4 |(b4 knows b2)⊗(b4 knows b3)I (b4 knows b2) , (b4 knows b3)

Two parallel processes may interact using the close rule. Close allows complementary inputs

and outputs to be matched. Names extruded on the output label are introduced as quantifiers

in the continuation. Any inputs not answered remain on the resulting label, to be answered

later. For instance, the following iterated query is answered twice. One copy is answered by the

available process and the other copy must be answered by the context for the transition to occur.

In the continuation, the scope of the blank node is extended.

∗
∨

a.((b4 knows a) ; P) ,
∧

b3.(b4 knows b3) (b4 knows b2)I
∧

b3.
(
(b4 knows b3) , P

{
b3/a

})
The context rule for parallel composition allows processes which do not contribute to an inter-

action to idle. Similarly, the context rule for blank node quantifiers allows a blank node to be

ignored in a transition if it does not appear on the label.

102 Chapter 4 Algebra for Read–Write Linked Data

4.3.5 The operational power of the labelled transition system

To justify the labelled transition system, the operational power of the labelled transition system

is shown to match the operational power of the reduction system is verified. To show that the

operational powers match, it is demonstrated that if a unit labelled transition can be derived then

the corresponding reduction can also be derived. The significance is that, given the independent

perspectives of the query and the store in terms of labelled transitions, their combination satisfies

the global perspective specified by the reduction system.

Scope extrusion presents technical difficulties. The following technical lemma reduces these

difficulties, by eliminating scope extrusion. The proof demonstrates that combinations of open-

ing names and closing names can be eliminated from an proof tree which uses an extruded name

using a structural congruence.

Lemma 4.2 (Elimination of extrusion). Suppose that a labelled transition proof uses name

extrusion, but not in the conclusion. The same labelled transition, up to structural congruence,

holds without any name extrusion.

Proof. Consider the interaction of an input label and an output label, with an extruded name

using the close rule.

Consider the structure of the output label. Firstly, demonstrate that if Q α|EI Q′, then there

exists an R such that Q ≡
∧
α.R and R E I Q′. There are two cases to consider.

Consider the case of composition of output labels as follows.

P α0 |DI P′ Q α1 |EI Q′

PM Q α0+α1 |D⊗EI P′ M Q′

By induction, there exists a process P0 such that P ≡
∧
α0.P0 and P0

DI P′. Similarly,

there exists a process Q0 such that Q ≡
∧
α1.Q0 and Q0

E I Q′. Therefore P M Q ≡∧
(α0 + α1) .(P0 M Q0) and the following proof tree holds.

Q0
E I Q′ P0

DI P′

P0 M Q0
D⊗EI P′ M Q′

Consider the case of blank node restriction, where α0 and α1 are disjoint.

P α0 |EI P′∧
α1.P

α0 |EI P′

Chapter 4 Algebra for Read–Write Linked Data 103

By induction, there exists a process P0 such that P ≡
∧
α0.P0 and P0

E I P′. Therefore∧
α1.P ≡

∧
α0.

∧
α1.P0 and the following proof tree holds.

P0
E I P′∧

α1.P0
E I P′

Now consider the composition of an input transition and an output transition with an extruded

name.
P C⊗DI P′ Q α|DI Q′

PM Q C I
∧
α.(P′ M Q′)

By the above lemma, there exists a process Q0 such that Q ≡
∧
α.Q0 and Q0

DI Q′. So

PM Q ≡
∧
α.(PM Q0) and the following holds.

P C⊗DI P′ Q0
DI Q′

PM Q0
C I P′ M Q′∧

α.(PM Q0) C I
∧
α.(P′ M Q′)

By applying the above inductively a proof tree scope extrusion is eliminated. �

Every completed labelled transition can also be expressed as a reduction, Lemma 4.3. The proof

works by transforming proof trees so that labels used in interactions are eliminated.

Lemma 4.3 (Elimination of labels). If P I I Q then P � Q.

Proof. Firstly, apply Lemma 4.2 to eliminate extrusion of names. Therefore any unit transition

follows from some context rules and a close rule, where no names are extruded.

For a parallel composition where one process is idled, the idled process is pushed down the tree.

Given the first proof tree bellow, the second holds.

P C I P′

PM Q C I P′ M Q R C I R′

(PM Q)M R I I (P′ M Q)M R′
yields P C I P′ R C I R′

PM R I I P′ M R′

By induction, PM R � P′ M R′ holds. Hence PM QM R � P′ M QM R′ holds, by the idle rule.

A blank node which is not used is eliminated as follows. Given the first proof tree bellow, where

a < fn (C) and using alpha conversion a < fn (P), the second holds.

P C I P′
Q C I Q′∧

a.Q C I
∧

a.Q′

PM
∧

a.Q I I P′ M
∧

a.Q′

yields P C I P′ Q C I Q′

PM Q I I P′ M Q′

104 Chapter 4 Algebra for Read–Write Linked Data

By induction, PMQ� P′MQ′ holds. Hence PM
∧

a.Q� P′M
∧

a.Q′ holds, by the blank node

rule.

Consider the case of axioms. The first proof tree bellow can be replaced by the second below.

Transitivity over content on the labels can be eliminated trivially by applying transitivity point-

wise to the names in a triple.

D v C

|C| DI ⊥

E v D

E DI E

|C|M E I I ⊥M E

maps to E v C
|C|M E � E

For choice the cut is pushed through the brackets. So assuming the first proof tree holds, the

second proof tree holds.

U C I Q

U ⊕ V C I Q P C I R

(U ⊕ V)M P I I QM R

yields U C I Q P C I R

U M P I I QM R

Hence by induction U M P � Q M R holds. Therefore (U ⊕ V) M P � Q M R holds, the choose

left rule. A symmetric proof works for choose right.

For select the cut is pushed through the brackets. So assuming the first proof tree holds, the

second proof tree holds.

U
{
b/a

}
C I Q∨

a.U C I Q P C I R∨
a.U M P I I QM R

yields
U

{
b/a

}
C I Q P C I R

U
{
b/a

}
M P I I QM R

Hence by induction U
{
b/a

}
MP�QMR holds. Therefore

∨
a.UMP�QMR holds, by the select

rule. A similar proof works for selecting literals.

For weakening the translation of proof trees is direct. The labelled transition ∗U I I ⊥ becomes

∗U � ⊥. Similary for filters, the labelled transition φ I I ⊥ becomes φ� ⊥, assuming that � φ

holds.

For dereliction the cut is pushed through the brackets. So assuming the first proof tree holds, the

second proof tree holds.

U C I Q

∗U C I Q P C I R

∗U M P I I QM R

yields U C I Q P C I R

U M P I I QM R

Hence by induction U M P � QM R holds. Therefore ∗U M P � QM R holds, by the select rule.

A similar proof works for selecting literals.

Chapter 4 Algebra for Read–Write Linked Data 105

For contraction the cut is pushed through the brackets. So assuming the first proof tree holds,

the second proof tree holds.

∗U ⊗ ∗U C I Q

∗U C I Q P C I R

∗U M P I I QM R

yields ∗U ⊗ ∗U C I Q P C I R

(∗U ⊗ ∗U)M P I I QM R

Hence by induction (∗U ⊗ ∗U) M P � Q M R holds. Therefore ∗U M P � Q M R holds, by the

contraction rule.

For continuations, assuming the first proof tree holds below, then the second proof tree holds.

U C I ⊥

U ; P C I P Q C I R

(U ; P)M Q I I QM R

yields U C I ⊥ Q C I R

U M Q I I R

Hence by induction UMQ�R holds. Therefore (U ; P)MQ�PMR holds, by the continuation

rule.

Tensor has two cases. The first reorders the application of outputs. Suppose the outputs are

composed It is possible to first compose one part of the rule then another part.

(U ⊗ V) C⊗DI P′ Q DI Q′

(U ⊗ V)M Q C I PM Q′ R C I R′

((U ⊗ V)M Q)M R I I (PM Q′)M R′

Using associativity, the following transition is equivalent up to structural congruence. Repeated

application normalises the proof tree.

(U ⊗ V) C I P

Q DI Q′ R C I R′

QM R C⊗DI Q′ M R′

(U ⊗ V)M (QM R) I I PM (Q′ M R′)

Now consider the tensor rule as for previous rules. Given the following proof tree.

U C I R V DI S
U ⊗ V C⊗DI RM S

P C I P′ Q DI Q′

PM Q C⊗DI P′ M Q′

(U ⊗ V)M PM Q I I RM S M P′ M Q′

the following proof trees hold.

U C I R P C I P′

U M P I I RM P′
and V DI S Q DI Q′

V M Q I I S M Q′

106 Chapter 4 Algebra for Read–Write Linked Data

By induction, V M Q � S M Q′ and U M P � RM P′ hold. Hence (U ⊗ V)M PM Q � P′ M Q′

holds, by the tensor rule.

All cases are covered hence, by induction on the structure of a labelled proof, labels can be

eliminated. �

Suppose that the rule of the interaction of labels is the cut rule. Note note that the reduction

semantics provide cut free semantics. Then the above proof is a cut elimination result for the

calculus. Each deduction in the labelled transition system, which uses cut, can be transformed

into a deduction in the reduction system, which does not use cut.

A cut elimination proof has several types of cases to handle, as explained clearly in [131]. There

is the ‘identity case’ which absorbs axioms. There are the ‘commutative cases’ which push the

cut up the proof tree past rules which are not involved in the cut formula. The most involved

rules are the ‘key cases’, which break break down pairs of complementary rules involved in a

cut.

This correspondence between cut elimination and soundness of the labelled transition system is

reflected in the form of the proof of Lemma 4.3. The ‘identity case’ is visible in the form of the

‘axiom case.’ Almost all other cases are ‘commutative cases,’ since they simply push the cut up

the proof tree.

Due to the asymmetry of the calculus there is only one ‘key case.’ The key case to consider is

when the tensor product and negated tensor product interact through the cut rule. The negated

tensor product is just par from Linear Logic. Hence the shape of the tensor case is almost

identical to the shape of the proof for the key case of the interaction of tensor and par in the cut

elimination proof Linear Logic. Other key cases would only arise in an extended calculus, with

additive conjunction for instance.

This argument presents a novel perspective on the rôle of cut elimination in operational seman-

tics. The reader, may still not be convinced, since cut elimination is normally conducted within

a single system. The argument that soundness of a labelled transition system with respect to a

reduction system is a cut elimination results will be continued in Sec. 4.6.4. This section uses

the algebraic semantics common to both systems, to translate between the two systems. More

complete cut elimination results are also highlighted.

The converse of Lemma 4.3 holds. This converse lemma states that any commitment in the

reduction system is a unit transition in the labelled transition system. The formulation in

Lemma 4.4 makes explicit that this result is considered up to structural congruence [122]. This

is because if a reduction holds then the redux of the corresponding labelled transition may not

have exactly the same form unless structural congruence is applied. This emphasises that struc-

tural congruence is not required in the definition of the labelled transition system. The proof of

the converse lemma follows by the same argument as for the original lemma above, so is not

repeated.

Chapter 4 Algebra for Read–Write Linked Data 107

Lemma 4.4 (Reductions are unit transitions). If P � Q then P I I Q′, for some Q′ such that

Q ≡ Q′.

Thus the local perspectives provided by the labelled transition system combine to provide the

same operational power as the reduction system.

4.4 Equivalences for the Syndication Calculus

In this section the notion of bisimulation is introduced. Bisimulation is a useful proof technique

for verifying algebraic properties over queries and processes. Bisimulation is demonstrated to

be sound with respect to the natural equivalence in the reduction system.

4.4.1 Bisimulation and its congruence property

Processes which are capable of the same observable behaviour can be regarded as equivalent.

The observable behaviour of a process is given by the labels of the labelled transition system.

Observational equivalence of processes is established using the technique of (strong) bisimula-

tion, as follows.

Definition 4.5 (Bisimulation). Bisimulation, written ∼, is the greatest symmetric relation such

that the following holds, for any label l. If P ∼ Q and P l I P′ then there exists some Q′ such

that Q l I Q′ and P′ ∼ Q′, where bn (l) ∩ fn (P,Q) = ∅. Note bn (l) refers to the set of names

extruded on the label l.

The following verifies that bisimulation is a congruence. A congruence relation holds in any

context, which is necessary to use bisimulation as an algebra. A context is a process with a

place holder for some syntax.

Lemma 4.6 (Bisimulation is a congruence). For processes P and Q, if P ∼ Q and C is a context

for a process, then CP ∼ CQ. For queries U and V, if U ∼ V and D is a context for a query,

then DU ∼ DV. Explicitly, the contexts for processes to check are as follows, assuming that

P ∼ Q.

PM R ∼ QM R
∧

a.P ∼
∧

a.Q U ; P ∼ U ; Q

Explicitly, the contexts for queries to check are as follows, assuming that U ∼ V.

U ⊗W ∼ V ⊗W U ⊕W ∼ V ⊕W
∨

a.U ∼
∨

a.V ∗U ∼ ∗V U ; P ∼ V ; P

Proof. All cases are proven by assuming the existence of a bisimulation, then demonstrating

that a bisimulation which contains the relation in question can be constructed.

108 Chapter 4 Algebra for Read–Write Linked Data

Consider the case of a blank node context. Assume that ∼0 is a bisimulation. Let ∼1 be the least

relation such that if P ∼0 Q then P ∼1 Q and
∧

a.P ∼1
∧

a.Q. Assume that P ∼0 Q and consider

the cases of the open and blank node context rules.

For the open rule, assume that the first transition below holds. Since P ∼0 Q and P α0 |EI P′

there exists a process Q′ such that Q α0 |EI Q′ and P′ ∼0 Q′. Hence the second transition below

holds and P′ ∼1 Q′.

P α0 |EI P′∧
α1.P

α0+α1 |EI P′
yields

Q α0 |EI Q′∧
α1.Q

α0+α1 |EI Q′

For the blank node context rule, assume that the first transition holds, where α0, α1 are disjoint.

Since P ∼0 Q and P α0 |EI P′ there exists a process Q′ such that Q α0 |EI Q′ and P′ ∼0 Q′. So

the second transition below holds and
∧
α1.P′ ∼1

∧
α1.Q′.

P α0 |EI P′∧
α1.P

α0 |EI
∧
α1.Q′

yields
Q α0 |EI Q′∧

α1.Q
α0+α1 |EI Q′

The same argument works for input labels. Hence ∼1 is a bisimulation, as required.

Consider the cases of par. Assume that ∼0 is a bisimulation. Let ∼1 be the least relation such

that if P∼0 Q then PMR∼1 PMR and, recursively, if P∼1 Q then
∧

a.P∼1
∧

a.Q. Assume that

P ∼0 Q and consider the following three cases.

For the case of the par context rule. Assume that the first transition below holds. Since P ∼0 Q

and P E I P′, there exists Q′ such that Q E I Q′ and Q ∼0 Q′. Hence the second transition

below holds and P′ M R ∼1 Q′ M R.

P E I P′

PM R E I P′ M R yields

Q E I Q′

QM R E I Q′ M R

For the case of the parallel outputs, assume that the first transition below holds. Since P ∼0 Q

and P α1 |EI P′, there exists Q′ such that Q α1 |EI Q′ and Q ∼0 Q′. Hence the second transition

below holds and R′ M P′ ∼1 R′ M Q′.

R α0 |DI R′ P α1 |EI P′

RM P α0+α1 |D⊗EI R′ M P′ yields

R α0 |DI R′ Q α1 |EI Q′

RM Q α0+α1 |D⊗EI R′ M Q′

For the case of the close rule. Suppose that the first transition below holds. Since P ∼0 Q, given

that P α|DI P′ there exists a process Q′ such that Q α|DI Q′ and P′ ∼0 Q′. Hence the second

transition below holds and
∧
α.(R′ M P′) ∼1

∧
α.(R′ M Q′).

R C⊗DI R′ P α|DI P′

RM P C I
∧
α.(R′ M P′)

yields R C⊗DI R′ Q α|DI Q′

RM Q C I
∧
α.(R′ M Q′)

Chapter 4 Algebra for Read–Write Linked Data 109

Other cases follow by symmetric arguments and the argument for closure of scope works as

before. Therefore ∼1 is a bisimulation.

Consider the case of choice. Assume that there exists a bisimulation ∼0. Let ∼1 be the least

equivalence relation such that if U ∼0 V then U ⊕W ∼1 V ⊕W and if P ∼0 Q then P ∼1 Q. To

demonstrate that ∼1 is a bisimulation, assume that U ∼0 V and consider U ⊕W ∼1 V ⊕W. There

is one non-trivial cases as follows.

Suppose that that, the first transition below holds, by choose left. Since U ∼0 V , if U C I P then

there exists some Q such that V C I Q, such that P ∼0 Q. So the second transition below holds

and P ∼1 Q, as required.

U C I P
U ⊕W C I P

yields
V C I Q

V ⊕W C I Q

Hence ∼1 is a bisimulation. A symmetric argument works for the symmetric context.

Consider the case of tensor. Assume that there exists a bisimulation ∼0. Let ∼1 be the least

equivalence relation such that if U ∼0 V then U ⊗W ∼1 V ⊗W and if P∼0 Q then PMR∼1 QMR

and
∧

a.P ∼1
∧

a.Q. Assume that U ∼0 V and consider U ⊗W ∼1 V ⊗W.

Now, suppose the first transition below exists. Then, since U ∼0 V and U C I P there exists

a process Q such that V DI Q and P ∼0 Q. Hence the second transition below holds and

PM R ∼1 QM R, as required.

U C I P W DI R
U ⊗W C⊗DI PM R

yields
V C I Q W DI R

V ⊗W C⊗DI QM R

The argument for par works as before. Hence ∼1 is a bisimulation.

Consider the case of select. Assume that there exists a bisimulation ∼0. Let ∼1 be the least

equivalence relation such that if U ∼0 V then
∨

a.U ∼1
∨

b.V and if P ∼0 Q then P ∼1 Q. To

demonstrate that ∼1 is a bisimulation, assume that U ∼0 V and consider
∨

a.U ∼1
∨

a.V .

Firstly, two lemmas are established, both are established by simple structural induction. The

first lemma states that, if U
{
b/a

}
C I P then U DI Q such that C ≤ D

{
b/a

}
and P = Q

{
b/a

}
.

Now, since U ∼ V and U DI Q, by bisimulation, there exists Q′ such that V DI Q′ and

Q ∼ Q′. The second lemma states that, if V DI Q′ then V
{
b/a

}
C I P′ such that C v D

{
b/a

}
and

P′ = Q′
{
b/a

}
. This establishes that U

{
b/a

}
∼ V

{
b/a

}
.

Suppose that that, the first transition below holds, by select. By the above lemmas, U
{
b/a

}
∼0

V
{
b/a

}
holds; hence if U

{
b/a

}
C I P then there exists some Q such that V

{
b/a

}
C I Q, such that

P ∼0 Q. So the second transition below holds and P ∼1 Q, as required.

U
{
b/a

}
C I P∨

a.U C I P
yields

V
{
b/a

}
C I Q∨

a.V C I Q

110 Chapter 4 Algebra for Read–Write Linked Data

Hence ∼1 is a bisimulation. A similar argument works for literals.

Consider the case of guards. Assume that ∼0 is a bisimulation. Let ∼1 be the least equivalence

relation such that if U ∼0 V then U ; P ∼1 V ; P, if P ∼0 Q then PM R ∼1 QM R, and recursively

if P ∼1 Q then
∧

a.P ∼1
∧

a.Q. Assume that U ∼0 V holds and consider U ; P ∼1 V ; P.

Suppose that that, the first transition below holds, by select. Since U∼0 V , if U C I P then there

exists some process Q such that V C I Q and P ∼0 Q. So the second transition below holds and

PM R ∼1 QM R.
U C I P

U ; R C I PM R
yields

V C I Q

V ; R C I QM R

Hence ∼1 is a bisimulation.

Consider the case of continuations. Assume that ∼0 is a bisimulation. Let ∼1 be the least

equivalence relation such that if P∼0 Q then U ; P∼1 U ; Q and RM P∼1 RMQ, and recursively

if P ∼1 Q then
∧

a.P ∼1
∧

a.Q. Assume that P ∼0 Q holds and consider U ; P ∼1 U ; Q. Assume

that U C I R hence the following proof trees hold.

U C I R
U ; P C I RM P

and U C I R
U ; Q C I RM Q

Furthermore RM P ∼1 RM Q, hence ∼1 is a bisimulation.

Suppose that, the first transition below holds, by select. Since U ∼0 V , if U C I P then there

exists some process Q such that V C I Q and P ∼0 Q. So the second transition below holds and

PM R ∼1 QM R.

Consider the case of the exponential. Assume that ∼0 is a bisimulation. Let ∼1 be the least

equivalence such that if U ∼0 V then ∗U ∼1 ∗V , if P ∼0 Q then P ∼1 Q and, recursively, if both

P0 ∼1 Q0 and P1 ∼1 Q1 then P0 M P1 ∼1 Q0 M Q1 and
∧

a.P0 ∼1
∧

a.Q0. Assume U ∼0 V and

consider the relation ∗U∼1∗V . Transitions are due to the weakening, dereliction and contraction

rules.

The case of the weakening rule is trivial. If ∗U I I ⊥ then ∗V I I ⊥ and ⊥ ∼1 ⊥. For the

dereliction rule, suppose the first transition below holds. Since U∼0 V and U C I P, there exists

a Q such that V C I Q and P ∼0 Q. Hence the second transition below holds and P ∼1 Q.

U C I P
∗U C I P

yields
V C I Q

∗V C I Q

For contraction, proceed by induction on the derivation of a transition. Suppose that the first

transition below holds. By induction, since ∗U C I P0, there exist processes P0 such ∗V C I Q0

and P0 ∼1 Q0. Similarly, since ∗U DI P1, there exist processes Q1 such ∗V C I Q1 and

Chapter 4 Algebra for Read–Write Linked Data 111

P1 ∼1 Q1. Hence the second transition below holds and P0 M P1 ∼1 Q0 M Q1.

∗S C0I P0 ∗S C1I P1

∗S ⊗ ∗S C0⊗C1I P0 M P1

∗S C0⊗C1I P0 M P1

yields
∗T C0I Q0 ∗T C1I Q1

∗T ⊗ ∗T C0⊗C1I Q0 M Q1

∗T C0⊗C1I Q0 M Q1

Hence by induction over the derivation of an iterated transition, ∼1 is a bisimulation. Note: this

case uses both induction for understanding the iterative operation, and coinduction in the form

of bisimulation, for understanding the observable operational behaviour.

This covers all cases, hence bisimulation is closed under all contexts. �

4.4.2 Contextual Equivalence and soundness

An alternative notion of equivalence is defined using the reduction system. Contextual equiv-

alence is used in related work to justify notions of bisimulation on the π-calculus and ambient

calculus [76, 95].

Definition 4.7 (Contextual equivalence). Contextual equivalence, written ', is the greatest sym-

metric, reduction closed, context closed relation. A relation R is reduction closed iff P R Q and

P � P′ then there exists some Q′ such that Q � Q′ and P′ R Q′. A relation R is context closed

iff P R Q yields that CP R CQ, for all contexts C.

Bisimulation is sound with respect to contextual equivalence. Soundness is essential to justify

the chosen notion of bisimulation.

Theorem 4.8 (Bisimulation is a contextual equivalence). If P ∼ Q then P ' Q.

Proof. Reduction closure follows from Lemma 4.3 and context closure follows from Lemma 4.6.

�

Soundness of bisimulation ensures that algebraic properties proven using bisimulation also hold

for contextual equivalence. Bisimulation simplifies proofs in the following section. Note that

completeness (contextual equivalence is a bisimulation) is not required for this work.

Full completeness would be demonstrated by showing that for every label there is a context

which makes a transition to a specific state if and only if a particular label holds. For instance

for a transition P l I R there should be a context Cl that Cl(P) � P′ M X, where X is a special

process which flags a particular transition. The existence of such a context for each label allows

the bisimulation game to be played using the reduction system. Thus a completeness proof must

show that: if P ' Q, then if Cl(P) � X M P′ then Cl(Q) � X M Q′ such that P′ ' Q′ for

all labels l. Thus contextual equivalence is shown to be a bisimulation (the converse of 4.8).

This technique has been employed to prove full completeness for the π-calculus and the ambient

calculus [95, 100].

112 Chapter 4 Algebra for Read–Write Linked Data

Full completeness can only be achieved in an extended calculus. The problem with the current

calculus is that queries can only be observed by stored triples, which are static so would not

decay to detect a flag (X above). Therefore the calculus should be extended with perishable

outputs to detect the perishable inputs. A calculus which is symmetric in its inputs and outputs

would be a stronger setting for investigating the framework for operational semantics introduced.

However, in this work the focus is on the application rather than the framework.

A weak completeness result is Lemma 4.4. Combined with Lemma 4.3, it is demonstrated

that the reduction system and the labelled transition system have the same operational power.

However, this is not sufficient to demonstrates that two systems give rise to the same algebraic

equations.

4.5 A Sound Algebra for Queries

Using bisimulation as an equivalence, properties of queries are established. Firstly a standard

bisimulation result for processes is verified. The algebra for queries is then investigated. Queries

form a monoid in a sup-lattice. The monoid is the tensor operation, while other features, such

as choice, select and iteration are various suprema.

This section amounts to a soundness result. Each result introduces an algebraic property of

queries. The bisimulation proof then demonstrates that the algebraic property is sound with

respect to the notion of bisimulation. Since bisimulation is sound with respect to structural

equivalence, the algebra is sound with respect to structural equivalence.

4.5.1 The structural congruence for processes

For the labelled transition system, structural congruence is not assumed, hence verified here. The

proof for the distributivity of blank node quantifiers over par requires extensive case analysis.

The case of associativity of par follows from distributivity of blank node quantifiers. Proofs are

similar to the analogous bisimulations in the π-calculus [99] (Theorem. 8).

Proposition 4.9 (Structural congruence is a bisimulation). So, (M,⊥) forms a commutative

monoid, as follows.

(PM Q)M R ∼ PM (QM R) PM ⊥ ∼ P PM Q ∼ QM P

Blank node quantifiers annihilate with ⊥, commute, and distribute over M, as follows.∧
a.⊥ ∼ ⊥

∧
a.
∧

b.P ∼
∧

b.
∧

a.P
∧

a.(PM Q) ∼
∧

a.PM Q a < fn (Q)

Chapter 4 Algebra for Read–Write Linked Data 113

Proof. Consider the case of the empty process in the presence of a blank node quantifier. Both

⊥ and
∧

a.⊥ have no transitions so the least equivalence relation ∼0 such that ⊥ ∼0
∧

a.⊥ is

vacuously a bisimulation.

Consider the case of the empty process in the presence of par. Assume that P C I P′, where C

is an input or an output label, hence by the par context rule PM ⊥ C I P′ M ⊥. Hence the least

equivalence relation ∼0 such that PM ⊥ ∼0 P is a bisimulation.

Consider the case of commuting quantifiers. If a = b then quantifiers immediately commute, so

suppose that a , b. Assume that P α|CI P′ and that a < α and b < α. There are three cases

to consider. In the first case the open rule is applied twice, hence the following proof trees are

interchangeable.

P α|CI P′∧
a.P α+a|CI P′∧

b.
∧

a.P α+a+b|CI P′

iff
P α|CI P′∧

b.P α+b|CI P′∧
a.
∧

b.P α+a+b|CI P′

In the second case the open rule and context rule is applied once in either order, hence the

following proof trees are interchangeable.

P α|CI P′∧
a.P α+a|CI P′∧

b.
∧

a.P α+a|CI
∧

b.P′

iff
P α|CI P′∧

b.P α|CI
∧

b.P′∧
a.
∧

b.P α+a|CI P′

In the third case the context rule is applied twice, hence the following proof trees are inter-

changeable.

