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Abstract—A procedure previously developed for the determination of decay rates for self-equilibrated
loadings at one end of a pin-jointed framework consisting of repeated identical cells, wherein the decay
factors are the eigenvalues of the single cell transfer matrix, is here further developed and applied to a
prismatic continuum beam of general cross-section. A sectional length of beam is treated within ANSYS
finite element code as a super element; nodes at both ends of the section are treated as master nodes and
the stiffness matrix relating forces and displacements at these master nodes is constructed within ANSYS.
Manipulation of this stiffness matrix within MATLAB gives the transfer matrix from which the
eigenvalues and eigenvectors may be readily determined. Accuracy of the method is assessed by treating
the plane strain strip, the plane strain sandwich strip, and the rod of circular cross-section, representing
a selection of the examples for which exact analytical solutions are available, and is found to be very good

in all cases.

NOTATION

external radius of circular cross-section
semi-depth of plate, strip or layer

nodal displacement vector

base of Napierian logarithm

Young's modulus

volume fraction, characterizing sandwich
strip

nodal force vector (according to the conven-
tions of the finite element method)

transfer matrix

(... 1)]12

identity matrix

index of section or eigenvalue

decay rate

stiffness matrix

characteristic sectional length
circumferential harmonic index

nodal force vector (according to the conven-
tions of the theory of elasticity)

r, 8 and z cylindrical coordinates

s state vector

S.V.P. Saint-Venant's principle

T transpose of matrix or vector

u displacement component

nodal displacement vector

displacement functions in cylindrical coordi-
nates

Cartesian coordinates

decay factor, eigenvalue of transfer matrix
v Poisson’s ratio
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Note that the subscripts m and s denote master and slave
nodes. The symbol * pertains to the super element.
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INTRODUCTION

Saint-Venant’s principle (S.V.P.) underpins much of
solid mechanics by allowing the replacement of an
actual load system on a structural member by a
statically equivalent load distributed in a particular
way demanded by the elastostatic solution. The
difference between the two load distributions is
termed “‘self-equilibrating”, and since it has no stress
resultant or couple which requires reaction at some
other location on the structure, there seems no reason
why the associated stress field should penetrate any
great distance into the structure. According to S.V.P.
this depth of penetration should be small.

S.V.P. has been expressed and applied in a variety
of ways by many authors; for example in beam
problems, according to Sokolnikoff[1], “it is com-
monly assumed that the local eccentricities are not
felt at distances that are about five times the greatest
linear dimension of the area over which the forces are
distributed”.

The first mathematical proof of S.V.P. was pro-
vided by Toupin [2] who considered an elastic cylin-
der of arbitrary length and cross-section subjected to
a self-equilibrated load system on one end only;
Toupin demonstrated the exponential decay of elastic
strain energy, and hence stress, but S.V.P. requires
also that the rate of decay should be “rapid”. In
practice there are many examples, particularly for
thin-walled structural members, where the rate of
exponential decay is so slow that S.V.P. cannot really
be said to apply. One example is the effect of (self-
equilibrated) longitudinal warping restraint during
torsion, when it is necessary to introduce the
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Fig. 1. Semi-infinite prismatic elastic cylinder of arbitrary cross-section subjected to self-equilibrated
loading on the end z = 0.

bimoment [3] in order to provide a plausible engin-
eering theory.

The vast majority of published results pertaining to
S.V.P. (see recent reviews by Horgan and Knowles [4]
and Horgan [5]) have concentrated on continuum
structural members, including isotropic, anisotropic
and composite structures, and the majority of the
results described in Refs [4] and [5] pertain to strain
energy inequalities related to stress decay.

