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ABSTRACT 
 

Noise generated by aircraft landing gears is a major contributor to the overall airframe 

noise of a commercial aircraft during landing approach. Because of the complex 

geometry of landing gears, the prediction of landing gear noise has been very difficult 

and currently relies on empirical tools, which have limited reliability and flexibility on 

the applications of unconventional gear architectures. The aim of this research is to 

develop an efficient and accurate numerical method to investigate the generation and far 

field radiation of the landing gear noise. In this thesis a hybrid approach is developed 

that combines near field flow computations with an integral radiation model to enable 

the far field signal to be evaluated without the need to directly resolve the propagation 

of the acoustic waves. The recent advances in the CAA methods are implemented with 

high-order finite difference compact schemes and a characteristics-based multi-block 

interface treatment. Aerodynamic noise from a generic two-wheel landing gear model, 

provided by Airbus LAGOON (landing gear noise database for CAA validation) 

program, is predicted by using the hybrid approach and compared with the LAGOON 

database. The unsteady flow field is computed by using a compressible Navier-Stokes 

solver based on high-order finite difference schemes. The calculated time history of 

surface data is used in a FW-H solver to predict the far field noise levels. Both 

aerodynamic and aeroacoustic results are compared with wind tunnel measurements in 

good agreement. Individual contributions from three components, i.e. wheels, axle and 

strut of the landing gear model are also investigated to identify the major noise source 

component. It is found that strong flow-body interaction noise is generated by the flow 

separated from tire rim impinging on the axle. Based on the same landing gear model, 

the comparison study using conventional CFD solver FLUENT is performed with a 

second-order Navier-Stokes finite volume solver to compute the unsteady near field 

flow and the built-in FW-H solver to calculate the far field sound propagation. The 

comparison suggests that although conventional CFD method can obtain good time-

averaged aerodynamic results, its ability of predicting sound radiation is limited by the 

inherent low-order numerical discretizations. The aerodynamic noise from the isolated 

undercarriage wheel with detailed hub configuration is also investigated using 
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FLUENT. The asymmetric phenomenon in the mean flow is discovered in the wake 

region of the wheel, which contributes to a positive lift force for the wheel. It is 

predicted that the isolated wheel radiates relatively strong noise to the sides with several 

strong tonal noise. 
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µ   Molecular viscosity 

ν   Kinematic viscosity 

ν~        Working variable for turbulent viscosity  

ρ   Fluid density 

ijτ   Viscous stress tensor 

ijσ   Reynolds stress tensor 

τ        Pseudo-time  

ξ ,η ,ζ  Generalized coordinates 

  

Alphanumeric Symbols 

0a    Sound speed  
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Chapter 1               

Introduction 

 

The purpose of this chapter is to place the research presented in this thesis into context 

with an examination of the relevant literature. The aims of the research are stated at the 

end of the chapter. 

 

1.1. Overview 

 

Aircraft noise is the sound pollution produced by aircrafts during various phases of the 

flight, especially during the takeoff and approach phases. Recently, it has become a 

significant environmental issue because of the rapid growth in air traffic and its 

increasing impact on the surrounding communities, which motivates us to better 

understand, predict and finally reduce the aircraft noise. Figure 1.1 shows a wide-body 

commercial aircraft passing close to houses near London Heathrow airport, one of the 

busiest airports all over the world.  The nearby residents are continuously disturbed by 

the frequent air traffic until midnight everyday. The political consequence of the aircraft 

noise impact was the publication of the European visions 2020 [1] with the requirement, 

among others, to “reduce subjective noise impact by half” (i.e., minus 10 dB per 

operation by 2020 relative to the year 2000 technology). The financial consequences for 

the airlines, that noisier aircrafts have to pay higher taxes, actually drive the efforts of 

building quieter aircrafts. Hence both social and financial motivations exist for the PhD 

thesis research. 
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Figure 1.1: A Boeing 747-400 passes close to houses near London Heathrow airport. 

 

Aircraft noise generally originates from two sources: the engine related noise such 

as fan noise and combustion noise, and the airframe noise arising from the airflow 

around the aircraft exposed surfaces. The engine noise dominates during the flight 

takeoff procedure. However during the approach and landing procedure, when the 

engines are often at idle, the airframe noise is comparable to, or sometimes greater than 

the engine noise [2]. The relative importance of various noise sources is shown in 

Figure 1.2. 

 

Figure 1.2: Aircraft noise sources. 

 

For single aisle or short range aircraft the noise from high-lift devices is quite 

close to that from landing gears. However, on long range aircraft, such as wide-body 
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aircrafts, the airframe noise tends to be dominated by the landing gear noise [3]. 

Because of the multi-element geometry of aircraft landing gears, the flows around these 

aircraft components are rather complex and have complicated contributions to the 

airframe noise. As a result, the prediction of noise from such flows has been difficult 

and currently relies on empirical tools. These tools require heavy calibrations with 

existing test data; therefore have limited reliability on predicting noise from 

unconventional gear architectures at the design stage. Computational simulation for 

landing gear noise prediction would be a general method in principle, which could be 

applied to any novel landing gear architecture, because they do not need to be calibrated 

against existing test results. In the last decade, simulations of landing gear have evolved 

from heavily simplified geometries [4] to realistic detailed landing gear configurations 

requiring large computational grids [5]. Unstructured grid methodology has been 

gaining popularity in the CFD community in recent years with an advantage in terms of 

grid generation [6]. However, the large amount of grids (tens of millions of points) 

required by the unstructured methodology and corresponding low-order finite volume 

flow solver makes it rather expensive to perform aeroacoustic calculations on complex 

geometries. Structured grid methodology with high-order finite difference CAA solver 

could be another option with the advantages of: flexibility of grid refinement and 

accuracy in wave characteristics with limited number of grids. It should be mentioned 

that the structured grid methodology is currently impractical when going to much more 

realistic landing gear configurations, for which generating multi-block structured grid 

could become a nightmare. Considering the simplified geometry in this thesis, the 

computational simulations of the landing gear noise prediction have been performed 

with a fully structured grid and the high-order finite difference flow solver, to 

understand the mechanism of the landing gear noise generation. The radiated noise is 

compared to the experimental data to validate the current CFD/CAA tools. 

 

1.2. Research Objectives 

 

The primary objective of this research is to assess the application of the SotonCAA code 

with high-order finite difference schemes to realistic nose landing gear geometry, and 

investigate the generation and far field radiation of the landing gear noise. This involves 

the construction of a quality fully structured landing gear grid for the finite difference 
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CFD/CAA solver and the practices of CFD simulation combined with FW-H calculation 

to predict the far field noise radiation. The primary geometry for this research is the 

LAGOON baseline geometry. This is a two wheel simplified nose landing gear with a 

cylindrical main strut and cylindrical axle. The validation will be made by comparison 

to experimental data, which was provided by ONERA in its aerodynamic and anechoic 

wind tunnels [7]. The second-order conventional flow solver FLUENT will be 

compared to the high-order SotonCAA code, which will provide a direct assessment of 

the performance of the high-order SotonCAA code against the conventional code. 

Comparisons will be made on the same grid with grid induced differences removed.  

 The second objective is to explore the mechanism of landing gear noise 

generation using numerical tools. Both the full landing gear geometry and an isolated 

wheel, which is the primary gear component of the landing gear, are under 

investigation. The wheel geometry for simulation is the CADWIE isolated wheel [8], 

containing a cavity and some fine details within the hub. The CADWIE wheel is 

selected as the initial geometry for the practice of using hybrid CFD/FW-H 

methodology to predict far field noise, which is based on the conventional flow solver 

FLUENT. 

 

1.3. Structure of Thesis 

 

The rest of the thesis is organized as follows: 

In Chapter 2, an extensive literature review has been conducted with relevance to 

the current research topic. This covers fundamental aerodynamics and aeroacoustics 

theories. Previous landing gear noise studies in experiment, prediction and computation 

are also discussed.  

In Chapter 3, the details of the high-order SotonCAA code is presented, including 

the high-order finite difference N-S equation solver and the radiation model for sound 

propagation. 

In Chapter 4, the landing gear noise prediction using high-order SotonCAA code 

is presented. The aerodynamic and acoustic results are discussed and compared with 

available experimental data, for the validation of current numerical method. The noise 

generation mechanism is investigated by the study of the noise contribution from 

landing gear components.  
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In Chapter 5, the comparison study of the landing gear noise prediction is 

performed using the conventional CFD tool FLUENT. The abilities in the far field noise 

predictions are compared between FLUENT and SotonCAA. 

In Chapter 6, the isolated landing gear wheel is simulated using FLUENT to 

investigate the noise generation and radiation from the major component of the landing 

gear.    

Finally in Chapter 7, the main results obtained are summarized and future works 

are proposed. 
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Chapter 2               

Literature Review 

 

This chapter first outlines necessary mathematical theories related to the landing gear 

noise generation and radiation, covering basic aerodynamics and aeroacoustics, which 

are the foundation stones in understanding noise source existence and distributions. 

After that an extensive review of the landing gear noise research is presented. 

 

2.1. Aerodynamics 

 

Landing gear related airframe noise is the aerodynamic noise arising from the airflow 

around the aircraft exposed surfaces. This noise-generating airflow is governed by the 

Navier-Stokes equations (N-S), which are based on the fundamental physical principles 

of the conservation laws of mass, momentum and energy. The conservation of mass is 

expressed mathematically in the continuity equation (using summation convention) 
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The conservation of momentum is written as 
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In addition, we assume a Newtonian fluid that obeys Stokes’s hypothesis. 

Therefore, the viscous stress tensor is  
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Many flows are characterized by two critical non-dimensional parameters: the 

Mach number M = U/a0 which provides a measure of compressibility of the flow, and 

the Reynolds number Re = UL/ν which represents a ratio of inertial forces to viscous 

forces. In these parameters, U is a velocity scale in the flow and L is a length scale. In a 

typical aerodynamic flow past a body, the Reynolds number is estimated with the free-

stream velocity and the body reference length. 

Reynolds numbers are often used to help characterize different flow types. 

Laminar flow occurs at low Reynolds numbers when viscous forces are dominant, and 

is characterized by smooth, constant fluid motions; while turbulent flow occurs at high 

Reynolds numbers and is dominated by inertial forces, which tend to produce random 

eddies, vortices and other flow fluctuations. In a turbulent flow, there is a range of 

scales of the time varying fluid motions. The size of the largest scale of fluid motion is 

determined by the overall geometry of the flow. The size of the smallest scales is related 

to the Reynolds number. As Reynolds number increases, increasing smaller scales of the 

flow are visible. A large Reynolds number indicates that viscous forces are not strong 

enough at large scales of the flow, to dissipate their motions dominated by inertial 

forces. The kinematic energy must be transported progressively from large scales to 

smaller scales until that the scale is small enough for viscosity to become of the same 

order of inertia, where the dissipation of energy by viscous action finally takes place. 

Therefore, since the largest eddies are dictated by the flow geometry and the smallest 

scales are related to the viscosity, the Reynolds number can be also understood as the 

ratio of the largest scales of the turbulent motion to the smallest ones. From the 

computational point of view, large Reynolds number requires large number of grid 

points in order to capture small scales of flow features, which sometimes can be 

unaffordable for direct numerical simulations (DNS). 

Turbulent flows not only involve a wide range of flow scales but also evolve 

significantly with random motions. Due to the high uncertainty in the turbulent flow 

field, an averaging process is introduced as the Reynolds-averaged Navier-Stokes 

(RANS) equations. The quantities within the N-S equations are decomposed into their 

mean and fluctuating components. This decomposition results in an extra Reynolds 

stress term which is a product of the fluctuating velocity field. The momentum equation 

is written as 
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where jiij uu ′′= ρσ  is the Reynolds stress tensor.  

To close the equations, the Reynolds stress tensor is estimated by the combination 

of the mean flow variables and the turbulent viscosity µt as follows, 

 

   ijijtij kS δρµσ
3

2
2 −=                (2.5) 

 

where Sij is the mean rate of strain tensor, K is the turbulent kinetic energy. The 

turbulent viscosity µt can be calculated from the turbulent viscosity transport equations 

of corresponding turbulence models. Commonly employed models in the modern 

engineering applications include Spalart-Allmaras (S-A) [9], k-ε (k-epsilon) [10], and k-

ω (k-omega) [11] models. The S-A model uses only one additional equation to model 

turbulent viscosity transport, while the k models use two. In CFD practice, unsteady 

Reynolds-averaged Navier-Stokes equations (URANS) are often used to solve the 

turbulent flow field. The concept of URANS is that flow variables are only averaged 

over small time scales while they are still time dependent over large time intervals, 

which means, in terms of mathematics, the time derivative term would be kept in the 

RANS equation. Since URANS methods provide relatively “averaged” results, they 

may not perform well in predicting instantaneous flow characteristics. 

Large-eddy simulation (LES) is an alternative method capable of modeling small 

unsteady flow characteristics, which is based on Kolmogorov’s theory of self similarity. 

In his theory, large eddies of the flow are dependent on the flow geometry, while 

smaller eddies are self similar and have a universal character. For this reason, we can 

resolve the large eddies explicitly, and model the effect of the smaller and more 

universal eddies on the larger ones. Thus, in LES the large scale motions of the flow are 

calculated, while the effect of the smaller universal scales (the so called sub-grid scales) 

are modeled using a sub-grid scale (SGS) model [12]. 

LES requires less computational effort than DNS but more effort than those 

methods that solve URANS. The computational demands increase significantly close to 

the walls, where the characteristic scale is too small, and usually exceeds the limits of 
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modern supercomputers. For this reason, zonal approaches are often adopted, with 

RANS or other empirically-based models replacing LES in the wall region. Detached 

eddy simulation (DES) is such a modification of the RANS model in which the model 

switches to a sub-grid scale formulation in regions fine enough for LES calculations [4]. 

Regions near solid boundaries and where the turbulent length scale is less than the 

minimum grid dimension are assigned the RANS mode of the solution. As the turbulent 

length scale exceeds the grid dimension, the regions are solved using the LES mode. 

DES has less grid resolution requirement than pure LES, thereby considerably cuts 

down the cost of the computation. Hedges, et al. [4] compared DES and URANS in the 

landing gear simulations, and suggested that with the Spalart-Allmaras (S-A) turbulence 

model [9], DES performed consistently better than URANS calculation in the time-

averaged sense. For instantaneous flow fields, DES developed a much wider range of 

unsteady scales of motions which is promising for noise prediction. The same 

preference was also suggested by Lockard, et al. [13] in the case of a more complicated 

gear model. Spalart et al. [14] have recently modified the DES model to overcome some 

of the shortcomings related to its grid dependence in a new model named Delayed 

Detached Eddy Simulation or DDES. The DDES model applies a blending function that 

varies between 0 for RANS mode and 1 for LES mode to the destruction terms. 