P α|CI P′∧
b.P α|CI

∧
b.P′∧

a.
∧

b.P α|CI
∧

a.
∧

b.P′

iff
P α|CI P′∧

b.P α|CI
∧

b.P′∧
a.
∧

b.P α|CI
∧

a.
∧

b.P′

Hence the least equivalence relation ∼0 such that
∧

a.
∧

b.P ∼0
∧

b.
∧

a.P is a bisimulation.

Consider the case of commutativity of par. There are three cases to consider. Firstly, suppose

that α0 and α1 are disjoint and that P α0 |CI P′ and Q α1 |DI Q′ hold. Therefore the following

proof trees are interchangeable.

P α0 |CI P′ Q α1 |DI Q′

PM Q α0+α1 |C⊗DI P′ M Q′
iff

Q α1 |DI Q′ P α0 |CI P′

QM P α0+α1 |C⊗DI Q′ M P′

114 Chapter 4 Algebra for Read–Write Linked Data

Secondly, suppose that P α0 |CI P′ and Q α1 |DI Q′ hold and that α0 and α1 are disjoint. There-

fore the following proof trees are interchangeable, by the symmetry of the close rule.

P C⊗DI P′ Q α|CI Q′

PM Q DI
∧
α.(P′ M Q′)

iff Q α|CI Q′ P C⊗DI P′

QM P DI
∧
α.(Q′ M P′)

Thirdly, suppose that P C I P′ holds, where C is any input or output label, then the following

trees are interchangeable, by the symmetry of the par context rule.

P C I P′

PM Q C I P′ M Q
iff P C I P′

QM P C I QM P′

Hence the least equivalence relation ∼0 such that PMQ∼0 QMP and, recursively by Lemma 4.6,

if P ∼0 Q then
∧

a.P ∼0
∧

a.Q, is a bisimulation.

Consider the case of the change of scope of a blank node quantifier, where a < fn (Q). There are

eight cases to consider covering combinations of the combined output rule, the close rule and

context rules.

Firstly, consider the two cases for combining output labels. Assume that P α0 |CI P′ and Q α1 |DI

Q′, where α0, α1 and a are pairwise disjoint, α0 ∩ fn (Q) = ∅ and α1 ∩ fn (P) = ∅. Hence

furthermore (α0 + a) ∩ fn (Q) = ∅, so the following trees are interchangeable.

P α0 |CI P′ Q α1 |DI Q′

PM Q α0+α1 |C⊗DI P′ M Q′∧
a.(PM Q) α0+α1+a|C⊗DI P′ M Q′

iff
P α0 |CI P′∧

a.P α0+a|CI P′ Q α1 |DI Q′∧
a.PM Q α0+α1+a|C⊗DI P′ M Q′

Assume also that a < fn (C). By the lemma, if a < fn (Q) ∪ α1 and Q α1 |DI Q′ then a < fn (D),

it follows that a < fn (C ⊗ D). So the following trees are interchangeable.

P α0 |CI P′ Q α1 |DI Q′

PM Q α0+α1 |C⊗DI P′ M Q′∧
a.(PM Q) α0+α1 |C⊗DI

∧
a.(P′ M Q′)

iff
P α0 |CI P′∧

a.P α0 |CI
∧

a.P′ Q α1 |DI Q′∧
a.PM Q α0+α1 |C⊗DI

∧
a.P′ M Q′

Secondly, consider the three cases which use the close rule. Assume that P
{
b/a

}
α|CI P′ and

Q C⊗DI Q′ such that α ∩ fn (Q) = ∅ and α ∩ fn (D) = ∅. Consider each direction separately,

presented below. The forward direction holds since a < fn (Q) so (α + a) ∩ fn (Q) = ∅. The

converse direction holds, by choosing such that b < fn (
∧

a.(PM Q),Q′). Since a < fn (Q) gives

P
{
b/a

}
M Q = (P M Q)

{
b/a

}
alpha conversion can be applied. This avoids the worst case that

a ∈ fn (Q′) and a ∈ fn (D), where a is offered as an input but trapped as a blank node in the

Chapter 4 Algebra for Read–Write Linked Data 115

continuation.

P
{
b/a

}
α|CI P′ Q C⊗DI Q′

P
{
b/a

}
M Q DI

∧
α.(P′ M Q′)∧

a.(PM Q) DI
∧

b.
∧
α.(P′ M Q′)

iff

P
{
b/a

}
α|CI P′∧

a.P α+b|CI P′ Q C⊗DI Q′∧
a.PM Q DI

∧
b.
∧
α.(P′ M Q′)

A third case, with a different form of continuation to the above, need only be checked in one

direction. The argument is similar to above.

P
{
b/a

}
α|CI P′∧

a.P α|CI
∧

b.P′ Q C⊗DI Q′∧
a.PM Q DI

∧
α.(

∧
b.P′ M Q′)

yields

P
{
b/a

}
α|CI P′ Q C⊗DI Q′

P
{
b/a

}
M Q DI

∧
α.(P′ M Q′)∧

a.(PM Q) DI
∧

b.
∧
α.(P′ M Q′)

Now, assume that P C⊗DI P′ and Q α|CI Q′ such that α ∩ fn (P,D) = ∅. In both cases

a < fn (D), so the following proof trees are interchangeable.

P C⊗DI P′ Q α|CI Q′

PM Q DI
∧
α.(P′ M Q′)∧

a.(PM Q) DI
∧

a.
∧
α.(P′ M Q′)

iff
P C⊗DI P′∧

a.P C⊗DI
∧

a.P′ Q α|CI Q′∧
a.PM Q DI

∧
α.(

∧
a.P′ M Q′)

Thirdly, there are three cases for the par context rule. Assume that P α|CI P′ such that a <

fn (C) ∪ α. Hence the following proof trees are interchangeable.

P α|CI P′

PM Q α|CI P′ M Q∧
a.(PM Q) α|CI

∧
a.(P′ M Q)

iff
P α|CI P′∧

a.P α|CI
∧

a.P′∧
a.PM Q α|CI

∧
a.P′ M Q

Under the same conditions as above the following proof trees are interchangeable.

P α|CI P′

PM Q α|CI P′ M Q∧
a.(PM Q) α+a|CI P′ M Q

iff
P α|CI P′∧

a.P α+a|CI P′∧
a.PM Q α+a|CI P′ M Q

Now, assume that Q α|CI Q′ and b are such that α ∩ fn (P) = ∅ and b < fn (Q′) ∪ α. Hence the

following proof trees are interchangeable.

Q α|CI Q′

P
{
b/a

}
M Q α|CI P

{
b/a

}
M Q′∧

a.(PM Q) α|CI
∧

b.(P
{
b/a

}
M Q′)

iff
Q α|CI Q′∧

a.PM Q α|CI
∧

a.PM Q′

116 Chapter 4 Algebra for Read–Write Linked Data

Hence the least congruence ∼0 which contains alpha conversion, such that if a < fn (Q) then∧
a.PM Q ∼0

∧
a.(PM Q) and

∧
a.
∧

b.P ∼0
∧

b.
∧

a.P is a bisimulation.

Consider the case of associativity. There are fourteen cases. Only the two most involved cases

are considered, since the remaining cases present no further problems.

Assume that P α0 |CI P′, Q α1 |DI Q′ and R C⊗D⊗EI R′ hold such that α0 ∩ fn (Q,R) = ∅ and

α1 ∩ fn (R) = ∅. Consider the proof trees below. The forwards direction follows immediately.

The converse direction holds since, by alpha conversion, α1 can be chosen such that α1∩fn (P) =

∅ and α0 ∩ α1 = ∅. Hence, since also P α0 |CI P′ is follows that α1 ∩ fn (P′) = ∅.

Hence the following trees are interchangeable, up to alpha conversion of α1.

P α0 |CI P′ Q α1 |DI Q′

PM Q α0+α1 |C⊗DI P′ M Q′ R C⊗D⊗EI R′

(PM Q)M R E I
∧
α0.

∧
α1.((P′ M Q′)M R′)

iff P
α′0 |CI P′

Q α1 |DI Q′ R C⊗D⊗EI R′

QM R C⊗EI
∧
α1.(Q′ M R′)

PM (QM R) E I
∧
α0.(P′ M

∧
α1.(Q′ M R′))

Consider a second case. Assume that P α0 |CI P′, Q α1 |DI Q′ and R C⊗D⊗EI R′ hold such that

(α0 ∪ α1) ∩ fn (Q) = ∅.

Consider the forwards implication presented below. By alpha conversion, α0 can be chosen such

that α0 ∩ fn (R) = ∅ and α0 ∩ α1 = ∅. Furthermore, since α1 ∩ fn (P) = ∅ and α0 ∩ α1 = ∅ hold

then P α0 |CI P′ yields α1 ∩ fn (P′) = ∅.

The reverse implication is symmetric. By alpha conversion, α1 can be chosen such that α1∩P =

∅ and α0 ∩ α1 = ∅. Furthermore, since α0 ∩ fn (Q) = ∅ and α0 ∩ α1 = ∅ hold then Q α1 |DI Q′

yields α0 ∩ fn (Q′) = ∅.

Hence, up to the alpha conversion of α0 and α1, the following proof trees are interchangeable.

P α0 |CI P′ Q C⊗D⊗EI Q′

PM Q D⊗EI
∧
α0.(P′ M Q′) R α1 |DI R′

(PM Q)M R E I
∧
α1.(

∧
α0.(P′ M Q′)M R′)

iff P α0 |CI P′
Q C⊗D⊗EI Q′ R α1 |DI R′

QM R C⊗EI
∧
α1.(Q′ M R′)

PM (QM R) E I
∧
α0.(P′ M

∧
α1.(Q′ M R′))

Hence the least congruence ∼0 which contains alpha conversion, such that (PM Q)M R ∼0 PM

(QMR), if a < fn (Q) then
∧

a.PMQ∼0
∧

a.(PMQ), PMQ∼0 QMP and
∧

a.
∧

b.P∼0
∧

b.
∧

a.P

is a bisimulation. �

Chapter 4 Algebra for Read–Write Linked Data 117

4.5.2 The semiring of queries

Bisimulation reveals some canonical algebraic properties of queries. Firstly, queries form an

commutative idempotent semiring. Semirings are ubiquitous in computer science. A notable

feature of semirings is that the ideals of a semiring form a semiring. Commutativity refers to the

tensor product, which is not necessarily commutative [71].

Proposition 4.10 (Queries form a semiring). (U,⊗, I) is a commutative monoid, as follows.

(U ⊗ V) ⊗W ∼ (U ⊗ V) ⊗W U ⊗ V ∼ V ⊗ U U ⊗ I ∼ U

(U,⊕, 0) is idempotent commutative monoid, as follows.

U ⊕ U ∼ U (U ⊕ V) ⊕W ∼ U ⊕ (V ⊕W) U ⊕ V ∼ V ⊕ U U ⊕ 0 ∼ U

Furthermore, ⊗ distributes over ⊕ and 0 annihilates with ⊗, as follows.

U ⊗ (V ⊕W) ∼ (U ⊗ V) ⊕ (U ⊗W) U ⊗ 0 ∼ 0

Hence, (U,⊗,⊕, I, 0) is a commutative idempotent semiring.

Proof. Each case is verified by rewriting the derivation of input transitions.

Consider the case of idempotency of choice. Assume that U C I P and, without loss of gener-

ality, the left branch is chosen. The following two proof trees are interchangeable.

U C I P
U ⊕ U C I P

iff U C I P

Hence the least equivalence relation ∼0 such that U ⊕ U ∼0 U is a bisimulation.

Consider the case of associativity of choice. There are three cases to consider. If U C I P holds

then the following trees are interchangeable.

U C I P
U ⊕ V C I P

(U ⊕ V) ⊕W C I P

iff U C I P
U ⊕ (V ⊕W) C I P

If V DI Q then the following trees are interchangeable.

V DI Q

U ⊕ V DI Q

(U ⊕ V) ⊕W DI Q

iff
V DI Q

V ⊕W DI Q

U ⊕ (V ⊕W) DI Q

The third case is symmetric to the first case. Hence the least equivalence relation such that

U ⊕ (V ⊕W) ∼0 (U ⊕ V) ⊕W is a bisimulation.

118 Chapter 4 Algebra for Read–Write Linked Data

Consider the case of commutativity of choice. Assuming that U C I P holds, then following

proof trees are interchangeable.

U C I P
U ⊕ V C I P iff

U C I P
V ⊕ U C I P

Hence the least equivalence relation ∼0 such that U ⊕ V ∼0 V ⊕ U is a bisimulation.

Consider the case of the unit of choice. Since � 0 never holds, 0 never makes a transition. Hence

there is only one possible choice and the following proof trees are interchangeable.

U C I P
U ⊕ 0 C I P

iff U C I P

Hence the least equivalence relation ∼0 such that U ⊕ 0 ∼0 U is a bisimulation.

Consider the case of associativity of tensor. Assuming that U C I P, V DI Q and W E I R,

the following proof trees are interchangeable.

U C I P

V DI Q W E I R

V ⊗W D⊗EI QM R

U ⊗ (V ⊗W) C⊗D⊗EI PM (QM R)

iff
U C I P V DI Q

U ⊗ V C⊗DI PM Q W E I R

(U ⊗ V) ⊗W C⊗D⊗EI (PM Q)M R

Let ∼0 be the least congruence such that U⊗(V⊗W)∼0(U⊗V)⊗W and PM(QMR)∼0(PMQ)MR,

and the conditions for associativity in Proposition 4.9 hold. Hence ∼0 is a bisimulation.

Consider the case of commutativity of tensor. Assume that U C I P and V DI Q hold. By

commutativity of the labels, the following proof trees are interchangeable.

U C I P V DI Q

U ⊗ V C⊗DI PM Q
iff

V DI Q U C I P

V ⊗ U C⊗DI QM P

Let ∼0 be the least congruence ∼0 such that V ⊗ U ∼0 U ⊗ V and P M Q ∼0 Q M P. Hence, by

Proposition 4.9 and the above, ∼0 is a bisimulation.

Consider the unit of tensor. Assume that U C I P and note that � I always holds. Hence the

following proof trees are interchangeable, by the unit of labels.

U C I P I I I ⊥

U ⊗ I C⊗II PM ⊥
iff U C⊗II P

Hence the least equivalence relation ∼0 such that U ⊗ I∼0 U and PM⊥∼0 P, by Proposition 4.9,

is a bisimulation.

Chapter 4 Algebra for Read–Write Linked Data 119

Consider the case of distributivity. Without loss of generality, assume that U C I P and V DI

Q. The following proof trees are interchangeable.

U C I P

V DI Q

V ⊕W DI Q

U ⊗ (V ⊕W) C⊗DI PM Q

iff
U C I P V DI Q

U ⊗ V C⊗DI PM Q

(U ⊗ V) ⊕ (U ⊗W) C⊗DI PM Q

Therefore the least equivalence relation ∼0, such that U ⊗ (V ⊕W) ∼0 (U ⊗ V) ⊕ (U ⊗W) is a

bisimulation.

Consider the case of annihilation. Since � 0 never holds, then 0 makes no transitions. Now,

suppose that U ⊗ 0 makes a transition. Then U C I P and 0 DI Q, for some D and Q, but no

such D or Q exist, yielding a contradiction. Hence, the least relation ∼0 such that U ⊗ 0 ∼0 0 is

a bisimulation. �

Idempotent semirings have a natural preorder, given by S ≤ T iff S ⊕ T ∼ T . Hence queries

have this natural preorder. It is easy to check that this preorder becomes a partial order when

queries are quotiented by bisimulation.

Proposition 4.11. ≤ is a partial order over queries quotiented by bisimulation.

Proof. Reflexivity follows by idempotency of choice. Transitivity follows since given U ≤ V

and V ≤ W, clearly W ∼ W ⊕ (V ⊕ U) ∼ W ⊕ U, thus U ≤ W. Reflexivity follows since U ≤ V

and V ≤ U yields that U ∼ U ⊕ V ∼ V . �

An immediate consequence of Proposition 4.10 is that zero is the least query, since 0 ⊕ U ∼ U

defines 0 ≤ U. Another consequence is that choice is a colimit, as follows. A colimit is a least

upper bound of queries, so is expressed using the natural partial order over queries.

Proposition 4.12. Choice is a colimit of its branches. That is, V ≤ W and U ≤ W, if and only

if V ⊕ U ≤ W.

Proof. Assume that U ≤ W and V ≤ W. Hence the following reasoning holds.

(U ⊕ V) ⊕W ∼ (U ⊕W) ⊕ (V ⊕W) by distributivity

∼ W ⊕W by the assumptions

∼ W by idempotency

Conversely, assume that U ⊕ V ≤ W. Hence the following reasoning holds.

U ⊕W ∼ U ⊕ U ⊕ V ⊕W by the assumption

∼ U ⊕ V ⊕W by idempotency

∼ W by the assumption

A symmetric proof works for V ≤ W. Hence choice is a colimit. �

120 Chapter 4 Algebra for Read–Write Linked Data

Another immediate consequence of Proposition 4.10 is that choice and tensor are monotone

operators. Monotonicity demonstrates that the natural order is preserved by the operators.

Corollary 4.13. Choice and tensor are monotone operators.

Proof. Assuming that U ≤ V , the following establishes that W ⊗ U ≤ W ⊗ V .

(W ⊗ U) ⊕ (W ⊗ V) ∼ W ⊗ (U ⊕ V) by distributivity

∼ W ⊗ V by the assumption

Similarly, assuming that U ≤ V , the following establishes that W ⊕ U ≤ W ⊕ V .

W ⊕ U ⊕W ⊕ V ∼ W ⊕ U ⊕ V by idempotency

∼ W ⊕ V by the assumption

�

The preorder over queries can be used to optimise queries. If a query offers a choice between

a query and less deterministic query, the more deterministic branch may be eliminated. For

instance, in related work [110], is claimed that the follows to queries are not the same.

U OPTIONAL (V OPTIONAL W) and (U OPTIONAL V) OPTIONAL W

Under the interpretation of OPTIONAL in the calculus the following holds by distributivity, com-

mutativity and idempotency.

U ⊗ ((V ⊗ (W ⊕ I)) ⊕ I) ≤ U ⊗ ((V ⊕ I) ⊗ (W ⊕ I)) ,

Hence the first query is more deterministic than the second query, so answers fewer questions.

4.5.3 The select quantifiers as colimits

A single rule is sufficient to capture the algebra of the select quantifier. From this algebra com-

mon equalities can be derived. The derived rules are suitable for the optimisation technique of

flattening nested selects used in relational algebra [43]. The proof of commutativity of quan-

tifiers requires the notion of capture avoiding substitution to be assumed. Capture avoiding

substitution is a weaker assumption than alpha conversion. The presence of the tensor in the

rule is required to prove that
∨

a.U ⊗ V ≤
∨

a.(U ⊗ V), when a < fn (V). This

Proposition 4.14. Selects are colimits of substitutions. So, U
{
b/a

}
⊗ V ≤ W for all b, if and only

if
∨

a.U ⊗ V ≤ W.

Chapter 4 Algebra for Read–Write Linked Data 121

Proof. Assume that U C I P and V DI Q holds. Hence the following proof trees are inter-

changeable.

U
{
b/a

}
C I P V DI Q

U
{
b/a

}
⊗ V C⊗DI PM Q

iff

U
{
b/a

}
C I P∨

a.U C I P V DI Q∨
a.U ⊗ V C⊗DI PM Q

Now assume that (U
{
b/a

}
⊗V)⊕W ∼ W for all b and consider (

∨
a.U ⊗V)⊕W. If the left branch

is chosen then
∨

a.U ⊗ V C⊗DI PM Q. Hence, by the above, U
{
b/a

}
U C⊗DI PM Q for some b.

Thus by the bisimulation assumption there exists some R such that W C⊗DI R and R ∼ PM Q.

Therefore
∨

a.U ⊗ V ≤ W.

Conversely, assume that (
∨

a.U ⊗ V) ⊕W ∼ W and consider (U
{
b/a

}
⊗ V) ⊕W. If the left branch

is chosen then U
{
b/a

}
⊗ V C⊗DI PM Q. Hence by the above,

∨
a.U ⊗ V C⊗DI PM Q. Thus by

the bisimulation assumption there exists some R such that W C⊗DI R and R ∼ PMQ. Therefore

U
{
b/a

}
⊗ V ≤ W. �

Existential quantifiers have been known to be colimits since the work of Lawvere [88]. Law-

vere shows that existential quantification is left adjoint to capture avoiding substitution; while

universal quantification is right adjoint to capture avoiding substitution. This elegant definition

allows all other algebraic properties of quantifiers to be derived. Thus common properties of

select quantifiers can be established easily using the above proposition. These include the dual

properties to those established for blank node quantifiers with respect to the monoid of parallel

processes. For the select quantifier these properties are established with respect to the monoid

of synchronous queries.

Corollary 4.15. Immediate consequences are that, select commutes, distributes over choice,

is annihilated by true and distributes over tensor. Furthermore, alpha conversion of bound

variables is verified.∨
a.
∨

b.S ∼
∨

b.
∨

a.S
∨

a.(S ⊕ T) ∼
∨

a.S ⊕
∨

a.T∨
a.I ∼ I

∨
a.(S ⊗ T) ∼

∨
a.S ⊗ T a < fn (T)

Proof. Consider the case of a quantified unit. For all substitutions I
{
b/a

}
= I, so I ≤ U if and only

if
∨

a.I ≤ U, since select is a colimit. By taking U to be I, it holds that
∨

a.I ≤ I. Conversely, by

taking U to be
∨

a.I it holds that I ≤
∨

a.I.

Consider the distributivity of select quantifiers over choice. The following reasoning demon-

strates the exchange of choice and select, since U
{
b/a

}
⊕ V

{
b/a

}
= (U ⊕ V)

{
b/a

}
.

∨
a.U ⊕

∨
a.V ≤ W iff

∨
a.U ≤ W and

∨
a.V ≤ W since choice is a colimit

iff U
{
b/a

}
≤ W and V

{
b/a

}
≤ W for all b since select is a colimit

iff (U ⊕ V)
{
b/a

}
≤ W for all b since choice is a colimit

iff
∨

a.(U ⊕ V) ≤ W since select is a colimit

122 Chapter 4 Algebra for Read–Write Linked Data

Hence by taking W to be
∨

a.(U ⊕V) it follows that
∨

a.U ⊕
∨

a.V ≤
∨

a.(U ⊕V). Similarly, by

taking W to be
∨

a.U ⊕
∨

a.V it follows that
∨

a.(U ⊕ V) ≤
∨

a.U ⊕
∨

a.V .

Consider the case of distributivity of select over tensor. Assume that a < fn (V), so U
{
b/a

}
⊗ V =

(U ⊗ V)
{
b/a

}
. Hence the following reasoning holds.

∨
a.U ⊗ V ≤ W iff U

{
b/a

}
⊗ V ≤ W since select is a colimit

iff I ⊗ (U ⊗ V)
{
b/a

}
≤ W since a < fn (V)

iff I ⊗
∨

a.(U ⊗ V) ≤ W since select is a colimit

So, by taking W to be
∨

a.U ⊗ V it follows that
∨

a.(U ⊗ V) ≤
∨

a.U ⊗ V . Similarly, by taking

W to be
∨

a.(U ⊗ V) is follows that
∨

a.U ⊗ V ≤
∨

a.(U ⊗ V).

Consider the commutativity of select quantifiers. If the names are identical then the quantifiers

trivially commute. Suppose that the bound names a, b are distinct, so a , b.

To proceed, two intuitive assumptions for substitutions are made. Firstly, substitutions using a

fresh name can be composed, so for any {e/a}
{
b/e

}
=
{
b/a

}
, where e is fresh. Secondly, independent

substitutions commute, so if e, f are distinct names then {c/e}
{
d/f

}
=
{
d/f

}
{c/e}. So, assuming that

e, f are distinct fresh names the following holds.

U
{

f/b
}
{c/a}

{
d/f

}
= U

{
f/b

}
{e/a}{

c/e}
{
d/f

}
by composition of substitutions

= U{e/a}
{

f/b
}{

d/f
}
{c/e} by commutivity of substitutions

= U{e/a}
{
d/b

}
{c/e} by composition of substitutions

Furthermore, since a , b, (
∨

b.U){c/a} =
∨

f .(U
{

f/b
}
{c/a}), by capture avoiding substitution and

similarly, (
∨

a.U)
{
d/b

}
=

∨
e.(U{e/a}

{
d/b

}
). Hence the following reasoning holds.

∨
a.
∨

b.U ≤ V iff (
∨

b.U){c/a} ≤ V for all c since select is a colimit

iff
∨

f .(U
{

f/b
}
{c/a}) ≤ V for all c by capture avoiding substitution

iff U
{

f/b
}
{c/a}

{
d/f

}
≤ V for all c, d since select is a colimit

iff U{e/a}
{
d/b

}
{c/e} ≤ V for all c, d by the above lemma

iff
∨

e.(U{e/a}
{
d/b

}
) ≤ V for all d since select is a colimit

iff (
∨

a.U)
{
d/b

}
≤ V for all d by capture avoiding substitution

iff
∨

b.
∨

a.U ≤ V since select is a colimit

So, by taking V to be
∨

b.
∨

a.U it holds that
∨

a.
∨

b.U ≤
∨

b.
∨

a.U. Hence, by symmetry of

argument,
∨

a.
∨

b.U ∼
∨

b.
∨

a.U.

Capture avoiding substitution (as assumed for the previous case) is a weaker assumption than

alpha conversion. Alpha conversion of select quantifiers can be derived as follows. Assume that

Chapter 4 Algebra for Read–Write Linked Data 123

U{c/a}
C I P and note that U{c/a} = U

{
b/a

}
{c/b}, where b is fresh.

∨
a.U ≤ V iff U{c/a} ≤ V since select is a colimit

iff U
{
b/a

}
{c/b} ≤ V since b is fresh

iff
∨

b.(U
{
b/a

}
) ≤ V since select is a colimit

Thus by taking V to be
∨

a.U is follows that
∨

b.(U
{
b/a

}
) ≤

∨
a.U. Similarly, by taking V to be∨

b.(U
{
b/a

}
) if follows that

∨
a.U ≤

∨
b.(U

{
b/a

}
). Thus alpha conversion is a bisimulation. �

Note that the above corollary also ensures that select quantification is monotone. Assume P ≤ Q

and consider the select quantifiers.

∨
a.P ⊕

∨
a.Q ∼

∨
a.(P ⊕ Q) by Corollary 4.15

∼
∨

a.(Q) by the assumption

Hence
∨

a.P ≤
∨

a.Q by the reasoning above. Monotonicity of operators is used to establish

further results.

4.5.4 The algebra of iteration

The following rules of regular algebra hold. The first of the rules is sufficient to demonstrate that

∗V ⊗U is a fixed point of the (monotone) map W 7→ U ⊕ (V ⊗W). The second rule demonstrates

that ∗V ⊗ U is the least such fixed point. The formulation below, was proven to be complete,

with respect to the equational theory of Kleene algebras, by Kozen [83].

Proposition 4.16. An iterated query expands as follows ∗U ∼ I ⊕ (U ⊗ ∗U). Furthermore, if

U ⊕ (V ⊗W) ≤ W then ∗V ⊗ U ≤ W.

Proof. The derivation of transitions of ∗U can be normalised by reorganising the derivation. A

contraction on the left after another contraction is converted to a contraction on the right, as

follows.

∗U C I P ∗U DI Q

∗U ⊗ ∗U C⊗DI PM Q

∗U C⊗DI PM Q ∗U E I R

∗U ⊗ ∗U C⊗D⊗EI (PM Q)M R

∗U C⊗D⊗EI (PM Q)M R

yields ∗U C I P

∗U DI Q ∗U E I R

∗U ⊗ ∗U D⊗EI QM R

∗U D⊗EI QM R

∗U ⊗ ∗U C⊗D⊗EI PM (QM R)

∗U C⊗D⊗EI PM (QM R)

If weakening appears on the left of a contraction then the contraction can be removed.