However in a recent paper [6] the present authors
described a procedure for the calculation of the exact
rates of decay for pin-jointed frameworks consisting
of a series of identical repeated celis, and re-con-
sidered examples originally treated by Hoff [7]. Nodal
displacements and forces on either side of the generic
single cell are considered as state variables and are

T If a matrix has repeated cigenvalues, it is not diagonal-
izable unless it has a full set of independent eigenvectors. If
the eigenvectors are not independent then it can only be
reduced to a block form and the original matrix is said to
be defective. 1t is derogatory if the same eigenvalue appears
in more than one block.

related by a transfer matrix which may be readily
determined from a knowledge of the cell stiffness
matrix (which in turn may be found by a variety of
means). Assuming consecutive state vectors to be
related by a constant multiple A (which is the decay
factor) leads directly to an eigenvalue problem. For
decaying modes, associated with self-equilibrated
loads, the eigenvalues occurs as reciprocal pairs (that
is, if 2, is an cigenvalue then so is 1/4,) according to
whether decay is from lefi-to-right or vice-versa.
Rigid body displacements have 1 =1, as do the
transmitting eigenmodes pertaining to nodal load
distributions which do constitute a force or moment
resultant. However since the transfer matrix is both
defective and derogatoryt, it is necessary to use the
rigid body eigenvectors to generate the principal
vectors for the transmitting modes. The matrix of
eigen- and principal vectors then forms a similarity
matrix which transforms the original transfer matrix
into Jordan canonical form. Bi-orthogonality prop-
erties of the eigenvectors then allow modal

|

Fig. 2. Semi-infinite plane strain strip.
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94045i(s)

(a)

8.5360824 + 1.7755437i(s)
10.1192588 + 1.8583838:

(a)
(a)

+ 112536436 (s)
+ 1.3843391i
515744i(s)

Exact
6.9499798 + 1.6761049i
13.2772736 + 1.9915708i

11.6991776 + 1.92

[
1
53562687 + 1.5

2.106196
3.748838

Model 5
2.1062059 + 1.1253805:
3.7489152 + 1.3843019:
5.3568295 + 1.5573551i
6.9487169 + 1.6756548i
8.5370320 + 1.7737923i

10,1494624 + 1.8497912/
11.6823196 + 1.9578636i

.5485635i

Model 4
2.1063339 + 1.1254489;
3.7500251 + 1.3841426i
5.3587542 + 1
6.9378010 + 1.6658117i
8.4068293 + }.7727961i

12825641

Model 3
3.7564987 + 1.3976780i
5.3822262 + 1.5828351i
7.0182967 + 1.7365523i
8.7806005 + 1.9699534;

21063227 + 1

379524i

Model 2
3.7772316 + 14371533
5.4637258 + 1.6785047i
7.2180233 + 1.9184778;
9.0824633 + 21821724

Table 1. Decay rates, kc, for the plane strain strip; (s) and (a) denote symmetric and asymmetric loadings, respectively
2.1073316 + 1.1

Mode] 1
2.1095062 + 1.1760995;
3.8553844 + 1.6104521
5.7825589 + 2.1551664i
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decomposition of an arbitrary end load. As a by-
product of the work in Ref. [6] it was also possible to
determine exactly the ““‘continuum’ beam properties
of the framework, such as equivalent cross-sectional
area, Poisson’s ratio, second moment of area and
shear coefficient, which can be very useful in prelimi-
nary design work.

In the present paper this procedure for the pin-
jointed framework is developed for a continuum
prismatic beam or rod of arbitrary cross-section. The
beam is considered to consist of a series of identical
sections of appropriate length (related to a character-
istic cross-sectional dimension), and the stiffness
matrix is formulated within ANSYS finite element
code. Since nodal displacements and forces within the
beam section are not required for the eventual trans-
fer matrix, these nodes are treated as slave nodes,
whilst the nodes at the two section ends are treated

' as master nodes; this is readily accomplished within
ANSYS using the super elemenrt. Once the super
element stiffness matrix has been formulated, it is
imported into a MATLAB environment wherein the
manipulations to form the transfer matrix, and deter-
mination of the eigenvalues using a reliable QR
algorithm, is easily accomplished.