 

2.2. Aeroacoustics 

 

Noise generation can be associated with turbulent fluid motions and aerodynamic forces 

interacting with body surfaces, which is the scope of the aeroacoustic research. Most 

practical aeroacoustic analysis relies on the acoustic analogy [15], where the governing 

equations of the fluid motions can be solved in a similar form of the classic wave 

equations. Computational Aeroacoustics (CAA) is the application of numerical methods 

to compute the approximate solutions of the governing equations for the specific 

aeroacoustic problems. 

 

2.2.1. General Noise Sources 

 

In mathematics, the elementary solutions of the wave equation are described as the 

sound sources, and can be categorized into three major types based on their generating 
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mechanism: monopole, dipole, and quadruple. Different types of sources have distinct 

directivity characteristics, which is helpful in understanding the physics of sound 

generation and radiation.  

Monopole, also known as a point source, is associated with the displacement of 

the fluid mass due to the acceleration of the moving surface. The acoustic waves 

generated by a monopole are propagating equally in all directions. The directivity 

pattern appears in the form of a circle as shown in Figure 2.1(a).  

The simplest dipole source consists of two point sources which are of equal 

strength infinitely close to each other, operating at the same frequency with phase 

difference of half periods. The dipole is generated by fluctuating force acting on the 

solid surface, and its directivity pattern shows two lobes with maxima along upward and 

downward directions in Figure 2.1(b). Sound is cancelled in forward and backward 

directions.  

A quadruple consists of two identical dipoles which are opposite in phase. There 

are two kinds of quadruples: the lateral quadruple and the longitudinal quadruple. The 

lateral quadruple has the axes of dipoles not lying on a same line, and has a directivity 

pattern with four lobes as shown in Figure 2.1(c). The lateral quadruple is associated 

with the shear stress and can be found in all turbulent flows.  The longitudinal quadruple 

has the axes of dipoles lying on the same line, and has a directivity pattern similar to a 

dipole. 

 

 

Figure 2.1: Directivity patterns for acoustic sources; (a) monopole; (b) dipole; (c) 

quadruple. 

 

Generally speaking, aerodynamic noise involves the unsteady flow noise and the 

interaction noise. The flow noise is generated entirely by unsteady motions away from 
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the boundary surfaces, and the noise sources can be described as monopole or quadruple 

types. The interaction noise originates from the interactions of unsteady flows with 

stationary or moving surfaces and acts in the dipole behavior. The practical examples of 

different types of sound sources are demonstrated in Fig. 2.2. 

 

 

Figure 2.2: A demonstration of aerodynamic noise sources [16]. 

 

2.2.2. Acoustic Analogy 

 

Early in 1950s, Lighthill [15] first uncovered the fundamental mechanism of conversion 

of energy between two forms, the kinematic energy of fluctuating shearing motions and 

the acoustic energy of fluctuating longitudinal motions. He confirmed that sound can be 

generated aerodynamically as a by-product of an airflow, which is different from sound 

produced by the vibration of solids. The approach is proposed that the details of the 

flow are firstly to be estimated from aerodynamic principles not concerned with the 

acoustic propagation of fluctuations in the flow, and secondly the sound field is to be 

deduced, ignoring the phenomena where there is a significant back-reaction of the 
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sound produced on the flow field itself. Evidence suggests that the sound produced is so 

weak relative to the motions producing it that no significant back-reaction can be 

expected unless there is such a resonator present to amplify the sound [15]. 

Based on Lighthill’s theory, the whole flow field is divided into two parts: one 

contains most of the unsteady flow features and the remainder is at rest. The governing 

equations for the two parts are different, one of which governs the fluctuation of density 

in the real flow while the other is suitable for the uniform acoustic medium. The 

difference between the two equations is considered as if it were the effect of fluctuating 

external forces acting on the uniform acoustic medium, and radiating sound into it 

according to the ordinary laws of acoustics.  

The propagation of sound in a uniform medium, without sources of matter or 

external forces, is governed by the equation 
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On the other hand, the exact equation of momentum in an arbitrary continuous medium 

without external forces is 
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According to Eq. (2.3) for Newtonian fluid, the compressive stress tensor is 
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which represents the force in the xi direction acting on a portion of fluid, per unit surface 

area with inward normal in the xj direction. The equation of momentum can be 

rearranged as 
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where ijijjiij apuuT ρδρ 2

0−+= is known as Lighthill tensor. It represents the difference 

between the effective stresses in the real flow and the stresses in the uniform acoustics 

medium, which is comparative to external fluctuating forces acting on a uniform 

medium. This can be easily shown by combining Eq. (2.1) and Eq. (2.9), and the 

rearranged sound propagation equation is  
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For the airflow in a uniform atmosphere, the stress system can be neglected outside the 

flow itself, since the velocity ui is small and appears quadratically. Also the viscous 

stresses in pij, and the conduction of heat both have small effect. Thus outside the 

airflow the density satisfies the ordinary sound equation Eq. (2.6), and the fluctuations 

in density caused by the effective applied stresses within the flow, are propagated 

acoustically. 

If Tij is known exactly, then the density perturbation ρ′ = ρ − ρo (ambient density) 

can be obtained, using Green’s Functions [17] 
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where V is the finite volume of the flow field over which Tij is non-zero,  r = |x − y| is 

the separation distance between the source point y and the observer position x, and τ = t 

− r/a0  is the retarded time. The retarded time accounts for the time required for sound 

emitted at the source point y to propagate to the observer position x. In the integral 

above, the sound source is represented by a quadruple field  ∂2
Tij (y,τ) /∂xi∂xj. If we let x 

= (xixi)
1/2

, and use the result ∂x/∂xi = xi /x, it can be shown that ∂2
/∂xi∂xj = (xixj 

/a0
2
x

2
)d

2
/dt

2
. Hence, for an observer at x in the far field (x >> λ, where λ is a typical 

wave length of the generated sound), the double divergence can be approximated with a 

second time derivative to give 
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A useful and practical deduction with dimensional analysis can be obtained given 

volume integral above. For low Mach numbers, in unbounded flow the stress tensor can 

be estimated by ρuiuj (Lighthill reasoned that under certain circumstance it would be the 

dominant factor [15]), which has a scale of ρU 
2
. Since Strouhal number f l/U has been 

found to vary far less with changing conditions (like Reynolds number), one may take 

frequency as proportional to U / l. Now, we can find that the density variation is 

dimensionally proportional to the product as 
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Extension to Lighthill’s Theory 

 

One of the restrictions for the Lighthill’s theory is that the sound wave estimated is only 

for free sound field, where the effects of reflection, diffraction, absorption or scattering 

by solid boundaries are all neglected. Later, the solution of Eq. (2.11) was extended by 

Curle [18] to include the effects of solid walls. The corresponding solution is given by 
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where li is the i th component of the outward-pointing vector, normal to the fluid.  The 

first surface integral in Eq. (2.14) describes the distribution of dipoles on the surface, 

and the second surface integral represents the distribution of monopoles on the surface, 

due to the mass addition at the boundary.  If there is zero normal velocity at solid 

boundaries, which is if each surface is fixed or is vibrating in its own plane, we have liui 

≡ 0. Hence Eq. (2.14) would be simplified as 
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The sound field therefore can be generated in a hypothetical unbounded uniform 

medium, with a volume distribution of quadruples ∂2
Tij (y,τ) / ∂xi∂xj  throughout the 

region external to the solid bodies and a surface distribution of dipoles ∂pij (y,τ) / ∂xi 

acting on the surfaces of the solid bodies. In much the similar way as Lighthill 

suggested, the dipole sources can be also simplified as 
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and the dimensional analysis yields 
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Comparing dipole source and quadruple source dimensionally, it can be shown that 
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It suggests that at sufficiently low Mach numbers, the contribution from dipole sources 

should be greater than that from quadruples.  

Ffowcs Williams and Hawkings [17] (FW-H) further generalized the form of the 

Lighthill’s acoustic analogy to include moving surfaces. Following Brentner and 

Farassat [19], the FW-H equation can be written in a differential form as 
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where f  = 0 describes an integration surface, f  < 0 is inside the integration surface, δ ( f )  

is the Dirac delta function, and H( f ) is the Heaviside function. The quantities Q and Fi 

are defined by 
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In the above equations, vj is the velocity of the integration surface f = 0. nj is the 

outward unit normal to the surface f = 0. The dipole term Fi  involves an unsteady force, 

and Q gives rise to a monopole-type contribution that can be considered as an unsteady 

mass addition. 

The FW-H equation is an exact rearrangement of the N-S equations and hence is 

efficient and amendable to numerical computations. These equations can also be solved 

in the frequency domain which is useful when analyzing radiated sound frequencies [20, 

21].  

 

2.2.3. Computational Aeroacoustics 

 

Direct Numerical Simulation 

 

With the help of fast growing computing capabilities, it is possible and becoming much 

more popular, for the reason of cost saving, to conduct computational simulations for 

aeroacoustic problems.  After Lighthill discovered that sound can be generated as a by-

product of an airflow (known as the acoustic analogy), it is understood that aerodynamic 

noise could be computed by directly solving the fully compressible flow equations in a 

domain that includes both the aerodynamic noise sources and the observers. Although 

conventional computational fluid dynamics (CFD) methods have been very successful 

for the aerodynamic computations, it is not possible to simply use existing CFD codes 

to directly calculate the sound generations and radiations to far field, because the 

characteristics of aeroacoustic problems are distinctly different from those commonly 

encountered in aerodynamics [22, 23]. Aeroacoustic problems are, by definition, time 

dependant. They must be treated time-accurately with appropriate consideration of all 

relevant time-scales and spectral analysis requirements, for example the requirement of 

frequency range of human ear sensitivity. Furthermore, since the computed sound fields 
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need to be propagated over large distances comprising many wavelengths, the numerical 

schemes of CAA must be highly accurate with low dispersion and dissipation. For 

practical geometries, the direct computation involving both sound generation and 

propagation is probably unrealistic in 20 years [24], due to the high demand on 

computing resources. 

 

Hybrid Approach 

 

The hybrid approach does not directly resolve the small acoustic perturbations up to the 

far field observer, therefore reducing the computational cost significantly. In the hybrid 

approach the computational domain is split into different regions, such that the acoustic 

and flow field can be solved with different governing equations and numerical 

techniques [25]. This would involve using two different numerical solvers, first a 

dedicated CFD tool and secondly an acoustic solver. The flow field is firstly calculated 

in the near field to collect the acoustic sources. Then, these acoustic sources are 

provided to the second solver which calculates the acoustic propagation in an 

inexpensive way. Acoustic propagation can be calculated via either Linearized Euler 

equations (LEE) [26] and Acoustic perturbation equations (APE) [27, 28] or integral 

methods such as Kirchhoff integral [29] and FW-H integral [17]. For low Mach number 

flows, the acoustic propagation may not be influenced by the non-linearity and the 

LEE/APE becomes applicable by only dealing with perturbations. Different from the 

LEE method that supports three types of wave perturbations, i.e. acoustic waves, 

vorticity waves and entropy waves, APE only models the acoustic propagations. 

Integral methods are based on the known solution of the acoustic wave equation in the 

form of surface and volume integrations. The difference between Kirchhoff integral and 

FW-H is that Kirchhoff integral is derived from linearized wave equation neglecting 

non-linearity while FW-H comes from Lighthill acoustic analogy directly following the 

N-S equations. When considering the same assumption as Kirchhoff linear theory, the 

FW-H method equals to Kirchhoff method. However, the FW-H equation is more 

general and accurate even if the integration surface lies in the non-linear region. 
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Finite Difference Schemes of CAA 

 

In the hybrid methods the unsteady flow field must be computed accurately within a 

region containing the sources. Because the flow is compressible, sound waves exist 

within the flow. The amplitude of sound waves is so small compared to the 

characteristic flow perturbations, that the accuracy required for calculating the waves is 

very high which results in the demand of high-order accurate schemes.  

For spatial discretization, the most popular schemes used in the CAA are high-

order finite-difference schemes because of the high accuracy and simplicity of 

implementations [30]. There are two main classes of high accuracy finite difference 

schemes, which are explicit and compact schemes. Explicit schemes directly compute 

the numeric derivatives by employing large number of computational points for high 

accuracy [31]. Compact schemes (implicit schemes) [32] employ fewer points by 

solving a matrix for the numerical derivatives along a grid line, where the numerical 

derivative at each point depends on the value of the derivative at neighbor points. The 

advantage of compact scheme is the higher accuracy than the explicit scheme, based on 

limited grid points; while the disadvantage is that a linear system of equations has to be 

solved resulting in high computing demand. 

The dispersion-relation-preserving (DRP) scheme of Tam et al. [31] is an explicit 

scheme with seven-point central-difference stencil. DRP schemes have the same wave 

propagation characteristics and the same wave speeds as those of the Euler equations, 

and can provide high quality wave solutions. The method of Fourier transforms is 

usually used to optimize the finite difference approximations of the space and time 

derivatives in the wave-number and frequency space, providing better wave-number 

resolution. 

Hixon [33, 34] developed compact differencing schemes of up to 6th-order 

accuracy, which are suitable for solving aeroacoustic problems. In Hixon’s approach, 

the derivative operator is split into forward and backward operators. Only three points 

are needed to obtain the biased derivatives and only two independent bi-diagonal 

matrices are needed to be reversed instead of solving tri-diagonal linear system of 

equations. To improve the resolution characteristics of Hixon’s scheme, an optimization 

strategy is developed by Ashcroft and Zhang [35], in which order of accuracy is 

sacrificed in preference to resolution characteristics across the range of wave-numbers 
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on a given mesh. The optimized schemes improve the dispersion characteristics, making 

them more accurate for high resolution calculations in aeroacoustics. 

There are also two types of schemes for time integrations, categorized by explicit 

or implicit. In general, explicit time integration schemes have many advantages, only 

requiring no matrix inversions, limited computer memories, and less effort to construct. 

We commonly use Runge-Kutta method [36] to approximate the solutions of ordinary 

differential equations. If we take U
 n

 and U
 n+1

 to be the flow states at two successive 

times, a m-stage Runge-Kutta general scheme can be defined as 
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The number of stages and the coefficients can be specified to give a certain order of 

accuracy or to provide extra characteristics. For example, a low dispersion and 

dissipation Runge Kutta (LDDRK), which is 4th-order accurate for linear problems and 

2nd-order accurate for non-linear problems, consists of two storage level marching 

cycle (4-6 LDDRK) [37].  The disadvantage of the explicit methods is that the time step 

size is restricted by the stability conditions of the algorithms rather than by the 

frequency content of the flow fluctuations. In addition, the situation is even worse if 

computations must be carried out for extended periods of time in order to collect 

statistical information of the flows. The implicit technique may be considered as a 

desirable alternative by allowing larger time increments [38, 39]. A lower-upper 

factorization with a symmetric Gauss-Seidel relaxation technique (LU-SGS) has 

become increasingly popular, due to its high efficiency [40]. 

 

Radiation Boundary Conditions 

 

Radiation boundary conditions are crucial factors to obtain high accuracy in computing 

the flow/acoustic field. In practice, the domain in the physical problem extends to 

infinity, whilst the computational domain is truncated. At these computational 

boundaries, reflections of waves into the domain are numerical artifacts. In some 

particular cases, the adverse influence of boundary conditions can be avoided by using a 
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sufficiently large computational domain, where the time required for an acoustic wave 

to reflect exceeds the calculated time length [41].  