∗U I I ⊥ ∗U C I P
∗U ⊗ ∗U I⊗CI ⊥M P

∗U I⊗CI ⊥M P

yields ∗U C I P

124 Chapter 4 Algebra for Read–Write Linked Data

By applying the above two transformation recursively there are three possible outcomes. The

three outcomes correspond to the transitions of I ⊕ (U ⊗ ∗U). The first case is that a transition

reduces to a single weakening rule, which is matched by choosing the unit, as follows.

∗U I I ⊥ iff
I I I ⊥

I ⊕ (U ⊗ ∗U) I I ⊥

The second case is that the transformation results in a dereliction on the left, as follows, since

both contraction and weakening are removed by normalisation.

U C I P
∗U C I P ∗U DI Q

∗U ⊗ ∗U C⊗DI PM Q

∗U C⊗DI PM Q

yields
U C I P ∗U DI Q

U ⊗ ∗U C⊗DI PM Q

I ⊕ (U ⊗ ∗U) C⊗DI PM Q

The third case is that the exponential is derived directly from dereliction. By applying contrac-

tion and weakening on the right, the third case is reduced to the second case.

Therefore the least equivalence relation ∼0 such that ∗U ∼0 I ⊕ (U ⊗ ∗U) and (P M Q) M R ∼0

PM (QM R) and ⊥M P ∼0 P is a bisimulation. This established the expansion property.

The expansion property is sufficient to show that U⊗∗V is a fixed point of the monotone map F :

W 7→ U ⊕ (V ⊗W). Monotonicity of F follows since tensor and choice are monotonic operators,

as demonstrated in Proposition 4.13. This fixed point property is formulated as F (U ⊗ ∗V) ≤

U ⊗ ∗V , which is demonstrated as follows.

(U ⊗ ∗V) ⊕ U ⊕ (V ⊗ U ⊗ ∗V) ∼ U (I ⊕ V ⊗ ∗V) by distributivity

∼ U ⊗ ∗V by expansion

The remaining proof demonstrates that U ⊗ ∗V is not only a fixed point of F but also the least

fixed point of F. This least fixed point property can by demonstrated by establishing that if

F (W) ≤ W then U ⊗ ∗V ≤ W.

The proof works by first establishing two lemmas from the assumption U ⊕ (V ⊗W) ≤ W. The

proof then proceeds by induction on the length of a derivation of a transition of U ⊗∗V to verify

that U ⊗ ∗V ≤ W. Notice that this proof combines inductive and co-inductive reasoning.

For the first lemma, assume that U ⊕ (V ⊗W) ≤ W, and consider the transitions of U ⊕ (V ⊗W).

There are two cases to consider. If U C I P then, since U ⊕ (V ⊗W) ⊕W ∼ W, given the first

transition below, there exists a Q such that the second transition below holds and P ∼ Q.

U C I P
U ⊕ (V ⊗W) C I P

yields W C I Q

Chapter 4 Algebra for Read–Write Linked Data 125

For the second lemma, suppose that V C I P and W DI Q. Since U ⊕ (V ⊗ W) ⊕ W ∼ W,

given the first transition below, there exists a R such that the second transition below holds and

R ∼ PM Q.
V C I P W DI Q

V ⊗W C⊗DI PM Q

U ⊕ (V ⊗W) C⊗DI PM Q

yields W C⊗DI R

Having established the above two lemmas, consider that transitions of U ⊗ ∗V . Normalise the

transitions of ∗V , as above, by transforming contraction and weakening on the left. Hence there

are three cases to consider, as follows.

Suppose that U C I P and ∗V uses the weakening rule. By the first lemma, U C I P yields

W C I Q, such that P ∼ Q. Hence the first transition below yields the second transition.

U C I P ∗V I I ⊥

U C⊗II PM ⊥
yields W C I Q

Now, suppose that U C I P, that V DI Q and ∗V uses only dereliction. By the first lemma,

U C I P yields W C I R, where P ∼ R. So, by the second lemma, V DI Q and W C I R yield

that W C⊗DI S , where S ∼ QM R ∼ PM Q. Hence the first transition below yields the second

transition.

U C I P

V DI Q

∗V DI Q

U ⊗ ∗V C⊗DI PM Q

yields W C⊗DI S

Consider the case of contraction. Assume that for some bounded length of derivation, if U ⊗

∗V E I R then W E I R′ for some R′ such that R ∼ R′. Consider a one step longer derivation

of a transition of U ⊗ ∗V . This transition can be normalised to the form of the first transition

below. Furthermore, due to expansion, U ⊗ ∗V ∼ U ⊕ (V ⊗ ∗V ⊗U) holds; thus by bisimulation

the second transition below also holds.

V DI Q

∗V DI Q ∗V E I R

∗V ⊗ ∗V D⊗EI QM R

∗V D⊗EI QM R U C I P

U ⊗ ∗V C⊗D⊗EI PM QM R

iff
V DI Q

∗V E I R U C I P
∗V ⊗ U E⊗CI RM P

V ⊗ ∗V ⊗ U C⊗D⊗EI PM QM R

U ⊕ (V ⊗ ∗V ⊗ U) C⊗D⊗EI PM QM R

Thus ∗V ⊗ U E⊗CI R M P holds. By induction, ∗V ⊗ U E⊗CI R M P yields that W E⊗CI R′,

where RMP ∼ R′. So, by the second lemma, V DI Q and W E⊗CI R′ yield that W C⊗D⊗EI S ,

where S ∼ QM R′ ∼ PM QM R.

All cases are covered; hence ∗V ⊗ U ≤ W. �

126 Chapter 4 Algebra for Read–Write Linked Data

The following proposition demonstrates some commonly used equations that hold as a conse-

quence of Proposition 4.16. Historically, Redko demonstrated that no finite collection of equa-

tions could axiomatise iteration [117]. Therefore adding any equations to this proposition can

never produce a complete characterisation of iteration, hence cannot replace Proposition 4.16.

Corollary 4.17. Immediate consequences of Proposition 4.16 include the following. Iteration

is idempotent, converts additives to multiplicatives and can be denested, as follows.

∗∗U ∼ ∗U ∗(U ⊕ V) ∼ ∗U ⊗ ∗V ∗(∗U ⊗ V) ∼ I ⊕ (V ⊗ ∗(V ⊕ U))

Proof. Consider the case of the conversion of a choice into a tensor. For one direction ∗(U ⊕ V) ≤

∗U ⊗ ∗V , first establish three inequations as follows.

The inequation I ≤ ∗U ⊗ ∗V holds due to the following.

I ⊕ (∗U ⊗ ∗V) ∼ I ⊕ ∗U ⊕ (∗U ⊗ V ⊗ ∗V) by expansion

∼ I ⊕ I ⊕ (U ⊗ ∗U) ⊕ (∗U ⊗ V ⊗ ∗V) by expansion

∼ ∗U ⊗ ∗V by idempotency and expansion

The inequation U ⊗ ∗U ⊗ ∗V ≤ ∗U ⊗ ∗V holds due to the following.

(U ⊗ ∗U ⊗ ∗V) ⊕ (∗U ⊗ ∗V) ∼ (U ⊗ ∗U ⊗ ∗V) ⊕ ∗V ⊕ (U ⊗ ∗U ⊗ ∗V) by expansion

∼ ∗V ⊕ (U ⊗ ∗U ⊗ ∗V) by idempotency

∼ ∗U ⊗ ∗V by expansion

A similar argument shows that V ⊗ ∗U ⊗ ∗V ≤ ∗U ⊗ ∗V .

Combing the above inequations establishes the following inequation.

I ⊕ (U ⊕ V) ⊗ ∗U ⊗ ∗V ∼ I ⊕ U ⊗ ∗U ⊗ ∗V ⊕ V∗U∗V by distributivity

≤ ∗U∗V by idempotency

Hence, by the fixed point rule, ∗(U ⊕ V) ⊗ I ≤ ∗U∗V , as required.

For the converse, first establish a lemma. Note that ∗V ⊕ (V ⊗ ∗V) ≤ ∗V , by idempotency and

expansion; therefore, by the fixed point rule, ∗W∗W ≤ ∗W. Therefore the following establishes

the result.
∗U∗V ≤ ∗(U ⊕ V) ⊗ ∗(U ⊕ V) by monotonicity

≤ ∗(U ⊕ V) by the above lemma

Idempotency follows from ∗U ⊗∗U ≤ ∗U. By expansion and idempotency I⊕ (∗U ⊗∗U) ≤ ∗U,

hence by the fixed point rule I ⊗ ∗∗U ≤ ∗U. The converse holds since U ≤ ∗U, by expansion

and idempotency, hence by monotonicity ∗U ≤ ∗∗U.

Chapter 4 Algebra for Read–Write Linked Data 127

Denesting is proven by first establishing the intermediate result that ∗(U ⊕ V) ∼ ∗V ⊗∗(U ⊗ ∗V)

holds. This follows in one direction since.

∗(U ⊕ V) ∼ ∗(U ⊗ I) ⊗ ∗V since choice converst to tensor

≤ ∗(U ⊗ ∗V) ⊗ ∗V by monotonicity

The converse direction holds by the following.

∗V ⊕ (U ⊗ ∗V ⊗ ∗(U ⊕ V)) ⊕ ∗(U ⊕ V)

∼ ∗V ⊕ (U ⊗ ∗U ⊗ ∗(V ⊕ V)) ⊕ (∗U ⊗ ∗V) since choice converts to tensor

∼ ∗V ⊗ (I ⊕ (U ⊗ ∗U) ⊕ ∗U) by idempotency and distributivity

∼ ∗V ⊗ ∗U by expansion

∼ ∗(V ⊕ U) since choice converts to tensor

Hence, by the least fixed point rule, the following inequation holds.

∗V ⊗ ∗(U ⊗ ∗V) ≤ ∗(V ⊕ U)

Thus the lemma is established. The following reasoning therefore holds.

∗(U ⊗ ∗V) ∼ I ⊕ (U ⊗ ∗V ⊗ ∗(U ⊗ ∗V)) by expansion

∼ I ⊕ (U ⊗ ∗(U ⊕ V)) by the lemma

Thus denesting is established. �

A classic consequence of the rules in Corollarly 4.17 is that queries without select can always

be denested to a single iteration [84]. However, select breaks denesting since iteration and select

do not commute. For instance the following query requires two iterations. The result is that for

each of the first continuation triggered, zero or more instances of the second continuation are

triggered. This query can be expressed using sub-queries in the current SPARQL Query working

draft [66].

∗
∨

a.
∨

n.
(
(|(a name n)| ; P) ⊗ ∗

∨
e.(|(a email e)| ; Q)

)
Iteration can be expressed as a colimit of repeated queries. This is a strictly more general prop-

erty than Proposition 4.16 [82]. Since all constructs are colimits which distribute over tensor, the

ideals generated by queries form a (commutative) quantale, as exploited by Montanari, Hoare

and others [26, 71]. Quantales are related to spectral theory, which is related to information

retrieval techniques used by search engines [77]. Commutative quantales also have an elegant

representation theory in terms of locally compact Hausdorff spaces, via the Gelfand-Naimark

representation [103]. Clarification of these connections is future work.

Proposition 4.18. Iteration is a colimit of powers of queries. So, Un ⊗ V ≤ W for all n, if and

only if ∗U ⊗ V ≤ W.

128 Chapter 4 Algebra for Read–Write Linked Data

Proof. Consider the base case. U0 = I and I ⊕ ∗U ∼ I ⊕ I ⊕ U ⊗ ∗U ∼ ∗U, by expansion and

idempotency. Therefore U0 ≤ ∗U.

Assume that Un ≤ ∗U and consider Un+1 = Un ⊗ U. By the following reasoning Un+1 ≤ ∗U.

(Un ⊗ U) ⊕ ∗U ∼ (Un ⊗ U) ⊕ I ⊕ (U ⊗ ∗U) by expansion

∼ I ⊕ U ⊗ (Un ⊕ ∗U) by distributivity

∼ I ⊕ (U ⊗ ∗U) by induction

∼ ∗U by expansion

So, by induction, Un ≤ ∗U for all n. Hence if V ⊗ ∗U ≤ W then V ⊗ Un ≤ W for all n, by

monotonicity of tensor.

Conversely, assume that V ⊗Un ≤ W for all n and consider the transitions of V ⊗ ∗U. There are

three cases, corresponding to the rules of iteration.

Suppose that only weakening is used to evaluate iteration. Hence the unit transition can be used

as follows.
V C I P ∗U I I ⊥

V ⊗ ∗U C⊗II PM ⊥
yields V C I P U0 I I ⊥

V ⊗ U0 C⊗II PM ⊥

Similarly, if only dereliction is used, then the same effect can be achieve using a single query as

follows.

V C I P

U DI Q

∗U DI Q

V ⊗ ∗U C⊗DI PM Q

yields
V C I P U1 DI Q

V ⊗ U1 C⊗DI PM Q

For contraction, firstly assume that the following holds for k = m and k = n, such that Q ∼ Q′.

V C I P ∗U DI Q

V ⊗ ∗U C⊗DI PM Q
yields

V C I P Uk DI Q′

V ⊗ ∗U C⊗DI PM Q′

Also, by induction on n, Um⊗Un ∼ Um+n. The base case follows from the unit of multiplication,

since Um ⊗ U0 ∼ Um. The induction step follows since Um ⊗ Un+1 ∼ Um+n ⊗ U. Hence if

Um ⊗Un D⊗EI Q′ M R′ such that Q ∼ Q′ and R ∼ R′, then by bisimulation Um+n D⊗EI S such

that S ∼ QM R. Hence the following holds.

V C I P

∗U DI Q ∗U E I R

∗U ⊗ ∗U D⊗EI QM R

∗U D⊗EI QM R

V ⊗ ∗U D⊗EI PM (QM R)

yields V C I P Um+n D⊗EI S
V ⊗ ∗U D⊗EI PM S

Hence by induction on the derivation of V ⊗ ∗U C I P, there is some n such that V ⊗Un C I Q

and P ∼ Q. Hence by the assumption W C I R such that R ∼ Q ∼ P. Therefore V ⊗ ∗U ≤ W,

as required. �

Chapter 4 Algebra for Read–Write Linked Data 129

4.5.5 Embeddings of Boolean Algebras

Kozen demonstrates that Boolean algebras can be embedded in Kleene algebras [84]. The ‘tests’

of Kozen correspond to ‘constraints’ in SPARQL. Bisimulation verifies that the Boolean algebra

of constraints embeds in the Kleene algebra is the same manner with similar consequences.

Proposition 4.19. The Boolean algebra of constraints embeds in queries. Using standard clas-

sical implication, φ ⇒ ψ if and only if φ ≤ ψ. Or is choice, and is tensor, exists is select and an

iterated constraint is always true.

φ ∨ ψ ∼ φ ⊕ ψ φ ∧ ψ ∼ φ ⊗ ψ ∃a.φ ∼
∨

a.φ I ∼ ∗φ

Proof. Consider the embedding of classical implication in queries. Assume that φ ⇒ ψ, so if

� φ then � ψ. Hence if φ I I ⊥ then ψ I I ⊥. Hence the least equivalence relation ∼0 such that

if φ⇒ ψ then φ ⊕ ψ ∼0 φ is a bisimulation.

For the converse, assume that φ ⊕ ψ ∼ ψ and that � φ holds. Hence φ ⊕ ψ I I ⊥, so there exists

P such that ψ I I P and P ∼ ⊥. Thus � ψ must hold.

Consider the case of an interated constraint. An immediate consequence of the above is that

φ ≤ I, since I is the top element of the Boolean algebra, so I ⊕ (I ⊗ φ) ≤ I. Hence, by the fixed

point rule for iteration, I⊗ ∗φ ≤ I. For the converse consider the following due to expansion and

idempotency, I ⊕ ∗φ ∼ I ⊕ I ⊕ (φ ⊗ ∗φ) ∼ ∗φ. Hence I ≤ ∗φ.

Consider the case of disjunction. Assume that � φ ∨ ψ holds, which follows only if � φ holds or

� ψ holds. Without loss of generality assume that � φ holds. Hence the following proof trees are

interchangeable.
� φ

φ I I ⊥

φ ⊕ ψ I I ⊥ iff

� φ
� φ ∨ ψ

φ ∨ ψ I I ⊥

Hence the least equivalence relation ∼0 such that φ ∨ ψ ∼0 φ ⊕ ψ is a bisimulation.

Consider the case of conjunction. Assume that � φ ∨ ψ holds, which follows only if � φ holds

and � ψ holds. Hence the following proof trees are interchangeable.

� φ

φ I I ⊥

� ψ

ψ I I ⊥

φ ⊗ ψ I I ⊥M ⊥

iff
� φ � ψ
� φ ∧ ψ

φ ∧ ψ I I ⊥

Hence the least equivalence relation ∼0 such that φ∧ψ∼0φ⊗ψ and ⊥M⊥∼0⊥ is a bisimulation.

130 Chapter 4 Algebra for Read–Write Linked Data

Consider the case of existential quantification of constraints. Assume that � ∃x.φ holds. Thus

there exists some v such that � φ{v/x} holds, so the following are interchangeable.

� φ{v/x}
� ∃x.φ

∃x.φ I I ⊥

iff

� φ{v/x}

φ{v/x}
I I ⊥∨

x.φ I I ⊥

Hence the least equivalence relation ∼0 such that
∨

x.φ ∼ ∃x.φ is a bisimulation. �

As with classical implication, the preorder over triples can be embedded in the partial order over

processes. However, since alias assumptions are only a preorder. If C ∼ D then it holds that

C v D and D v C, which is weaker than equality. Maintaining distinction of names is important

for applications where β is not fixed over time.

Proposition 4.20. C v D if and only if C ≤ D.

Proof. Assume that C v D and consider C ⊕ D. Given that C′ v C, by transitivity, is holds that

C′ v D. Hence the following implication holds.

C′ v C

|C| C′I ⊥
yields

C′ v D

|D| C′I ⊥

Hence |C| ⊕ |D| ∼ |D| as required.

Conversely, assume that C ⊕ D ∼ D. Since, C C I ⊥, by bisimulation, there exists P such that

D C I P such that P ∼ ⊥. This can only follow from D C I ⊥ which follows from C v D, as

required. �

4.5.6 The algebra for continuations

The multiplicatives then, par and times and the units are related in the following manner. Com-

bined with the previous rules the properties of then are established. The second rule shows that

‘then’ can be replaced by the unit delay (as in [5]).

Proposition 4.21. An empty continuation can be removed, a continuation can be decomposed

into the guard and a unit delayed process, and two continuations can be combined in a single

par continuation, as follows.

I ; ⊥ ∼ I U ⊗ (I ; P) ∼ U ; P (U ; P) ; Q ∼ U ; (PM Q)

Proof. Consider the case of the empty continuation. The following proof trees are interchange-

able.
I I I ⊥

I ; ⊥ I I ⊥M ⊥
iff I I I ⊥

Chapter 4 Algebra for Read–Write Linked Data 131

Hence the least equivalence relation ∼0 such that I ∼0 I ; ⊥ and ⊥ ∼0 ⊥ is a bisimulation.

Consider the decomposition of continuations and assume that U C I Q. Hence the following

proof trees are interchangeable.

U C I Q
I I I ⊥

I ; P I I ⊥M P

U ⊗ (I ; P) C⊗II QM (⊥M P)

iff
U C I Q

U ; P C I QM P

Therefore the least equivalence relation ∼0 such that U ; P ∼ U ∼0 U ⊗ (I ; P) and P ∼0 ⊥M P is

a bisimulation.

Consider the relation between par and then and assume that U C I R. The following trees are

interchangeable.

U C I R
U ; P C I RM P

(U ; P) ; Q C I (RM P)M Q

iff U C I R
U ; (PM Q) C I RM (PM Q)

Let ∼0 be the least congruence such that (U ;P);Q and U ;(PMQ) and (PMQ)MR∼0 PM(QMR),

and the relations associated associativity in Proposition 4.9 hold. Therefore, by the above, ∼0 is

a bisimulation. �

Some immediate consequences of the above proposition are the following. The first reveals a

tight correspondence between tensor and par. The second indicates that names which are not

bound in the continuation can be tightened to encompass the query only. The third shows that

then is monotonic in its first argument.

Corollary 4.22. Further properties of continuations.

(I ; P) ⊗ (I ; Q) ∼ I ; (PM Q)∨
a.U ; P ∼

∨
a.(U ; P) a < fn (P) (U ⊕ V) ; P ∼ (U ; P) ⊕ (V ; P)

Proof. The first follows from decomposition and the relation between par and then, as follows.

(I ; P) ⊗ (I ; Q) ∼ (I ; P) ; Q ∼ I ; (PM Q)

The second follows from decomposition and distributivity of colimits over tensor, where a <

fn (P), as follows.∨
a.U ; P ∼

∨
a.U ⊗ (I ; P) ∼

∨
a.(U ⊗ (I ; P)) ∼

∨
a.(U ; P)

The third follows from decomposition and distributivity of choice, as follows.

(U ⊕ V) ; P ∼ (U ⊕ V) ⊗ (I ; P) ∼ U ⊗ (I ; P) ⊕ (V ⊗ (I ; P)) ∼ (U ; P) ⊕ (V ; P)

132 Chapter 4 Algebra for Read–Write Linked Data

�

The algebraic properties demonstrate that the unit delay is the key feature to understanding the

algebra of time. Future work would drop the operator ‘then.’

4.5.7 Examples of optimisations

The algebra can be applied to optimise queries for distribution. In the example below the first

query is rewritten as the tensor product of two queries.

∗
∨

a.((|(a knows b2)| ; P) ⊕ (|(a knows b3)| ; Q))

∼ ∗
∨

a.(|(a knows b2)| ; P) ⊗ ∗
∨

a.(|(a knows b3)| ; Q)

The second query above is better for distribution. The tensor product allows two smaller queries

to be immediately evaluated in parallel. The tighter scope of the select quantifiers reduces the

branching when potential values to select are considered.

In the following example the scope of the select quantifier encompasses the whole query in its

first form. In the second form the select quantifier is tightened to encompass only the relevant

branch of the query.∨
x.(|(a name x)| ⊗ |(a member b)| ; P) ∼

∨
x.(|(a name x)| ; P) ⊗ |(a member b)|

The second form above is better for distribution, since it consists of the tensor product of two

parts. One part is easy to answer and the other part contains everything bound by the select

quantifier, including the continuation.

The distribution of queries across clusters of servers is a major problem for processing Linked

Data [67].

4.6 Towards Full Completeness

The proofs in this chapter amount to a soundness result for the algebra established, with respect

to bisimulation over queries and processes. To establish full completeness for the algebra it must

be demonstrated that, if any two processes are bisimilar, then the bisimulation can be derived

using only the algebraic properties presented. For instance, full completeness for the algebra of

the finite π-calculus demonstrates that if two processes are bisimilar then the bisimilarity can be

established using only the algebraic properties established by Milner, Parrow and Walker [99].

Insufficient algebraic properties have been established to demonstrate full completeness for the

calculus introduced. The algebra is sufficiently complete to consider queries by themselves, but

not queries embedded in arbitrary processes. Furthermore it is known, due to Redko [117], that

Chapter 4 Algebra for Read–Write Linked Data 133

a finite axiomatisation of bisimulation is impossible for this calculus using equivalences only

(in contrast to the finite π-calculus which uses only equalities). Thus any complete algebra for

the calculus must make use of a partial order, as in Proposition 4.16 for instance. In this section,

obstacles to establishing full completeness are highlighted. Thus future research challenges are

identified.

4.6.1 Weak completeness results

A weak completeness result can be established. The weak completeness result is that any input

labelled transition of the calculus can be expressed using the algebra. In a sense, this result

demonstrates that the labelled transition can be disposed of and replaced by the algebra. A sim-

ilar observation is made by Milner [98], where he reformulates the labelled transition system of

the π-calculus using commitments, which are simulations. Milner’s commitment relation com-

mits a process to one of perhaps several execution paths, similarly to the commitment relation

in Chapter 3.

A labelled transition represents a commitment to refine one query to another query. The refined

query asks for a specific observation corresponding to the label, and then a specific continuation

corresponding to the redux. From this perspective, there is no “arrow of time,” as suggest by the

conventional notation for a reduction, rather an “arrow of refinement.” An arrow of refinement

makes clear the relationship between the original process, the label and the redux.

Theorem 4.23. If U E I P then |E| ; P ≤ U.

Proof. The proof proceeds by induction on the derivation of a labelled transition.

Consider the input axiom. Suppose that |C| DI ⊥, where D ⊆ C. By Proposition 4.20 |D| ≤ |C|
and by Proposition 4.21 the following holds: |D| ∼ |D| ⊗ I ∼ |D| ⊗ (I ; ⊥) ∼ |D| ; ⊥. Hence

|D| ; ⊥ ≤ |C|, as required.

Suppose that φ I I ⊥ where � φ. Since � φ, by classical logic, � I→ φ, so by Proposition 4.19,

I ≤ φ. Hence, by Proposition 4.21, I ; ⊥ ≤ φ as required.

Consider the trigger guard rule. Consider U ; Q E I P ; Q, which follows from U E I P. By

induction, it holds that E ; P ≤ U. Hence (E ; P) ; Q ≤ U ; Q, by monotonicity of the first

argument of ‘then’. Hence, by Proposition 4.21, E ; (PM Q) ≤ U ; Q as required.

Consider the tensor rule. Consider U ⊗ V E⊗DI P M Q which follows from U E I P and

V DI Q. By induction, it holds that E ; P ≤ U and D ; Q ≤ V . Hence, by monotonicity of

tensor (E ; P) ⊗ (D ; Q) ≤ U ⊗ V . Furthermore, by Proposition 4.21, the following holds.

(E ; P) ⊗ (D ; Q) ∼ E ⊗ (I ; P) ⊗ D ⊗ (I ; Q)

∼ E ⊗ D ⊗ (I ; (PM Q))

∼ (E ⊗ D) ; (PM Q)

134 Chapter 4 Algebra for Read–Write Linked Data

Hence (E ⊗ D) ; (PM Q) ≤ U ⊗ V as required.

Consider the choice rules. Without loss of generality consider the left branch, and suppose that

U ⊕ V E I P follows from U E I P. By induction, it holds that E ; P ≤ U. Furthermore, by

Proposition 4.12, it holds that U ≤ U ⊕ V . Hence, by transitivity, E ; P ≤ U ⊕ V as required.

Consider the select rules. Suppose that
∨

a.U E I P follows from U
{
b/a

}
E I P. By induction,

it holds that E ; P ≤ U
{
b/a

}
. Furthermore, by Proposition 4.14, it holds that U

{
b/a

}
≤

∨
a.U.

Hence, by transitivity, E ; P ≤
∨

a.U as required.

Consider the weakening axiom. Suppose that ∗U I I ⊥. By Proposition 4.16, it holds that

I ≤ ∗U. Hence, by Proposition 4.21, I ; ⊥ ≤ ∗U as required.

Consider the dereliction rule. Suppose that ∗U E I P follows from U E I P. By induction,

it holds that E ; P ≤ U. Furthermore, by Proposition 4.16, it holds that U ≤ ∗U. Hence, by

transitivity, it holds that E ; P ≤ ∗U as required.

Consider the contraction rule. Suppose that ∗U E I P follows from ∗U ⊗ ∗U E I P. By

induction, it holds that E ; P ≤ ∗U ⊗ ∗U. Furthermore, by Proposition 4.16, I ≤ ∗U so, by

monotonicity of tensor, it holds that U ⊗ I ≤ ∗U ⊗ ∗U. Hence, by transitivity, it holds that

E ; P ≤ ∗U ⊗ ∗U as required.

The result follows by induction. �

The converse of Theorem 4.23 states that if a query can be refined to an observation followed

by a continuation using the algebra, then the corresponding labelled transition holds. The for-

mulation, in Theorem 4.24, is weaker than the converse since the redux is considered up to

bisimulation [122]. Thus the natural preorder defined by the algebra and the labelled transi-

tion system, quotiented by bisimulation have the same operational power. The proof is a trivial

consequence of the definition of the natural partial order.