Accuracy of the method is assessed by treating the
plane strain strip (see Ref. [8], article 26), the plane
strain sandwich strip [9], and the beam of circular
cross-section [10], which are representative of the few
exact (within the spirit of the linear mathematical
theory of elasticity) analytical solutions available for
the so-called end problem.

THEORY

We consider a prismatic elastic cylinder of arbi-
trary cross-section and semi-infinite length subjected
to a self-equilibrated loading on the end z = 0, Fig. 1,
and suppose that it may be divided into a series of
consecutive identical sections of finite length /., which
is taken to be a characteristic dimension of the
cross-section, for example the radius 4 in the case of
a cylinder of circular cross-section. The cross-sections
to the left and right of the jth such section are
denoted as the jth and {j + I)th, respectively, and the
typical nodal force and displacement directions on
the jth section are shown. Some, but not necessarily
all, of these cross-sectional nodes may be master
nodes, which connect to the adjoining (f — 1)th and
(f ++ 1)th sectional lengths; such nodes bear the sub-
script m. Nodes within the jth sectional length, and
any nodes on the section ends which are not master
nodes, are termed slave nodes and bear the subscript
s. For the complete sectional length /. the nodal

T The condensation of a group of finite elements into just
one super elemenit, represented as a matrix known as a
sub-structure, is normally employed to reduce computer
time and also to allow solution of large problems with
limited computer memory resources,
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Fig. 3. Sectional length models for plane strain strip.

{master and slave) forces and displacements are re-
lated by means of the stiffness matrix [K] as

[KHu}={F}. 1)

This equation may be suitably partitioned as
[[Km.m] [Km]] {{um }} ) {{Fm}} o
(Ken]  IKI [} | LR i

Expanding and re-arranging, eqn (2) may be ex-
pressed as

Here [K] is the stiffness matrix of the sectional
length treated as a super element, {ii} is the column
vector of displacements of the master nodes, and {F}
1s the column vector of forces applied to the master
nodes on the end cross-sections. Such a super element
stiffness matrix can be readily formulated within
ANSYS.

The matrix eqn (3), together with the force and
displacement vectors pertaining to the super element
can now be partitioned according to whether the
forces and displacements components are left hand
Jjth or right hand (j + 1)th sides, as

KY{a) ={F}, Q3 .
[ { J { } ) {"Fj }_—_[ Ri‘, K!‘J*l ]{ “,' } (4)
where L Kj+1J lh(jH./H .,
[]%] = [Km‘m] - [KmAs][Ks.s]“[Ks.m] LaStly we Write F/ = —p,, Fj+] = p_,-+ I ﬁ,v = d,-,
) 8, =d;,,, where a minus sign has been introduced
{F} = {Fo} = K, JIK ) HF) to conform with the force conventions of the transfer
matrix methodt (rather than the finite element
{a}={u,}. method), and again expand and re-arrange to give
{dﬂ» l} - [ ‘R/;L IKJJ - j_JK+ 1 J{d/} (5)
B K,+1J_KJ+|./+1K/§]+JKN ‘K/‘#r{‘/-ﬁ—ik/}/#l P
or
T Positive forces are defined according to the conventions
of the theory of elasticity. 8.1 = Gs;, 6)
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Fig. 4. Sectional length models for plane strain sandwich strip.

where s, = {dp,|T and 5., ={d,, ,p,, )", T denotes
the transpose, and G is the transfer matrix.

Now the piecewise equivalent of exponential decay
is that nodal forces should be reduced by a constant
factor 4 as one moves from cell to cell; similarly
consideration of the Hooke’s laws would suggest that
the nodal displacements associated with the self-equi-
librated load should also decay from cell to cell in a

stmilar manner. We therefore set

S,y 1 = 48, (7N
Substituting the above into eqn (6) gives
is,=Gs;, or [G-— Alls; =0 8)

Thus the decay factors 4 are the eigenvalues of the
transfer matrix G; the associated eigenvectors give

the jth section nodal displacements and loads for the
particular decay mode.