A variety of non-reflecting boundary conditions have been developed that reduce 

spurious reflections at the edges of truncated computational grids. Three of the main 

types of non-reflecting boundary conditions [42] are characteristic based methods [43- 

47], far field asymptotic solutions [31, 48-50] and Absorbing boundary conditions 

(buffer zone) [51-53]. In characteristic methods, the boundary condition is formulated 

by conducting a one-dimensional characteristic analysis of the Euler equations. The 

boundary equations can be written in characteristic form, and the non-reflecting 

boundary condition is created by assigning the value of the characteristic that represents 

waves entering at the boundary. Due to the one-dimensional formulation, they perform 

best when the out-going wave is normal to the grid boundary. A buffer zone layer 

usually consists of 10 to 20 mesh points in which damping terms are introduced to damp 

out the acoustic waves. Buffer zone boundary conditions are easy to implement, but the 

inclusion of artificial damping within the buffer zone means that the solution is not 

physical. The addition of extra grid points in the buffer zones adds to the computational 

cost. 

 

FW-H Integration Surface 

 

An important issue in the FW-H calculation is the choice of the integral surface that 

separates the source region from the external field. In order to reduce the cost, the size 

of integral surface should be designed as small as possible, while the accuracy demand 

requires the integration surface to be sufficiently large to include as many noise sources 

as possible [54]. This is a trade-off between cost and accuracy, which should be 

considered carefully. In practice, one can consider the solid wall as the integration 

surface, and ignore the volume integration if the quadruple sources are not that 

significant. Cox, et al. [55] showed that in the Reynolds number range considered (10
2
 < 

Re < 5×10
6
), for most observer positions, the unsteady forces on the solid surface of the 

cylinder were responsible for generating far more of the total noise than the volumetric 

noise produced away from the solid surface. Therefore, solutions to the FW-H equation 

should not differ much with the choice of the integration surface. However, with a 

permeable surface, it is easy to include the quadruple sources inside without performing 
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any volume integrations, which can significantly improve the accuracy of the noise 

predictions at locations where nonlinear interactions in the flow cannot be ignored [56]. 

One concern with the use of a permeable integration surface is that nonacoustic 

variations passing through the integration surface might seriously degrade the resulting 

acoustic calculation. The paper published by Lockard, et al. [13] suggests that 

computations with the permeable surfaces appear to be contaminated by strong wake 

flows passing through the surfaces compared to the calculations with solid surfaces 

which are in good agreement with CFD data in the flow field as long as wakes are not 

present. One possible reason suggested by Lockard, et al. is that the strength of the 

vortices is too large, and the errors caused by vortices passing through the surfaces were 

suspected as the noise sources which produce sound levels that are significantly higher 

than those when using the solid surfaces. Lockard and Casper [57] tried to introduce a 

correction for the error, which was found to work reasonably well in several test cases 

where the error is a small fraction of the actual radiated noise. 

 

2.3. Landing Gear Noise 

 

2.3.1. General Noise Characteristics 

 

Landing gears have in the past been considered as a component only performing in a 

short period compared to the aircraft total operation time. Therefore, the previous 

configuration design of the landing gears was highly non-streamlined. Both nose and 

main landing gears consist of many components, such as wheels, axles, shafts with 

lateral support struts, drag braces, actuators, doors and a wheel-well to accept the gear 

when retracted, see Fig. 2.3. From the scale of major landing gear components, it is 

expected that low-frequency wake phenomena will occur. Hence corresponding sound 

characteristics will likely be of low-frequency. On the other hand, small-scale structural 

elements such as wires, hoses, screw-holes, small diameter cylindrical struts, etc., would 

probably generate high-frequency noise. Thus, we would expect a fairly broadband 

frequency spectrum to be emitted from landing gears. 
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Figure 2.3: Typical landing gears of A320: (a) nose landing gear; (b) main landing gear. 

 

 Heller and Dobrzynski [58] conducted experiments to determine the noise 

radiation from landing gear configurations of large commercial aircraft and show a 

broad spectral peak between a Strouhal numbers of 0.8 to 8. The position of the spectral 

peak is dependent on the dimensions and configurations of the specific landing gear, 

and is normally observed at low to mid frequencies. The contributions from components 

to the whole landing gear noise were investigated by exposing individual components to 

the flow. This approach neglects the significant interaction effects between components 

but still provides useful information about how the spectrum is made up. The measured 

spectrum is depicted in Fig. 2.4. 

 

 

Figure 2.4: Typical landing gear noise spectrum: a) complete configuration; b) side 

support struts; c) lower drag brace actuator; d) wheel; e) door [58]. 

(a) (b) 
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  The landing gear noise is broadband in nature; however from some components 

tonal noise could also be identified. Landing gear structures are normally connected 

through joints with hollow pins. Flow-induced cavity resonances in these pin holes can 

result in prominent tonal noise. An example from full-scale gear tests in the wind tunnel 

is shown in Fig. 2.5. Whether or not such resonances are excited depends on the local 

flow conditions, which are highly affected by the position of the pin relative to the gear 

structure and the changing aircraft operational conditions (e.g., cross wind). Therefore, 

it is difficult to predict the potential of cavity resonance related tonal noise generation 

[1].  

 

 

Figure 2.5: Example of flow-induced tonal noise from open pin holes in landing gear 

structures [59]. 

 

2.3.2. Noise Source Mechanism 

 

Broadband noise from flow around landing gear structures is generated by: turbulent 

flow separation off the bluff body structural components, and the interaction of such 

turbulent wake flows with downstream gear components. The interaction of turbulent 

flow pressures with solid boundaries cause the turbulence energy to be transformed into 

sound pressure energy, which is the underlying noise source mechanism of landing gear 

noise. In the acoustic analogy this noise source mechanism is modeled by acoustic 

dipoles, and primarily governed by the velocity of the impinging flow and its turbulence 

characteristics. Investigation revealed that it would be beneficial to reduce local inflow 
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velocity, for example in the turbulent wake of an upstream located component, so as to 

minimize aerodynamic noise generation [3]. 

 

2.3.3. Landing Gear Types and Challenges 

 

Typical aircraft landing gear system includes nose landing gear (NLG) and main 

landing gear (MLG), distinguished by their relative positions to the aircraft airframe. 

Nose landing gears are located under the nose of aircraft fuselage and normally have 

two-wheel structures with vertical oriented single strut, shown in Fig. 2.3(a). In general, 

nose landing gears produce a more pronounced dipole directivity pattern, radiating more 

noise to the sides [58]. Main landing gears are normally installed under the wings, and 

have four to six wheels structures with more complicated bogie and diagonal support 

systems, shown in Fig. 2.3(b). For medium and larger size civil aircraft, the main 

landing gears produce more noise than the nose gears due to its complex bogie system 

[60]. The directivity pattern from main landing gears seems to be more uniform with 

slight predominance to the sides [58].  

 Main landing gears are more affected by the installation effects than nose landing 

gear. The inflow velocity to a nose landing gear is almost equal to the flight speed, but 

the under-wing main landing gears experience reduced local inflow velocity due to the 

circulation flow induced by the wings [61-63]. Because of the strong effect of local flow 

velocity on the noise level, the installation effect must be accounted for when 

comparing wind tunnel test results with the test data from installed gears in-flight. The 

lower-wing surface also acts as an acoustic reflector. The sound reflections introduce 

acoustic interference effects to the noise level spectra, when the wavelength is smaller 

than the wing cord. However, these interferences at corresponding frequencies partially 

cancelled out because the gear structure represents a geometrically extended cluster of 

sound sources with various distances to the reflecting wings [64]. 

 

2.3.4. Experimental Measurement for Landing Gears Noise 

 

When airframe noise was identified as a major aircraft noise component in approach 

condition, the scaled model wind tunnel experiments were conducted to quantify the 

landing gear noise characteristics. The generic landing gear model used in these 

experiments lack geometrical details, and thus provided misleading results that landing 
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gear noise was considered as a low-frequency phenomenon. In the 1990s, when full-

scale landing gears were noise tested in the large high-quality acoustic wind tunnel 

facilities [65, 66], it turned out that landing gear noise covers a large frequency range 

sensitive to human noise perception. More recently, wind tunnel measurements tested 

high-fidelity scaled model gears and provided good results [67, 68], suggesting that 

scaled models with sufficient geometrical details can also be accepted in the landing 

gear noise studies. 

 When measuring the noise generated by landing gears in wind tunnel, the 

background noise (for example, the engines compressing the air) must be taken in 

account and collected sound signal should be corrected responsively. In addition, when 

a sound source is placed in the wind tunnel core flow whereas the measuring 

microphones are placed outside, the sound waves have to pass through the shear-layer 

separating the open jet from the ambient air. This leads to a change in propagation 

direction and amplitude of the sound waves. To account for these effects the data must 

be also corrected.  

While the stationary measurements allow a fairly detailed investigation of 

individual noise contributors and directivity, they lack the important feature of the 

relative motion between source and receiver. Flyover measurements are considered 

important to determine whether the ground based test results could be applied to the 

realistic flight situations. 

 

Two Wheel Landing Gear Measurements 

 

Guo, et al [69] conducted aeroacoustic experiments on a full scale Boeing 737 landing 

gear in Boeing’s LSAF (Low-Speed Aeroacoustic Facility) wind tunnel with Mach 

numbers ranging between 0.18 and 0.24. The measurements employed phased 

microphone array along with far filed microphone technique to record the acoustic 

signals. The collected data formed part of the knowledge base for validating Guo’s 

prediction methodologies [70].  

 The 40% scale A320 simplified nose landing gear model was tested under 

LAGOON (LAnding Gear nOse database for CAA ValidatiON) project [7, 71] by 

Airbus France. The objectives of the project are to build an extensive and accurate 

experimental database for a simple landing gear structure to enable the validation of 

aeroacoustic numerical tools for landing gear applications based on steady/unsteady 
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CFD and CAA codes, and to assess available CFD/CAA tools on this configuration. 

The aerodynamic measurement was performed in the ONERA’s F2 aerodynamic wind 

tunnel with closed section. Both steady and unsteady pressure signals on the landing 

gear surface were collected via static pressure taps and Kulite pressure sensors. PIV and 

LDV measurements were also performed in the wake of the wheels and struts. The 

acoustic measurements were conducted in ONERA’s CEPRA19 open jet aeroacoustic 

wind tunnel, with far field microphones arcs and microphone arrays to record sound 

signals. 

 The 25% scale Gulfstream G550 NLG geometry was chosen as a benchmark 

configuration [72] proposed by NASA and the Gulfstream Aerospace company, and 

extensively discussed in the BANC-I conference (Benchmark problems of Airframe 

Noise Computations) in 2010. Experimental database were obtained through 

collaboration between NASA and University of Florida. Extensive aerodynamic 

measurements were performed in the closed-wall Basic Aerodynamic Research Tunnel 

(BART) at NASA [73] at M=0.12, 0.145, and 0.166. The data consisted of steady and 

unsteady surface pressures plus PIV results in the turbulent wake regions. The 

corresponding acoustic and limited surface pressure measurements were conducted in 

the open-jet University of Florida Aeroacoustic Flow Facility (UFAFF) [74] at 

M=0.145, 0.166, and 0.189. The good comparisons between the BART and UFAFF 

aerodynamic results indicate confidence in the wind tunnel data and provide a large 

range of validation opportunities for different partners to compare numerical methods at 

the BANC-I conference 2010. 

 Yokokawa et al. [75] took noise measurements of a 40% scale two wheel main 

landing gear, based on a 100-PAX class regional jet, at M=0.16. The high fidelity scale 

model includes small components such as the link mechanism, hydraulic tubes and 

electrical wiring. Acoustic measurements were conducted in the low speed wind tunnel 

at the Japanese Aerospace Exploration Agency (JAXA) and the large scale anechoic 

facility at the Railway Technical Research Institute (RTRI). The measurements showed 

major noise sources to be around the tires, sidebrace, parts of the door and the junction 

between the cylinder and sidebrace.  
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Four Wheel Landing Gear Measurements  

 

Lazos [76, 77] conducted the aerodynamic experimental analysis of the Boeing 757 

main landing gear on a 31% scale simplified model at Mach number below 0.1 in the 

NASA BART wind tunnel. The main aim of this experiment was to obtain results from 

a series of 160 PIV data sites from between the wheels and in the wake. The 

experiments highlighted that the vortex is generated by the asymmetry caused by the 

presence of the main strut, and oscillates between the front and rear wheels. Lazos 

suggested that this mid-wheel vortex interacting with wheel surfaces could be a 

potential noise source. However, the lack of unsteady experimental data meant that 

comparisons with unsteady simulations are not available.   

 

Six Wheel Landing gear Measurements   

 

Ringshia et al. [78] performed aerodynamic experiments on a high fidelity 13% scale 

and 26% scale Boeing 777 main landing gear model in the Virginia Tech Stability Wind 

Tunnel (VT-SWT) at a Mach number of 0.16. The study highlighted the flows between 

the front and middle wheels with a recirculation region. The PIV results show vortex 

shedding from the front wheel and impinging on the middle wheels, which was 

considered as the source of interaction noise. The acoustic measurement on the 13% 

scale high fidelity Boeing 777 main landing gear model was conducted by Ravetta et al. 

[67] in VT-SWT, in order to identify the noise sources using a phased microphone 

array.   

 

2.3.5. Empirical Methods for Landing Gear Noise 

 

The first empirical landing gear noise prediction model was developed by Fink [79] 

based on both flight-test data and simplified generic scale model wind tunnel test data. 

The prediction model only requires the number of wheels, the wheel diameter and the 

length of the main strut as the major parameter inputs, assuming that the whole sound 

level spectrum is determined by the major components of the landing gear. Separate 

predictions are made for the strut and wheel noise, which are summed to give the total 

landing gear noise. The Strouhal scaling approach is introduced in the model for general 

applications regardless the landing gear scale. This simple model only uses the 
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dimensions of the largest components, thus significantly underestimate high-frequency 

noise levels. 

 Smith and Chow [80] established a model incorporating aeroacoustic theories. 

This model breaks down the gear into its major components, compute sound intensities 

according to the dimensions and orientation with respect to an observation location, and 

at the end sum up the noise intensities from all components to provide the overall sound 

level spectrum. The estimated sound intensities from individual components are based 

on Curle’s theory [18], which scale to the six power of flow velocity and the square of 

the source characteristic dimension, assuming dipole-type noise sources. This model 

only considers components of primary structure. The small scale components are 

accounted for in the prediction via a user defined dressing factor. The capability of this 

empirical tool has been proved in the prediction of the noise reduction potential from a 

low-noise redesign of gear components [81]. 

 Similar noise prediction approaches were developed by Guo et al. [82] and Guo 

[70], validated by data from both full scale wind tunnel and flight test. Guo’s tool 

distinguishes between three sets of gear components: large, medium and small scale 

elements, responsible for low-, medium- and high-frequency noise contributions 

respectively. Similar to Smith’s dressing factor, a complexity factor is defined to 

account for the high-frequency noise contributions from small structures. Guo’s method 

was developed in terms of narrowband spectrum without Strouhal scaling approach, 

therefore only applicable to full scale landing gear.  