Theorem 4.24. If |E| ; P ≤ U then U E I P′, where P ∼ P′.

Proof. Clearly |E| ; P E I P. Hence, assuming that |E| ; P ≤ U, it follows that U E I P′ where

P ∼ P′. �

This is a weak completeness result. A stronger completeness result would be best studied in a

generalised version of the calculus with symmetric inputs and outputs. Such a calculus would be

more general than required for the Linked Data application domain. Such a full completeness

result would be of interest to the process calculus community, where few complete algebraic

models of useful process calculi exist. In contrast, soundness is sufficient for the Linked Data

community, so this short coming is not a major problem for this work.

Chapter 4 Algebra for Read–Write Linked Data 135

4.6.2 Simulation as a coinductive refinement

Simulation is considered as a preorder over processes. Simulation is a relaxation of the defini-

tion of bisimulation, giving the greatest coinductive preorder rather than the greatest coinductive

equivalence. Simulation is introduced to make up for inadequacies of the natural partial order

over idempotent semirings. Simulation allows a number of further algebraic properties of pro-

cesses to be established.

There is a major issue with the natural partial order provided by the idempotent semiring of

queries. The natural partial order only applies to queries, so cannot be used to order arbitrary

processes. More importantly, the natural partial order is not context closed everywhere. In

particular, context closure fails for the right of the ‘then’ operator. This is due to the classic

non-equality of process calculi exposed by bisimulation.

Proposition 4.25. The natural partial order over processes ≤ is not monotone in all contexts.

Proof. A simple counter example is sufficient. Clearly |C| ≤ |C| ⊕ |D|. Consider the context

which guards that query with the unit transition. But I ; (|C| ⊕ |D|) is not bisimilar to (I ; |C|) ⊕
(I ; |C| ⊕ |D|). Thus I ; |C| ≤ I ; (|C| ⊕ |D|) cannot be established. �

The notion of simulation is defined next. Simulation provides a coinductive definition which

captures the notion that one process can do everything that another process can do. Therefore,

the process on the left of the simulation relation is more deterministic than the process on the

right.

Definition 4.26 (Simulation). Simulation, written �, is the greatest preorder such that the fol-

lowing holds, for any label l. If P � Q and P l I P′ then there exists some Q′ such that

Q l I Q′ and P′ � Q′.

Note that simulation only defines a preorder and not a partial order over queries quotiented by

bisimulation. This is due to the classic property that mutual simulation does not yield bisimula-

tion, where mutual simulation is a simulation relation in both directions. The classic example is

that both of the following simulations hold; but the two processes are not bisimilar in general.

(I ; (D ⊕ E)) ⊕ (I ; D) � (I ; (D ⊕ E)) ⊕ (I ; E) (I ; (D ⊕ E)) ⊕ (I ; E) � (I ; (D ⊕ E)) ⊕ (I ; D)

It is trivial that bisimulation yields mutual simulation. So mutual simulation provides a coarser

equivalence than bisimulation, i.e. fewer processes can be distinguished using mutual simula-

tion. Mutual simulation is however finer than trace equivalence.

Fortunately, the natural partial order over queries is also sound with respect to the notion of

simulation. Thus anything established using the natural preorder can also be established using

simulation. Soundness is demonstrated as follows. The proof is trivial.

136 Chapter 4 Algebra for Read–Write Linked Data

Lemma 4.27. If U ≤ V, then U � V.

Proof. Assume that U ⊕ V ∼ V and that U E I P. Hence by bisimulation V E I Q such that

P ∼ Q. Since an equivalence relation is a preorder, P � Q. Thus U � V , by definition. �

Simulation is context closed, similarly to the context closure of bisimulation (Lemma 4.6). This

is not surprising, since simulation is just a relaxation of the definition of bisimulation. Context

closure for preorders is a monotonicity property. A monotone map preserves an ordering. Thus

context closure is equivalent to requiring that all operators are monotone, as follows. The proof

is easy.

Lemma 4.28 (Monotonicity). Simulation is monotone for all contexts. That is if P � Q then

CP � CQ, for all contexts for processes C.

Proof. It is known that ≤ is monotone for almost all contexts. Monotonicity of ⊕ and ⊗ follows

by Corollary 4.13. Monotonicity of select quantifiers is established by Corollary 4.15. Iteration

is monotone since it is the least fixed point of monotone operators, by Tarski’s fixed point theo-

rem. The monotonicity of parallel composition and blank node quantifiers follows by the same

argument as in Lemma 4.6.

The natural preorder, ≤ is a simulation, by Lemma 4.27. Hence � is monotone for all the above

contexts. Since U ; P ∼ U ⊗ (I ; P), by Lemma 4.21, the only remaining case to consider is I ; P.

Assume that P � Q. There is only one transition of I ; P to consider, and the following holds.

I ; P I I P yields I ; Q I I Q

Furthermore, P � Q by the assumption; hence I ; P � I ; Q. Thus all contexts are monotone, as

required. �

Note that the above proof demonstrates that simulation is just the coinductive extension of the

natural partial order, to the context guarded by the unit transition. This is similar to simula-

tion in modal logics where implication is extended coinductively to ensure that modalities are

monotone [109]. For instance given a modal operator box, if P � Q then 2P � 2Q, is estab-

lished coinductively. Thus a strong correspondence between modalities and the unit guard is

anticipated.

The above notion of simulation is defined over the labelled transition system. A natural notion

of refinement can be defined over the reduction system as follows.

Definition 4.29 (Contextual refinement). Contextual refinement is the greatest context closed,

reduction closed preorder order �′. A reduction closed preorder �0 is such that, if P �0 P′ and

P � Q, then there exists some Q′ such that P′ � Q′ and P′ �0 Q′.

Chapter 4 Algebra for Read–Write Linked Data 137

This leads to the following result, which verifies that simulation is sound with respect to contex-

tual refinement. The proof follows immediately from established results.

Theorem 4.30 (Simulation is a contextual refinement). If P � Q then P �′ Q.

Proof. By Lemma 4.28, � is context closed. By Lemma 4.3, � is reduction closed. Hence, � is

a contextual refinement. �

Thus simulation can be used as a proof technique to establish that one process is refined by

another process. The above theorem verifies that simulation is correct, since it is sound with

respect to contextual refinement. Contextual refinement is the natural preorder which refines

behaviours and can be applied in any context. Thus contextual refinement is the correct notion

to compare simulation to. This is analogous to the soundness of bisimulation with respect to

contextual equivalence.

4.6.3 Some algebraic properties of simulation

Many simulation relations have already been established using the preorder over semirings.

Some remaining preorders which are established using simulation directly include the following.

These properties establish the possible ways in which processes compose in parallel can interact.

Proposition 4.31. The following simulations hold. Firstly, a parallel composition can commit

to a left merge. Secondly, two processes can commit to interact. Thirdly, the unit delay preserves

blank nodes.

U ; P � U M P U ; C � (U ⊗ |C|)MC I ;
∧

a.P �
∧

a.(I ; P)

Proof. Consider the simulation of ‘then’ (left merge) by a par operation. Suppose that U E I P

holds. Given that the first transition below holds the second transition holds.

U E I Q

U ; P E I QM P
yields

U E I Q

U M P E I QM P

The continuations are equal so U ; P � U M P.

Consider the case of a left merge which simulates an interaction. Assume that U E I P holds.

Given that the first transition below holds the second transition holds, by selecting a particular

pattern of interactions.

U E I P
U ; C E I PMC

yields
U E I P

C v C

|C| C I ⊥

U ⊗ |C| E⊗CI PM ⊥

C v C

C C I C

U ⊗ |C|MC E I PM ⊥M ⊥MC

138 Chapter 4 Algebra for Read–Write Linked Data

Furthermore PMC ∼ PM ⊥M ⊥MC, hence U ; C � U ⊗ |C|MC is a simulation.

Consider the interaction of the unit delay with a blank node quantifier. There is only one possible

transition, as follows.

I ;
∧

a.P I I
∧

a.P yields

(I ; P) I I P∧
a.(I ; P) I I

∧
a.P

This is an instance of a more general result, which states that the unit delay preserves limits. �

Note that by extending the calculus with deletes the analogous property to the second property

above would be U �
(
U ⊗C⊥

)
M C. Thus interactions in the calculus are characterised by

simulations.

In a more general calculus these properties could be defined elegantly as a convolution [121].

The convolution which appears in parallel composition is recognised by Bergstra [20]. The left

merge of Bergstra appears as the operation ‘then’ in this calculus, so then should be extended to

all processes. The par operator should be decomposed into two operators M and ‖. The first is a

commitment to an interaction the second is the convolution product. For true concurrency, two

parallel processes may occur simultaneously using distinct resource, as enabled by the tensor

product. The convolution product could decompose as follows.

P ‖ Q ∼ (P ; Q) ⊕ (Q ; P) ⊕ (PM Q) ⊕ (P ⊗ Q)

This allows any process to be expressed as an update, which is used in a completeness proof [7].

Note that a traditional convolution in mathematics allows either one side or the other to act,

as in the shuffle bialgebra [19], but does not account for interactions. An algebra which also

includes the commitment to interact may be an extension of the concept of a bialgebra, such as

a Hopf algebra, which extends bialgebras with a group-like inverse called the antipode [29, 30].

Existing work in this area is limited, so an exclusive study would be required to investigate this

hypothesis.

Proposition 4.20 established that queries are covariant to the preorder over triples. In contrast,

the following result demonstrates that stored triples are contravariant to the preorder over triples.

Proposition 4.32. If C v D then D � C.

Consider bisimulation in the full calculus with deletes. Clearly deletes are covariant, by a similar

argument to Proposition 4.20, which establishes queries are covariant. So queries and deletes

are covariant; whereas stored triples are contravariant, by the above proposition.

It is conventional that positive formulae are covariant and linearly negated terms are contravari-

ant. Negation should form a self-dual adjunction, which must be contravariant [15]. Unfortu-

nately, in the syntax defined, stored triples are positive and deletes are negative. This suggests

Chapter 4 Algebra for Read–Write Linked Data 139

that there is an oversight in the syntax of the calculus. It is natural to naı̈vely assume that deletes

are negative and the thing deleted is positive, so it is easy to see why this oversight has been

tolerated. The naı̈ve syntax allows an intuitive reading of the calculus. A more precise syntax

would use negation for stored triples and positive formulae for deletes.

Using the simulation preorder an new operator can be defined, which adds further clarity to

the meaning of the weak completeness result 4.23. An adjoint operator to ‘then’, called left

division � can be defined as follows. This is possible since using simulation as the preorder

over processes.

E ; P � U iff P � E�U

This adjoint operator provides an alternative approach to labelled transitions, as in the non-

commutative quantales of Abramsky and Vickers [6]. An update divided on the left by the

label is the least upper bound of all its potential continuations. This operator can be extended

to all updates in a more complete calculus, along the lines of Conway’s treatment of input

differentiation [41].

Note that the left division operator is different from the adjoint to tensor. The adjoint to tensor,

called linear implication, would be defined as follows.

E ⊗ V � P iff V � E (P

The above operation E (P is the commitment of P to interact synchronously with the linear

negation of E. The basic interactions of the calculus are examples of this operator. For instance,

if C⊥ M (C ⊗ D) is interpreted as C ((C ⊗ D) then the following reasoning holds.

C ⊗ D � C ⊗ D iff D � C ((C ⊗ D)

This is the form of the interaction rules discussed in this section. Hence the interactions in the

calculus could be captured using an explicit adjoint to the spatial tensor.

A complete algebra for the calculus would involve developing the notions introduced in this

section. The adjoint operators, left division and linear implication, should be explored. These

adjoints characterise commitments to temporal and spatial actions, which are required for the

fundamental elements of observation and interaction. Both of these adjoints can be formulated

as quotients.

The other notion that should be developed is the algebra of convolutions. A convolution of two

parallel process should transform the processes into a single non-deterministic process, which

accounts for their possible interactions. This would allow the interleavings and communications

of the processes to be characterised using algebra. Both of these investigations require the

language of the calculus to be extended.

140 Chapter 4 Algebra for Read–Write Linked Data

4.6.4 Weak cut elimination results

To be able to call the calculus a logic at least a cut elimination result must be established. The

purpose of the discussion in this section is to emphasise that there is a clear strategy for obtaining

a full cut elimination theorem for the calculus. Furthermore, some of the work in obtaining a

cut elimination result has already been achieved.

Consider a candidate cut rule for the syndication calculus, suggested in Sec. 3.5.4 and repeated

defined below. P,Q, . . . are arbitrary processes, while A is a formula in Multiplicative Linear

Logic with triples as atoms.
PM A � P′ QM A⊥ � Q′

PM Q � P′ M Q′

Now note that the following property holds in Linear Logic. The property below defines a

self-dual adjunction, which algebraically characterises linear negation [134, 51, 15].

P � Q⊥ M R iff Q ⊗ P � R

The above property of linear negation is enough to prove completeness of the labelled transition

system with respect to the reduction system. The argument is as follows. Under the algebraic

semantics it is possible to show the following correspondences.

A⊥ M P � Q iff I ; Q ≤ A⊥ M P by the semantics of the reduction system

iff A ⊗ (I ; Q) ≤ P by the above adjunction

iff A ; Q ≤ P by algebraic properties of tensor and then

iff P A I Q by the semantics of the labelled transition system

Thus, under the translation described above, the formulae in the candidate cut rule translate as

follows.

PM A � P′ iff P A⊥I P′

PM A⊥ � P′ iff P A I P′

PM QM ⊥� P′ M Q′ iff PM Q I I P′ M Q′

The result is that the following rule is exactly the cut rule in the reduction system proposed

above.
P A I P′ Q A⊥I Q′

PM Q I I P′ M Q′

The above rule will be familiar to readers who have used labelled transition systems. For in-

stance it is used in the π-calculus to define the interaction of inputs and outputs [99]. Variations

on this rule are used in the labelled transition systems in this work. The corresponding rule to

the above rule in the labelled transition system of the syndication calculus is called the cut rule

to emphasise the connections highlighted here.

Chapter 4 Algebra for Read–Write Linked Data 141

Thus the argument that cut elimination is partially achieved in this work is as follows. The

deductions in the labelled transition system use the cut rule. By the soundness of the labelled

transition system with respect to the reduction system, Lemma 4.3, all unit labelled transitions

also hold in the reduction system. Furthermore, the reduction system does not use any cut rule.

Thus the cut rule can always be eliminated from a transition. Hence the proof that the labelled

transition is sound with respect to the reduction system is the cut elimination result.

A restriction on this cut elimination result is that the cut formulae are restricted to the formulae

on the labels. The formulae on the labels correspond to formulae in Multiplicative Linear Logic.

Hence continuations are not considered in the cut elimination result highlighted here. Thus this

weak cut elimination result is relevant to single step reductions only.

The big question is how cut elimination extends to continuations. What is (I ; P)⊥ and how

does it interact with I ; P through cut? Understanding this question would help cut elimina-

tion to be extended from one step reductions, to arbitrary simulations. The goal would be a

sound and complete logic for simulation in the syndication calculus, with a full cut elimination

property. Such a logic is likely to require a modern proof calculus similar to the calculus of

structures [61].

4.7 Conclusions on the Algebra

This section establishes an alternative semantics for the calculus introduced in the previous

chapters. A labelled transition system is shown to be sound with respect to the reduction system.

Furthermore, the notion of bisimulation in the labelled transition system is sound with respect

to equivalence in the reduction system. Bisimulation is used to verify an algebra over queries,

which extends existing notions of an algebra for SPARQL Query. An algebra of queries is useful

when tackling problems associated with Linked Data, such as distributed query planning. Such

problems are currently being pursued by the Linked Data community [132, 67].

The soundness result for the labelled transition system is Theorem 4.8. This follows from the

fact that the labelled all unit transitions in the labelled transition system are commitments in

the reduction system and that bisimulation holds in all contexts. Only a weak completeness

result holds. The weak completeness result is that all reduction holds as unit transitions. To

prove completeness, a suitable context for each label must be constructed. However, this is not

possible without changing the calculus.

The soundness result for the algebra is established by the results in Section 4.5. Each of the

algebraic properties introduced is proven to hold with respect to bisimulation. Thus applying

the algebraic rules preserves bisimulation and therefore, by soundness of bisimulation, structural

congruence. Ideally this should be a complete algebra, as is known to exist for the finite π-

calculus. However, a complete algebra is trickier to obtain, but probably exists in a slightly

larger calculus, as discussed in Section 4.6. The development of a complete algebra is the

142 Chapter 4 Algebra for Read–Write Linked Data

deepest open question revealed by this work [83]. A calculus with a complete algebra would

make a powerful case as a foundation for programming languages. This is objective has guided

many design decisions throughout this work.

The queries form a commutative idempotent semiring, which provides a natural partial order

over queries. This partial order is used to characterise choice, selects and iteration as colimits.

Also, iteration is the least fixed point of a monotonic map over queries, hence queries form a

Kleene algebra. A preorder over URIs allows small permissible mismatches between content

and queries to be resolved, capturing key features of the RDFS standard. Also, a Boolean

algebra of constraints is naturally embedded in queries, to provide further control. The algebra

demonstrates several canonical algebras tightly integrated in one framework.

Chapter 5

Type Systems for Read–Write Linked
Data

Type systems provide a light approach to verifying programs. A type, when assigned to a term in

a language, indicates something about how that term can be used. Type systems are particularly

useful when types guarantee static properties, such as ensuring that certain runtime errors do

not occur in a program. As background material a simply typed λ-calculus is outlined. The

simply typed λ-calculus is the inspiration for developing a simple type system for the syndication

calculus.

A type system for the syndication calculus is introduced in this chapter. Firstly, the types for

names are described. Names have no internal structure, so types are simply guidelines for where

a name may appear in relation to other names in data. The lack of structure allows simple

types to be assigned to names in several ways. Three different approaches to simple types are

described which allow varying amounts of information to be lifted from the data to the type

system. A subtype system is defined over the types to capture aspects of the RDF Schema

(RDFS) standard, which improves interoperability between type systems.

The relationship between the simple types and the calculus are formally established. Typed

versions of the syntax and operational semantics are defined. The type rules for the syntax

formally define when a term is well typed. The type rules for the operational semantics deal

with some dynamic type checks which cannot be guaranteed statically in general. The type

system and an operational semantics are proven to be compatible, ensuring that the simple types

preserve their intended properties.

5.1 Motivating Examples for the Type System

The calculus introduced in this work deals with different and potentially incompatible informa-

tion. A type system can be used to ensure that incompatibilities do not arise. There are however

143

144 Chapter 5 Type Systems for Read–Write Linked Data

many possible perspectives on the type system.

A prudent separation of types has already made, between URIs and literals, in the rules of the

select quantifier. The select quantifier rule has two versions: one selects URIs; the other selects

literals. This is an improvement over the SPARQL recommendations which has one pool of

variables for both URIs and literals [115]. The improvement avoids scenarios where, at runtime,

literals end up where only URIs should appear and vice versa.

Separating identifiers for URIs and literals allows greater control over design decision for the

type system. Two separate type systems can be defined: one for URIs; another for literals. The

type systems for URIs and literals are very different, so require a distinct style of type system.

Also the type system for either URIs or literals may vary depending on the application. Hence

a separate type system leads to more modular definitions. Changes to the definition of the type

system for URIs do not affect the definition of the type system for literals.

The separation of types for URIs and literals is an improvement over the RDFS specifica-

tion [33]. The specification mixes up the two type systems. A major flaw of the RDFS specifica-

tion is to insist that the top type of the type system for literals (rdfs:Literal) is a subclass of the

top type for resources (rdfs:Resource). Such requirements are big mistakes which should be

avoided in an implementation. Thus some liberty is taken in this section where W3C standards

are interpreted.

This section returns to an example from the beginning of the previous two chapters. It shows

three ways in which the W3C standards for XML Schema Datatypes and RDFS can be in-

terpreted. Each of the three interpretations demonstrates how some information, which was

handled as data and be treated in a type system. The approach with minimal information lifted

to the type system is presented first; while an approach with a lot of information lifted to the

type system is presented last. All approaches presented differ significantly from the approaches

of Horrocks and Pan [108] and the approach of Pérez et al [127], which treat RDFS entirely at

the level of data. This is the first treatment of types and classes for Linked Data using a genuine

type system.

5.1.1 Basic XML Schema Data Types

The minimal type system that can and should be applied to processes is considered first. This

type system treats all URIs as equal; thus it is sufficient to distinguish identifiers for URIs from

identifiers for literals as achieved already. A basic conventional type system can be applied to

literals, which avoids basic runtime errors. The type system avoids basic runtime errors at little

cost to the user, with little controversy in terms of modelling. Thus, this type system represents

the very lest type system which should be implemented for languages based on the calculus.

Consider the substantial example query from the beginning of the previous two chapters, repro-

duced below. The query involves select quantifiers which discover literals. The select quantifiers

http://www.w3.org/2000/01/rdf-schema#Literal
http://www.w3.org/2000/01/rdf-schema#Resource

Chapter 5 Type Systems for Read–Write Linked Data 145

bind variables which appear in constraints. The constraints involve operations which apply to

strings of characters, including equality checks, string concatenation and regular expressions.

∨
a.



∨
z.




∨

x, y.


|(a foaf:givenName x)|

|(a foaf:familyName y)|
(z = x + ‘ ’ + y)


⊕

|(a foaf:name z)|


(z ∈ ‘J.* Armstrong’)


|(a rdf:type dbp:Athlete)|
⊕

|(a rdf:type dbp:Artist)|

 ;

P


In the example query, if the select quantifier tries to discover a number, then the constraint will

not be satisfied. Hence the operational semantics determine that the query will not execute. The

reason for the query not executing is not because the constraint evaluates to false, which would

have been legitimate; but because the types were wrong so the constraint could not possibly be

evaluated in the first place. Indeed the regular expression check may throw a runtime error.

Furthermore, a type error may occur in the continuation process. Suppose that the continuation

process requires a string, but instead receives a natural number. Then without further dynamic

type checks which ensure that only correct types are passed, the continuation process may throw

a type error. Such errors should be picked up in advance using static typing, before the literal of

the wrong type is passed to the continuation process.

To avoid these basic runtime errors, the query can be typed annotating the select quantifiers

with datatypes. A typed version of the running example is presented below. Each of the select

quantifiers for literals is annotated with a string datatype; while selected URIs are left without

annotations.

∨
a.



∨
z : String.




∨

x : String, y : String.


|(a foaf:givenName x)|

|(a foaf:familyName y)|
(z = x + ‘ ’ + y)


⊕

|(a foaf:name z)|


(z ∈ ‘J.* Armstrong’)


|(a rdf:type dbp:Athlete)|
⊕

|(a rdf:type dbp:Artist)|

 ;

P


Clearly a type checker can be defined and developed for the above annotated process. The pre-

cise datatypes employed and the functions which apply to them is detailed in the XML Schema

http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist

146 Chapter 5 Type Systems for Read–Write Linked Data

Datatype standard [92]. For instance, the string data type above corresponds to the xsd:string

type. There are design decisions to be made, such as choosing between a Hindley/Milner ap-

proach or a subtype based approach to data types [68, 101]. However, all such approaches are

well understood for the basic datatypes involved; thus all design decisions are left to the W3C

working group. It is less obvious what the type of URI. This is a new question, thus is the only

question investigated further in this chapter.

5.1.2 RDFS top level classes as types

Consider an approach to typing URIs inspired by the RDFS standard. In the RDFS standard

there are top level classes such as classes and predicates. A type system can be developed which

lifts only these top level notions to the type system. Other classes in the RDFS standard are

instead treated as data.

Consider the running example. Two URIs appear as the object of the rdf:type predicate, the

URIs dbp:Athlete and dbp:Artist . These URIs are RDFS classes according to the RDFS

specification. In this example these classes are treated like any other URIs which appear in data.

They can be bound by select quantifiers, and appear in triples. Such URIs which represent RDFS

classes are given the type class. This correspondence between classes and types is indicated by

the assignment of the form dbp:Athlete : class in the type environment below.

Four predicates are used in the running example. Three of the predicates are assigned the same

type in the type assumptions below. An assignment of the type p(>,String) to a URI, asserts

that the URI is a predicate which can be used to relate any URI to a string literal object. This is

consistent with the use of the predicates in the example. The type annotations for the predicates

ensure that the variables in the object position are of type String.

The third predicate, rdf:type in the environment below, is a special predicate from the RDF

vocabulary. The type assigned to rdf:type ensures that it is used to relate any URI to a URI

which is of type class. In this way, the annotation of a resource with a class is treated like any

other triple — at the level of data.

Select quantifiers which discover names are annotated with types. In the running example, the

name a is assigned the top type >. This top type places no restriction on the URI discovered.

Thus any URI which matches the patterns described by the query will be sufficient. The anno-

tated select quantifier, and the type assumptions on the left of the turnstile, allow the folowing

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://dbpedia.org/ontology/Artist
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 5 Type Systems for Read–Write Linked Data 147

process to be typed.

dbp:Athlete : class,

dbp:Artist : class,

foaf:givenName : p(>,String) ,

foaf:familyName : p(>,String) ,

foaf:name : p(>,String) ,

rdf:type : p(>, class) ,

`

∨
a : >.

∨
z : String.



∨
x : String, y : String.
|(a foaf:givenName x)|

|(a foaf:familyName y)|
(z = x + ‘ ’ + y)


⊕

|(a foaf:name z)|


(z ∈ ‘J.* Armstrong’)


|(a rdf:type dbp:Athlete)|
⊕

|(a rdf:type dbp:Artist)|

 ;

P


By typing the above process, it is guaranteed that URIs with distinguished rôles are used consis-

tently in their assigned rôle. The distinguished rôles correspond approximately to the top level

types of RDFS and data type predicates of OWL. In the example above, the rôles used are class,

predicate with string object, predicate with class object and arbitrary unrestricted resources.

Consider now aliases in the above example. The following aliases may be assumed, which

indicate that the two classes in the query are subclasses of the class foaf:Person.

dbp:Athlete v foaf:Person, dbp:Artist v foaf:Person

The above aliases can be used when refining and evaluating the above process. For instance, it

can be proven that the above query is a refinement of the more general query which refers only

to the class foaf:Person instead of the disjunction of the two classes used above. The above alias

assumptions define a preorder over URIs, which extends point-wise to triples. This emphasises

that classes, other than top level classes, are treated as data.

This approach to types for URIs cleans up the RDFS specification. Two separate levels for RDFS

classes are provided — the data level and the type level. This contrasts to the original RDFS

specification which has an infinite nesting of classes, and is non-well founded. For instance the

class rdfs:Class is instance of rdfs:Class .

The two level approach is also simpler than the approach of Horrocks and Pan, which intro-

duces four levels, an instance layer, an ontology layer, a language layer and a meta-language

layer [108]. Effectively, their instance and ontology layers are collapsed here into data; while,

their language and meta-language layers are collapsed here into types. The extra layers appear

unnecessary, since they are not supported by compelling case studies in applications.

http://dbpedia.org/ontology/Athlete
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Athlete
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/Person
http://dbpedia.org/ontology/Athlete
http://xmlns.com/foaf/0.1/Person
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class

148 Chapter 5 Type Systems for Read–Write Linked Data

5.1.3 RDF classes as types

A third option for typing processes can be achieved in the type system introduced in this chapter.

In the previous approach, the top level classes are static type information; while other classes

are dynamic data. Types are static since they never change; whereas data is dynamic since it can

be changed by an update. The third approach motivated here allows further classes to be lifted

to the level of types. Some classes may remain as data, so a compromise between static types

and dynamic data can be found to suit a specific application.

Consider the URIs of type class from the running example, i.e. foaf:Person , dbp:Athlete and

dbp:Artist . Now instead for considering them as URIs of type class, consider them as the three

new types person, athlete and artist. These new types are no longer of type class, which is

only used to type dynamic classes; hence a complex higher-order type system is avoided.

