SAINT-VENANT'S PRINCIPLE AND
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The stress field due to self-equilibrating loading on the inner or outer radius of a wedge sector, consistent with
anti-plane deformation, will be affected by two agencies: a geometric effect of increasing or decreasing area and decay
as anticipated by Saint-Venant's principle. When the load is applied to the inner radius the two effects are acting in
concert; however, when the load is applied to the outer radius the two effects act in opposition. For a wedge angle in
excess of the half-space the geometric effect is dominant over Saint-Venant decay and the stress increases the greater
the distance from the loaded outer radius, indicating a breakdown in Saint-Venant’s principle. For the wedge angle
20 = 360°, the unique inverse square root stress singularity at the crack tip, which is at the heart of linear elastic
fracture mechanics, can be attributed to this breakdown of Saint-Venant’s principle for just one eigenmode.
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1 INTRODUCTION

Saint-Venant’s principle (SVP) underpins much of solid
mechanics by allowing the replacement of an actual load
system on a structural member by a statically equivalent
load distributed in a particular way demanded by the
elastostatic solution. The difference between the two load
distributions is termed ‘self-equilibrating’, and since it
has no stress resultant or couple which requires reaction
at some other location on the structure, there seems no
reason why the associated stress field should penetrate
any great distance into the structure; according to SVP
this depth of penetration should be small.

SVP has been expressed and applied in a variety of
ways by many authors; for example, in beam problems,
according to Sokolnikoff (1),} ‘it is commonly assumed
that the local eccentricities are not felt at distances that
are about five times the greatest linear dimension of the
area over which the forces are distributed’. The first
mathematical proof of SVP was provided by Toupin (2)
who considered a prismatic elastic cylinder of arbitrary
length and cross-section subjected to a self-equilibrated
load system on one end only. Toupin demonstrated the
exponential decay of elastic strain energy, and hence
stress, but SVP requires also that the rate of decay
should be spatially ‘rapid’; examples where decay is not
rapid include thin-walled structures, and beams and
plates of composite and anisotropic construction.

Non-prismatic structural members have received com-
paratively little attention in the literature: thus, despite
being amenable to exact analysis within the spirit of the
mathematical theory of elasticity, there has not been a
systematic study of the applicability of SVP to the wedge
geometry, although Horvay (3) employed an approx-
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imate variational approach for the plane strain problem
and came to the surprising conclusion that stress diffu-
sion into a divergent area did not enhance the rate of
decay when compared with the plate of constant thick-
ness.

In contrast, the plane strain elastic wedge subjected to
a bending moment at its apex has attracted considerable
research attention due to the pathological behaviour of
the well-known Carothers’ solution (4) at the wedge
angle 20 = 257°. Only recently (5) has this ‘wedge
paradox’ been attributed to a breakdown of SVP, in the
sense that an asymmetric self-equilibrating load decays
at the same rate as the distance from the loaded apex
increases, as does the bending moment, the latter due to
stress diffusion into an increasing cross-sectional area. In
fact, the breakdown of SVP occurs for the half-space,
20 = 180°, when a symmetric self-equilibrating load
decays at the same rate as the (asymmetric) bending
moment.

A systematic study of the plane strain case is under-
taken by the present authors in a separate communica-
tion (6), where it is shown that the breakdown of SVP
also manifests itself in the sense that a self-equilibrating.
load on the outer arc r = b does not decay at all, the
increase in stress due to the convergent geometry exactly
matching the decrease in stress as anticipated by SVP. In
the present note the authors treat the simpler problem of
anti-plane deformation, which again appears not to have
been considered previously within the context of SVP,
although Ting (7) has considered the case of anti-plane
shearing by loading on the flanks of the wedge. Compari-
son is made with the exponential decay characteristic of
anti-plane shear for the plate of constant thickness (8)
and also the effect of divergent/convergent geometry on
the decay characteristic is investigated; as with the plane
strain problem, there is a breakdown of SVP for wedge
angles in excess of the half-space. It is also shown that the
stress singularity which occurs at a crack tip (mode III)
and the unique distribution which is at the heart of linear
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elastic fracture mechanics (LEFM) are attributable to a
breakdown of SVP for just one eigenmode.