 The Aircraft Noise Prediction Program (ANOPP) of NASA, which originally 

relied on the Fink method only, now is combining the methods from both Fink and Guo 

to improve the prediction accuracy [83]. It is recommended to use Guo’s method for full 

scale landing gear noise prediction, but to use Fink’s method with scaled model due to 

its Strouhal number dependency.  

The empirical prediction models usually requires lots of calibrations against 

existing test data, and therefore has limited reliability on predicting noise from 

unconventional gear architectures at the design stage. Computational methods for 

landing gear noise prediction could in principle be general tools with increases in 

computational power. Such methods could be applied to any novel landing gear 

geometry because they do not need to be calibrated against existing test results. 
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2.3.6. Computations of Landing Gear Noise 

 

Two Wheel Landing Gears 

 

Imamura et al. [84] performed both steady and unsteady computations on a PAX-100 

two-wheel landing gear geometry, called Landing gear noise Evaluation Geometry 

(LEG). Measurement data are available for the comparison study through the wind 

tunnel experiments performed by Japan Aerospace Exploration Agency (JAXA) [75]. 

The purpose of the steady-state simulations is to investigate the mean flow patterns 

around the landing gear. The 40% scale LEG model with considerable details was 

computed on unstructured grids of 6.9 million cells for the closed wind tunnel case and 

10.2 million cells for the open jet wind tunnel case, which were built up by the 

unstructured mesh generator MEGG3D. This allows for the effects of wind tunnel walls 

to be investigated. The flow solver is J-TAS code originally developed at Tohoku 

University. Three-dimensional RANS are solved on unstructured grid by a finite volume 

method, and S-A one equation model is chosen as the turbulence model. The simulation 

was performed at 68 m/s with a Reynolds number of 1.8×10
6
 based on the wheel 

diameter. It was found that accelerated and decelerated regions existed in the narrow 

area between two tires and flow-body interaction occurred between the cylinder and 

side-brace, which could be the potential noise sources. 

  The computational geometry in the unsteady simulation is a heavily simplified 

40% scale LEG model. Block-structured grids are generated using commercial software 

Gridgen [85] with approximately 26 million grid points in total. The unsteady flow 

solver is developed based on UPACS code which is an in-house CFD code in JAXA, 

and employing a finite volume method on multi-block structured grids solving three-

dimensional compressible N-S equations. The convection terms are discretized using 

6th-order compact scheme, and the viscous terms are discretized using 2nd-order central 

scheme. Second-order time integration is performed using a time step 2.5×10
-3

 seconds. 

The Smagorinsky SGS model is used as a sub-grid scale model, and van Driest damping 

is applied at the wall boundary of the LES region. The filter technique is employed with 

6th-order accuracy to avoid numerical instability. The LES computation seemed to be 

not resolving boundary layer sufficiently compared to the previous RANS results. The 

author suggested that this might be improved by choosing LES/RANS hybrid method in 

the future work. Far field noise is predicted using the FW-H method on three permeable 
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surfaces with the domain, shown in Fig. 2.6. The downstream surface is excluded from 

the permeable surface to remove artificial acoustic wave generated by density 

fluctuation due to strong vortex convection. The estimated far field noise shows 

reasonably good agreement with the experimental results up to 1 kHz, shown in Fig. 

2.7. The differences among different permeable surface locations are small which 

indicates the reliability in the estimation procedure. 

 

 

Figure 2.6: FW-H integration surfaces as used by Imamura et al. [84]. 

 

 

Figure 2.7: Far field noise comparisons of a two wheel PAX-100 landing gear [84]. 

 

A joint project was proposed by NASA and the Gulfstream Aerospace Company on 

benchmark problems for airframe noise computations (BANC). The NLG was chosen in 

preference to an MLG because of significant installation effects caused by proximity to 
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the wing with deployed flaps. Two configurations of a partially and fully dressed 

landing gear will allow increasing geometry complexity into the future. In BANC-I 

2010 conference, several computational works have been discussed based on the 25% 

scale Gulfstream G550 nose landing gear model.  

Van de Ven et al. [5] was one of the computational submissions using the 

commercial Navier-Stokes finite volume CFD solver STAR-CCM+. The solver is fully 

unstructured and employs second-order discretizations in both space and time. A series 

of unstructured grids of up to 58 million cells were built with the built-in grid 

generation tool in the solver. The k-ω SST based Delayed Detached Eddy Simulation 

(DDES) was performed with time step size of 2×10
-5

 second (50 kHz sampling rate). A 

larger time step size of 1×10
-4

 second was also used in the simulation to improve the 

low frequency predictions. From the steady solution, static pressure on the surface of 

the wheel was compared against the measurement locations from the NASA BART 

experiment. The results show a consistent 0.1 psi difference around the whole wheel. 

The unsteady pressure data monitored at identical locations to those measured at BART 

and UFAFF wind tunnels were then compared to the measurement data in the form of 

power spectral density (PSD). Good agreements had been achieved up to approximately 

5 kHz. Far field acoustic predictions were not made, but might be attempted with FW-H 

tools in the future work. 

 Dethuioux et al. [86] applied the Lattice Boltzmann solver PowerFLOW 4.2 on 

the same Gulfstream G550 geometry. It is an explicit solver which uses a DDES 

turbulence method based on the RNG k-ε model. The voxel based meshes were 

generated automatically by the built-in PowerFLOW grid generation tool with four-

stage refinement. The finest mesh consists of 52.4 million voxels with a 0.25 mm voxel 

size. This manages to achieve a 4 kHz cut-off frequency on the surface pressure PSD 

comparisons. The mean velocity and vorticity results compared with the PIV 

measurement show general agreement with discrepancies in the flow separation regions 

which were considered to be caused by the fully turbulent model without transition 

treatment. The far field noise prediction was obtained with a FW-H solver using the 

solid surface data, which showed the same shape in the middle frequency range with 

5dB under-prediction level, see Fig. 2.8. The author suggested that the using a 

permeable integration surface and higher sampling frequencies may help improve the 

far field noise predictions. 
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Figure 2.8: Far field noise comparisons of a 25% scale Gulfstream NLG using 

PowerFLOW 4.2 [86]. 

 

 Ueno et al. [87] used a high-order Pseudo DNS code Cflow (in-house code of 

Kawasaki heavy industries, Ltd.) to analyze the Gulfstream G550 geometry. The Cflow 

code solves three dimensional compressible N-S equations with seventh-order spatial 

discretization. The implicit time integration was performed with the time step size of 

5.9×10
-7

 second. The unstructured mesh consists of 36.7 million cells with 1.7 million 

surface grids, which was generated automatically in the solver. Steady surface pressures 

are compared with wind tunnel measurement data, showing differences around the flow 

separation regions.  The author suggested that the discrepancies could be the effect of 

grid reduction. Unsteady surface pressure at the probes are also compared with 

measurement in the form of PSD, showing a cut-off around 2-3 kHz. The mean velocity 

levels in the wake are under-predicted by 5m/s with general wake shape captured. The 

direct calculation of the far field noise has agreement with measurement up to 2 kHz, 

depicted in Fig. 2.9. The far field prediction using Curle’s acoustic analogy is extended 

to high frequencies with good accuracy, which suggests that sufficient grid resolution is 

obtained in the near field region. 

 



Wen Liu  Literature Review  

 33  

 

Figure 2.9: Far field noise comparisons of a 25% scale Gulfstream NLG using Cflow 

code [87]. 

 

 Vasta et al. [6] conducted aeroacoustic simulations on the Gulfstream G550 model 

using the NASA unstructured node-based flow solver FUN3D, which is second-order 

accurate in both space and time. A set of three successively finer unstructured grids 

comprised of approximately 9, 25, and 71 million nodes were generated using the 

VGRID grid generation software. A locally enriched 47 million cell grid was also 

produced with refinement in key areas. The computations were performed at M=0.166 

and a Reynolds number of 7.3×10
4
 based on the main strut diameter. Two different 

turbulence models HRLES (hybrid RANS/LES) and MDDES (modified Delayed 

Detached Eddy Simulation) were attempted in the simulations, which provided results 

with small differences. Significant improvement in time-averaged surface pressure and 

power spectral density comparisons with the experimental data is observed with grid 

refinement, shown in Fig. 2.10. The best PSD comparisons are obtained for the surface 

of the door, where a cut-off frequency of around 3 kHz is achieved. The spanwise time-

averaged vorticity contours are in good agreement with the PIV data, but the 2D TKE 

(turbulent kinetic energy) levels are over-predicted. The grid refinement has only a 

minor effect on these results. The far field noise calculation was attempted using FW-H 

predictions with solid surface data, see Fig. 2.11. In general, the predicted levels show a 

deep drop-off in SPL (sound pressure level). The drop-off frequency increases with the 

grid refinement, which improves the comparison with measured data for finer grids. 
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Figure 2.10: Effect of grid refinement on PSD of a NLG simulation using FUN3D [6]. 

 

 

Figure 2.11: Far field noise prediction using FUN3D with 71 million cells [6]. 

 

Four Wheel Landing Gears 

 

The simplified 31% scale Boeing 757 main landing gear model was numerically 

investigated by Hedges et al. [4] in 2002. The flow around the landing gear was 
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modeled as incompressible and at a Reynolds number, based on wheel diameter of 

6×10
5
. The computations were performed with the NTS code solving the 

incompressible N-S equations with fourth-order spatial schemes and second-order 

implicit time schemes. The time step size is 0.03, normalized with inflow velocity and 

wheel diameter. Both URANS and DES based on the same S-A turbulence model were 

attempted and compared to each other with a multi-block structured grid with 

approximately 2.5 million points. Comparison to Lazos’ experiments shows that the 

simulations predict the pressure over the surface of the wheels with reasonable accuracy 

considering the presence of bluff bodies and separated regions. Flow features and the 

surface pressure levels are all in good agreement. The computational simulation not 

only characterizes the mean flow features around landing gear model, but also 

investigates the instantaneous flow fields. The two time-averaged flow field are similar, 

though the DES shows more turbulence intensity overall. The instantaneous flow fields 

are however, very dissimilar. DES was suggested to be more promising for noise 

prediction, though no aeroacoustic simulations were conducted. 

 Souliez et al. [56] investigated the aerodynamic noise from Boeing 757 main 

landing gears using unstructured grids. Two geometric configurations were tested in 

order to assess the impact of two lateral struts on the sound level and directivity in the 

far field. The first baseline grid uses 880k unstructured volume cells and the second 

more complex grid with additional struts uses 1.2 million unstructured cells, both of 

which were generated using Gridgen [85]. In this study the compressible N-S equations 

were solved with the finite volume, Runge-Kutta time-marching code PUMA (Parallel 

Unstructured Maritime Aerodynamics) with no RANS or LES model. The free stream 

Mach number is 0.2, and the Reynolds number is 1.23×10
6
 based on the wheel 

diameter. The time step for the first grid is 0.86×10
-8

 second, and 1.9×10
-8

 second for 

the second grid. The aerodynamic noise was computed with the FW-H integrals using 

both the solid surface and a permeable surface away from the landing gear. Excellent 

agreement was obtained in the near field between permeable FW-H surface predictions 

and the CFD results, which indicates that the volume sources cannot be ignored in the 

near field. For the far field noise the difference between two FW-H solutions decreases 

as observing distance increases, which suggests that volume sources are of short range. 

No comparisons with experimental data were made in this study. 

Li et al. [88] performed URANS computations for a relatively complex Boeing 

757 main landing gear assembly. It consists of four wheels, two diagonal struts, an oleo-
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strut, a side-door attached to the oleo, yokes/pin and other structures that join the system 

together. A flat plate is attached to the top-end of the oleo and struts, which is meant to 

represent the aircraft wing. Li’s work was aimed at understanding the flow field 

associated with a representative MLG configuration, therefore attempted no 

aeroacoustic computations. The flow solver is CFL3D developed at NASA, employing 

the two equation k-ω turbulence model. The flow conditions are identical to those used 

in Souliez’s simulations [56]. The time step is 0.01, normalized with sound speed and 

the wheel diameter. The constructed grid consists of 155 blocks with a total of 13.3 

million grid points. The unsteady flow structures, such as flow separations, vortices 

shedding off the bluff bodies, and flow-surface interactions, were studied and compared 

to the experiment results obtained by Lazos. Results show an asymmetrical flow caused 

by the asymmetry of the geometry with only one side having diagonal struts, and a 

strong interaction mechanism between components on the landing gear. 

Lockard and Khorrami [13, 89] undertook consecutive computational simulations 

and investigated the contribution of each gear component to overall landing gear noise 

using a 10% simplified main landing gear model in 2003 and 2004. The model 

geometry and the flow solver are those in CFD simulation performed by Li et al. [88]. 

The reference length scale is the gear wheel diameter (0.09398 m), and the free-stream 

Mach number is 0.2. The Reynolds number based on the wheel diameter is 1.23×10
6
. 

URANS equations were solved using structured grids consisting of 155 blocks 

possessing a total of 1.8 million grid points in 2003’s simulation, while the later 

calculation increased the resolution to a higher level of 13.3 million grid points. The 

FW-H equation was solved to predict the noise at far field observer locations. Noise 

predictions using the permeable surfaces appeared to be contaminated by errors by large 

wake fluctuations passing through the surfaces [57]. However, solid surface FW-H 

solutions are in good agreement with the near field CFD solutions giving confidence in 

the far field results. It is believed that bluff body separation and the formation of vortex 

structures are often responsible for the strong fluctuations. Vortex shedding off various 

components is expected to be a primary source of noise for landing gears. 

 A four-wheel “rudimentary” landing gear was introduced by Spalart et al. [90], 

with relatively simple and manageable geometry for current numerical simulations. 

Detached-Eddy Simulations (DES) was performed using up to 18 million points in the 

high-order NTS code. The grids contain 14 structured blocks of 10 million cells in the 

wind tunnel section and 16 structured blocks of 18 million cells in free air. The non-
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dimensional time step is 5×10
-3

. Far field noise predictions were performed by coupling 

the DES and a FW-H calculation. The results include force, wall pressure, and noise 

spectra. The wall pressure signals in wind tunnel simulation and free air simulation are 

quite similar, suggesting that the existence of wind tunnel wall has slight effect on the 

flow. In the absence of the noise experimental data, the attention was focused on the 

internal quality check, in particular by varying the permeable FW-H surface (e.g. using 

solid surface, or open permeable surface). It was found that the difference ranges from 4 

to 7 dB in SPL between solid and permeable surfaces, which might be due to the 

neglection of quadruple sources enclosed in the permeable surface. However, the 

interfaces inside the permeable FW-H surface have significant changes in grid spacing, 

and could result in numerical errors in far field noise predictions. Khorrami and Lockard 

[91] also found the grid block interface induced errors in their FW-H predictions.  