Now consider the alias assumption from the previous section. The types athlete and person are

now treated as reserved types, rather than arbitrary URIs. Hence the alias assumption no longer

apply, since they work at the level of data. Instead the following subtype assumptions are made.

athlete ≤ person, artist ≤ person

These subtype assumptions are used in a subtype system. The subtype system determines

whether one type subsumes another type. The subtype system makes the type system more

flexible.

The query in the running example can be modified to lift the classes in the data to the type

system. The triples where the URIs for the classes appear in the object position of rdf:type are

removed. The corresponding types are then appear in the type annotation for the URI in the

subject position of the rdf:type predicate. This results in the following process, where the union

type allows either type to be satisfied.

foaf:givenName : p(person,String) ,

foaf:familyName : p(person,String) ,

foaf:name : p(person,String) ,

`

∨
a : athlete ∪ artist.

∨
z : String.



∨
x : String, y : String.
|(a foaf:givenName x)|

|(a foaf:familyName y)|
(z = x + ‘ ’ + y)


⊕

|(a foaf:name z)|


(z ∈ ‘J.* Armstrong’)


; P


The above query is subtly different to the query in the previous sections. In the above process,

the continuation process can guarantee that the URI received will always be annotated with the

class athlete or the class artist. This is due to a type preservation property which is proven

in this chapter. In contrast, in the previous sections the continuation process only knows that

http://xmlns.com/foaf/0.1/Person
http://dbpedia.org/ontology/Athlete
http://dbpedia.org/ontology/Artist
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name

Chapter 5 Type Systems for Read–Write Linked Data 149

the URI received was annotated with the class dbp:Athlete or dbp:Artist during the particular

atomic transition in which the URI was discovered.

Using the subtype assumptions, the subtype system can check that athlete ∪ artist ≤ person.

Thus a query which uses the annotation person in place of the annotation athlete ∪ artist is a

more general query.

Note that the sub type system ensures that p(>,String) is stronger than the type p(person,String).

The subtype system ensures that the following subtype relation holds.

p(>, person) ≤ p(person,String)

Thus assigning the type p(>,String) to the three FOAF name predicates is a sufficient type as-

sertion to type the example above. Explicitly, the following type assumptions would be sufficient

to type the above process.

foaf:givenName : p(>,String) , foaf:familyName : p(>,String) , foaf:name : p(>,String) ,

Thus the top level approach, also discussed in Sec. 5.1.2, can accommodate the RDFS level

approach, motivated in this section. This chapter proceeds to formalise a type system which

accommodates both approaches to typing URIs which have now been motivated intuitively.

5.2 An Introduction to Type Systems

Before defining the type system for the syndication calculus an established simple type system

is discussed. In a well typed programming language, the properties of a system are guaranteed

by the type system. A typical type system can avoid basic programming errors by forbidding

configurations which are meaningless and may lead to an error, such as using a number in place

of a string in a regular expression.

Type checking is often performed by a Hindley/Milner style type system [68, 44]. A Hind-

ley/Milner type system assigns a type to each syntactic structure. One type is assigned to natural

numbers; while a disjoint type is assigned to strings of characters. This leads to a tractable syn-

tax directed type system for conventional data, such as the literals in RDF. Such type systems

are well understood and, for this work, assumed to be in the safe hands of the XML Schema

Datatypes working group [25, 92].

However, URIs have no internal structure that can determine their type. Types for URIs are

merely propositions which guide how the URI is used. Fortunately there exist well understood

propositional type systems, based on intuitionistic propositional logics, briefly introduced in the

next section. In this case the relationship between the types is tractable, as defined by a subtype

system.

http://dbpedia.org/ontology/Athlete
http://dbpedia.org/ontology/Artist
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/familyName
http://xmlns.com/foaf/0.1/name

150 Chapter 5 Type Systems for Read–Write Linked Data

τ B a atomic propositions
| τ⇒ τ the arrow type

Γ B a : τ a type assertion
| Γ,Γ composition of environments
| ε the empty environment

t B a name
| t t application
| λa : τ.t abstraction

Figure 5.1: The syntax from simple types, type environments and typed λ terms.

The relationships between types and URIs must be explicitly specified. This requires a balance

between static and dynamic typing, which is pursued in this chapter. Furthermore, care must

be taken to ensure that a Hindley/Milner type system for data and propositional type system

for URIs do not naı̈vely combine to form an intractable convoluted mess. This section exposes

some issues with treating RDF types using conventional type theory.

5.2.1 An established type system

As background material, a simple but profound type system is defined. In the simply typed

λ-calculus terms are assigned propositions as types. The properties ensured by types in the

simply typed λ-calculus is that termination of a well typed program is guaranteed (it is strongly

normalising); whereas in the untyped λ-calculus termination is undecidable. The syntax of the

types and terms is presented in Fig. 5.1.

The syntax of types is built from atomic propositions, indicated by small capitals. Propositional

types are built using the arrow type. The arrow type represents functions which perform a

transformation from one propositional type type to another propositional type.

The syntax of the terms of the λ-calculus is built from names, which are identifiers with no

internal structure. Functions are built using abstraction, which is indicated by the λ quantifier

with a type annotation. The λ quantifier binds a name in a term. The bound name is a place

holder for a term of the type indicated by the type annotation. Terms are composed using

application. The term on the right is the term passed to the term on the left.

Associations between names and types are indicated by a type environment, which allows sev-

eral type assertions to be expressed separated by commas. Type environments can only assign

one type to an identifier. Type environments are used to form type judgements. A type judge-

ment consists of a type environment separated by a turnstile from a term annotated with a type.

A type judgement holds if it can be derived from the type axioms and rules in Fig. 5.2.

The axioms of the type system state that if an environment assumes that an identifier is of a

particular type, then the identifier is indeed of that type. The type rule for abstraction internalises

Chapter 5 Type Systems for Read–Write Linked Data 151

ε,Γ ≡ Γ (Γ0,Γ1),Γ2 ≡ Γ0, (Γ1,Γ2) Γ0,Γ1 ≡ Γ1,Γ0 Γ,Γ ≡ Γ

Γ ` t : τ0
Γ, a : τ1 ` t : τ0 a : τ ` a : τ

Γ, a : τ0 ` t : τ1
Γ ` λa : τ0.t : τ0 ⇒ τ1

Γ ` t : τ0 ⇒ τ1 Γ ` u : τ0
Γ ` t u : τ1

Figure 5.2: Type rules for the simply typed λ-calculus.

a type assumption as a λ expression. The type rule for application applies a term of a function

type to a term of the correct input type, which results in a term of the output type.

The structural rules for the simply typed λ-calculus are weakening, exchange, and contraction.

Weakening is captured by a rule. The structural rules for exchange and contraction are captured

using a structural congruence which allows type environments to be reordered and multiple

occurrences of a type assertions to be eliminated. The structural congruence can be applied at

any point.

The type tree bellow is an example of a type judgement. The example uses a projection function,

which takes two terms as arguments and returns only the first term. Two identifiers of suitable

types are applied to the projection function.

c : a, d : b, a : a, b : b ` a : a
c : a, d : b, a : a ` λb : b.a : b⇒ a

c : a, d : b ` λa : a.λb : b.a : a⇒ (b⇒ a) c : a, d : b ` c : a
c : a, d : b ` (λa : a.λb : b.a) c : b⇒ a c : a, d : b ` d : b

c : a, d : b ` ((λa : a.λb : b.a) c) d : a

The above type judgement can be normalised. The normalisation works by reducing abstractions

applied to a terms. The type tree for the term replaces the bound name in the abstraction. So in

the following example the name c replaces the bound name a. This reduces the tree to another

well typed tree, shown below.

c : a, d : b, b : b ` c : a
c : a, d : b, ` λb : b.c : b⇒ a c : a, d : b ` d : b

c : a, d : b ` (λb : b.c) d : a

The normalisation process can be applied again resulting the following axiom. The normalisa-

tion process corresponds exactly to the execution of a program in the λ-calculus.

c : a, ` c : a

The correspondence between proof theory and typed programming languages can be extended

to accommodate powerful features. However, Gallier warns that the approach is objective; it

supports more subjective approaches to engineering of programming languages rather than re-

placing them: “Thus, although it is natural to view a program as a proof, the specification of

152 Chapter 5 Type Systems for Read–Write Linked Data

a program as a proposition proved by that proof, and the execution of a program as proof nor-

malisation, it is abusive to claim that this is what programming is all about.” [51] None the

less, normalisation results are inspiration for many investigations into the foundations of diverse

programming languages including those for concurrency [3].

5.2.2 Structural operational semantics

In a seminal note which has revolutionised approaches to specifying programming languages,

Plotkin introduced a new perspective on operational semantics [112]. Programs are described

in terms of transition systems; while the type system is defined using type environments. The

transitions system and the type system are then demonstrated to be compatible. Thus, it can be

proven that a well typed program, which satisfies the operational semantics will always reduce

to a well typed program.

The structural operational semantics approach to type systems is more ad-hoc than normalisation

in the λ-calculus. Therefore, the techniques may be applied to a wider range of programming

languages, such as imperative languages. Since the calculi introduced in this work have an

operational semantics a type system can be developed and verified according to the techniques

of Plotkin. The main results of this chapter are produced in this manner.

5.3 Light Types for URIs and Literals

Many structural constraints, often expressed using an ontology [74], are not tackled in this work.

The issue is that many invariants on structures which are imposed by an ontology require a global

perspective on data.

Apparently simple invariants such as, “Resources with a nick name must also have a full name,”

are difficult to impose in an open environment. If delete removes one nickname, is there another

nickname that maintains the invariant? This cannot be confirmed without knowing the extent of

the entire store. Furthermore, a query which checks for a triple indicating a nickname might be

unsuccessful. An unsuccessful query does not mean that the triple does not exist, only that the

query could not be satisfied using the given computational resources.

A compromise between ontologies and pure data exists. A light type system which only deals

with URIs and literals in triples, rather then structures across several triples, is proposed. Given

one triple it is easier to tell whether the subject and object are of the correct type for a predicate.

For instance, a type system may allow the assumption that a predicate surname relates a person

to a string. Thus for any triple in which surname is observed as the predicate, the subject of the

triple is a person and the object is a string. No knowledge of other triples is required.

It is still naive to assume that triples can be typed. Given a literal, say ‘3’, it is reasonable to

assume that ‘3’ is an integer. However given a URI, say eprint:15017, what is the type of the

http://eprints.ecs.soton.ac.uk/15017/

Chapter 5 Type Systems for Read–Write Linked Data 153

URI? Is it a person? Is it a predicate? The only sure answer is that it is a URI. Inside knowledge

may say that the prefix of the URI indicates a paper, however in general such policies are not

available. On the Web, few type assumptions can be made about URIs.

Intrinsic problems associated with semi-structured data on the Web are well known. In isolating

the essential aspects of semi-structured data, Abiteboul highlights prevailing challenges [2].

Abiteboul argues for a light exchange model with an a-posteriori data guide; which addresses

challenges including, eclectic types and a blurring of the distinction between schema and data.

A light flexible type system for Linked Data addresses issues highlighted by Abiteboul.

For flexibility the type system works at three levels. Firstly, the XML Schema Datatype stan-

dard is reused to form a solid basic type system for RDF, where only literals are typed. Sec-

ondly, some types for URIs are moved from the data to the type system as propositional types.

Thirdly, the standard inference system from the W3C standard RDFS is adapted to form a sub-

type system [33]. The subtype system offers flexibility and interoperability between the different

strengths of typing. The three perspectives offer a compromise between static typing and dy-

namic data. In the presence of updates, static types are preserved while dynamic data changes.

5.3.1 A Standardised Type System for Literals

A type system for literals can detect basic programming errors in queries. Literals can appear in

constraints in which only literals of a certain type make sense. For instance a regular expression

only makes sense over a string of characters. A comparison between literals only makes sense

if the two literals are of the same type. An inequality between literals only makes sense if the

two literals are of the same type and there is a natural order over that type of data.

The SPARQL Query recommendation defines the operations which appear in filters [115]. The

XML Schema Datatypes recommendation is reused to define the types for literals [25]. Literals

are well understood, so it assumed that a type system for literals exists. From these standards

a basic type system for updates can be defined. The basic type system annotates variables with

data types as follows.

∨
x : Date.


(‘01-01-1960’ ≤ x)

(x < ‘01-01-1970’)

|(document1 created x)|
(document1 note candidate)


The data types can be used in a type system to check that the constraints are correctly typed.

In the example above, the constraints are inequalities between dates and a variable which is

presumed to be a date. A type system accepts this update. If a constraint that checks the variable

for a regular expression is also added then a type error is triggered.

Due to the data type standards, this level of typing can always be applied. Furthermore, a type

inference algorithm allows the programmer to specify an update without types and still take

154 Chapter 5 Type Systems for Read–Write Linked Data

advantage of the type system. A suitable type system and inference algorithm for literals is

assumed [35].

5.3.2 Light Propositional Types for RDF

By typing predicates, basic errors can be detected in the structure of triples. When the choice of

verb does not match the choice of subject and object, no information needs to be known about

the context of a sentence to reject a sentence. A simple sentence such as, “The mountain writes

the fish,” will always be nonsense.

Without type information it is less obvious that the above sentence is nonsense. Naming the

mountain ‘Ararat’ and the fish ‘Nemo’ might give, “Ararat writes Nemo.” By supposing that

Ararat is a persons name and Nemo is a story, the nonsense appears to make sense. However,

cultural experience suggests that Ararat refers to Mount Ararat, rather than some person. A

mountain cannot be the subject of the verb to write, so the sentence remains nonsense.

The type of a URI is harder to establish than in natural language. What is the type of the URI

res:Mount Ararat ? According to DBpedia the type is another URI dbp:Place . The relationship

between the URI and its type can be represented by the following triple.

res:Mount Ararat rdf:type dbp:Place .

Note the namespace prefixes dbp: and res: are used by DBpedia for resources and termi-

nology respectively [28]. The namespace prefix rdf: is used for standardised terminology for

RDF [78]. The classification of the subject is indicated by the object of the predicate rdf:type

in a triple, as above. The URIs used for classification are referred to as classes.

The type system can treat classes in two different ways. In the first approach, an RDFS class

is modelled as a conventional type. An RDF class distinguished as an type is used to indicate

that a URI it is an instance of the given type. Classes that are used as types are static properties

of URIs which cannot be updated. In the second approach, almost all RDFS classes are treated

just like any other URI. A class treated as a URI can be used in data, so can be linked to and

updated as normal. Only universal top level types are used in the type system, as explained in

Section 5.3.3.

The type system introduced next is designed so that both approaches to RDF classes may be

used. This allows an interplay between applications which use classes as data and those which

use classes as static types. This design decision indicates a blurring of the distinction between

schema and data, highlighted by Abiteboul [2].

http://dbpedia.org/resource/Mount_Ararat
http://dbpedia.org/ontology/Place
http://dbpedia.org/resource/Mount_Ararat
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/
http://dbpedia.org/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 5 Type Systems for Read–Write Linked Data 155

Data := String string type
| Date date type
| . . . etc.

τF a atomic proposition
| p(τ, τ) predicate type
| p(τ,Data) data predicate type
| > resource type
| τ ∪ τ union type
| #τ container type

Figure 5.3: The syntax of types and type environments.

5.3.2.1 The syntax of propositional types.

The syntax of types which defines propositions which can be assigned to URIs, is presented in

Fig. 5.3. The definition of types uses atomic propositions, which depend on the application.

Atomic propositional types. For a type system, a number of atomic propositional types are

fixed. Atomic types are indicated by small capitals, such as article, person. Atomic types are

application specific. They indicate static assumptions about a URI. For instance, an applica-

tion which plots resources on a map deals with URIs typed by proposition place. A different

application which maintains a calendar of concerts may use the proposition event.

Unlike datatypes, which restrict the structure of literals, atomic propositional types do not im-

pose structure on a URI. Atomic propositional types are just syntax which guides how a URI is

used.

Predicates between URIs. Atomic types can be used to construct predicate types. A predicate

type indicates the type of a subject and object. For instance, the predicate writes may relate

a person to a document. This is indicated by the predicate type p(person, document). The

predicate knows may relate a person to a person, indicated by type p(person, person).

Predicate types can be used to catch basic errors in triples, where the subject or the object does

not match the expected type. For instance, a subject of type location and object of type animal

are not valid for the predicate writes, under the assumptions above.

Datatype predicates. Predicates which allow literals as objects, are indicated using datatype

predicates. For instance, the predicate created relates a document to a date literal, indicated by

type p(document,Date). This allows both literals and variables of type Date to be used as the

object of created.

In the example in Sec. 5.3.1, the variable appears as the object of a triple with predicate created.

The type assumption for created can be used to check that the type of the variable, matches how

the variable is used in the triple. In the example, the variable also appears in a constraint. A

156 Chapter 5 Type Systems for Read–Write Linked Data

type error occurs if the type of the variable in the triple and the type of the same variable in the

constraint do not match.

The resource type. A URIs can be assigned the resource type >, which represents anything

that can be assigned a URI. It corresponds to the class rdfs:Resource in RDFS [33]. The resource

type can always be used to indicate URIs when no further static type information is known.

This allows ome very general predicate types, by allowing any URI as the subject or object

of a predicate. For instance, the atomic proposition document may be too stringent for the

predicates writes and created. Instead, the types p(person,>) and p(>,Date) can be used where

any resource can be written and any resource can be created.

The resource type can only be applied to URIs. Literals have their own top type defined in the

datatype standard [25]. By keeping these two top types distinct the type system for URIs and

for literals do not interfere with each other.

The union type. The union type offers a compromise between atomic propositions and top.

For instance, the predicate writes may apply to two atomic propositions article and book. The

object of the predicate becomes the union type of the two atoms, as follows.

p(person, article ∪ book)

Types for feeds and named graphs. To type named graphs and feeds the container type is

introduced. Typically, the subject of a triple is what is described by the triple. By analogy, the

subject of a simple sentence is what is described by the sentence. A feed can therefore indicate

what type of resources its triples describe. For instance, a feed of articles contains triples with

subjects of type article. A feed of articles is indicated by the type #article.

Container types are well suited to feeds. For instance, BBC News delivers feeds of articles,

Flickr delivers feeds of photos and Google Calendar delivers feeds of events. However, named

graphs are intended to contain diverse triples. The most general container type #> indicates a

named graph with no restrictions on content.

Container types allow novel features. For instance, the seeAlso predicate indicates where to find

more information about a resource. A suitable type would be p(>, #>), which suggests that

more information about the subject can be found in a named graph indicated by the object.

Note that types for atomic propositions, predicates and union types are implicit in the RDFS

standard. However, there is no standard type for named graphs, since named graphs and RDFS

were introduced independently [33, 38]. The named graph type suggests one light approach to

typing named graphs in the same spirit a predicate types.

Chapter 5 Type Systems for Read–Write Linked Data 157

τ0 ≤ τ1
τ0 ≤ τ1 ∪ τ2

τ0 ≤ τ2
τ0 ≤ τ1 ∪ τ2

τ0 ≤ τ2 τ1 ≤ τ2
τ0 ∪ τ1 ≤ τ2 τ ≤ >

τ′0 ≤ τ0 τ′1 ≤ τ1

p(τ0, τ1) ≤ p
(
τ′0, τ

′
1

)
τ0 ≤ τ1 d0 ≤ d1
p(τ1, d1) ≤ p(τ0, d0)

τ0 ≤ τ1
#τ1 ≤ #τ0

τ0 ≤ τ1 τ1 ≤ τ2
τ0 ≤ τ2 τ ≤ τ

Figure 5.4: Axioms and rules of the subtype system: left injection, right injection, least upper
bound, top, predicate, data predicate, feed, transitivity and reflexivity.

5.3.2.2 A subtype system based on RDFS.

Subtypes are essential for enabling some basic scenarios. The subtype system, presented in

Fig. 5.4, defines a preorder over types. The subtype system enables interoperability by enabling

different strengths of type system to coexist. For instance, data which is heavily typed can

still be used if very little type information is required. This light approach to interoperability

avoids typical data integration problems, such as the integration of schema with conflicting

constraints [46].

The subtype axioms. The subtype relation τ0 ≤ τ1 can be read τ0 is stronger than or equiv-

alent to τ1. So, if something is of type τ0, then it is also of type τ1. The basic axiom of the

subtype system, reflexivity, states that every type is at least as strong as itself.

Interoperability of systems can be further enabled by application specific axioms. For instance

an application may define types image and media. To indicate that an image can also be treated as

media, the axiom image ≤ media can be included. Application specific subtype axioms always

relate an atomic proposition to another atomic proposition. They correspond to the subClass

predicate in RDFS, lifted to the type system [33].

Subtypes for union types. A union type indicates that a term is of one of two types. For

instance, the type article is a subtype of article ∪ image. This is the left injection of a type into

a union type. Similarly, the type image is a subtype of article ∪ image by the symmetric right

injection rule.

A union type is the least upper bound of two types. If article ≤ media and image ≤ media are

subtype axioms, then article∪image is also bound above by media. A URI of type article∪image

means that the URI may vary between identifying either an article or an image.

Subtypes for resource type. Every type is bound above by the resource type. Thus both

person and p(person, person) are bound above by >. If a URI serves the role of a person or a

158 Chapter 5 Type Systems for Read–Write Linked Data

predicate, then the same URI can be used where no restrictions on the resource apply. Allow-

ing predicates to be resources is a lighter approach than imposing the constraint the URIs for

resources and predicates are disjoint, as in OWL [74].

Subtypes for predicates. Predicate types are contravariant in both the subject and object.

Contravariance switches the direction of the subtype relation. For instance, a predicate of type

p(person,>) is also of type p(person, article). Contravariance allows the resource type to be

strengthened to the article type. So a predicate which allows anything as the object can certainly

have an article as the object.

Data predicates are also contravariant in both arguments. For instance, a predicate of type

p(>,String) can be used as a predicate of type p(person,String). The subtype relation for

datatypes is defined in the XML Datatypes standard [25]. For instance, a ‘normalised string’

from the standard can be used in place of a string. Because datatypes and types for URIs are

separate the subtype systems do not interfere.

Subtypes for named graphs and feeds. With subtypes, the type of feeds containing more

than one type of resource can be expressed. For instance, #(article∪ photo) is a feed of articles

and photos collectively have their union type. The feed constructor is contravariant meaning

that the type of the content of the feed may be strengthened. For instance, a feed containing

resources which are either articles or photos can be treated as a feed containing only articles by

ignoring the photos. This is captured by the subtype relation #(article ∪ photo) ≤ #article.

5.3.2.3 Cut Elimination for the Subtype System.

Cut elimination allows the transitivity rule to be eliminated from subtype proofs. Cut elimination

is a fundamental result of proof theory, which provides further justification for the rules of the

subtype system.

The proof relies on taking the reflexive transitive closure the subtype assumptions as axioms.

For instance, consider the atomic types, reporter, journalist, person, and the subtype axioms

reporter ≤ journalist and journalist ≤ person. Transitivity must be used to determine the

subtype relation reporter ≤ person, so this subtype assumption is included as a subtype axiom.

Theorem 5.1 (Cut elimination). Given a proof of a subtype relation τ0 ≤ τ1, there exists a

normalised proof with the same conclusion which does not use cut (i.e., the transitivity rule in

Fig. 5.4).

A major benefit of cut-elimination is that sub-typing is syntax directed. A sub-type proof can

be found by applying the rules which correspond to the type constructors. Transitivity is not

syntax directed as it can be applied at any point, so its elimination demonstrates that sub-tying

is algorithmic.

Chapter 5 Type Systems for Read–Write Linked Data 159

Proof. The proof works by transforming a proof of a subtype assertion. The transformation is

indicated by ~·�. If the last rule is not a cut rule the rule is simply applied to the premise. If

the rule is a cut then one of the following cases apply. The result then follows by structural

induction on the depth of the proof tree.

Consider the case where the left branch of a cut is another cut rule. The nested cut rule can be

normalised first, as demonstrated by the transformation bellow.�����������������
π0

τ0 ≤ τ1

π1

τ1 ≤ τ2

τ0 ≤ τ2

π2

τ2 ≤ τ3

τ0 ≤ τ3

����������������� −→
����������������
�����������

π0

τ0 ≤ τ1

π1

τ1 ≤ τ2

τ0 ≤ τ2

�����������
π2

τ2 ≤ τ3

τ0 ≤ τ3

����������������
By induction, the resulting nested proof tree will be cut free, so a different case applies. The

same technique can be used when a nested cut appears on the right branch of a cut.

Consider the case of the reflexivity axiom. If the reflexivity axiom appears on either the left or

right branch of a cut can be eliminated. The case of the elimination of reflexivity on the left is

demonstrated below. �����������τ0 ≤ τ0

π

τ0 ≤ τ1

τ0 ≤ τ1

����������� −→
������� π

τ0 ≤ τ1

�������
By induction, the result of the transformation is a cut free proof.

Consider the case of the top type on the right of the cut. The cut can be absorbed by the top type

axiom, as follows. ������� π

τ0 ≤ >

������� −→ τ0 ≤ >

This is trivially a cut free proof.

Consider the case of union introduction rule on the left of a cut. Cut elimination can be applied

separately to each of the premises of the union introduction rule, as demonstrated below.�����������������
π0

τ0 ≤ τ1

π1

τ1 ≤ τ2

τ0 ∪ τ2 ≤ τ2

π2

τ2 ≤ τ3

τ0 ∪ τ1 ≤ τ3

����������������� −→
�����������

π0

τ0 ≤ τ2

π2

τ2 ≤ τ3

τ0 ≤ τ3

�����������
�����������

π1

τ1 ≤ τ2

π2

τ2 ≤ τ3

τ1 ≤ τ3

�����������
τ0 ∪ τ1 ≤ τ3

By induction, the result of the transformation is a cut free proof.

160 Chapter 5 Type Systems for Read–Write Linked Data

Consider the case of the union projection rules. Without loss of generality, consider the left

projection. The cut is pushed up the proof tree, as demonstrated below.�����������������
π0

τ0 ≤ τ1

π1

τ1 ≤ τ2

τ1 ≤ τ2 ∪ τ3

τ0 ≤ τ2 ∪ τ3

����������������� −→
�����������

π0

τ0 ≤ τ1

π1

τ1 ≤ τ2

τ0 ≤ τ2

�����������
τ0 ≤ τ2 ∪ τ3

By induction, the result is a cut free proof.

Consider the case of a union projection applied to a union introduction. Without loss of general-

ity consider the left projection. The result is only the left premises of the union introduction rule

is required; the irrelevant branch is removed by the elimination step, as demonstrated below.���������������
π0

τ0 ≤ τ1

τ0 ≤ τ1 ∪ τ2

π1

τ1 ≤ τ3

π2

τ2 ≤ τ3

τ1 ∪ τ2 ≤ τ3
τ0 ≤ τ3

��������������� −→
�����������

π0

τ0 ≤ τ1

π1

τ1 ≤ τ3

τ0 ≤ τ3

�����������
By induction, the result of the transformation is a cut free proof.

Consider the case of cut applied to two predicate subtype rules. In this case the contravariant

premises of each subtype rule are combined, as follows.���������������������
π0

τ1 ≤ τ0

π′0
τ′1 ≤ τ

′
0

p
(
τ0, τ

′
0

)
≤ p

(
τ1, τ

′
1

)
π1

τ2 ≤ τ1

π′1
τ′2 ≤ τ

′
1

p
(
τ1, τ

′
1

)
≤ p

(
τ2, τ

′
2

)
p
(
τ0, τ

′
0

)
≤ p

(
τ2, τ

′
2

)

���������������������

−→

�����������
π1

τ2 ≤ τ1

π0

τ1 ≤ τ0

τ2 ≤ τ0

�����������
������������

π′0
τ′2 ≤ τ

′
1

π′1
τ′2 ≤ τ

′
0

τ′2 ≤ τ
′
0

������������
p
(
τ0, τ

′
0

)
≤ p

(
τ2, τ

′
2

)
By induction, each of the new cuts have a cut free proof, so the result of the transformation has

a cut free proof.