Since the ratio of master nodal forces p on the
(7 + Dth and jth sections is 4, an equivalent exponen-
tial decay rate may be determined as

k(j+ 1)
. e .
a=Bi B g o k=ln(). ()
p; Bo€
EXAMPLES

Plane strain strip

The exact solution for the plane strain strip, due to
Papkovitch and Fadle (see Ref. [8}, article 26), has
stress decaying from the loaded edge as exp(—kz)

Table 2. Decay rates, k(2c, + c,), for the sandwich strip

Present method

Choi and Horgan (exact)

v =02,v,=04 =04,v,=02 v=02,v,=04 v =04,v,=0.2
(1) 2.0572647 + 1.2846068¢ @ 2. 1565728 £ 0.9562300 . .
(I1) 2.0572187 + 1.2845427;  (II) 2.1565401 + 0.9562355; 2057207 £ 1.284533;  2.156514 + 0.956221/

(1) denotes Model 1, (I1) denotes Model 2.

Table 3. Data for circular section rod models in Fig. 6

Model  Division of »  Division of /, Element type  No. of elements  No. of nodes  Transfer matrix
1 2 2 8 node brick 24 51 (102 x 102)
2 4 4 8 node brick 192 285 (342 x 342)
3 2 4 20 node brick 48 225 (270 % 270)
4 3 4 20 node brick 80 345 (414 x 414)




Fig. 5. Semi-infinite rod of solid circular cross-section.

where, for the strip of depth 2¢, Fig. 2, the eigenequa-
tion governing decay rate k is
sin 2ke + 2ke =0; (10)
the positive and negative signs correspond to loads
symmetric and asymmetric, respectively, about the
z-axis. The first eight roots are shown in Table 1.
For the numerical analysis, five models of length
unity and depth two were constructed on ANSYS as
shown in Fig. 3, employing four-node or eight-node
plane isoparametric elements, and the results are
shown in Table 1. Firstly we note that a blank entry
in the table does not indicate that an eigenvalue was
not found but rather that it was too inaccurate to be
obviously identified as close to an exact eigenvalue,
in which case consideration of the associated

MODEL 1

MODEL 3

N. G. Stephen and P. J. Wang

eigenvector, which would facilitate identification, was
not thought worthwhile.

The simplest Model 1 provides an excellent ap-
proximation to the slowest decay rate (first symmet-
ric) in which the real part, which governs the rate of
decay, is just 0.16% too large, while the second decay
rate (first asymmetric) is 2.84% too large. At the
other extreme the most complicated Model 5 is able
to predict the first seven decay rates (real part) to
within an accuracy of better than 0.3%: the smallest
eigenvalue, which provides the validification of S.V.P.
is almost exact. Comparing the predictions of Model
3 and Model 5, which both lead to a stiffness matrix
of equal magnitude, it is clear that the eight-node
element is superior. The same conclusion is reached
when comparing Models 2 and 4.

Plane strain sandwich strip

The extension of the Papkovitch—Fadle strain sol-
ution to the case of a symmetric sandwich consisting
of two isotropic materials was considered in Ref. [91
wherein the authors warned against the routine invo-
cation of S.V.P. in the case of sandwich, composite
and highly anisotropic materials. The solution was
constructed using an Airy stress function and the
eigenequation governing decay rates arose from the
boundary requirements that the face and core be
perfectly bonded at the interface, and that the upper
and lower surfaces be free of traction, Fig. 4.

w

MODEL 2

L

MODEL 4

Fig. 6. Sectional length models for solid circular cross-section rod: division of cross-section. Only one
quarter of cross-section is shown.