 Dobrzynski et al. [92] conducted computations on CAD models of both A340 

nose landing gear and main landing gear, to design low noise landing gear 

configurations for future aircraft. The Reynolds number for these computations is 

1.25×10
6
 with a Mach number of 0.2. The commercial software package Centaur [93] 

was applied for hybrid grid generation. In the hybrid grid, a number of 20 prism layers 

are assigned to simulate the boundary layer with first spacing of 0.1. For the NLG a 

total of 270k and for the MLG a total of 390k surface grid points are used. The 

corresponding numbers of volume cells are about 4 million and 8 million, respectively. 

The computations were performed with the finite volume CFD code Tau (developed by 

German aerospace center DLR), to solve the Reynolds-averaged Navier-Stokes 

equations using S-A turbulence model. The computational design was performed in an 

iterative process until the critical areas of high speed turbulent flow interaction with 

downstream gear components was eliminated. Because of the limited number of gird 

points, the direct comparison between CFD results and experimental data is impossible. 

The calculated local flow data were used in a semi-empirical prediction model [81] to 

estimate the noise radiations. The noise model indicated that the reductions of -6.5 dB 

for the NLG and -5.7 dB for the MLG would be achieved for the optimized designs. 

 

Summary of Landing Gear Simulations 

 

Previous researches in the aeroacoustic computations of landing gear geometry show 

that finite volume methods were widely attempted to cope with the complex landing 
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gear geometries, and required large amount of unstructured grid points to obtain 

reasonable acoustic results. The current knowledge from aerodynamic and aeroacoustic 

calculations show that separated flows around complex geometries and flow-surface 

interactions could be the potential noise sources. Thus, accurate unsteady solutions 

preserving more flow details are required to obtain reliable noise results. URANS is 

commonly used in many researches, but DES (and DDES) seems to be able to provide 

more accurate instantaneous flow perturbations. Far field noise prediction using the 

solid surface sources shows good results. The permeable surface FW-H solution is not 

always reasonable due to the interference of strong waves. Summaries of computational 

studies on two wheel and four wheel landing gear geometries are listed in Table 2.1 and 

2.2. 

 

Table 2.1: Summery of computational studies on two wheel landing gear geometries. 

Authors Geometry Mesh Flow solver Acoustics Validation 

Imamura et 

al. [84] 
40% scale LEG 

Unstructured 

up to 10.2M 
J-TAS RANS(S-A) None JAXA WT 

Imamura et 

al. [84] 

40% scale 

simplified LEG 

Structured 

26M 
UPACS LES FW-H JAXA WT 

Van de Ven 

et al. [5] 

25% scale 

Gulfstream G550  

Unstructured 

58M 

STA-CCM+ 

DDES(k-ω SST) 

Surface 

pressure PSD 

BART & 

UFAFF WT 

Dethuioux 

et al. [86] 

25% scale 

Gulfstream G550 
Voxels 52.4M 

PowerFLOW 

DDES(RNG k-ω) 

Surface 

pressure PSD 

& FWH 

BART & 

UFAFF WT 

Ueno et al. 

[87] 

25% scale 

Gulfstream G550 

Unstructured 

36.7M 

Cflow  

Pseudo DNS 

Surface 

pressure PSD 

& Curle’s 

BART & 

UFAFF WT 

Vasta et al. 

[6] 

25% scale 

Gulfstream G550 

Unstructured 

up to 71M 

FUN3D  

HRLES/MDDES 

Surface 

pressure PSD 

& FWH 

BART & 

UFAFF WT 

 

Table 2.2: Summery of computational studies on four wheel landing gear geometries. 

Authors Geometry Mesh Flow solver Acoustics Validation 

Hedges et 

al. [4] 

Simplified 31% 

scale B757 MLG 

Structured 

2.5M 

NTS code URANS 

(S-A)&DES (S-A) 
None BART WT 

Souliez et 

al. [56] 
Boeing757 MLG 

Unstructured 

up to 1.2M 
PUMA FW-H None 

Li et al.[88] 
10% Boeing 757 

MLG  

Structured 

13.3M 

CFL3D  

URANS (k-ω) 
None BART WT 
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Lockard et 

al. [13, 89] 

10% Boeing 757 

MLG 

Structured 

1.8M &13.3M 

CFL3D  

URANS (k-ω) 
FW-H BART WT 

Spalart et 

al. [90] 

Rudimentary 

MLG 

Structured 

18M 

NTS code 

DES 
FW-H  None 

Dobrzynski 

et al. [92] 

A340 

NLG&MLG 

Hybrid 

4M&8M 

DLR Tau  

RANS(S-A) 
None DNW WT 

 

2.3.7. Landing Gear Noise Reduction Strategy 

 

The knowledge from various wind tunnel experiments suggests that noise reduction 

could be achieved by either reducing the number and complexity of components 

exposed to the incoming flow or avoiding the wake-body interaction with downstream 

components. The development of noise reduction concepts distinguishes between the 

application to existing landing gears and future new gear architectures. In the first case, 

only add-on fairings could be used to cover complex gear structures, while in the second 

case the landing gear structures could be optimized for low aerodynamic noise 

generation.  

 Streamlined add-on fairings have been extensively tested to protect complex gear 

elements from high speed inflow in numerous wind tunnel experiments [94]. Examples 

of such add-on fairings are depicted in Fig. 2.12.  
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Figure 2.12: Examples of landing gear add-on fairings [1]. 

 

  The under-tray fairings were designed for A340 landing gears to cover the bogie 

area from the flow. Wind tunnel tests indicated a noise reduction potential in the order 

of 3dBA for such kinds of fairings, and Flight tests achieved a 2EPNdB (effective 

perceived noise level) reduction. Similar approach was followed by NASA and Boeing 

with toboggan for the six-wheel Boeing 777 MLG [95]. Add-on fairings can also an 

adverse effect, which is a noise increase due to the flow alterations enforced by the 

fairings and the corresponding increase in the local impinging velocity to the 

downstream gear components. To overcome this problem, the next generation of 

fairings was manufactured with flow transparent materials, such as meshes or elastic 

cloth [68, 96, 97]. 

 The design of low noise landing gear can be supported by the use of empirical 

noise prediction models as well as numerical simulations. Three-dimensional flow field 

calculations help to identify and potentially avoid local flow separations and the 

impingement of high speed flow onto critical gear structure components. Such a low 

noise design was studied in the European project Significantly Lower Community 

Exposure to Aircraft Noise (SILNCER) [92]. For the NLG the major improvements are 

related to a deployable spoiler to protect the upper gear leg from high speed inflow, and 

the inverted steering mechanism which hides complex steering systems from the flow, 
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shown in Fig. 2.13(a). The low noise MLG, depicted in Fig. 2.13(b), has new designs of 

side-stay and leg door with aerodynamic considerations. The brakes are protected from 

high speed inflow and the bogie is aligned with the inflow direction. Subsequent wind 

tunnel tests revealed a noise reduction potential in the order of up to 7 dBA in the mid 

frequency range for the advanced gear design. 

 

 

Figure 2.13: Advanced low noise A340 landing gear design of a) NLG; b) MLG. 

 

 Flow control is the last member in the development chain toward low noise 

landing gears. It might be used to locally reduce flow separation and unsteady wake 

shedding off single struts. There are both passive control methods (e.g., splitter plates, 

truncation of cylinders) [98, 99] and active methods such as blowing and plasma 

actuation [100, 101]. The low noise gear design has to take some important constraints 

into account, regarding flight operation, safety, and cost.  For example, active control 

technologies inherently increase the system complexity in operation and cost. Therefore, 

the noise benefits from active control must be verified before a practical application on 

an aircraft.  

a) b) 
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Chapter 3               

Numerical Methods 

 

3.1. Introduction 

 

SotonCAA is a Fortran-based code package providing numerical solutions to general 

CFD/CAA problems, and is capable of dealing with complex geometries using multi-

block structured grids. A feature of SotonCAA is the embedded high-order high 

resolution numerical schemes [34, 35]. Because of this, it is able to directly calculate the 

sound field characteristics in the near field with high accuracy. Furthermore, it is 

capable of solving different fluid governing equations such as Navier-Stokes equations 

(DES and URANS), linearized Euler’s equation, and acoustic perturbation equations. 

The code structure is based on a series of modules, in order to maximize the 

maintainability and expansion possibilities. A benefit of this structure is the 

convenience to implement new schemes to the rest of the code, which can evolve easily 

over time. The disadvantage of this is that the code has grown rather complex with 

increasing number of subroutines. 

Prefactored, compact finite-difference scheme (6th-order) proposed by Hixon [34] 

is employed in the code package and optimized by Ashcroft, et al. [35] in preference to 

improve dispersion characteristics. Finite difference filtering schemes are optional with 

2nd-order, 6th-order and 10th-order central schemes coupled with biased boundary 

schemes of reduced order. Time integration, uses a low storage, low dispersion and 

dissipation Runge-Kutta (LDDRK) [37] scheme which is 4th-order accurate 4-6 stage 

explicit scheme. An implicit 2nd-order time-accurate LU-SGS method [102] has been 

introduced into SotonCAA by Ma, et al. [103]. There are several selectable non-

reflecting boundary conditions implemented in SotonCAA in order to perform acoustic 

calculations. As mentioned before, buffer zone schemes are preferred due to its 

excellent performance with non-linear flows and the easy way of implementation. In 

SotonCAA, structured grids are required for use of numerical calculations with high-

order accurate solutions. In order to improve the numerical stability in multi-block 
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junctions, we implement a characteristic interface condition proposed by Kim and Lee 

[104]. Turbulence models are selectable and treated in a modular manner so that 

additional models are easy to be added on. At the moment, SotonCAA turbulence 

treatments include URANS (with S-A) [9], Large Eddy Simulation (LES) [110], and 

Detached Eddy Simulation (DES) [4]. 

For aeroacoustic calculations, a time domain radiation model is employed in 

SotonCAA package to determine the far field sound properties.  In support of 

aeroacoustic simulations, the polynomial interpolation code ‘CFDtoFWH’ is developed 

to transform CFD flow information to acoustic sources on the user defined integration 

surface. The raw data output from CFD calculation are treated with appropriate 

coordinate translation before being stored for the aeroacoustics solver. The far field 

observer positions and the shape of the integration surface are determined independently 

without interfering with both solvers. 

Initial numerical parameters required for CFD/CAA calculation must be specified 

through ‘input file’, ‘grid file’ and ‘parameters file’. The input file specifies flow 

conditions of the simulation and boundary condition specifications for each block. The 

grid file contains the grid-point coordinate information generated by the commercial 

grid generating software, e.g. Gridgen [85]. The parameter file contains user defined 

parameters such as turbulence options and output format options. The code is portable 

across all platforms with Fortran 90 and MPI installed, including windows and UNIX 

machines. The output can be displayed via both text files and commercial software such 

as Tecplot [106].  

In the following sections, details of the numerical implementations used in the 

research are presented. Section 3.2 describes the governing equations in the noise 

generating flow field. Difference schemes are introduced in section 3.3, 3.4, and 3.5. 

DES turbulence model is presented in section 3.6, and grid generation issues can be 

found in section 3.7. Boundary related problems are discussed in section 3.8 and 3.9. 

Parallel computing strategy is presented in section 3.10. Section 3.11 explains the 

radiation model that is implemented to calculate the acoustic field, followed by the 

summary of the numerical methods in section 3.12.                                                     
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3.2. Governing Equations 

 

The three-dimensional conservative form Reynolds averaged Navier-Stokes equations 

are solved in SotonCAA, which is represented in Cartesian coordinates as 
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where the conservative variables and the inviscid flux vectors are given below 
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and SV is a source term that consists of the viscous flux derivatives 
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where the viscous flux vectors, the stress tensor components, and the heat fluxes are 

given as 
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The total energy per unit mass is defined as  
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For practical CFD/CAA with finite difference schemes, the partial differential equations 

are solved in the transformed domains with generalized coordinates, which is given as 
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where the caret indicates the transformed properties. The vectors of the conservative 

variables in the generalized coordinates can be represented as 
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J

GFE
G
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In Eq. (3.7) the transformation Jacobian and the grid matrices are given by 
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3.3. Spatial Discretization 

 

The finite-difference approach is employed in the spatial discretization of the governing 

equations. This choice is motivated by the relative ease of formal extension to higher-

order accuracy, low operation count and general flexibility. Following Lele [32], a 

general compact approximation to the first spatial derivative (∂f /∂x) may be written in 

the form 
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where Di is the spatial derivative of the function f. The relations between the 

coefficients a, b, c, α and β are derived by matching the Taylor series of various orders. 

The first unmatched coefficient determines the formal truncation error of the 

approximation. These relations are 
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)2(
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232 888 βα +=++ cba  (Tenth order).    (3.11) 

 

Only the eighth-order tri-diagonal (β = 0) and the tenth-order pentadiagonal (β ≠ 0) 

schemes have unique coefficients. The other lower-order schemes have free coefficients 

that are not determined until more constraints are imposed or the stencil size is reduced. 

Both Hixon’s [34] and Ashcroft’s [35] compact schemes consider only tri-diagonal 

systems (β = 0). One example of this type of compact scheme with 6th-order accuracy 

can be written as  
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The numerical wave-number of the generic compact derivative defined in Eq. (3.10) is 

determined by using Fourier analysis. The Fourier transform and its inverse are related 

by  
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Taking the Fourier transform of both sides of Eq. (3.10), we find 
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Comparing the two sides of the above equation it is clear that  
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which is the numerical wave-number of the Fourier transformation of the compact finite 

difference scheme. The numerical wave-number is purely real, which is a property of 

the non-dissipative central schemes. It can also be observed that the numerical wave-

number provides a good approximation of the actual wave-number only over a limited 

portion of the wave-number spectrum. This can be shown in Fig. 3.1 as an example of 

the dispersive characteristics of a 6th-order compact scheme. 

 

 

Figure 3.1: Dispersive characteristics of a 6th-order compact scheme. 

 

The discretization schemes can be optimized by sacrificing formal order of accuracy to 

provide significantly better wave propagation characteristics in the high wave-number 

range. Ashcroft adopted the optimization strategy proposed by Kim and Lee [107] based 

on the Lagrange multipliers to minimize the difference between numerical wave-

number and actual wave-number, subject to a certain accuracy constraint. The 

integrated error is defined as: 
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where the parameters α and β correspond to those defined in Eq. (3.10), and r is a factor 

to determine the optimization range (0 < r < 1). The conditions for Err to be minimal 

are  
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where η1 = a, η2 = b, η3 = c, η4 = α and η5 = β, again correspond to the coefficients of 

the basic stencil as defined by Eq. (3.10). When combined with Eq. (3.11) to maintain at 

least 4th-order accuracy, we obtain a system of linear algebraic equations by which the 

optimal coefficients may be obtained. Given an optimized scheme, the maximum 

resolvable wave-number can be defined as xc ∆′κ , using some criterion such as 

005.0|)0.1)(/)((| <−∆∆′ xdxd c κκ . The resolution of the spatial discretization schemes 

is also represented by the points-per-wavelength (PPW), which is computed 

as xc ∆′κπ /2 . 