Consider the case of cut applied to two container types. As with predicate type, cut can be

applied to the contravariant premises of the container type rule, a follows.����������������
π1

τ1 ≤ τ0

#τ0 ≤ #τ1

π3

τ2 ≤ τ1

#τ1 ≤ #τ2
#τ0 ≤ #τ2

���������������� −→
�����������

π3

τ2 ≤ τ1

π1

τ1 ≤ τ0

τ2 ≤ τ0

�����������
#τ0 ≤ #τ2

Chapter 5 Type Systems for Read–Write Linked Data 161

By induction, the new premise has a cut free proof, so the result of the transformation has a cut

free proof.

This covers every case. Hence by structural induction on the proof of a subtype derivation, a cut

free proof with the same conclusion exists. �

An immediate consequence of the above proof is that the subtype relation forms a category. The

category is such that types are objects, subtype proofs are arrows, reflexivity are the identity

arrows and cut is composition. In this category union types are co-products, the resource type

is the final object, the container type is a contravariant functor and the predicate type is a con-

travariant bi-functor. This corollary is elementary category theory, which can be read directly

from the cut elimination proof. It demonstrates that the constructs of the type system are com-

mon features of type systems. This is left as a side note, to avoid introducing categories in this

work.

5.3.2.4 Interoperability of Subtype Systems.

A store may include Linked Data from more than one source with static type information. The

subtype system enables interoperability between different subtype type systems. For instance,

suppose there exist three stores, for distinct applications. Suppose that one store uses atomic

types musician and venue, while another store uses atomic types person and location. A third

store uses content from both servers, so must handle all four atomic types. Furthermore, the

third server is given the subtype assumptions musician ≤ person and venue ≤ location, which

improves interoperability of content from both servers.

In the example involving three stores, the subtype systems of the first two stores can be extended

to the subtype system of the third store. A subtype system δ0 is defined to extend to a subtype

system δ1 if and only if the completion of subtype axioms in δ0 is contained in the completion

of subtype axioms in δ1. Thus if δ0 extends to δ1, then all subtype assumptions with respect to

δ0 are subtype assumptions with respect to δ1. Valid extensions can be checked efficiently using

the Dedekind-MacNeille completion [89].

Subtypes ease restrictions imposed by types. Linked Data can involve data from stores with

different subtype systems. By extending the subtype systems lightweight interoperability across

diverse Linked Data systems can be achieved.

5.3.3 A compromise between light typing and no typing

Another approach to modelling RDFS using a type system is highlighted in this section. The

alternative type system is just a restriction of the type system already introduced. Instead of

lifting arbitrary classes to the type system, only the top level classes of RDFS are used. This

restricted approach to types offers a compromise between using no typing for URIs and using

162 Chapter 5 Type Systems for Read–Write Linked Data

>

Data class

88rrrrrrrrrrrr
p(>,Data)

OO

p(>, class)

ggOOOOOOOOOOOOO

#>

kkVVVVVVVVVVVVVVVVVVVVVVVVVV

p(>,>)

OO

Figure 5.5: The subtype relationships between top level types.

arbitrary classes in the type system. By using only top level classes as types the type system

become much simpler and cleaner. All other features of RDFS are treated at the level of the

terms of the language, rather than the type system. Some features of RDFS are constrained, but

at little cost to the applications modelled.

The issue addressed is that the official specification for RDFS uses classes in a convoluted man-

ner. This is acknowledged in related work which constructs a Tarski-style model theory for

RDFS [108]. Two levels of classes are identified by Horrocks and Pan. The first level of classes

consists of atomic classes such as person or article, which are application specific. The sec-

ond level of classes consists of very general top level classes, which, unlike first level classes,

are not application specific. By making a clear distinction between first and second level classes

non-well-founded models are avoided. Non-well-founded models relax the axiom of foundation,

which in set theory prevents a set from being contained in itself [8]. However, non-well-founded

sets are only required for operational behaviour, thus would be excessive if employed to model

RDFS.

The top level types are the resource type (>), the class type (class) and several predicate types

(p(>,>), p(>, class)). The datatype predicates, with any subject are included, since the types

of literals do not vary between applications. All types that appear in the restricted type system

have already been introduced, except the class type.

The class type — class— is just an atomic type in the restricted type system. No further atomic

types are used, thus all other RDF classes are treated as URIs which appear in terms. Just as the

atomic propositional type person is used to type URIs of type person in the light type system;

the propositional type class is used to type URIs which are used as classes in this restricted type

system. Thus the predicate rdf:type is assigned the type p(>, class) and used in terms.

The relationships between the distinguished top level classes are presented in Fig. 5.5. The ar-

rows indicate subtype relationships. The resource type > is the greatest type, thus dominates the

class type. By the contravariance of predicates, a predicate which can relate any two resources

can relate any resource to a class. However, most other types are separate. The class type class

is not related to any property type. The type system for literals is kept separate from the type

system for URIs, so a top level class and a data type cannot be compared using the subtype

system. Thus datatype predicates and other predicates are separate.

Chapter 5 Type Systems for Read–Write Linked Data 163

With only top level classes in the subtype system, there is no need for subtype assumptions.

Instead the sub-property and sub-class relations of RDFS are used as assumption in the preorder

over URIs. This preorder over URIs is used when answering queries, rather than when typing

processes, as in Chapter 4. In this way the sub-property and sub-class relations are simple

preorders over URIs which do not interfere with the top level classes; while the top level classes

and datatypes are entirely and handled a very simple universal type system. Since both the

preorder over terms and top level type system are simple to define, this is the cleanest approach

to modelling a RDFS considered in this work.

5.3.3.1 Common misunderstandings about types.

Misunderstandings may arises when the two approaches to using using classes in a type system

are considered, illustrated as follows. In the top level approach, a URI person can be assigned

the type class. This represents a dynamic class in which appears in term as a URI. It may be

linked to and updated like any other URI. However, in the first-level approach to classes the

URI Hamish may be assigned the atomic type person which represents a class lifted to the type

system. In this approach the class person has been lifted to the type system, so can no longer be

treated like any other URI.

A mistake is to link a dynamic class such as person, which is part of a term, and a static class such

as person, which is a type. By making this mistake the static type would be of type class and

the dynamic URI would be a type. The distinction between data and types becomes convoluted.

The RDFS standard unfortunately makes this mistake by not distinguishing between data and

types. The result is that serious paradoxes are breached, which may be partially resolved by a

higher-order type system [42]. Higher-order type systems are technically complicated and add

little to this application domain. Although up to fourth order types have been applied in the CyC

project (a project to build an ontology of knowledge in an encyclopedia) [49]. By treating class

as a simple proposition, and instances as terms, these problems disappear at little cost.

5.4 The Typed Syndication Calculus

This section introduces the typed calculus. The typed calculus builds on the calculus described

in previous sections. The extra type information assigns types to URIs and literals. The type

system investigates the feasibility of lifting a small amount of the data to a type system. In

particular, the typed calculus provides a model to evaluate the effectiveness of RDFS as a type

system for Linked Data [33].

A type system allows data and updates to be statically type checked. This type system ensures

that URIs assigned a distinguished rôle are always used consistently. Notice that the data formats

and query system exists in major deployments [28]. Also, a preliminary update system is under

development, so is considered a requirement for Linked Data. The type system for literals has

164 Chapter 5 Type Systems for Read–Write Linked Data

certain benefits for catching basic programming errors. However, the type system for URIs is a

design decision, rather than a requirement. It depends on the application whether a type system

for URIs should be used.

Although, the type system requires a design decision, the barriers imposed by the type system

are less than those imposed by traditional database schema. For instance, an application may

decide that a URI refers to an article, but the data associated with that article may change. An

entirely new vocabulary might be used to replace the data about an article. However the URI of

type article remains a URI of type article. As long as the new vocabulary allows articles to be

described, then the article can still be described.

As expected from an application dependant type system, care should be taken with what data is

part of the type system. For instance, a URI may be of type person. It is reasonable to assume

that a person will not morph into a bat, so person is a good choice of static type. However in

an application, if a person is a banker, that person may become a bar tender. In this case rôle

banker is too strong to be a static type, so should remain part of the data. For flexibility, the

RDFS standard can also be considered at the level of data [127].

5.4.1 Type Rules for Linked Data and Updates

RDF content and updates are typed to ensure that URIs used in RDF content are consistent with

type assumptions. This section presents type rules for both RDF content and updates. The type

rules for updates ensure that an update is only well typed if it updates well typed RDF content. A

type rule for each construct of content is provided in Fig. 5.7. In a type judgement, the turnstile

` separates the context on the left, represented by a type environment, from the well typed term

on the right.

5.4.1.1 Type Environments for names and literals.

Type environments are finite partial functions from names to types. Syntactically, a type assign-

ment is a name–type pair. If the pair Alice : person occurs, the URI Alice is said to be assigned

type person. Similarly, type assignments allow variables to be assigned datatypes. The type

environment is built from comma separated type assignments. Type environment composition

is associative, with the empty environment as a unit, as indicated by the congruence over type

environments in Fig. 5.6.

The type system uses the standard structural rules exchange and contraction. Exchange allows

the order of type assignments to be changed. Contraction allows two identical assumptions

can be reduced to a single assmption. For instance Alice : person,Alice : person is equivalent

to Alice : person. Exchange and contraction are captured by the congruence over type environ-

ments in Fig. 5.6. These structural rules are standard for type systems. The congruence can

always be applied to the environment on the left of the turnstile in a type judgement.

Chapter 5 Type Systems for Read–Write Linked Data 165

αF a : τ name assignment
| x : Data variable assignment
| ε empty environment
| α, α environment composition

α, ε ≡ α α0, (α1, α2) ≡ (α0, α1), α2 α0, α1 ≡ α1, α0 α, α ≡ α

Figure 5.6: A syntax for type environments and structural rules over type environments: unit,
associativity, exchange, contraction and weakening.

To ensure that environments are partial functions from URIs and variables to types and datatypes

respectively, type environments must satisfy the following condition. If a URI or variable oc-

curs in two type assignments within one type environment, then in each case the URI must be

assigned the same type. Two type environments are compatible if and only if their composition

still satisfies this constraint. For instance, the type environment Alice : person and the type envi-

ronment Alice : book are incompatible. It is useful to denote the domain of a type environment

α, by dom (α).

5.4.1.2 Axioms, weakening, subsumption and literals.

The type system uses the standard axiom scheme, which states that, assuming that a URI is of

a particular type, the URI is of the given type. Thus if Ossetia is assumed to be an article, then

Ossetia is an article. The same shape of axiom applies to variables, but types and datatypes do

not overlap so the axioms are separate.

The weaken environment rule allows unused type assignments to be added to the context. So

weakening can be applied to an axiom to give, if Ossetia is an article and Exchange is an article,

then Ossetia is an article. The subsumption rule allows the subtype system to be applied at

any point. So, if Ossetia is an article, then Ossetia is anything, by the resource axiom from

the subtype system. Weakening and subsumption enable the intuitive presentation of the type

system in Fig. 5.7.

Data literals are defined independently from the calculus. For the purpose of examples, intuitive

type judgements are assumed to hold, such as ` ‘09-09-2008’ : Date or ` ‘Hamish’ : String.

Technical details are left to the standards [25].

5.4.1.3 Type rules for triples and simple RDF content.

Predicate types indicate the subject and object of predicate. The type rules for triples ensure

that the subject and object are of the correct type. For instance, suppose that author is of

type p(article, person). If Ossetia is of type article and Hamish is type person then the triple
(Ossetia author Hamish) is well typed.

166 Chapter 5 Type Systems for Read–Write Linked Data

a : τ ` a : τ x : Data ` x : Data
α ` a : τ0 α ` p : p(τ0, τ1) α ` b : τ1

α ` (a p b) : τ0

α ` a : τ α ` p : p(τ,Data) α ` e : Data
α ` (a p e) : τ

α ` a : #τ α ` C : τ
α ` GaC : #τ

α, a : τ0 ` P : τ1
α `

∧
a : τ0.P : τ1

` ⊥ : τ
α ` P : τ α ` P : τ

α ` PM P : τ
α0 ` P : τ

α0, α1 ` P : τ
α ` P : τ0 τ0 ≤ τ1

α ` P : τ1

Figure 5.7: Type rules for RDF content and named graphs: name assignment, variable as-
signment, type triple, type triple with literal object, type named graph, type blank node, type

nothing, type par, weakening and subsumption.

Data predicates are typed using a similar rule. The data predicate type indicates the type of the

subject and the datatype of the object. For instance, suppose that the predicate name is of type

p(person,String). Given that the name Hamish is of type person and the literal ‘Hamish’ is of

data type String, then the triple (Hamish name ‘Hamish’) is well typed.

In both cases a well typed triple takes on the type of the subject. So the first triple above is of

type article and the second triple is of type person. Only the type of the subject of the triple

is indicated. This allows collections of triples with the same type of subject to be identified.

For instance, some content may consist of triples with subjects which are articles. As noted in

Sec. 5.3, typing triples according to the type of the subject is an application specific choice. The

resource type can be used to indicate that the type of the subject is irrelevant.

Triples and processes are composed using par. The type rule for par allows two triples of the

same type to be composed. For instance, the two triples in this section can be composed. Sub-

typing is applied to weaken the types of both triples to the appropriate union type.

Hamish : person,Ossetia : article, author : p(article, person) , name : p(person,String)

`
(Hamish give name ‘Hamish’) ,
(Ossetia author Hamish)

: person ∪ article

The type judgement indicates that the locality contains triples which describe either people or

articles.

5.4.1.4 Type rules for blank nodes.

The blank node quantifier binds names which represent blank nodes. In the typed calculus,

bound names are annotated with a type information. The rule for blank nodes first types some

RDF assuming that the blank node is a normal URI. The rule then internalises the type informa-

tion as a quantifier.

Chapter 5 Type Systems for Read–Write Linked Data 167

The following example internalises three type assumptions, which represent blank nodes. Two

blank nodes indicate that they are two separate events. The third blank nodes is of the resource

type. The scope of the quantifier indicates that the same resource judged both events but no

information is known about that resource.

judge : p(>,>) ,

date : p(>,Date)
`

∧
a : >.



∧
event1 : event. (event1 judge a) ,
(event1 date ‘13-01-2011’)

 ,∧
event2 : event. (event2 judge a) ,
(event2 date ‘14-01-2011’)




: event

Subjects bound by typed blank nodes help determine the type of the content. In the above

example, since the subject of all triples are events, the whole resource is of type event.

5.4.1.5 Type rules for named graphs.

The type of a named graph indicates the type of content that may be contained in the named

graph. For instance, a named graph of type #article has content of type article. The following

named graph models a feed named Caucuses, appearing below. The four triples in the named

graph have subjects which are articles, so the feed is well typed.

title : p(article,String) ,

published : p(article,Date) ,

editor : p(#article, person) ,

Caucuses : #article,

Hamish : person,

Ossetia : article,

exchange : article

`

(Caucuses editor Hamish) ,

GCaucuses


(Ossetia title ‘Ossetia invaded’) ,
(Ossetia published ‘09-09-2008’) ,
(exchange title ‘Stock collapse’) ,
(exchange published ‘08-10-2008’)

 : >

URIs for a named graph are treated like any other URI. Thus triples can be assigned to named

graphs, such as the triple which indicates the editor of the named graph in the example above.

5.4.1.6 Type rules for updates and queries.

A delete, insert or a query have the same type as the RDF content that they act on. This ensures

that only RDF content which makes sense can be updated or queried. For instance, the following

type judgement holds, which indicates a resource and an update which intends to replace in with

168 Chapter 5 Type Systems for Read–Write Linked Data

α ` G : τ
α ` |G| : τ

α ` G : τ
α ` G⊥ : τ

α ` φ

α ` φ : τ
α ` S : τ α ` T : τ

α ` S ⊕ T : τ

α ` S : τ α ` T : τ
α ` S ⊗ T : τ

α, a : τ ` S : τ
α `

∨
a : τ.S : τ

α, x : D ` S : τ
α `

∨
x : D.S : τ

α ` S : τ
α ` ∗S : τ

Figure 5.8: Type rules for updates: type ask, type delete, type filter, type choice, type tensor,
type select name, type select literal, type exponential.

out.
Dmitri : person,

status : p(>,>) ,

in : >, out : >

`

(Dmitri status in) , (Dmitri status in)⊥

(Dmitri status out)

 : person

In the example above deleted and inserted data has a subject of type person, so the update

maintains the type of the context. A type checker can detect malformed triples in a delete or

insert before the update is applied.

5.4.1.7 Type rules for select quantifiers.

Select quantifiers consist of a type assignment and an update. The type environment constrains

the type of name to select. The example below selects a URI of type person. The type informa-

tion permits the assumption that a selected URI will be of type person. The object of the triple

in both the query and the insert are expected to be of type person.

article : article,

editor : p(article, person) ,

club : >,

member : p(>, person)

`

∨
p : person.

 |(article editor p)|
(club member p)

 ,∧
Hamish : person.(article editor Hamish)

: >

The above update is in the presence of some data where a blank node appears. The type assign-

ment for the blank node is the same as the type assignment for the select quantifier.

5.4.1.8 Type rules for literals in filters and selects.

A constraint which contains variables or names can be typed. For instance, under the assumption

that x : Date, constraint x ≤ ‘01-01-1950’ is well typed. A date literal substituted for x results

in a constraint such as ‘01-05-1886’ ≤ ‘01-01-1950’, which is also well typed. In the example

below, the select quantifier introduces the assumption that x is a date. This type assumption

allows the filter and triple in the query to be typed. The update satisfies the following type

Chapter 5 Type Systems for Read–Write Linked Data 169

judgement.

Kidnapped : book,

published : p(book,Date) ,

note : p(>,>) ,

classic : >

`

∨
x : Date.

∨
book : book.

(x ≤ ‘01-01-1950’)

|(book published x)|
(book note classic)

 ,
(Kidnapped published ‘01-05-1886’)

: book

Typing literals is the minimal type system for updates. Literals can still be typed without appli-

cation specific type information for URIs.

5.4.1.9 Type rules for tensor, choice and iteration.

The tensor product ensure that two well typed updates are applied atomically. A choice between

two well typed updates is presented. A tensor or choice assumes a type that both components can

assume. Iteration does not affect the type of a process. In the following example all components

are of type person so the whole update is of type person.

guard : class,

attendant : class,

porter : class,

type : p(>, class)

`

∗
∨

a : person.




(a type attendant)⊥

⊕

(a type guard)⊥


(a type porter)

 ,∨
b : person.(b type attendant) ,∨
c : person.(c type guard)

: person

The above example demonstrates a mix of static classes as types and dynamic classes as data.

The people are always people, but their rôle changes.

5.4.2 Algorithmic Typing for the Calculus

In the type system in the previous section, the subsumption and weakening rules can be ap-

plied at any point. An algorithmic type system controls the use of subsumption and weakening.

Subsumption can instead be applied as early as possible. Weakening can be applied as late as

possible. The algorithmic type system can be less intuitive but is syntax directed, so easier to

work with for proofs and type inference algorithms [101].

Key differences between the rules of the type system and the algorithmic type system are pre-

sented in Fig. 5.9. The first variation is that the axioms immediately weaken the type to the

correct type required. The second variation is that, when two terms are composed, the type en-

vironments are merged whenever they are compatible. This is characterised by the type rule for

the tensor product. Merging environments avoids weakening both environments before updates

170 Chapter 5 Type Systems for Read–Write Linked Data

τ0 ≤ τ1
a : τ0
 a : τ1

α + a : τ1
 P : τ0
α

∧
a : τ1.P : τ0

a ∈ fn (P)
α
 P : τ0

α

∧

a : τ1.P : τ0
a < fn (P)

α0
 U : τ α1
 V : τ
α0, α1
 U ⊗ V : τ

α0
 a : τ0 α1
 p : p(τ0, τ1) α2
 b : τ1 τ0 ≤ τ2

α0, α1, α2
 (a p b) : τ2

Figure 5.9: Variations in rules for the algorithmic type system.

are combined. The third variation is that the blank node and select rules, which internalise the

type environment permit weakening of the environment. This permitted weakening is expressed

using the congruence over environments. Exchange and contraction still apply and + indicates

disjoint environments.

The soundness and completeness of the algorithmic type system with respect to the intuitive type

system ensures that results carry from one system to the other. The proof begins with a technical

lemma. The lemma demonstrates that, for the algorithmic type system, the environment on the

left of the turnstile covers exactly the URIs that occur free in the term.

Lemma 5.2. If α
 P : τ then fn (P) = dom (α).

Soundness of the algorithmic type system is established by a straightforward rewrite from an

algorithmic type tree to a normal type tree. The effect of the typing is preserved by the rewrite.

Theorem 5.3 (Soundness of algorithmic typing). If α
 P : τ then α ` P : τ.

Proof. Soundness is established by a straight forward translation of proof trees. Each algorith-

mic type rule which involves subtypes can be replaced by their equivalent type rule followed by

a subsumption link.

For blank nodes, if a < fn (P) then the algorithmic type rule is transformed into the type rule,

preceded by application of weakening, as follows.

π

α
 P : τ0

α

∧

a : τ1.P : τ0

yields

π

α ` P : τ0

α0, a : τ1 ` P : τ0
α0 `

∧
a : τ1.P : τ0

Hence, each algorithmic type tree corresponds to a type tree with the same conclusion. �

The proof of completeness of the algorithmic type system is a transformation of proof trees

which pushes subsumption towards the leaves and weakening towards the root of a type tree.

Theorem 5.4 (Completeness of algorithmic subtyping). If α ` P : τ, then there exist α0, α1 such

that α0, α1 ≡ α and α0
 P : τ.

Chapter 5 Type Systems for Read–Write Linked Data 171

Proof. The transformation ~·� pushes subsumption rules as deep as possible into the proof tree

and suspends weakening.

There are two special cases. If two subsumption links appear consecutively, then they can be

performed in a single subsumption link using cut in the subtype system. Also, weakening rules

can be deleted, since weakening is controlled by the induction hypothesis.

For axioms, subsumption is absorbed by the algorithmic rule.�����������a : τ0 ` a : τ0

π

` τ0 ≤ τ1

a : τ0 ` a : τ1

����������� yields
π

` τ0 ≤ τ1

a : τ0
 a : τ1

For tensor, the subsumption link is pushed up each branch. By structural induction, α0, α1 are

type environments, such that α ≡ α0, α
′
0 and α ≡ α1, α

′
1 and also each forms the premises of the

conclusions of the respective branches of the resulting tree.�����������������
π0

α ` P : τ0

π1

α ` Q : τ0

α ` P ⊗ Q : τ0

π2

` τ0 ≤ τ1

α ` P ⊗ Q : τ1

�����������������
yields

α0
 P : τ1 α1
 Q : τ1
α0, α1
 P ⊗ Q : τ1

where

α0
 P : τ1 =

�����������
π0

α ` P : τ0

π2

` τ0 ≤ τ1

α ` P : τ1

�����������
and

α1
 Q : τ1 =

�����������
π1

α ` Q : τ0

π2

` τ0 ≤ τ1

α ` Q : τ1

�����������
The triple rule absorbs a subsumption link. By induction, there exist type environments α0, α1, α2

such that α ≡ α0, α1, α2, α
′ and the following transformation holds.������������������
π0

α ` a : τ0

π1

α ` p : p(τ0, τ1)
π2

α ` b : τ1

α ` (a p b) : τ0

π3

` τ0 ≤ τ2

α ` (a p b) : τ2

������������������
yields

α0
 a : τ0 α1
 p : p(τ0, τ1) α2
 b : τ1

π3

` τ0 ≤ τ2

α0, α1, α2
 (a p b) : τ2

172 Chapter 5 Type Systems for Read–Write Linked Data

For blank nodes, subsumption is pushed straight up the tree. Consider the following proof tree.������������������
π0

α, a : τ2 ` P : τ0

α `
∧

a : τ2.P : τ0

π1

` τ0 ≤ τ1

α `
∧

a : τ2.P : τ1

������������������
By induction, there is some α1 and α′ such that the following transformation holds, where

α1, α
′ ≡ α, a : τ2. �����������

π0

α, a : τ2 ` P : τ0

π1

` τ0 ≤ τ1

α, a : τ2 ` P : τ1

����������� =

π3

α1
 P : τ1

If a < fn (P), then the following proof tree holds.

π3

α1
 P : τ1

α1

∧

a : τ2.P : τ1

If a ∈ fn (P) then, by Lemma 5.2 there exists α′1 such that α1 ≡ α
′
1 + a : τ2, and the following

holds.
π3

α′1 + a : τ2
 P : τ1

α′1

∧

a : τ2.P : τ1

Further cases are similar to the above. Thus by induction over the proof trees a transformation

from any type tree to an algorithmic type tree exists. �

The algorithmic type system demonstrates that type checking is syntax directed. Even for a light

type system, type checking a store at each operational step is costly. A feasible approach is to

type check updates.

5.5 The Typed Operational Semantics

Given a well typed update, the expectation is that Linked Data need only be typed once. Well

typed updates applied to well typed Linked Data should result in well typed Linked Data, with-

out the need to recheck the Linked Data. The light type system works locally, in the sense that

the correctness of one triple is not affected by other triples. Similarly, the commitment relation

over updates describes the local behaviour of updates, since unused triples are ignored. The

type system and commitment relations therefore work at the same level of granularity, so are

compatible.

Chapter 5 Type Systems for Read–Write Linked Data 173

PM ⊥ ≡ P PM (QM R) ≡ (PM Q)M R PM Q ≡ QM P

Ga(C M D) ≡ GaC M GaD
∧

a : τ.(PM Q) ≡
∧

a : τ.PM Q a < fn (Q)∧
a : τ.⊥ ≡ ⊥

∧
a : τ0.

∧
b : τ1.P ≡

∧
b : τ1.

∧
a : τ0.P a , b or τ0 = τ1

Figure 5.10: The structural congruence over content and processes: unit, associativity, com-
mutativity, split named graph, distribute blank node, eliminate blank node and commute blank

node.

This section demonstrates that the specification of atomic commitments can be extended to

ensure that the type system and the commitment relation are compatible. The typed commitment

rules introduce minimal assumptions about the context. The assumptions about the context are

that names selected in an update are of the correct type. This amounts to a minimal dynamic

type check on selected names. Under minimal assumptions about the context, type judgements

are preserved by the dynamically typed commitment relation, as verified by Theorem 5.7.

The typed operational semantics are defined by combining the following components. α-conversion

of bound names, the structural congruence in Fig. 5.10 and a typed commitment relation in

Fig. 5.11. Examples throughout this section illustrate the operational behaviour of typed up-

dates.

5.5.1 The Structural Congruence for Typed Linked Data

The structural congruence for typed content is gathered in Fig. 5.10. The structural congruence

captures the commutative monoid formed by par and nothing, which is used for both RDF

content and processes. The structural congruence allows blank node quantifiers to distribute

over tensor and be eliminated in the presence of nothing. Compatible blank node quantifiers may

be swapped. The side condition for swapping type assignments ensures that the composition of

the assignments form a partial function. Type environments must be partial functions. The split

named graph rule allows named graphs to be decomposed for fine grained updates.

The first type preservation result verifies that the structural congruence preserves types. Thus

given a well typed process, processes structurally congruent to the process are well typed.

Lemma 5.5 verifies this compatibility between the structural congruence and the type system.

The proof makes use of algorithmic typing to simplify proofs.

Lemma 5.5 (Structural congruence preserves types). Assuming that P ≡ Q, α ` P : τ if and

only if α ` Q : τ.

Proof. For each algorithmic type tree and rule of structural congruence, an algorithmic type tree

of the equivalent process can be constructed, by Theorems 5.3 and 5.4.