2 THEORY
The uniform isotropic elastic wedge (Fig. 1) is defined by

~L<z<L (1)

where r, 8 and z are cylindrical coordinates. Body forces
are assumed absent and the flanks of the wedge, 0 = +a,
are traction free, the loads being applied on the inner and
outer arcs, r = a and r = b respectively, with possible
complementary shear stresses on the ends z = + L. The
inner radius may tend to zero, as appropriate for a re-
entrant corner and a crack tip when « = 7. The wedge
length 2L is assumed to be large compared with the other
dimensions, so the concern here is stress decay from the
loaded arcs.

For anti-plane deformation the displacement com-
ponents are

a<r<b, —a <0< +a,

u, = ur, 0) @)

and the Navier (displacement) equilibrium equations
reduce to the requirement that u, satisfies Laplace’s
equation, that is VZu, = 0, or

% 138 0?
(5;3+:5:+W>“z=° ®

Taking u, oc (r/ry) % exp(ikf), where i = (—1)'/* and r, is
an arbitrary constant having dimension length, leads to
the characteristic equation

k=+4 @

and hence the general solution

u, = uy =0,

—A
u, = (}) (C, cos A0 + C, sin 16) ()

0

where C, , are constants having the dimension length.

Fig. 1. Wedge sector with self-equilibrated load on innerarcr = a
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The stress components are

ou, pd [(r\ A1 .
Ta=H = - e (To) (Cy cos A8 + C, sin A0)

ou, wpi[r\"*?! ,
Tor =1 g = ” (r()) (—C, sin 18 + C, cos A6)
(6)

where p is the shear modulus. Applying the traction-free
boundary condition 15, =0 on 8 = +a leads to the
eigenequation

sin 240 =0 @)
Hence
nn
= = + )
A T n=0, +1, +2, +3, etc 8)

For even n, the constant C, is zero, and for odd n, con-
stant C, is zero. It is straightforward to show that the
stress resultant [*, 7,.r df is zero. Assuming complete-
ness of the solution, an arbitrary self-equilibrating shear
on the arcs r = a and r = b, consistent with anti-plane
deformation, can be expanded as a summation of terms
asin the first of equations (6).

The root A =0 for n =0 requires special consider-
ation, as it leads to the double root k = 0, and hence the
displacement u, = C; + C,0. This leads to the stress
field 7,, = 0, 75, = uC,/r. However, this field violates the
boundary condition t,, =0 on 6 = +a unless C, =0,
when this case may be discounted, leading as it does to
just the rigid body displacement C, in the z direction. An
alternative displacement field that also satisfies the
Navier equation and leads to a stress variation equiva-
lenttod=n=0is .

A

u, = (Cy + C,0) 1n<i> ©)
o
This leads to the stress components
C,+C,0
T,=p
,
7 r

=C,=In{ — 10
Toz CZ r n(r0> ( )

The traction-free boundary condition 5, =0 on 0 = +a
requires that constant C, =0, and hence t,, = uC,/r,
14, = 0, which corresponds to an axial shear force result-
ant which is uniformly distributed over any arc
r = constant. The radial dependence is consistent with
the expectation that, since stress is force divided by area
and the area carrying the load increases linearly with
radius, so stress should vary inversely with the radius. It
is straightforward to show that the wedge is in force and
moment equilibrium under this surface loading, includ-
ing the required contribution on theendsz = + L.

3 DISCUSSION

The variation of 1 with wedge semi-angle o is shown in
Fig. 2 and is the initial focus for discussion. It is first
noted that the root loci are symmetric about A = 0; since
stress varies as (r/ro)~* "%, the stress field is independent
of radius for A = — 1, For A > —1, the stress decreases as
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Fig. 2. Variation of 1 with wedge semi-angle a

the radius increases, and this would correspond to a
decay of self-equilibrated loading on the arc r = a. On
the other hand, for A < —1, the stress decreases as the
radius decreases, which corresponds to decay of self-
equilibrated loading on the arc r = b; in general the two
cases correspond ton >0 (4> 0)and A < —1forn < 0.
However,. there is one exception, the case of A > —1 for
n= —1,a > n/2 (the locus AB on Fig. 2), and this will be
discussed in detail in terms of a breakdown of SVP.
Firstly, however, a comparison is made between the
decay characteristic of the wedge, loaded on the arc
r = a, and that of the anti-plane elastic strip (8), for which
the minimum rate of decay is exﬁ(\Tnz/t), where z is
coordinate (distance from the loaded edge) and ¢ is plate
thickness. For the wedge the radial variation (r/r)”* !