The compact schemes may adopt a prefactorization method proposed by Hixon 

[34] to reduce a non-dissipative central-difference stencil to two low-order biased 

stencils which have simpler matrices. The advantages of these prefactored schemes over 

traditional compact schemes arise from their reduced stencil size and the independent 

nature of the factored matrices. It is well known that a major difficulty in dealing with 

high-order finite-difference schemes is the formulation of stable stencils near 

boundaries. By reducing the stencil size of the compact schemes the prefactorization 

method reduces the required number of boundary stencils thereby simplifying boundary 

specifications. The prefactored schemes also make boundary condition implementation 

much more straightforward than the standard schemes [33]. 

Define the forward and backward operators Di
F
 and Di

B
, then the derivative can be 

evaluated as 
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The generic stencils for the forward and backward derivative operators are then defined 

by 
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where the coefficients must be chosen such that when the two biased stencils are added, 

the original central compact schemes is recovered. 

The numerical wave-numbers of the generic forward and backward operators may 

be determined in the same way presented in Eq. (3.14). The real and imaginary 

components of the numerical wave-numbers are given by 
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To recover the original central compact scheme when the biased operators are added, 

the coefficients of the forward and backward are chosen such that the imaginary 

components of the numerical wave-numbers of the forward and backward stencils are 

equal and opposite, and the real components are equal and identical to the numerical 
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wave-number of the original scheme [108]. Therefore, the coefficients should follow the 

restrictions as 

 

FB ββ = , 
FB αγ = , 

FB ea −= , 
FB db −= , 

FB cc −= , 
FB bd −= , 

FB ae −= . (3.21) 

 

In this thesis the optimized compact scheme (4th-order) of Ashcroft is employed to 

evaluate the spatial derivatives. The coefficients are given in Table 3.1. It can be 

observed that in relation to the original centered scheme the stencil has been reduced 

from five points to three points, and the original tri-diagonal matrix has been replaced 

by two independent bi-diagonal matrices. 

 

Table 3.1: The coefficients of the 4th-order compact scheme.  

 4th-order scheme 

αF 0.29749586350149729 

βF 0.71518963303413346 

aF 0.0 

bF 0.87203153537225117 

cF -0.73137757420887159 

dF -0.14065396116337958 

eF 0.0 

 

For a domain consisting of N points, the three-point, fourth-order scheme can be applied 

from j = 2 to N – 1. At and near the domain boundaries it is necessary to employ 

additional expressions. The biased explicit stencils have therefore been developed at the 

boundary. The biased derivative operators for use with the three-point, fourth-order 

scheme are 

 

∑
=∆

=
4

1

1

1

j

jj

B fs
x

D , ∑
−=∆

=
N

Nj

jj

B

N fe
x

D
3

1
,    (3.22) 

 

and   ∑
=

−+−
∆

=
4

1

11

1

j

jjN

F fe
x

D , ∑
−=

−+−
∆

=
N

Nj

jjN

F

N fs
x

D
3

1

1
,            (3.23) 

 



Wen Liu  Numerical Methods  

 52  

where the coefficients sj and ej  have been determined by matching the Taylor series of 

the forward and backward compact interior stencils to third-order accuracy. The 

numerical values of the coefficients are listed in Table 3.2. 

 

Table 3.2: The coefficients of 4th-order compact scheme at the boundary. 

 4th-order scheme 

s1 -1.968010730879214299 

s2 3.336693493864702415 

s3 -1.769354795091761932 

s4 0.400672032106273816 

eN 1.69865593578745236 

eN-1 -2.66330650613529758 

eN-2 1.23064520490823806 

eN-3 -0.26599463456039285 

 

In computations, interior boundaries exist where the flow data are known on both sides 

of the boundary such as block interface boundary. Along internal boundaries the 

following eleven point central schemes are employed 
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where the coefficients bj (b-j = − bj) are as listed in Table 3.3. These coefficients have 

been determined by matching the Taylor series expansions of the forward and backward 

interior stencils to fourth-order and using the remaining free coefficients to more closely 

match the dispersion characteristics. 

 

Table 3.3: The coefficients of 4th-order compact scheme at the interior boundary. 

 4th-order scheme 

b0 -0.21013712054967647 

b1 0.96979343766394390 

b2 -0.27390976718640895 

b3 0.07031776392683924 

b4 -0.01184575620106222 

b5 0.00083442741566041 
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The numerical stability and eigenvalue analysis of this optimized compact scheme can 

be fully reviewed in [35].  

 

3.4. Time Marching Methods 

 

In SotonCAA, a low dispersion and dissipation Runge Kutta (LDDRK) is implemented, 

which is 4th-order accurate for linear problems and 2nd-order accurate for non-linear 

problems, consisting of two storage level marching cycle (4-6 LDDRK) [37]. This is an 

optimized two-step alternating scheme, in which different coefficients are employed at 

the alternating steps. The scheme uses four stages in the first time step and six stages in 

the second step of the cycle. If the semi-discretized governing equations are written as 

 

)ˆ()ˆˆˆ(
Re

)ˆˆˆ(
ˆ

QRHDGDFD
M

HDGDFD
dt

Qd
VVV =+++++−= ∞

ζηξζηξ ,  (3.25) 

 

where Dξ , Dη and Dζ denotes the spatial derivative operators, each step in the cycle may 

be written as 

 

∑
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N

i

ii

nn KsQQ
1

1 ˆˆ ,      (3.26) 

 

where )ˆ(
1

1

∑
−

=

+∆=
i

j

jij

n

i KQtRK ϕ , i = 1, 2, …, N. 

Here N denotes the number of stages in each step, si and ϕij are the coefficients of 

the particular step. The superscript n indicates time level. Integration from time level n 

to level n + 2 is accomplished by first using the four stages schemes to integrate from 

time level n to n + 1, and then six stages schemes to integrate from time level n + 1 to n 

+ 2. Two-step schemes permit a greater degree of optimization for wave propagation. In 

this way the dissipation and dispersion errors are further reduced than those through 

optimization of either of the individual single steps.  

To improve the computation efficiency, the two-step alternating scheme is 

implemented in a low storage format. Each of the steps in the alternating scheme is 

evaluated by computing 
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)ˆ( 1−+∆= ii

n

i KQtRK ϕ ,     (3.27) 

 

for i = 1, 2, …, N (with 01 =ϕ ), and then evaluating 
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.       (3.28) 

 

This implementation requires three levels of data storage, instead of four levels in the 

classical fourth-order Runge-Kutta scheme. 

In order to overcome the CFL limit of explicit schemes, an implicit lower-upper 

approximate factorization algorithm is developed. A pseudo-time technique is 

introduced into this scheme as well as a Newton-like subiteration, which is performed to 

obtain the convergence of the calculations at each physical time step before progressing 

to the next time step [109]. The original governing equations can be written as 
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It then can be represented in the form of notations as follows [40, 102] 
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where Dξ , Dη and Dζ  represents the space differences in the generalized coordinates. 

To achieve 2nd-order accuracy, subiterations are used to reduce the error due to 

factorization, linearization and explicit implement of boundary conditions. 
m

Q̂ is the m 

subiteration to approximate 
1ˆ +n

Q  and 
mmm

QQQ ˆˆˆ 1 −=∆ +
. At time level n, the solution is 
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advanced from m = 1 and
nm

QQ ˆˆ = . Three to five subiterations per time step are suitable 

for flow calculation [23, 110]. 

In Eq. (3.30), 
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and |)max(| ˆˆ AA
r λ=  , |)max(| ˆˆ BB

r λ= , |)max(| ˆˆ CC
r λ=  where 

Â
λ ,

B̂
λ , and 

Ĉ
λ are the 

eigenvalues of flux Jacobian matrices. The flux Jacobians are calculated from their 

Cartesian counterparts by 
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3.5. Filtering Technique 

 

When nonlinear problems are computed, the wave-number content of the solution 

changes as the flow evolves. A classic example of this is a wave steepening into a 

shock. As this flow phenomenon occurs, it drives the wave-number content of the 

solution out of the resolvable range of the numerical scheme. These irresolvable waves 

will travel at the wrong speed, and even in the wrong direction. To combat this, artificial 

selective damping model is used to selectively damp or remove the high wave-number 

components of the numerical solution [111].  The artificial selective damping model 

introduced by Tam et al. [112] basically inserts an artificial damping term Di to the 

right-hand side of the finite difference equations. It is constructed in the seven-point 

stencil, and can be written as 

 

∑
−=

+
∆

−=
3

3
2

)( m

mim
a

i Qa
x

v
D ,      (3.35) 

 

where va is the variable artificial viscosity to adjust the magnitude of damping and am 

are the damping coefficients which are determined by the Fourier analysis in the wave-

number domain. By choosing the coefficients properly, it is possible to control the 

damping only in the high wave-number range. In this work, a revised formulation of the 

artificial selective damping term in a conservative form proposed by Kim et al. [113] is 



Wen Liu  Numerical Methods  

 57  

implemented. The selective damping term is changed into a form of difference between 

two split damping flux terms as 

 

xddD iii ∆−= −+ /)( 2/12/1 ,     (3.36) 

 

where the damping flux vector di+1/2 is given as 
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+++ =
3

2

2/12/1

m

mimii QbCd ,     (3.37) 

 

and Ci+1/2 is a controlling function of dissipation magnitude at the interface of adjacent 

two cells. The damping coefficients bm are determined by matching the coefficients am 

in Eq. (2.35). In the final formulation, the second-order derivative term in the nonlinear 

artificial dissipation model [114] is combined to the damping flux to improve the 

resolution of discontinuity and enhance the numerical stability near the shock wave 

[113]. 

In practical CFD/CAA simulations, unexpected numerical errors are inevitable 

and might originate from many ways: mesh non-uniformity, abrupt slope changes 

between multiple blocks, nonlinear flow features, boundary conditions or even poorly 

specified initial conditions. Although these errors are normally very small, they could 

deteriorate progressively and cause severe problems. To overcome these difficulties, 

filtering technique is incorporated to smooth all the abnormal deleterious perturbations. 

If a component of the solution vector is denoted by if  , filtered value if̂  is obtained by 

general central explicit filtering scheme 

 

∑
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+=

mj

mj

jiji ff αˆ ,      (3.38) 

 

where 2m + 1 points stencil is selected of highest order 2m in accuracy. With a proper 

choice of the coefficients, the order and spectral resolution of the filter can be 

determined. Table 3.4 gives a group of coefficients of 6th-order central difference 

filtering scheme with seven-point stencil, which is used in the turbulence equation. 
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Table 3.4: The coefficients of the 6th-order central difference filtering scheme. 

α-3 0.015625 

α-2 -0.09375 

α-1 0.234375 

α0 0.6875 

α1 0.234375 

α2 -0.09375 

α3 0.015625 

 

The 6th-order central difference formula is not possible for use at and close to boundary 

points, where biased filtering schemes are used with the order of accuracy gradually 

reduced. In current research, the filtering accuracy is reduced to 3rd-order at the 

boundary points, see table 3.5. 

 

Table 3.5: Biased filter schemes at the boundary. 

Biased filter Accuracy 

8))(3(ˆ
324111 ffffff −−−−=  3rd-order 

32)612103(ˆ
5432122 fffffff −+−+−−=  4th-order 

56)61519123(ˆ
65432133 ffffffff −+−+−−=  5th-order 

56)61519123(ˆ
5432122 −−−−−−− −+−+−−= iiiiiiii ffffffff  5th-order 

32)612103(ˆ
432111 −−−−−− −+−+−−= iiiiiii fffffff  4th-order 

8))(3(ˆ
213 −−− −−−−= iiiiii ffffff  3rd-order 

 

All the central and biased filters are performed in all generalized directions to conserved 

variables every time step. 

 

3.6. Turbulence Models 

 

In current research, the S-A [9] one equation model is implemented by solving a single 

partial differential transport equation for a working variable related to the turbulence 

viscosity. 
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The terms on the RHS of Eq. (3.39) represent production, gradient diffusion and the 

wall destruction of the turbulent kinematic viscosity respectively. The production is 

defined as 
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The destruction is defined as 
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For numerical stability reasons, some limits are added in the implementation 
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Finally the eddy viscosity is obtained by  

 

νρµ υ
~

1ft = .       (3.47) 

 

The empirical constants are given by 
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Spalart et al. extended this one-equation model so that it yielded a conventional eddy 

viscosity near the wall-bounded regions but switched to a pseudo LES model that is 

proportional to the grid spacing ∆ away from the wall. The destruction term now is 

written as 
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ρ= .     (3.49) 

 

In the S-A model d is the distance to the nearest wall. In DES, d is replaced with d
~

, 

which is defined by 

 

),min(
~

∆= DESCdd , with 65.0=DESC  and ),,max( zyx ∆∆∆=∆ .  (3.50) 

 

where ∆x, ∆y, ∆z denote the grid spacing in different directions. Defining ∆ = max(∆x, 

∆y, ∆z) ensures RANS behaviour in boundary layers as d << ∆. 

 

3.7. Grid Generation 

 

The requirement for structured grid topology of high-order finite difference schemes 

makes the grid generation the most challenging task, especially for some complicated 

cases with considerably irregular geometries. Sharp angled cells and high stretching 

ratio grids must be avoided in order to maintain the continuity of the calculated values 

along the stencil line. The control of the amount of total grid points would be another 

inevitable issue for CFD/CAA. More detailed mesh structure captures more flow and 

acoustic details, and thus improves the calculation results. However, more grid points 

demand high level of computing ability, which could be extremely expensive or even 

impossible. As for the unsteady flow, mesh must be built sufficiently fine in the vicinity 

of solid boundary to capture as much unsteady characteristics as possible. The sub-layer 
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scaled distance y
+
 can be considered as a useful guiding value for quality of grid 

generation. y
+
, the non-dimensional wall distance for a wall bounded flow, is defined as 

 

υ

yu
y *≡+ .      (3.51) 

 

where u* is the friction velocity at the nearest wall, y is the distance to the nearest wall 

and υ is the local kinematical viscosity of the fluid. Typically, in the DES simulation, a 

good mesh should have y
+
 value in the order of unity. 

 

3.8. Radiation Boundary Conditions 

 

In current research, buffer zone boundary condition is used for outer boundary 

initialization and updating. The buffer zone is demonstrated in Fig. 3.2.  

 

Figure 3.2: A demonstration of the buffer zone. 

 

The computational grid is extended to create an extra domain, buffer zone, surrounding 

the main computational domain, and in the buffer zone the solution vector is explicitly 

damped after each time step using  
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where Q 
n+1

 is the solution vector after each time step and Qtarget is the expected value in 

the buffer zone. The damping coefficient σ varies smoothly according to the damping 

Computational domain Buffer zone block 

Inner boundary 

Buffer width 

Outer boundary 
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function σ(x), where L is the width of the buffer zone, xb is the distance measured from 

the inner boundary of the buffer zone, and σmax, β are coefficients which determine the 

shape of the damping function. In the present study, σmax = 1.0 and β = 2.5 are used with 

a total number of 15 grid points employed in the buffer zone. 