174 Chapter 5 Type Systems for Read–Write Linked Data

For distributivity of blank nodes over par, assume that a < fn (Q). Also assume that a ∈ fn (P)

and the following proof tree holds.

α0 + a : τ0
 P : τ1
α0

∧
a : τ0.P : τ1 α1
 Q : τ1

α0, α1

∧

a : τ0.PM Q : τ1

Now a < dom (α1), by Lemma 5.2, and a < dom (α0) thus a < dom (α0, α1), so the following

proof tree holds. The converse is immediate.

α0 + a : τ0
 P : τ1 α1
 Q : τ1

(α0, α1) + a : τ0
 PM Q : τ1

α0, α1

∧

a : τ0.(PM Q) : τ1

Now, assume that a < fn (P) and the following proof tree holds. Clearly a < fn (PM Q) so the

following proof trees can be interchanged.

α0
 P : τ1
α0

∧
a : τ0.P : τ1 α1
 Q : τ1

α0, α1

∧

a : τ0.PM Q : τ1

iff
α0
 P : τ1 α1
 Q : τ1

α0, α1
 PM Q : τ1

α0, α1

∧

a : τ0.(PM Q) : τ1

Remaining cases are straight forward. The result follows by induction over the derivation of an

equivalence. �

The structural congruence covers the reorganisation of content and processes. The structural

congruence is always reversible. In contrast, the effect of updates are generally irreversible, so

are captured by a commitment relation.

5.5.2 Typed Atomic Commitments

Atomic commitments were introduced in Sec. 3.2 to specify an operational semantics for queries

and updates over Linked Data. In Sec. 3.3, atomic commitments were extended to cover key

features for syndication. In this section, atomic commitments are extended with a type environ-

ment, called the context. Otherwise, the rôle of atomic commitments remains the same. The

process on the left indicates exactly the processes consumed. The process on the right indicates

the exact processes which replace the processes consumed.

The context for typed atomic commitments indicates a minimal dynamic type check required

by a commitment. By minimising dynamic type checks, a feasible type system is enabled.

The context represents these minimal type checks as a type environment. Any processes in the

vicinity of the commitment must agree on the the assignments of names to types in the context.

Chapter 5 Type Systems for Read–Write Linked Data 175

` C MC⊥ � ⊥ ` C � C ` C M |C|� C `

� φ
φ� ⊥

α ` PM U � Q
α ` PM (U ⊕ V) � Q

α ` PM V � Q
α ` PM (U ⊕ V) � Q

α0 ` PM U � P′ α1 ` QM V � Q′

α0 + α1 ` PM QM (U ⊗ V) � P′ M Q′

α ` PM U � Q
α ` PM ∗U � Q

α ` PM (∗U ⊗ ∗U) � Q
α ` PM ∗U � Q ` ∗U � ⊥

α ` PM U
{
b/a

}
� Q ` τ0 ≤ τ1

α + b : τ0 ` PM
∨

a : τ1.U � Q
α ` PM U{v/x}� Q ` v : D
α ` PM

∨
x : D.U � Q

α0 ` P � P′ α1 ` Q � Q′

α0, α1 ` PM Q � P′ M Q′
α + a : τ ` PM Q � P′ M Q′

α `
∧

a : τ.PM Q �
∧

a : τ.P′ M Q′
a < fn (Q,Q′)

α + a : τ ` GbPM Q � GbP′ M Q′

α ` Gb
∧

a : τ.PM Q � Gb
∧

a : τ.P′ M Q′
a < fn (Q,Q′, b)

Figure 5.11: The axioms and rules form atomic commitments: delete axiom, insert axiom,
query axiom, choose left rule, choose right rule, tensor rule, filter axiom, dereliction rule,
contraction rule, weakening axiom, select name rule, select literal rule, mix rule, blank node

rule, named graph rule.

For instance, a context for a commitment relation may indicate that the name Burns is of type

writer. However, if it is assumed elsewhere that Burns is a person, then the commitment cannot

be applied, since the required context indicates a stronger type. The rules for typed commitments

are presented in Fig. 5.11. The higher-order π-calculus similarly constrains the context of a

transition using type environments [76].

5.5.2.1 Type safe commitments.

Assuming that a process is well typed, a commitment which only uses axioms requires no dy-

namic type checks. When there are no type checks most other rules behave like the untyped

calculus. For instance, in the example below the deletes and inserts have an empty context, so

their tensor product has an empty context.

`


(studio status closed)⊥

(studio status open)

Gstudio(Dmitri status out)⊥

Gstudio(Dmitri status in)

 ,
(studio status closed) ,

Gstudio(Dmitri status out)
�

(studio status open) ,

Gstudio(Dmitri status in)

Because the context above is empty, any environment which types the process before the com-

mitment also types the process after the commitment.

176 Chapter 5 Type Systems for Read–Write Linked Data

5.5.2.2 The dynamically typed select quantifier.

The select quantifier introduces the need for dynamic type checks. A select quantifier annotates a

name with a type. The type annotation imposes an upper bound on the type of the selected name.

For instance, the select quantifier below requires that the selected name is of type person. The

commitment selects the name Dmitri according to the triple to be deleted. However, the given

process does not indicate that Dmitri is of type person. The missing assumption is indicated by

the context in front of the commitment.

Dmitri : person `
∨

a : person.(Hamish knows a)⊥ , (Hamish knows Dmitri) � ⊥

The context above indicates that the commitment can only be applied safely when Dmitri is

of type person. Further information required to type the process, such as knows is of type

p(person, person) and Hamish is of type person, is not required for the commitment.

5.5.2.3 The tensor product of commitments with non-empty context.

The tensor product is used to synchronise updates. If two updates each require a context, then

the tensor product of the updates composes the contexts. For instance, the following example

consists of two commitments where each requires a URI to be of type person. The commitments

are composed using the tensor product, so the context indicates that both URIs are of type

person.

user1 : person,

user2 : person
`

(user1 status busy) ,
(user2 status ready) ,



∨
a : person. (a status busy)⊥

(a status ready)

∨
b : person. (b status ready)⊥

(b status busy)




�

(user1 status ready) ,
(user2 status busy)

In the above example, the names in the context are distinct. The tensor rule forces combined

contexts to be disjoint. By forcing disjoint contexts, two select quantifiers cannot discover the

same name. Consequently, the more controlled ‘select distinct’ quantifier is modelled from

SPARQL Query [115].

In contrast, the tensor rule in Sec. 3.2 models the normal select quantifier in SPARQL Query.

The normal select allows different selects to discover the same name. The normal quantifier can

be achieved here by removing the constraint that contexts combined using the tensor product are

disjoint. Removing the constraint allows the same name to appear in the combined environment,

hence contraction may be applied. Contraction allows two different select quantifiers to share

the same resource. The two variations on the select quantifier may coexist by extending the type

environment in the calculus. A more subtle type environment can control the use of contraction,

as investigated in the logic of bunched implications [106].

Chapter 5 Type Systems for Read–Write Linked Data 177

5.5.2.4 Dynamic type checks for selected literals.

The select literal quantifier annotates a variable with a data type. The annotation constrains the

type of a literal discovered using the select literal rule. To enforce the constraint, the select

literal rule dynamically type checks the selected literal. In the example below, the literal input

by the select quantifier is successfully checked to be a date. The syntax of the literal is enough

information to check the type.

Kidnapped : book

`
∨

x : Date.
∨

book : book.
(x ≤ ‘01-01-1950’)

|(book published x)|
(book status classic)

 ,
(Kidnapped published ‘01-05-1886’)

� (Kidnapped published ‘01-05-1886’) ,
(Kidnapped status classic) ,

The select literal performs the dynamic type check immediately. No further information about

the literal is required from the environment. In contrast, there is not enough information to check

the name Kidnapped is a book. This minimum requirement placed on the context is indicated

by the type environment.

5.5.2.5 Typed Commitments involving Choice.

The branches in a choice may depend on different contexts. In the update below a person and a

string are always selected. The string is immediately type checked and the check for the person

is indicated by the context. The update features a third select which demands a name of type

place, but alternatively offers the choice of the unit update. In the commitment below the unit

branch is chosen, so the third select does not contribute to the context.

Burns : person

`
∨

x : String.
∨

a : person.

|(a email x)|
Gpoets(a email x)

∨
h : place. |(a home h)|
Gpoets(a home h)

 ⊕ I




,

(a email ‘Rabbie@soton.ac.uk’)

� (Burns address ‘Rabbie@soton.ac.uk’) ,

Gpoets(Burns address ‘Rabbie@soton.ac.uk’)

The choice between an update and the unit update models the operator OPTIONAL in SPARQL

Query [115, 110]. Since the unit update is always enabled, the other branch may always be

ignored so is optional. This demonstrates that, firstly, optional is not primitive and, secondly,

optional works for updates. In related work, optional is borrowed from relational algebra for

modelling queries [43].

178 Chapter 5 Type Systems for Read–Write Linked Data

5.5.2.6 Iterated updates and dynamic types.

Iteration allows multiple copies of an update to be applied. For instance, the following iteration

creates two copies of the inner update. Due to the use of tensor in the contraction rule, selected

names are forced to be disjoint. In the following example, the context demands three disjoint

names of type person.

Alice : person,Bob : person,Chris : person

`
∨

a : person.
|(a type journalist)|
∗
∨

b : person. |(b type photographer)|
(a knows b)



 ,
(Alice type journalist) ,
(Bob type photographer) ,
(Chris type photographer)

� (Alice type journalist) , (Alice knows Bob) ,
(Alice knows Chris) , (Bob type photographer) ,
(Chris type photographer)

Now suppose that the whole of the above update is also iterated. Due to the disjunction of

environments forced by the tensor product, each journalist is assigned distinct photographers.

To allow names to be shared the tensor rule can be relaxed, as discussed above.

5.5.2.7 Commitments for typed blank nodes.

The blank node rule allows a blank node to be used in place of a URI. The typed blank node

also indicates a lower bound on the type of URI the blank node can represent. For instance, the

example below involves a blank node quantifier annotated with type person. The query demands

a name of any type, so the assumption that the blank node is of type person is strong enough for

the following commitment.

`

∨
b : >. |(b name ‘Burns’)|

(Dmitri knows b)

 ,
∧

a : person.
(a name ‘Burns’)

�

∧
a : person. (a name ‘Burns’) ,

(Dmitri knows a)


The context is used to ensure that type of the select quantifier and the blank node quantifier

match. The select quantifier introduces to the context an assignment of a name to type person.

The blank node rule eliminates that assignment from the context. In the above example, this

leaves an empty context so no dynamic checks are required.

5.5.3 Type Preservation for Commitments

Type preservation verifies that given a well typed process the resulting process after a commit-

ment is well typed with respect to the same environment. This means that the use of a URI after

Chapter 5 Type Systems for Read–Write Linked Data 179

an update is consistent with the use of a URI before the update. For a commitment relation with

a non-empty context, the context must agree with the type environment used to type the process.

The following substitution lemma is required for selected names and literals.

Lemma 5.6 (Substitution preserves types). For names,

if α, a : τ1 ` U : τ and τ0 ≤ τ1, then α, b : τ0 ` U
{
b/a

}
: τ.

Similarly for literals,

if α, x : D ` U : τ and ` v : D, then α ` U
{v/x

}
: τ.

The proof of the lemma follows by structural induction. The type preservation theorem also uses

type preservation of the structural congruence, Lemma 5.5. The soundness and completeness of

the algorithmic type system eliminate the need to consider subsumption and weakening rules,

Theorems 5.3 and 5.4.

Theorem 5.7 (Commitments preserve types). If α0 ` P � Q, then α0, α1 ` P : τ yields that

α0, α1 ` Q : τ.

Proof. The axioms are immediate. The structural induction proof for choose, tensor, select and

blank nodes are demonstrated.

Consider the choose rule and assume that the following type tree holds.

α0 ` P : τ
α1 ` U : τ α2 ` V : τ
α1, α2 ` U ⊕ V : τ

α0, α1, α2 ` PM (U ⊕ V) : τ

Therefore the following type tree holds.

α0 ` P : τ α1 ` U : τ
α0, α1 ` PM U : τ

Now assume that the choose left rule is used to resolve a commitment, where α, α′ ≡ α0, α1, α2.

α ` PM U � Q
α ` PM (U ⊕ V) � Q

By induction, α ` P M U � Q and α0, α1 ` P M U : τ yields the following type judgement, as

required.

α0, α1, α2 ` Q : τ

180 Chapter 5 Type Systems for Read–Write Linked Data

Consider the tensor rule and suppose that the following type judgement holds.

α0 ` P : τ α1 ` Q : τ
α0, α1 ` PM Q : τ

α2 ` U : τ α3 ` V : τ
α2, α3 ` U ⊗ V : τ

α0, α1, α2, α3 ` PM QM (U ⊗ V) : τ

Hence the following two judgements hold.

α0, α2 ` PM U : τ and α1, α3 ` QM V : τ

Now, assume that the following commitment holds, where α0, α2 ≡ β0, β
′
0 and α1, α3 ≡ β1, β

′
1.

β0 ` PM U � P′ β1 ` QM V � Q′

β0 + β1 ` PM QM (U ⊗ V) � P′ M Q′

Hence by induction, the following type judgement holds, as required.

α0, α2 ` P′ : τ α1, α3 ` Q′ : τ
α0, α1, α2, α3 ` P′ M Q′ : τ

Consider the select rule and suppose that the following type tree holds.

α0
 P : τ
α1 + a : τ1
 U : τ
α1

∨
a : τ1.U : τ

α0, α1
 PM
∨

a : τ1.U : τ

Assuming that τ0 ≤ τ1, by the substitution lemma, α1+a : τ1 ` U : τ yields α1, b : τ0 ` U
{
b/a

}
: τ,

so the following proof tree can be constructed.

α0 ` P : τ α1, b : τ0 ` U
{
b/a

}
: τ

α0, α1, b : τ0 ` PM U
{
b/a

}
: τ

Also, assume that the following commitment holds, where α0, α1 ≡ α, α
′, for some α′.

α ` PM U
{
b/a

}
� Q

α + b : τ0 ` PM
∨

a : τ1.U � Q

By the induction hypothesis, α ` P M U
{
b/a

}
� Q and α0, α1, b : τ0 ` P M U

{
b/a

}
: τ yield the

following, as required.

α0, α1, b : τ0 ` Q : τ

Consider the blank node rule and assume that the following type tree holds.

α0 `
∧

a : τ0.P : τ α1 ` Q : τ
α0, α1 `

∧
a : τ0.PM Q : τ

Chapter 5 Type Systems for Read–Write Linked Data 181

Hence, assuming that a < fn (Q), the following type tree holds.

α0 + a : τ0 ` P′ : τ α1 ` Q : τ
α0, α1 + a : τ0 ` PM Q : τ

Hence by induction, there exists α′0, α
′
1 such that α0, α1 ≡ α′0, α

′
1 and the following type tree

holds.
α′0 + a : τ0 ` P′ : τ α′1 ` Q′ : τ
α′0, α

′
1 + a : τ0 ` P′ M Q′ : τ

Therefore, assuming that a < fn (Q′) the following proof tree holds, as required.

α′0 + a : τ0 ` P′ : τ
α′0 `

∧
a : τ0.P′ : τ α′1 ` Q′ : τ
α′0, α

′
1 ` P′ M Q′ : τ

The remaining cases follow a similar pattern. Therefore, by induction on the structure of a

commitment derivation, types are preserved by atomic commitments. �

5.5.3.1 Monotonicity of contexts.

The examples in the previous section indicate the weakest context for a transition. However,

the example involving the blank node quantifier uses subtyping in the select name rule to select

a stronger name. Similarly, in all examples subtyping allows a stronger type to be used in the

environment.

For instance, a context which requires that Burns is of type person, is satisfied by a context

which instead assigns the subtype writer to the same name. In general, Proposition 5.8 verifies

that a stronger context can be used in place of a weaker context without breaking a commitment.

The preorder extends subtyping point-wise to environments.

Proposition 5.8 (Monotonicity). If α0 ≤ α1, then α1 ` P � Q yields that α0 ` P � Q.

The proof pushes the strengthening of the context towards the select quantifiers, where it is elim-

inated. A similar proof shows the monotonicity of typing. Monotonicity facilitates integration

by allowing processes to be moved to a stronger environment without further type checks.

5.5.3.2 Recovering the untyped calculus.

The relationship between the typed and untyped calculus is acknowledged through erasure. Era-

sure removes all type annotations whilst retaining operational behaviour. In particular, the type

annotations which appear in select and blank node quantifiers are removed, as defined by the

182 Chapter 5 Type Systems for Read–Write Linked Data

transformation erase. As verified in Proposition 5.9, all transitions possible in the typed calcu-

lus are possible in the untyped calculus. For an exact match, the tensor rule is relaxed to remove

requirement that the combined contexts are disjoint.

Proposition 5.9. If α ` P � Q, then erase P � eraseQ.

However, as expected, the converse does not hold. There exist transitions in the untyped calculus

that are impossible in the typed calculus. For instance in the following example the blank node

can only be selected after erasure, since > is not a subtype of document.

erase

 ∧
a : >.(a status official) ,∨
b : document.(b status official)⊥

 � ⊥
The main differences between the typed commitments in Fig 5.11, and the untyped commitments

in Fig. 3.4, are summarised as follows. The select name quantifier inputs a name of a given

type, rather than any name. The select literal rule checks the datatype of the literal, rather than

accepting any literal. Rules propagate resulting constraints on the context, whereas the untyped

calculus does not constrain the context. The blank node quantifier rule simulates URIs of a given

type, rather than any URI.

The combination of the subtype system, literal only typing, monotonicity and erasure allow

different strengths of type system to be used in different applications.

5.6 Type Inference Algorithms

Type inference reduces constraints imposed by the type system by inferring types from partial

type information. An update can be provided untyped by a programmer. An algorithm then

automatically infers the missing type annotations. Type inference makes programming easier

and improves interoperability with Linked Data systems with different degrees of static type

information.

For instance, in the example below the types of Hamish and Dmitri are unknown, so are assigned

fresh type variables x and y. The constraints x ≤ person and y ≤ person are obtained by

unfolding the tree of the following algorithmic type judgement.

knows : p(person, person) ,

Hamish : x,Dmitri : y

 (Hamish knows Dmitri) : >

A type inference algorithm discovers the minimal unifier. The minimal unifier above is x 7→

person, y 7→ person. This unifier is a substitution, which gives an valid type judgement when

applied to the above tree.

Chapter 5 Type Systems for Read–Write Linked Data 183

The general inference algorithm proceeds as follows. Firstly, apply algorithmic subtyping to

obtain a proof tree indicating a set of subtype constraints over types involving fresh atomic

types, as in the example above. Secondly, apply unification to the constraints, until either the

constraints are rejected or the algorithm terminates successfully. If the constraints are rejected,

there is no unifier. If the constraints are accepted, then the minimal unifier is generated [93].

Type inference appears implicitly in the RDFS standard. The rules of RDFS state that given a

predicate, the type of the domain of the predicate bounds the type of any subject of the predicate.

Similarly, the range of a predicate bounds the type of any object [33]. As demonstrated above,

the same effect is achieved by type inference in this work. Type inference is performed at

compile time, so incurs no cost to queries or updates.

5.7 Conclusions on the Type System

The calculus is extended with a light type system, which encompasses several use cases in the

application domain. The light approach to typing, inspired by RDFS, contrasts to much stronger

schema typically used in databases and XML, which require a global perspective on data. This

light approach is suited to Linked Data, where data is drawn from many sources. It is expensive

to coordinate strong schema in a distributed setting. The type system can be checked locally at

the level of individual triples and updates. Local checks are appropriate for a highly distributed

system.

The most basic type system checks only literals, which are conventional data so well under-

stood. The more expressive type system also types URIs. A sub-type system is required over

these types for flexibility. A basic cut-elimination result is proven for the sub-type system in

Theorem 5.1. This cut elimination result is unrelated to cut elimination for the full calculus

outlined in previous chapters.

The syndication calculus introduced in previous sections is extended with type annotations.

Both the syntax is typed and the operational semantics are typed. The typed syntax, introduced

in Section 5.4, establishes the meaning of a well typed update. The typed operational semantics,

defined in Section 5.5, carries type information which cannot be guaranteed statically.

The dynamic type checks triggered by the operational semantics occur when a name or literal

is discovered in an update. Thus there is an interplay between static and dynamic typing. The

main result of this chapter, Theorem 5.7, proves that a statically typed process remains well

typed with respect to the operational semantics. This type preservation result is essential for the

type system to be recommended.

Another result established in this chapter is that typing is algorithmic. There exists an alternative

type system which is completely syntax directed. This alternative type system is sound and

complete with respect to the main type system as proven in Theorem 5.3 and Theorem 5.4. This

is particularly useful for type inference algorithms which are discusses briefly in Section 5.6.

Chapter 6

Conclusions

The findings of this work can be considered from several perspectives. The main contribution

is a new model for Linked Data programming languages. This model can be used to evaluate

design decisions in standards, build useful tools, and expose new problems in the foundations of

computer science.

Firstly, the model is used to evaluate W3C standards. This evaluation of the standards indicates

both strong features and issues. The model is the first to investigate how key standards work

together to fulfil their intended purpose.

Secondly, the model is considered as a foundation for prospective tools. Such tools could not be

developed confidently without such a suitable foundation, as provided by the model. The main

theorems of this work provide the confidence required to proceed with the development of tools

in the future.

Thirdly, the model is considered as a contribution to the foundations of computer science itself.

The model borrows features from many existing models, but this particular combination of

features is new. This case study investigates the demands of a model which approaches the

requirements of a real modern application. The application may not initially appear to be vastly

complex; yet it is beyond scope of existing models. Thus, there remain technical modelling

problems beyond the human communication problems identified in the introduction.

6.1 Evaluation of the Model as Justification for Standards

An aim of this work is to provide a model where properties of key technologies are derived rather

than assumed. A model can never claim to be a priori, since is open to be verified by another

deeper model. However, an external model which uses conventional techniques can both add

further weight to some design decisions and expose weaknesses in other design decisions.

185

186 Chapter 6 Conclusions

The two technologies which have been tackled in this way are the SPARQL and RDFS standards.

For SPARQL, an algebra is verified by defining an operational model then using bisimulation

to prove that the algebra holds in the model. The approach to SPARQL is successful — the

operational model verifies the expected algebra. For RDFS, the entailment rules are derived

using a type system, where the rules of RDFS follow from type inference. The model for

RDFS questions the W3C standards — serious mismatches between RDFS types and types in

conventional type systems are exposed.

The operational semantics successfully model both SPARQL Query and SPARQL Update. The

model verifies that each of the core features of the query and update languages corresponds

to concepts found in related calculi and logics. For instance, the UNION keyword in SPARQL

Query corresponds to internal choice in process calculi and additive disjunction in Linear Logic.

Relevant examples in the SPARQL standard are correctly captured by the model. Also few

features of SPARQL Query are redundant — one exception being the outer join. Thus SPARQL

Query is sufficiently well designed to be specified using a clean deductive system. A single

axiom is sufficient to extend the operational semantics of SPARQL Query to model SPARQL

Update.

Further to specifying the operational behaviour of SPARQL Query and SPARQL Update an

algebra is derived. The features of this algebra corresponds to well known algebras, widely

applied in computer science. These include semirings, Kleene algebras, Boolean algebras and

quantifiers as limits and colimits. This is a powerful combination of features which would not

normally be considered outside a real demanding application.

The algebra is not complete, hence there remain algebraic features to be discovered. A question

exposed is how SPARQL is related to other models with similar algebraic properties such as

topological vector spaces. A suitable topological vector space could serve as a denotational

model of SPARQL which would add further justification to SPARQL.

The models for RDFS provide a much weaker validation of the standard. The standard provides

several features which mean that a clear model of the specification may be unattainable. Related

work attempts to build a Tarski-style model theory, but finds that modifications need to be made.

This work presents a type system, but still finds that similar modifications need to be made.

A type system for RDFS appears to be manageable only when top level classes are used as types.

However, when only top level classes are used the inference rules for RDF types are lost. This

cut down type system would merely distinguish between predicates, classes, datatype predicates

and everything else.

By permitting more classes as types, the inference rules of RDFS can be derived using type

inference in the type system. Type inference need only be applied once at compile time for

any process, and is syntax directed, so is very efficient. However, the question that remains is

whether significant applications would actually benefit from classes as static type information.

Chapter 6 Conclusions 187

The RDFS standard however has an important rôle in data integration, so should not be ignored.

If only the fundamental features of RDFS are used then a simple clear model is obtained. This

model has nothing to do with type systems, and works directly over URIs which appear in terms.

The minimal model of RDFS simply allows the subClassOf and subPropertyOf relations to be

used as preorders over URIs. This preorder embeds clearly in the operational semantics of

queries and updates. Thus a clear correspondence between these standards is specified by the

model. Such a clear correspondence between standards is entirely missing from the existing

W3C specifications. Furthermore, the preorder embeds cleanly in the algebra where it corre-

sponds to the refinement relation.

6.2 Useful Tools Enabled by the Model

Tools have not yet been produced, but tools can now be developed using this work. The main

results of this work provide a solid foundation for several important tools.

An operational semantics of SPARQL Update can be used as a point of reference for compiler

engineers who implement the language. However, an operational semantics is perhaps most

useful when used to produce tools which assist a compiler engineer. The tools suggested include

a model checker, an optimisation tool, a type checker and a type inference mechanism. Here the

suggested tools are described.

Ideally a compiler engineer should be able to prove that an implementation of a language is a

refinement of the operational semantics of the language. However, there are generally many

technical concerns in the development process of a language, which would be expensive to

formally verify. It is therefore more realistic to use the rules of the operational semantics as the

basis of a model checker.

A model checker would take an atomic commitment performed by an implementation and apply

the rules of the operational semantics to verify whether that atomic commitment was legal.

If an implementation performs an atomic action which cannot be verified by the operational

semantics, then a flaw in the implementation is discovered.

A model checker cannot prove that every possible update matches the operational semantics,

since the search space is infinite. However many cases can be systematically checked, increasing

confidence that an implementation satisfies the operational semantics.

A tool which assists the verification of an implementation with respect to the operational se-

mantics can be useful. Genuine implementation flaws can be discovered. Furthermore, different

implementations which satisfy the same operational semantics can be expected to have similar

behaviour. A consistent expected behaviour across implementations is important when multiple

implementations are used in a distributed environment, as expected on the Web. However, the

188 Chapter 6 Conclusions

behaviour of correct implementations will not be expected to have identical behaviour. This is

due to the existence of many different strategies for resolving non-determinism.

Significantly, if an implementation satisfies the operational semantics then other tools which rely

on a correct operational semantics can be used. For instance, the proof of correctness of the al-

gebra, in Chapter 4, uses an operational semantics. This means that the algebra can only be used

confidently in an implementation which satisfies the operational semantics. Similarly, the type

preservation proof, in Chapter 5, makes use of an operational semantics. Thus type preservation

can only be relied upon in an implementation which satisfies the operational semantics.

An optimisation tool is suggested by the algebra in Chapter 4. The algebra allows queries, up-

dates and processes to be rewritten without changing the observable operational behaviour. Two

queries which have the same observable operational behaviour differ in efficiency, for instance

one query may pose redundant demands.

An optimisation tool would allow queries and updates to be rewritten to a normal form. The

normal form would be chosen to be the most efficient form for a given implementation. An

optimisation tool can be used on the client side to directly optimise a high level language for

Linked Data. However, it is perhaps most useful on the server side for optimising queries and

updates received.

Two tools are suggested by the type system in Chapter 5. The first is a type checker. Given a

type environment and a process, a type checker can verify whether the process is well typed in

the environment. A type type checker can be developed according to the rules of the algorithmic

type system. Type checking is useful for picking up small obvious errors.