Table 4. Decay rates, kb, for the solid circular section rod: m is the circumferential harmonic index [sec eqn (11)]

Exact

2.1043544 4+ 0.95

Model 4
1048037 + 0.9621763i

Model 3
2.1048326 + 0.9

Model 2

2.1427899 + 1

Model 1
2.2053805 + 1.3123340;

92205i (m = 2)
673570 (m = 0)

27931415 im = 1)
3.2858613 + 1.1576914(

2.6976518 + 1.3

7039049 + 1.3681677;

642468 2
27133699 £ 1.3715151i 2

04182121

27134593 + 1.5759504/

2.5765032 4 2.1647539

2.8063505
3.2750160 + 1.1971660/

2.8026211

832025 £ 1.19

2.9973139
3.4353848 + 1.4036251i

2.7460418

3.3239616 + 1.6

(m=3)

+ 27975

4.1974044

32

5953361

=2)

4.0882060 (m

4.2852175 + 1.49

4.2233419
4.1504193 + 1.4484321i

4,3788850 + 1.5384

=1
4)

819617 (m

4.4047845 4 1.304

52931834

4.1896002 + 1
4.3190350 + 1.5017

550i

9291

0193; (m

5.1356223 (m

5.1552161

5.271012

0)

52957151 (m = 3)

6129679 (m = 2)
1.6381471i (m

5.6799579 + 1
6.0512222 +

01

5.7952914 + 1.669854

=0)

6.4629421 (m
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The relative thickness of the face material com-
pared with the core was characterized by the non-
dimensional parameter (volume fraction)

fa o
dey + 2¢,

For the present comparison we choose a sandwich
strip for which f = 1/2, and the two materials have
identical Young’s modulus £ but differing Poisson’s
ratic v. The resulis are shown in Table 3 for two
different models both employing eight node plane
elements, and again the agreement is seen to be very
good.

Cylinder of circular cross-section

The most complete analysis of the solid circular
section has been provided by Klemm and Little [10].
This was extended by Stephen and Wang [11] for the
hollow circular cross-section, who considered the
self-equilibrated end load problem, assuming dis-
placements to decay exponentially with axial coordi-
nate z and to be periodic in anguiar coordinate 9, that
is

(,, wy, 1.y = (U(r), iV (r), W) exp(imf — kz).
(11)

The solution was constructed using the formal
Papkovitch—Neuber solution to the (Navier) displace-
ment equations of equilibrium; the requirement of
zero stresses on the surface generators leads to an
eigen-determinant of sixth order, whose elements
involve either Bessel or Neumann functions. The
decay rate is thus expressed as a multiple of the
external radius b. The sixth order determinant re-
duces to the same eigenequation as derived by Klemm
and Little for the solid section when the Neumann
functions and associated constants are excluded.

For the numerical analysis, four models were con-
structed on ANSYS as shown in Fig. 6, employing
eight-node or 20-node brick elements; data for these
models are shown in Table 3. The radius and section
length are both taken as unity. The results are shown
in Table 41 together with the first 12 exact decay
rates. Again blank entries indicate eigenvalues which
are t0o inaccurate to warrant study of the associated
eigenvectors.

Comparing the predictions of Models 2 and 3 it is
immediately obvious that the eight-node brick el-
ement of Model 2, which leads to a larger transfer
matrix, is inferior to the 20-node element of Model 3.
Model 4 predicts the real part of the slowest
decay rate to an accurary of 0.02% error, and the first
four decay rates to an accuracy of better than 0.5%
error.

+ Where, by virtue of the symmetry of the cross-section,
two near identical eigenvalues are obtained, the average
value is shown,
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CONCLUSIONS

A numerical procedure previously developed to
determine the “exact’ decay rates for the idealized
pin-jointed framework consisting of repeated identi-
cal cells is here further developed to allow application
to the prismatic continuum rod or beam of general
cross-section. Comparison with availabie exact elas-
ticity solutions shows that the method is capable of
providing decay rate predictions to a very high
accuracy, for both a single isotropic material and for
a sandwich construction of two different isotropic
materials.

Acknowledgement—The authors give special thanks to
M. Street of the Central Design Service of Southampton
University for preparation of the drawings.
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