 

3.9. Interface Boundary Conditions 

 

A structured grid usually has difficulties in solving finite difference equations at 

interface surfaces/lines, since the grid matrices are discontinuous along the interface 

where abrupt changes in the slope of a grid line may happen. Though the discontinuity 

can be avoided for very simple geometry by generating smooth mesh across multiple 

blocks, it is impossible for complex geometries such as landing gears. Conventionally, 

the grid matrices at the interface are often approximated to single values by averaging 

the left- and right-hand limits. This certainly introduces numerical errors, which cannot 

be well suppressed by high-order high-resolution finite difference schemes. A multiple 

block computing technique with characteristic interface conditions is developed to 

overcome these difficulties [104].The computational domain is decomposed into blocks 

along the interface lines, where the left and right blocks have the one-sided limits of the 

grid matrices treated separately, demonstrated in Fig. 3.3. High-order finite difference 

schemes are used in each block, which employ central differences on the interior nodes 

and one-sided differences on the near-boundary nodes. The differencing stencils do not 

cross the block interfaces. The isolated blocks then communicate with each other 

through characteristic waves transporting normal to the interface boundary.   
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Figure 3.3: Decomposing a computational domain into isolated blocks. 

 

The generalized governing equation Eq. (3.6) can be transformed into a 

characteristic form in the direction normal to the interface where for example ξ keeps a 

constant. The resulting equation can be derived using Eq. (3.7) as 
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The source term SC in Eq. (3.53) is given by  
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The corresponding convection speeds in Eq. (3.53) are expressed as 
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where 
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The matrix 1−P  that transforms the conservative variables into the characteristic 

variables is given as 
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where xl
v

, yl
v

and zl
v

are the unit vectors in the x, y and z directions, respectively, and ξl
v

 is 

the unit normal vector defined by 
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Eq. (3.53) represents the physical waves with different convection speeds in the 

direction normal to the interface, in which wave direction can be determined by the sign 

of the convection speeds. Incoming waves calculated within an isolated block is 

inaccurate because of loss of the information outside the block. Therefore, incoming 

waves of one block should be corrected by the outgoing waves of the other adjacent 

block through the interface conditions. The strict interface condition is that the primitive 

variables on the left and the right side of the interface must be matched regardless of 

time. That is equivalent to  
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Let 
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L ,       (3.61) 

 

then the interface conditions can be expressed by the convection and source term as 

 

R

C

RL

C

L
SLSL −=− .     (3.62) 

 

Finally, after the corrections with interface conditions, the primitive variables on the 

interface need to be refined by averaging the left- and right-hand values, which is 

dealing with the round off errors on separate blocks.  

 

3.10. Parallel Implementation 

 

SotonCAA has been written in FORTRAN using the Messenger Passing Interface 

(MPI) libraries for parallel execution on the distributed computing memories. 

Parallelization of the code is accomplished in a domain decomposition approach in 
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which the blocks of the computational domain are divided among the processors. A 

schematic representation of the parallel multi-block implementation is shown in Fig. 

3.4. The figure depicts a domain composed of four blocks, split on to three processors. 

Memory is allocated for each block only on the processor to which it has been assigned. 

Along inter-block boundaries halo regions of ghost cells are defined to facilitate the data 

transfer between blocks. If the adjacent blocks are located on the same processor (e.g. 

block 2 and 3), the exchange of data along the boundary is accomplished by simply 

accessing the appropriate local memory. However, if the adjacent blocks are allocated 

on separate processors, then the exchange of data is accomplished using MPI. 

 

 

Figure 3.4: Schematic representation of inter-block communication. 

 

3.11. Radiation Model 

 

To resolve the acoustic field in the far field an integral technique, based on the Ffowcs 

Williams and Hawkings equation (FW-H) [17], has been implemented. The FW-H 

equation is an exact rearrangement of the Navier-Stokes equations and is appropriate for 

computing the acoustic field when solid boundaries play a direct role in the generation 

of sound. The solution of the FW-H equation is obtained in terms of volume and surface 

integrals and may be used to predict the far-filed acoustic signal based solely on near 

field data. The FW-H method has typically been applied by having the integration 

surface coincide with solid boundaries, but the method is still applicable when the 
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surface is off the body and permeable. Thus, unlike the Kirchhoff method [115], the 

FW-H equation is valid even if the integration surface lies in the non-linear region. This 

flexibility, coupled with the fact that the solution is often well approximated by the 

surface integrals alone, makes the FW-H method an attractive technique for predicting 

the far field acoustic signal. In the following, a derivation of the FW-H equation, as 

employed in the acoustic propagation code, is given.  

The FW-H equation may be derived by considering a generic body with surface S, 

described by the equation fs = 0, immersed in a fluid as shown in Fig. 3.5. If the body 

submerged in the fluid is replaced by fluid at rest (p = po, ρ = ρo and ui = 0), and the 

flow variables are regarded as generalized functions, the validity of the equations of 

fluid motion may be extended to all space through the use of the Heaviside function. 

The resulting equations may then be combined in the manner originally proposed by 

Lighthill to form an inhomogeneous wave equation valid throughout all space. This 

equation is known as the FW-H equation and in differential form may be written as 
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where 

 

( ) ( )( ) ijoooijjiij cppuuT δρρτρ −−−+−= 2 , 

( )( ) jijjjijiji npvuunLL ˆˆ ′+−== ρ , 

( )( ) iioiiiin nvvunUU ˆˆ ρρ +−== .       (3.64) 

 

The first term Tij is known as the Lighthill stress tensor, and represents the volume 

quadrupole sources. The components of Tij are the Reynolds stresses, the viscous 

stresses and terms relating to entropy and fluid inhomogeneity. The second term Li is a 

surface dipole. The first term relates to the flux of momentum across the surface S, 

while the second term ( ) ijijoij ppp τδ −−=′ is the force per unit area applied over S. The 

remaining source term Un is a surface monopole. It is composed of two components. 
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The first represents the mass flux through the surface, while the second is the equivalent 

mass flux due to the surface motion. 

 

 

Figure 3.5: Coordinate system fixed in a surface. 

 

Away from the source region Eq. (3.63) reduces to the homogeneous wave equation and 

the term ( )oo ppc −2
 tends to the acoustic pressure. An integral formula expressing the 

solution to Eq. (3.63) may be obtained in terms of a Green’s function ( )τ,y|,x tG  

satisfying the equation 
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for an impulsive point source. The Green’s function ( )τ,y|,x tG  may be thought of as 

representing the response at x and time t due to an impulsive force at the point y and the 

time τ. The solution is formed by multiplying Equation (3.65) by the right-hand-side of 

Equation (3.63) at position y and time τ and integrating over all space and time, 

including the volume interior to S. Exploiting the sifting property of the Dirac delta 
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functions in Equation (3.65), an integral equation for the acoustic pressure p′ at time t 

and position x may be written as 
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Assuming the volume sources are limited to a finite region of space, the spatial and 

temporal derivative may be moved from the source terms to the Green’s function using 

partial integration to obtain 
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where the properties of the Heaviside function have been used to limit the first volume 

integral to the region external to S, and the sifting property of the Dirac delta function 

has been used to reduce the remaining volume integrals to surface integrals. 

Equation (3.67) is the fundamental equation governing the generation of sound in 

the presence of solid boundaries. It is exact and applies to any region which is bounded 

by permeable surfaces in arbitrary motion. When the right-hand-side of the equation is 

known the pressure fluctuations in the sound field can be calculated. Substitution of a 

Green’s function appropriate to the particular problem considered completes the 

solution. In this work the free space Green’s function is used. The three-dimensional 

free space Green’s function is  
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where g = τ – t + r/c0 and r = | x – y | is the distance between observer and source.  



Wen Liu  Numerical Methods  

 70  

To obtain the specific formulation of the FW-H equation implemented 

numerically, we first recall the elementary symmetry properties of the free space 

Green’s function 
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Using these properties the spatial and temporal derivatives of G0 with respect to source 

coordinate y and time τ are replaced by derivatives with respect to observer coordinate x 

and time t. Then, as the integration is performed on the source coordinate y and time τ, 

the spatial and temporal derivatives may be moved out of the integrals to obtain 
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where ir̂  is the component of the unit vector r̂  in the xi direction,  |yx|/)y(xr̂ ）（ −−= . 

The identity [116] below 
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has been used to eliminate the spatial derivatives in the second source term. To evaluate 

the integrals over the delta functions it is convenient to introduce a coordinate system in 

which the surface S(τ) is stationary. In general, the surface may move arbitrarily and it 

would be appropriate to introduce a Lagrangian coordinate ζL (y,τ). However, for the 

work undertaken here, it is sufficient to consider the surface to be rigid, and restrict our 

attention to a Cartesian coordinate system that simply translates with velocity Us as 

indicated in Fig. 3.5. The Jacobian of the transform between the two Cartesian 

coordinates is taken to be unity, as is the ratio of the area elements dS(ζL)/dS(y). In the 

translating coordinate system the volume and surface integrals are independent of τ. 



Wen Liu  Numerical Methods  

 71  

Therefore, the order of integration may be interchanged and the integration with respect 

to τ can be carried out to obtain the FW-H equation in source fixed coordinates 
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where Mr = Mi ri is the projection of the local surface Mach number Mi = vi / c0  in the 

radiation direction, iir rLL ˆ=  and the notation [ ] *τ indicates the quantity enclosed within 

the brackets is to be evaluated at position ζL and the retarded time  
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To complete the derivation we note that as r = | x – y | is a function of τ, the relation for 

retarded time g = τ – t + r/c0 may be used to show 
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which enables the time derivative to be taken inside the final integral, and evaluated 

analytically to obtain 
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where a dot indicates differentiation with respect to τ. Equation 2.75, with the volume 

quadrupole term neglected, is known as formulation 1A of Farassat [117]. It forms the 

basis of the acoustic propagation code and, except the neglecting of the quadrupole 

term, is exact and therefore valid both in the near and far field. 

 

3.12. Summary 

 

This chapter has presented details of the numerical methods employed in this research. 

Developing the whole SotonCAA code is long-term teamwork during past 10 years. 

Each researcher may have developed their own functionalities for specific cases. For the 

landing gear case, I implemented the artificial selective damping method to stabilize the 

simulation and generalized the ‘CFDtoFWH’ code to adopt the three-dimensional 

integration surface with arbitrary shape. The implementation of the function of artificial 

selective damping is provided in the Appendix B. 
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Chapter 4              

Landing Gear Noise Prediction Using High-order 

Finite Difference Schemes  

 

4.1. Introduction 

 

Recently, numerical simulations that compute unsteady flows around landing gears have 

been attempted to investigate the noise sources and the radiated sound fields. A number 

of unsteady flow simulations have been performed for landing gear models at various 

levels of geometrical complexity. Most the flow simulations in the previous studies 

were based on the conventional CFD. The recent advances in high-order accurate, low 

dispersive and dissipative CAA techniques discussed in Chapter 3 were not attempted in 

those simulations. The implementation of the CAA methods may improve the fidelity 

and efficiency of landing gear flow and noise calculations, which is the scope of the 

current work. 

In this chapter, the CAA/FW-H hybrid technique based on high-order finite 

difference schemes is applied for a two-wheel generic landing gear model, of which 

wind-tunnel test data were made available by Airbus. Compressible DES is performed 

by using 4th-order prefactored compact finite difference schemes and buffer-zone non-

reflecting boundary conditions. The current simulation involves 1604 blocks of fully 

structured meshes where many of them have singular block interfaces across which the 

gradients of mesh surfaces are discontinuous. The characteristics-based block interface 

treatment is used in order to avoid the discontinuity problems associated with the high-

order finite difference schemes. The details of the computed flow field are presented in 

this chapter, in which both the wheel surface pressure and the mean flow velocity field 

are compared with experimental data. The aerodynamic flow data are then used as 

source terms on the integration surface in a Ffowcs Williams and Hawkings (FW-H) 

solver to predict the far field noise levels and directivity patterns. The radiated noise in 

the far field is also compared with the experimental data. Individual contribution of 
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wheels, axle and strut to the total noise is investigated separately. In addition, the 

individual noise signals are analyzed in conjunction with the unsteady flow data from 

the corresponding components, which helps understand the physical mechanism of 

landing gear noise generation. The organization of the present chapter is as follows. In 

section 4.2, the model geometry and grid generation are described. Computation setup is 

presented in section 4.3. In section 4.4, the aerodynamic results are presented including 

mean flow comparisons and unsteady flow features. In section 4.5, the acoustic results 

are discussed, and the noise sources are investigated. Finally, a summary is made in 

section 4.6. 

 

4.2. Model Description and Grid Generation 

 

The simulated model is a scaled generic landing gear, including a main strut, an axle 

and two wheels. The scale approximately corresponds to 1:2.5 of a nose landing gear for 

Airbus A320 (wheel diameter of 300 mm and the main strut length of about 690 mm). 

The strut and axle are circular cylinders and the bottom of the strut is a hemi-sphere. 

The configuration of the current landing gear model is depicted in Fig. 4.1. 

 

 

 

Figure 4.1: Drawings of the current two-wheel landing gear model. 

 

The flow conditions in the simulation are provided from the aerodynamic 

measurement performed in the closed-section wind tunnel F2 [71] in Toulouse, France. 
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The acoustic measurement is operated in the CEPRA19 [7] wind tunnel in Saclay, 

France. The free-stream Mach number is 0.23, the
 
air density is 1.18 kg/m

3
 and the 

static temperature is 293.56 K. 

The entire landing gear model is surrounded by a multi-block structured grid, 

which is generated using commercial software GRIDGEN [85]. Due to the geometric 

complexity, a total number of 1604 hexahedral blocks are generated to accommodate 

the landing gear model in a domain of 11D, 6D and 5D in the streamwise, vertical and 

spanwise direction, respectively, as described in Fig. 4.2.  The wheel diameter (D) is 

used as a reference length in the followings.  

 

 

Figure 4.2: Schematic of the computational domain. 

 

The grid is technically split into a near-wall RANS region and the outer LES 

region. Within the near-wall RANS region, the cells next to the wall surface have a 

thickness to wheel diameter ratio of 1×10
-4

 and are stretched on a growth ratio of 1.1. 

This wall-surrounding layer consists of 16 grid points normal to the surface and has 

very high cell aspect ratio. In the LES region, cubic cells are used in as much area as 

possible. The blocks that enclose the wheel surface have 122 cells distributed over the 

circumference. Each block in the computational domain is one-to-one connected, and 

communicates with characteristic interface conditions. Buffer zone boundary conditions 

are applied in the outer boundaries of the domain to remove the reflecting sound waves. 

The complete baseline grid has approximately 3.5 million grid points. Fig. 4.3 and 4.4 

show the structured mesh topology on the z=0 and y=0 plane, respectively. During the 

3D 7D 

3D 
Flow 
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mesh construction, the stretching angle of the cells is controlled to be larger than 40 

degree, to avoid the stability issue complained by the finite difference solver with sharp 

cell angles. Fig. 4.5 shows the surface meshes distributed over the landing gear walls. A 

refined grid is also tested in order to investigate the effect of grid resolution to the 

acoustic spectrum. The mesh refinement focuses mainly on the improvement of 

resolution on the wheel surface (from 122 to 240 cells on the circumference), keeping 

the same resolution in the direction normal to the wall, which results in 15.7 million 

cells in total. 