A type inference tool tends to be more useful than a type checker, since it requires little input

from a programmer. A type inference tool takes some program and perhaps some partial type

information and infers the remaining type information if possible. A type inference tool would

be developed based on the algorithmic type system. Types need only be checked once, due to

the type preservation property. Types are also preserved if a process is moved to a stronger type

environment or subtype system, by monotonicity of the type environment.

Thus three tools can be developed. A model checker assists the compiler engineer, an optimiser

improves implementations and a type inference mechanism assist the programmer. The type

tools are easy to develop, since algorithmic typing is syntax directed. The other two tools require

search strategies to implement. The complexity of the tools are at least PSPACE-hard, since the

equations of Kleene-algebras are PSPACE-hard and the algebra contains a Kleene-algebra [84].

An upper complexity bound is an open question.

A key question is whether the calculus can be efficiently implemented systematically using the

operational semantics. The calculus is an operational model so it is clear that it can be naı̈vely

implemented. Similar concurrent languages have been implemented using a virtual machine

which keeps track of the available actions and searches to find actions which successfully in-

teract, then triggering their continuations, as in the implementation of the Pict language [111].

Chapter 6 Conclusions 189

Other implementation of process calculi include the Jocaml language. Jocaml modifies the ex-

isting concurrency model of the general purpose high-level language Ocaml to fit the model of

the Join calculus [39]. Either approach, either defining a new virtual machine or modifying an

existing language, could be used to implement the calculus.

However the focus of this calculus is on reading and writing data. Thus an implementation is

more likely to take the form similar to a database. Indeed, asking whether models of concurrency

can form a principled basis to the design of servers for the Web of Data, may be a fundamentally

flawed question. Perhaps, instead the question could be whether databases can be used to imple-

ment concurrency models. Should a concurrent programming language be implemented using

a preprocessor which compiles the language to an existing database language? This work has

been conducted without familiarity with any database research, so only an opinion can be pre-

sented. The opinion is that databases and concurrency face the same fundamental issues when a

principled approach is embarked upon [64, 47]. What are the algebraic structures, what are the

representations of those algebraic structures and the how can those representations be deployed?

6.3 Evaluation of the Model as a Process Calculus

The calculus developed in this work is new. It borrows from established calculi, such as the

π-calculus, but includes features which cannot be expressed primitively in existing calculi. The

calculus is more expressive than many existing calculi, due to its primitives for synchronous

atomic actions. Typically process calculi have only one or two possible atomic actions; whereas

this calculus has an many possible atomic actions. The spectrum of atomic actions correspond

to the full range of possible queries and updates. Thus the calculus is an interesting contribution

as a process calculus in its own right.

A key difference between the syndication calculus and the π-calculus is that atoms are triples

instead of channel value pairs. It is proven in Chapter 4, that the channel based π-calculus can be

embedded in the syndication calculus extended with pairs of names. In doing so, the interaction

rule of the π-calculus is broken down into more primitive operations. Thus the syndication

calculus is strictly more expressive than the π-calculus.

A key feature introduced in the calculus is the tensor product. This construct is missing in

most existing process calculi, with exceptions including SCCS [97]. The tensor product allows

queries and updates which deal with more than one triple. It therefore plays the rôle of the join

of queries as used in relational algebra for databases. It provides more control than a traditional

join operation, since the resources used for each branch are accounted for. By accounting for

resources each branch of the tensor can be evaluated separately, thus in parallel.

The tensor product behaves well with other constructs of the calculus. Along with choice, true

and false it forms a semiring. Semirings are natural structures which arise in abstract algebra.

190 Chapter 6 Conclusions

Semirings are generalisations of rings which arise by taking the ideals of rings. Thus the ex-

plicit use of tensor takes steps towards relating process algebra to more conventional algebra.

An idempotent semiring defines a monoid in a suplattice. Other features including inputs and

iteration, are formulated naturally with respect this monoid in a suplattice.

The calculus can be divided into two perspectives, a spatial perspective and a temporal perspec-

tive. The tensor construct is spatial as it uses processes in different locations but in the same

atomic temporal step. In contrast the ‘then’ construct for continuations is temporal. The con-

tinuation can only proceed once the guard has been triggered. The par construct is both spatial

and temporal. Parallel processes may be either used spatially separately in the same temporal

step, or temporly separately. Some related models have investigated combinations of spatial and

temporal operators [61, 71].

Space is commutative, since at this level of abstraction it only matters that resources are separate

not where they are located. However, time is non-commutative. Reordering actions in time can

change the meaning of a process. These themes are central to the current hot topic of modern

quantum logic, which features commutative operators for space and non-commutative operators

for time [40, 91, 134]. Physicists have been studying processes with respect to space and time

for hundreds of years, so their models are beyond the syntactic approach of process calculi used

in this work. For instance, a model with a metric would provide further principled optimisation

opportunities, by measuring the distance between two processes. The main challenging question

exposed by this work — to establish a complete algebra for equivalence and refinement in the

calculus — may by tackled using models adapted from physics [4].

6.4 Final Remarks

The thesis has a strong conclusion and a subjective conclusion. The strong conclusion is that

the query and update languages for the Web of Data socialise well with process calculi. The

resulting model provides a foundation for concurrent high-level languages for the Web of Data.

The foundation gives rise to a rich and useful algebra. The subjective conclusion is that types for

URIs, as introduced by Web standards, have several legitimate interpretations using conventional

type systems. Programming languages for the Web of Data can rely on typing conventional

literals; but the specific application must be carefully considered if URIs are to be typed.

Bibliography

[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communication.

In Proceedings of the 28th ACM SIGPLAN-SIGACT, volume 36, pages 104–115, London,

January 17–19 2001. ACM, NY.

[2] Serge Abiteboul. Querying semi-structured data. In Foto Afrati and Phokion Kolaitis,

editors, Database Theory – International Conference on Database Theory, pages 1–18,

Delphi, Greece, January 8-10 1997. Springer, Berlin/Heidelberg.

[3] Samson Abramsky. Computational interpretations of Linear Logic. Theoretical Computer

Science, 111:3–57, 1993.

[4] Samson Abramsky. What are the fundamental structures of concurrency?: We still don’t

know! In Proceedings of the Workshop Essays on Algebraic Process Calculi, volume

162, pages 37–41. Elsevier, September 29 2006.

[5] Samson Abramsky, Simon Gay, and Rajagopal Nagarajan. Interaction categories and the

foundations of typed concurrent programming. In Manfred Broy, editor, Proceedings

of the NATO Advanced Study Institute on Deductive Program Design, Marktoberdorf,

Germany, pages 35–114. Springer, 1995.

[6] Samson Abramsky and Steven Vickers. Quantales, observational logic and process se-

mantics. Mathematical Structures in Computer Science, 3(02):161–227, 1993.

[7] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning SOS rules into equations. Infor-

mation and Computation, 111(1):1 – 52, 1994.

[8] Peter Aczel. Non-well-founded sets, volume 14. Center for the Study of Language and

Information, Stanford, CA, 1988.

[9] Harith Alani et al. Managing reference: Ensuring referential integrity of ontologies for

the Semantic Web. In Asunción Gómez-Pérez and V. Benjamins, editors, Knowledge

Engineering and Knowledge Management: Ontologies and the Semantic Web, volume

2473, pages 235–246. Springer, Berlin/Heidelberg, 2002.

191

192 BIBLIOGRAPHY

[10] John Warner Backus. The syntax and semantics of the proposed international algebraic

language of the zurich acm-gamm conference. In Proceedings of the International Con-

ference on Information Processing, pages 125–132. Oldenbourg, Munich and Butter-

worth, London, 1959.

[11] David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum

Dershowitz and Andrei Voronkov, editors, Logic for Programming Artificial Intelligence

and Reasoning 2007. Yerevan, Armenia. 15–19 October, pages 92–106. Springer, 2007.

[12] John C. Baez and Mark Stay. Physics, topology, logic and computation: A rosetta stone.

In Bob Coecke, editor, New Structures for Physics, volume 813 of Lecture Notes in

Physics, pages 95–172. Springer Berlin / Heidelberg, 2011. 10.1007/978-3-642-12821-

9 2.

[13] Jean-Franois Baget. RDF entailment as a graph homomorphism. In Yolanda Gil, Enrico

Motta, V. Benjamins, and Mark Musen, editors, The Semantic Web – ISWC 2005, volume

3729, pages 82–96, Galway, Ireland, November 2005. Springer Berlin/Heidelberg.

[14] Alexandru Baltag, Bob Coecke, and Mehrnoosh Sadrzadeh. Epistemic Actions as Re-

sources. Journal of Logic and Computation, 17(3):555–585, 2007.

[15] Michael Barr. *-autonomous categories and linear logic. Mathematical Structures in

Computer Science, 1(02):159–178, 1991.

[16] David Beckett and Tim Berners-Lee. Turtle – Terse RDF Triple Language. Team sub-

mission, W3C, 2008.

[17] Emmanuel Beffara. A concurrent model for linear logic. Electronic Notes in Theoretical

Computer Science, 155:147–168, May 2006.

[18] Gianluigi Bellin and Philip J. Scott. On the π-calculus and Linear Logic. Theoretical

Computer Science, 135:11–65, 1994.

[19] David Benson. The shuffle bialgebra. In M. Main, A. Melton, M. Mislove, and

D. Schmidt, editors, Mathematical Foundations of Programming Language Semantics,

volume 298 of Lecture Notes in Computer Science, pages 616–637. Springer Berlin /

Heidelberg, 1988.

[20] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.

Information and Control, 60(1-3):109–137, 1984.

[21] Tim Berners-Lee. Linked Data. International Journal on Semantic Web and Information

Systems, 4(2):1, 2006.

[22] Tim Berners-Lee. Read-Write Linked Data. Personal view only. http://www.w3.org/

DesignIssues/ReadWriteLinkedData.html, December 2010.

http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html

BIBLIOGRAPHY 193

[23] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim Hendler. N3logic: A

logical framework for the World Wide Web. Theory and Practice of Logic Programming,

8(3):249–269, 2008.

[24] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific Ameri-

can, 284(5):34–43, 2001.

[25] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes second edition.

Recommendation REC-xmlschema-2-20041028, W3C, MIT, Cambridge, MA, 2004.

[26] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint sat-

isfaction and optimization. Journal of the ACM, 44(2):201–236, 1997.

[27] Christian Bizer. The emerging Web of Linked Data. IEEE Intelligent Systems, 24:87–92,

2009.

[28] Christian Bizer et al. DBpedia: A crystallization point for the Web of Data. Web Seman-

tics: Science, Services and Agents on the World Wide Web, 7(3):154–165, 2009.

[29] Richard F. Blute. Hopf algebras and ”linear logic”. Mathematical Structures in Computer

Science, 6(02):189–212, 1996.

[30] Richard F. Blute and Philip J. Scott. The shuffle Hopf algebra and noncommutative full

completeness. The Journal of Symbolic Logic, 63(4):1413–1436, 1998.

[31] Laura Bocchi and Roberto Lucchi. Atomic commit and negotiation in service oriented

computing. In Paolo Ciancarini and Herbert Wiklicky, editors, Coordination Models and

Languages. Springer, Berlin/Heidelberg, 2006.

[32] David Booth and Canyang Kevin. Web services description language (WSDL) version

2.0 part 0: Primer. Recommendation REC-wsdl20-primer-20070626, W3C, MIT, Cam-

bridge, MA, 2007.

[33] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language 1.0: RDF

Schema. Recommendation REC-rdf-schema-20040210, W3C, MIT, Cambridge, MA,

2004.

[34] Luitzen E.J. Brouwer. De onbetrouwbaarheid der logische principes (the untrustworthi-

ness of the principles of logic). Tijdschrif voor wijsbegeerte, 2:152–158, 1908.

[35] Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. MSL: A model for

W3C XML Schema. Computer Networks, 39(5):507–521, 2002.

[36] Maria Buscemi and Ugo Montanari. CC-π: A constraint-based language for specifying

service level agreements. In Rocco De Nicola, editor, Programming Languages and

Systems, volume 4421 of Lecture Notes in Computer Science, pages 18–32. Springer,

Berlin/Heidelberg, 2007.

194 BIBLIOGRAPHY

[37] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred

programming for Web Services. In Rocco De Nicola, editor, Programming Languages

and Systems, volume 4421 of Lecture Notes in Computer Science, pages 2–17. Springer,

Berlin/Heidelberg, 2007.

[38] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs. Web

Semantics: Science, Services and Agents on the World Wide Web, 3(4):247–267, 2005.

[39] Silvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for objective-caml. In

Proceedings of the First International Symposium on Agent Systems and Applications

Third International Symposium on Mobile Agents, ASAMA ’99, pages 22–29, Washing-

ton, DC, 1999. IEEE Computer Society.

[40] Alain Connes. Non-commutative differential geometry. Publications Mathmatiques de

L’IHS, 62:41–144, 1985.

[41] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,

1971.

[42] Thierry Coquand and Gerard Huet. The calculus of constructions. Information and Com-

pututation, 76:95–120, February 1988.

[43] Richard Cyganiak. A relational algebra for SPARQL. External HPL-2005-170, Hewlett–

Packard Laboritories, Bristol, 2005.

[44] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-

ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 207–212, Albuquerque, New Mexico, January 1982. ACM, New York,

NY.

[45] Li Ding, Joshua Shinavier, Tim Finin, and Deborah L. McGuinness. owl:sameAs and

Linked Data: An empirical study. In Proceedings of the WebSci10: Extending the Fron-

tiers of Society On-Line, April 26-27th, 2010, Raleigh, NC., 2010.

[46] Ronald Fagin, Phokion Kolaitis, Rene Miller, and Lucian Popa. Data exchange: Seman-

tics and query answering. In Diego Calvanese, Maurizio Lenzerini, and Rajeev Motwani,

editors, Database Theory – International Conference on Database Theory, January 8-10,

Siena, Italy, volume 2572, pages 207–224, Berlin/Heidelberg, 2003. Springer.

[47] Lisbeth Fajstrup, Martin Rauen, and Eric Goubault. Algebraic topology and concurrency.

Theoretical Computer Science, 357(1-3):241 – 278, 2006.

[48] Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web architecture.

ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[49] Doug Foxvog. Instances of instances modeled via higher-order classes. In Foundational

Aspects of Ontologies, 28th German Conference on Artificial Intelligence, Koblenz, Ger-

many, September, volume 1860-4471, pages 46–54, 2005.

BIBLIOGRAPHY 195

[50] Jean Gallier. Constructive logics. Part II: Linear Logic and Proof Nets. Research Report

PR2-RR-9, Digital Equipment Corporation, Paris, 1991.

[51] Jean H. Gallier. Constructive logics part I: A tutorial on proof systems and typed λ-calculi.

Theoretical Computer Science, 110(2):249–339, 1993.

[52] Jesse James Garrett. Ajax: A new approach to Web applications. Published on the Web,

February 2005.

[53] Paul Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1 Update. Working draft

WD-sparql11-update-20110512, W3C, May 2011.

[54] Jean-Yves Girard. Une extension de l’interprétation de gödel à l’analyse, et son applica-

tion à l’élimination des coupures dans l’analyse et la théorie des types. In In Proceedings

of the 2nd Scandinavian Logic Symposium. North-Holland, 1970.

[55] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–112, 1987.

[56] Jean-Yves Girard. Truth, modality and intersubjectivity. Mathematical Structures in

Computer Science, 17:1153–1167, December 2007.

[57] Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing co-reference on the Semantic Web.

In Linked Data on the Web workshop, Madrid, Spain, April 20 2009.

[58] R. Goré, C. Kupke, and D. Pattinson. Optimal tableau algorithms for coalgebraic logics.

In R. Majumdar and J. Esparza, editors, Proc. TACAS 2010, Lecture Notes in Computer

Science, 2010.

[59] J. Gregorio and B. de hOra. The Atom Publishing Protocol. Proposed Standard rfc5023,

Internet Engineering Task Force, Fremont, CA, October 2007.

[60] Daniel Gruhl, Ramanathan V. Guha, David Liben-Nowell, and Andrew Tomkins. Infor-

mation diffusion through blogspace. In Proceedings of the 13th international conference

on World Wide Web, WWW ’04, pages 491–501, NY, 2004. ACM.

[61] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Com-

pututational Logic, 8, January 2007.

[62] Ramanathan V. Guha. Contexts: a formalization and some applications. PhD thesis,

Stanford Computer Science Department, Stanford, CA, 1992. STAN-CS-91-1399.

[63] Ramanathan V. Guha, Rob McCool, and Richard Fikes. Contexts for the Semantic Web.

In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, The Se-

mantic Web ISWC 2004, volume 3298 of Lecture Notes in Computer Science, pages

32–46. Springer Berlin / Heidelberg, 2004.

[64] Jeremy Gunawardena. Homotopy and concurrency. In B. Păun, editor, Current trends

in theoretical computer science, pages 447–459. World Scientific Publishing Co., Inc.,

River Edge, NJ, 2001.

196 BIBLIOGRAPHY

[65] Harry Halpin and Pat Hayes. When owl:sameAs isn’t the same: An analysis of identity

links on the Semantic Web. In Christian Bizer, Tom Heath, Tim Berners-Lee, and Michael

Hausenblas, editors, Proceedings of the WWW2010 Workshop on Linked Data on the Web

Raleigh, USA, April 27, 2010., 2010.

[66] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query language.

Working Draft WD-sparql11-query-20101014, W3C, MIT, Cambridge, MA, October

2010.

[67] Olaf Hartig et al. Executing SPARQL Queries over the Web of Linked Data. In A. Bern-

stain et al., editors, The Semantic Web – ISWC 2009, Chantilly, VA, volume 5823, pages

293–309. Springer, 2009.

[68] J. Rodger Hindley. The principle type-scheme of an object in combinatory logic. Trans-

actions of the American Mathematical Society, 146:29–60, 1969.

[69] Jaakko Hintikka. Language-games. In Esa Saarinen, editor, Game-Theoretical Semantics,

volume 5 of Studies in Linguistics and Philosophy, pages 1–26. Springer, 1979.

[70] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

21:666–677, 1978.

[71] C. A. R. Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene

algebra. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR 2009, Bologna,

Italy, volume 5710, pages 399–414. Springer, 2009.

[72] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of Intuitionistic

Linear Logic. Information and Computation, 110(2):327–365, 1994.

[73] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. Theoretical

Computer Science, 151(2):437 – 486, 1995.

[74] Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to description logic

satisfiability. Web Semantics: Science, Services and Agents on the World Wide Web,

1(4):345–357, 2004.

[75] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal

core calculus for Java and GJ. ACM Transations on Programming Language Systems,

23:396–450, May 2001.

[76] Alan Jeffrey and Julian Rathke. Contextual equivalence for higher-order π-calculus re-

visited. Logical Methods in Computer Science, 1(4):1–22, 2005.

[77] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the

ACM, 46(5):604–632, 1999.

BIBLIOGRAPHY 197

[78] Graham Klyne and Jeremy Carroll. Resource Description Framework: Concepts and

abstract syntax. Recommendation REC-rdf-concepts-20040210, W3C, MIT, Cambridge,

MA, 2004.

[79] Naoki Kobayashi and Akinori Yonezawa. ACL – a concurrent Linear Logic programming

paradigm. In Proceedings of the 1993 International Logic Programming Symposium,

pages 279–294. MIT Press, 1993.

[80] Georgi Kobilarov et al. Media meets Semantic Web: How the BBC uses DBpedia and

Linked Data to make connections. In Lora Aroyo, editor, The Semantic Web: Research

and Applications. 6th European Semantic Web Conference, pages 723–737, Heraklion,

Greece, May 31 – June 4 2009. Springer, Berlin/Heidelberg.

[81] Jacek Kopecký. WSDL RDF mapping: Developing ontologies from standardized XML

languages. In John Roddick et al., editors, Advances in Conceptual Modeling – The-

ory and Practice, volume 4231 of Lecture Notes in Computer Science, pages 312–322.

Springer Berlin / Heidelberg, 2006.

[82] Dexter Kozen. On Kleene algebras and closed semirings. In Rovan, editor, Proceedings

on Mathematical Foundations of Computer Science, volume 452, pages 26–47. Springer-

Verlag, 1990.

[83] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular

events. Information and Computation, 110:366–390, 1994.

[84] Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programing Languages

and Systems, 19:427–443, May 1997.

[85] Joachim Lambek. On the calculus of syntactic types. In R. Jacobson, editor, Structure

of Language and its Mathematical Aspects, Providence, 1961. American Mathematical

Society.

[86] Peter John Landin. The mechanical evaluation of expressions. The Computer Journal,

6(4):308–320, 1964.

[87] Ora Lassila and Ralph R. Swick. The Resource Description Framework (RDF) model

and syntax specification. Recommendation REC-rdf-syntax-19990222, W3C, MIT, Cam-

bridge, MA, 1999.

[88] F. William Lawvere. Adjointness in foundations. Dialectica, 23(3-4):281–296, 1969.

[89] Holbrook Mann MacNeille. Extensions of partially ordered sets. Proceedings of the

National Academy of Sciences of the United States of America, 22(1):45–50, 1936.

[90] Sergio Maffeis and Philippa Gardner. Behavioural equivalences for dynamic Web data.

Journal of Logic and Algebraic Programming: Algebraic Process Calculi. The First

Twenty Five Years and Beyond. III, 75(1):86–138, 2008.

198 BIBLIOGRAPHY

[91] Shahn Majid. Physics for algebraists: Non-commutative and non-cocommutative Hopf

algebras by a bicrossproduct construction. Journal of Algebra, 130(1):17–64, 1990.

[92] Ashok Malhotra, David Peterson, Shudi Gao, C. M. Sperberg-McQueen, and Henry S.

Thompson. XML Schema Definition Language 1.1 part 2: Datatypes. Working Draft

WD-xmlschema11-2-20091203, W3C, MIT, Cambridge, MA, 2009.

[93] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transac-

tions on Programming Languages and Systems, 4(2):258–282, 1982.

[94] Per Martin-Löf. An intuitionistic theory of types. In Notes of Giovanni Sambin on a

series of lectures given in Padova, Univ. of Padova, Italy. Bibliopolis, Napoli, June 1984.

[95] Massimo Merro and Matthew Hennessy. Bisimulation congruences in safe ambients. In

Principles of programming languages, pages 71–80. ACM, 2002.

[96] Robin Milner. A calculus of communicating systems, volume 92. Springer, NJ, 1980.

[97] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,

25(3):267 – 310, 1983.

[98] Robin Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer, and

H. Schwichttenburg, editors, Logic and Algebra in Specification. Springer, New York,

1993.

[99] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part I

and II. Information and Computation, 100(1):1–40, 1992.

[100] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Automata,

Languages and Programming, volume 623 of Lecture Notes in Computer Science, pages

685–695. Springer Berlin / Heidelberg, 1992.

[101] John C. Mitchell. Type inference with simple subtypes. Journal of Functional Program-

ming, 1(03):245–285, 1991.

[102] Ugo Montanari and Marco Pistore. Structured coalgebras and minimal HD-automata

for the π-calculus. Theoretical Computer Science, 340(3):539–576, 2005. Mathematical

Foundations of Computer Science 2000.

[103] Christopher J. Mulvey. &. Rendiconti del Circolo Matematico di Palermo, 12:99–104,

1986.

[104] Mark Nottingham and Robert Sayre. The Atom Syndication Format. Proposed Standard

rfc4287, Internet Engineering Task Force, Fremont, CA, December 2005.

[105] Chimezie Ogbuji. SPARQL 1.1 uniform HTTP protocol for managing RDF graphs.

Working draft WD-sparql11-http-rdf-update-20101014, W3C, MIT, Cambridge, MA,

October 2010.

BIBLIOGRAPHY 199

[106] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of

Symbolic Logic, 5(2):215–244, 1999.

[107] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teije, and

Frank van Harmelen. Marvin: Distributed reasoning over large-scale semantic web data.

Web Semantics: Science, Services and Agents on the World Wide Web, 7(4):305 – 316,

2009. Semantic Web challenge 2008.

[108] Jeff Z. Pan and Ian Horrocks. Metamodeling architecture of Web Ontology Languages.

In In Proceedings of the Semantic Web Working Symposium, pages 131–149, 2001.

[109] Dirk Pattinson. Coalgebraic modal logic: soundness, completeness and decidability of

local consequence. Theoretical Computer Science, 309(1-3):177–193, 2003.

[110] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of

SPARQL. ACM Transactions on Database Systems, 34(3):1–45, 2009.

[111] Benjamin C. Pierce and David N. Turner. Pict: a programming language based on the

π-Calculus, pages 455–494. MIT Press, Cambridge, MA, 2000.

[112] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN19, Computer Science Department, Aarhus University, 1981.

[113] Henri Poincaré. The future of mathematics. Revue generale des Sciences pures et ap-

pliquees, 19(23), 1908.

[114] Henri Poincaré. Science et Méthode. T. Nelson and Sons, London and New York, 1914.

[115] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. Recom-

mendation REC-rdf-sparql-query-20080115, W3C, MIT, Cambridge, MA, 2008.

[116] Alan L. Rector and Ian R. Horrocks. Experience building a large, re-usable medical

ontology using a description logic with transitivity and concept inclusions. In In Pro-

ceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium. AAAI

Press, 1997.

[117] V. N. Redko. On defining relations for the algebra of regular events. Ukrainskii Matem-

aticheskii Zhurnal, pages 120–126, 1964.

[118] John Reynolds. Toward a grainless semantics for shared-variable concurrency. In Kamal

Lodaya and Meena Mahajan, editors, Foundations of Software Technology and Theoreti-

cal Computer Science, volume 3328, pages 11–38. Springer, Berlin/Heidelberg, 2005.

[119] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages

55–74, 2002.

[120] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer

Science, 249(1):3 – 80, 2000.

200 BIBLIOGRAPHY

[121] Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of streams,

automata, and power series. Theoretical Computer Science, 308:1 53, 2003.

[122] Davide Sangiorgi and Robin Milner. The problem of ‘weak bisimulation up to’. In W.R.

Cleaveland, editor, CONCUR ’92, volume 630 of Lecture Notes in Computer Science,

pages 32–46. Springer Berlin / Heidelberg, 1992. 10.1007/BFb0084781.

[123] Davide Sangiorgi and David Walker. π-calculus: A Theory of Mobile Processes. Cam-

bridge University Press, New York, 2001.

[124] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The semantic foundations of

concurrent constraint programming. In Proceedings of the 18th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 333–352, Orlando, Florida,

January 21-23 1991. ACM, NY.

[125] Robert Sayre. Atom: the standard in syndication. IEEE Internet computing, 9(4):71–78,

2005.

[126] Andy Seaborne and Geetha Manjunath. SPARQL/Update: A language for updating RDF

graphs. External HPL-2007-102, Hewlett–Packard Laboritories, Bristol, 2007.

[127] Claudio Gutierrez Sergio Muñoz, Jorge Pérez. Simple and efficient minimal RDFS. Jour-

nal of Web Semantics, 7(3):220–234, 2009.

[128] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The Semantic Web revisited. IEEE

intelligent systems, 21(3):96–101, 2006.

[129] Pawel Sobocinski. A non-interleaving process calculus for multi-party synchronisation.

In Filippo Bonchi, Davide Grohmann, Paola Spoletini, and Emilio Tuosto, editors, Pro-

ceedings 2nd Interaction and Concurrency Experience: Structured Interactions, pages

87–98, Bologna, Italy, August 31 2009. EPTCS.

[130] Marshal Stone. The theory of representations of Boolean algebras. Transactions of the

American Mathematical Society, 40(1), 1936.

[131] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Structures. PhD

thesis, Faculty of Informatics, Technical University of Dresden, 2003.

[132] Dan Suciu. Distributed query evaluation on semistructured data. ACM Transactions on

Database Systems, 27(1):1–62, 2002.

[133] Ludwig Wittgenstein. Philosophical Investigations. Wiley-Blackwell, Oxford, 1973.

First edition 1953.

[134] David N. Yetter. Quantales and noncommutative Linear Logic. Journal of Symbolic

Logic, 55(1):41–64, 1990.