may be written in the form

distance from arc\] ~*7!
1+ 2a
arc length

such that comparison can be made according to the
spirit of SYP. The result is shown in Fig. 3 for various
wedge angles; for all wedge angles the rate of decay is
initially more rapid than for the plate—the larger the
angle the greater the decay rate. However, as the distance
from the loaded arc increases, the decay rate becomes
less than the exponential decay of the plate, again for all
wedge angles. Thus, if decay to 20 per cent is taken as a
criterion for rapidity of decay, then the wedge is quicker;
on the other hand, if the criterion is decay to 2 per cent

0.8

Exponential decay

o
)

Stress level ———e

0.4

0.2

0.02

Distance from loaded arc (r — a)/loaded arc length (5) ——e

Fig. 3. Decay of stress from loaded arcr = a
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then the plate is the quicker. (Of course, an attempt is
being made to compare the exponential decay of the
plate with the power law decay of the wedge. Therefore
such differences should not be surprising. What is more
surprising is that the decay characteristics should be so
similar when expressed in the above manner.) The largest
difference between the wedge and plate decay character-
istics occurs close to the loaded arc r = a, where the rate
of decay is very sensitive to the wedge angle. However,
after a distance one arc length (2ax) from the loaded arc,
the difference is small. In the plane strain case, Horvay
(3) was surprised that attenuation should be more rapid
in the case of the plate, expecting that diffusion into a
divergent area would enhance the rate of decay. This was
attributed to the greater interference between stresses
that occurs at the free edge, an effect that would be
reduced with the wedge geometry; indeed, the largest
wedge angle in Fig. 3, « = 120°, has the slowest decay in
the far field. The above observations suggest that the
geometric effect of divergent area is dominant close to
the loaded arc (a near-field effect) while free-edge inter-
ference is a far-field effect.

Returning to a comparison of the rates of decay of
self-equilibrated loading on the arcs r =a and r = b,
intuitively the decay is expected to be affected by two
agencies, the divergent or convergent area into which the
stress field diffuses and SVP. For loading on the inner
arc, r = a, both of these effects work in concert to give a

rate of decay greater than for loading on the outer arc, v

r = b, when the two effects work in opposition. Thus, for
a load on the outer arc, stress is expected to decay by
virtue of SVP but to increase by virtue of the convergent
geometry; moreover, as seen above, the geometric effect
is expected to be of greater importance close to the
loaded arc, and since it is possible to move only a
maximum radial distance (b — a) from the loaded arc,
there may not even be a far field, in which case the free-
edge interference effect will be absent. Referring to the
branch n = —1 in Fig. 2, it can be seen that the geomet-
ric effect becomes dominant over the Saint-Venant decay
for the semi-wedge angle a > n/2, when 1> —1 (the
locus AB); the self-equilibrating shear defined by this
eigenvalue on the arc r = b will then increase the greater
the distance from the loaded arc. :

For this same branch (n= —1), 1= —% for a ==
(point B), which is the familiar inverse square root stress
singularity for the tearing mode III of LEFM. It can also
be seen that the branch n = —2 for ¢ = 7 has A = —1,
which pertains to a stress field independent of radius and
will therefore also reach the crack tip. The crack tip
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stress field becomes

C, 1
a1 in -~ + — cos @

0 C
T = — 51z a3 £
2rd2 Y 2

o
C, 1 0 C an
UC, ey .
— -——27%/2 ~i73 ©08 3 —TO— sin 6
where the latter terms are ignored by most writers (see,
for example, reference (9)).

Tor =

4 CONCLUSIONS

‘The solution to the eigenvalue problem of an elastic
wedge undergoing anti-plane deformation and having
traction-free flanks has been presented. Self-equilibrated
loading on the inner arc will decay by virtue of the two
agencies of SVP and diffusion into a divergent area,
working in concert. For a self-equilibrated load on the
outer arc the stress will decay by virtue of SVP but
increase by virtue of the convergent geometry, and the
latter effect becomes dominant for wedge angles in excess
of the half-space. The unique crack tip stress singularity,
which is at the heart of LEFM, can thus be attributed to
the failure of SVP to provide a rate of decay that is
sufficient to overcome the stress increase caused by the
effect of convergent geometry for the single eigenmode
pertainington = —1.
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