 

 

Figure 4.3: Structured mesh topology on the z=0 plane. 

 

 

Figure 4.4: Structured mesh topology on the y=0 plane. 
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Figure 4.5: Surface mesh distributed over the landing gear walls. 

 

 

4.3. Computational Setup 

 

The current calculations are performed in a parallel computing cluster by using domain 

decomposition and Message Passing Interface (MPI) libraries. Dimensionless time step 

size of 0.001 normalized by the sound speed and wheel diameter is used, which 

corresponds to the CFL number of 8.2. The incoming flow is assumed fully turbulent 

and no laminar/turbulent transition is imposed in the simulation. Approximately 90000 

time steps are required to reach a fully developed flow field from an impulsive initial 

condition used. The current calculations (on the baseline and the refined grid) are run in 

two supercomputing clusters Spitfire and IRIDIS3 available at the University of 

Southampton. The Spitfire cluster is provided by Microsoft Institute for High 

Performance Computing which was created at the University of Southampton in 2005. 

The IRIDIS3 cluster was launched in 2010 and is one of the largest and fastest 

supercomputers in UK, which offers 8064 processor-cores providing over 72TFlops and 

up to 32GB of memory per node. The calculations are parallelized over 48 and 256 

processors in the Spitfire and the IRIDIS3 cluster, respectively. The baseline calculation 

runs up to around 200 time steps per physical hour in the Spitfire cluster and 1000 time 

steps per hour in the IRIDIS3 cluster. The refined calculation yields around 250 time 

steps per physical hour in the IRIDIS3 cluster. 

In the radiation model, the FW-H surface is positioned to enclose as many noise 

potential sources as possible, which means it is normally an off-body permeable surface. 
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However, the risk of using permeable surface is that noise predictions might be 

contaminated by errors caused by large wake fluctuations passing through the surfaces 

[13]. To avoid this problem, the FW-H surface is placed on the landing gear solid 

surface in our simulation (exactly match the CFD surface grid). For low Mach numbers, 

the dipole sources are dominant over the quadruple sources. Therefore, it is reasonable 

that only the dipole surface sources are included in the far field noise predictions. In 

practice, the body-fitted FW-H surface is also useful to examine the noise contribution 

from each individual landing gear component. The velocity components on the solid 

surface are constantly zero, therefore only the pressure data are required in this work to 

calculate the radiated noise. 

 

4.4. Aerodynamic Results 

 

In this section, the results of time-averaged pressure and velocity are compared with the 

existing measurement data for the validation of the current calculation. Instantaneous 

flow characteristics are visualized and discussed afterwards in order to describe the 

noise generation mechanism. 

 

4.4.1. Validation of Time-Averaged Flow Data 

 

Time-averaged pressure distribution on the landing gear model surface is compared 

with the measurement data provided by Airbus France from the F2 wind tunnel test 

performed in [71]. The current surface pressure data are collected at the same locations 

of the 64 static pressure taps (shown in green) used in the F2 wind tunnel test as shown 

in Fig. 4.6. In the azimuthal direction, 0° indicates the direction of free-stream flow. The 

landing gear model was mounted upside-down in the F2 wind tunnel, and the left and 

right sides refer to the relative positions when the observer is facing the free-stream 

flow. The left wheel has 37 pressure taps (Nos. 1-37) around the tire circumference on 

the median plane of the wheel, 8 taps (Nos. 40-47) cross-aligned at the wheel top, and 2 

taps on the horizontal plane near 0° (Nos. 38-39). The right wheel has 3 taps on the 

horizontal plane near 0° (Nos. 48-50). The axle contains taps in two sections at ±45.5 

mm from the strut. The right section has one tap at 0° (No. 55). The left section has 4 

taps at 0° (No. 51), 90° (No. 52), 180° (No. 53), and 270° (No. 54). The strut contains 
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taps in one circular section and in one straight line. The circular section is located at 120 

mm below the axle, and it has 5 taps at 0° (No. 60), -45° (No. 59), -90° (No. 58), -135° 

(No. 57), and -180° (No. 56). The tap No. 60 is also the first tap of the straight line of 5 

taps (Nos. 60-64) evenly spaced by 20 mm along the strut at 0° (stagnation line). 

 

 

Figure 4.6: The location of pressure taps on left wheel, right wheel, axle and strut. (from 

Ref. [71]) 

 

Figure 4.7 shows the distribution of time-averaged pressure on the left wheel 

circumference from 120° to -120° (Nos. 1-37). The pressure levels match very well with 

the experimental data at most of the locations, except the tap No. 33 where a local 

discontinuity in pressure occurs in the experimental data. According to Fig. 4.6, the tap 

No. 33 is located at an angle of -96° on the left wheel, which is close to the top-side of 

the left wheel. Since there is no geometric discontinuity around that location, it is 

speculated that the discontinuity in mean pressure might be attributed to an artifact in 

the measurement. Two meshes provide similar time-averaged pressure distribution on 

the left wheel surface. 
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Figure 4.7: Time-averaged pressure distribution on the left wheel circumference. 

 

Figure 4.8 shows the distribution of time-averaged pressure on the rest parts of the 

landing gear model (Nos. 38-64). The calculated pressure levels on the wheel surface 

(Nos. 38-50) match very well with the measurement data. There are some disagreements 

on the axle and the strut surface, especially at the tap No. 58. Referring to Fig. 4.6, No. 

58 is located near a flow separation point. The disagreement may be due to the 

boundary layer tripping used in the experiment. The boundary layer tripping was 

implemented along the circular dots shown in Fig. 4.9 aligned at ±60° with respect to 

the free-stream direction. The disagreements on the axle and strut surface might be more 

related to the lack of numerical resolution. The refined mesh provides better 

comparisons with the measurement as expected. 
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Figure 4.8: Time-averaged pressure distribution on the rest of the landing gear model. 

 

 

Figure 4.9: Boundary layer tripping in the F2 measurement (from Ref. [71]). 

 

 stripes 

Left wheel Right wheel Axle Strut 
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In the following section, the downstream flow field is presented based on the 

results from the refined grid, because strong numerical dissipation occurs in the wake 

region when coarse grid is used. Calculated mean velocities are compared with the 

existing particle image velocimetry (PIV) measurement data from [71] on two different 

horizontal planes in Figs. 4.10 and 4.11. The streamwise velocity contours are plotted at 

the top of the figures and the spanwise velocity contours are at the bottom. They show a 

reasonable agreement on the time-averaged velocity field in the downstream wake 

region of the wheels. It is noticeable that the areas in which separated flows merge 

behind the wheels are slightly different between the computation and the measurement. 

The computation has a relatively larger merging region with lower streamwise velocity 

and higher transverse velocity than the measurement does. The calculation also has 

relatively thicker boundary layers around the wheels, which might be due to numerical 

dissipation associated with the turbulence model and low-order wall boundary treatment 

used. The agreement between the calculation and the measurement improves 

significantly in the strut region as shown in Fig. 4.10 as the level of geometric 

complexity decreases. 

 

 

Figure 4.10: Time-averaged velocity contour plots on a horizontal plane bisecting the 

axle: PIV measurements (left) and current calculation (right). 
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Figure 4.11: Time-averaged velocity contour plots on a horizontal plane crosscutting the 

strut: PIV measurements (left) and current calculation (right). 

 

4.4.2. Investigation of Unsteady Flow Field 

 

Landing gear aerodynamic noise is strongly correlated with the unsteady pressure 

fluctuations on the landing gear surfaces. Therefore, investigating the unsteady flow 

field around the landing gear model can help understanding the noise mechanism. The 

unsteady surface pressures were monitored in the computation and compared with the 

experimental data collected by the unsteady pressure sensors distributed on the wheel 

and strut surfaces (see Fig. 4.6). The power spectral density (PSD) comparisons at 

different unsteady pressure sensor positions (K14 and K24) are depicted in Figs. 4.12 

and 4.13. K14 is located on the front shoulder of the right wheel, and K24 is located on 

the strut in front of the incoming flow. Good agreements (tonal peaks are well captured) 

can be found up to 1-2 kHz in the frequency range, above which energy fall-off occurs 

in the computation. This frequency cut-off is common in the landing gear computation 

[5, 6, 84, 86, 87], and is caused by grid resolution combined with the numerical 

dissipation induced by the numerical methods. The discrepancy below 200 Hz is also 
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expected, since a high-pass filter has been applied on the experimental data for the 

frequencies below 200 Hz resulting low PSD levels from the measurement.  

 

 

Figure 4.12: Surface pressure PSD comparisons at K14. 

 

 

Figure 4.13: Surface pressure PSD comparisons at K24. 
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Figure 4.14 and 4.15 show instantaneous contour plots of velocity magnitudes on 

two different horizontal planes and two vertical planes, respectively. The velocity 

magnitude is defined as  

 

222 wvuUmag ++= ,      (4.1) 

 

where u, v, and w denote velocity components in the streamwise, spanwise and vertical 

directions respectively. In some plots, the right wheel of the landing gear has been 

removed for a clear view in between the wheels. Figure 4.14(a) visualizes a large 

irregular wake generated by the two wheels and the axle, and Fig. 4.14(b) shows a 

rather regular vortex shedding from the strut (a circular cylinder). It is made clear in Fig. 

4.15 that the scale of wake turbulence from the wheels is larger than that from the axle 

and the strut, which may suggest that the wheels are the primary source of low 

frequency noise. Three-dimensional vortical structures of the flow are shown in Fig. 

4.16, which indicates fully three-dimensional broadband noise generation of the 

complex geometry. The pressure coefficient is defined as  

 

DU

pp
Cp

2

)(2

∞

∞−
=

ρ
,      (4.2) 

 

where p is the instantaneous pressure, p∞ is the ambient pressure, ρ is the density, and 

U∞ represents the free-stream velocity.  It should be noted that there is a significant drop 

in numerical resolution in the far wake after 2.5 times of the wheel diameters from the 

strut. 
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Figure 4.14: Instantaneous contour plots of velocity magnitudes on two horizontal 

planes: a) bisecting the axle and b) crosscutting the strut. 

 

 

Figure 4.15: Instantaneous contour plots of velocity magnitudes on two vertical planes: 

a) bisecting the strut and b) bisecting the right wheel. 

 

a) b) 

b) a) 
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Figure 4.16: Three-dimensional iso-vorticity contour-surfaces colored by pressure 

coefficient. 

 

Figure 4.17 shows an instantaneous plot of pressure coefficients and streamlines 

on a horizontal plane bisecting the axle and on the landing gear surface. It is conjectured 

from Fig. 4.17 that the axle/strut junction between the wheels may be the secondary 

source of noise. The recirculation zone forming a large vortex inside the front area of 

the wheel cavity is observed to cause strong flow impingement onto the front surface of 

the axle. The impingement with unsteadiness in the vicinity may significantly contribute 

to the noise. 

 



Wen Liu  LG Noise Prediction Using SotonCAA  

 88  

 

Figure 4.17: Contour plots of pressure coefficients with streamlines around the landing 

gear. 

 

In order to estimate the level of unsteadiness in the flow, the following quantity is 

defined: 

 

∑
=
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N
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I
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1

,     (4.3) 

 

where I denotes dimensionless intensity of pressure fluctuation, N is the number of 

samples, p is the instantaneous pressure, p  represents the time-averaged pressure, and 

p∞ is the ambient pressure. This measure of pressure fluctuations is useful to identify 

potentially significant noise source regions particularly around the body surfaces. Figure 

4.18 reveals some local spots where the high level of pressure fluctuations dominates. 

The level of pressure fluctuations is highest in the vicinity of the impingement region 

mentioned in the above, which suggests that the axle may potentially be a major noise 
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contributor to the landing gear noise. A further investigation on this is detailed in the 

next section. 

 

 

Figure 4.18: The intensity of pressure fluctuations by Eq. (4.3) on the axle and strut 

surfaces. 

 

4.5. Acoustic Results 

 

The FW-H calculations are performed and the radiated sound is discussed in this section. 

The resulting sound spectra are produced based on 7 groups of 1024 samples of surface 

pressure data (7168 samples in total). Each data group is treated by Hann’s window 

[118] ensuring zero mean in the data prior to Fast Fourier Transform (FFT). The 

frequency bin width is 11Hz. The results of the 7 data groups are then averaged to get a 

statistically converged spectrum (ensemble average). 

 

4.5.1. Comparison with Experiment 

 

Power spectral density (PSD) levels are compared between the current computation and 

the CEPRA19 anechoic wind tunnel measurement in Ref. [7]. Figure 4.19 demonstrates 

the microphone setup in the wind tunnel for the far field acoustic signal collection. Two 
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microphone arcs are fixed 6000 mm away from the model, and 12 microphones are 

positioned every 10° along each arc (from 30° to 140° in the azimuthal direction). There 

are two additional microphone arrays and the distance between the microphone arrays 

and the landing gear model is 2000 mm. 

 

 

Figure 4.19: Microphone setup for the measurement of far field acoustic signal. (from 

Ref. [7]) 

 

For accurate comparison with the current calculation, the experimental data are 

corrected from the background noise, the atmospheric absorption and the refraction 

through the open-jet wind tunnel [119]. Figure 4.20 compares the PSD levels between 

30° 

140° 

Wind 
Nozzle 

56° 



Wen Liu  LG Noise Prediction Using SotonCAA  

 91  

the computation and CEPRA19 measurement on the far field flyover microphone arc at 

140° in the azimuthal direction. Good agreement is achieved in the frequency range 

from approximately 200 Hz to 2 kHz. The discrepancy in the very low frequency range 

(below 200 Hz) is due to the high-pass filter applied on the experimental data for the 

frequencies below 200 Hz. The energy fall-off occurs in the mid to high frequency 

range around 2 kHz is caused mainly by numerical dissipation associated with the grid 

density as well as the numerical methods. Cells with high aspect ratio within the RANS 

region might not have been effective enough to capture high wave-number components 

particularly in the circumferential direction.  

 

 

Figure 4.20: PSD comparison on the far field flyover microphone arc at 140°. 

 

To investigate the effect of grid density on the acoustic spectrum, a grid 

refinement is made in the circumferential direction as mentioned in section 4.2. The 

number of grid points around the wheel circumference is increased from 122 to 240, 

resulting in the total grid points of 15.7 million. Major parameter changes after the grid 

refinement are shown in Table 4.1.  
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Table 4.1: Comparison between the baseline and the refined grids. 

 Baseline grid Refined grid 

Total number of grid points 3.5 million 15.7 million 

Number of grid points over the wheel circumference 122 240 

Minimum wave length captured on wheel surface 

(assuming 10 PPW  ) 
77.2 mm 39.2 mm 

Maximum resolvable frequency 4.4 kHz 8.6 kHz 

 

Figure 4.21 shows the improvement of acoustic prediction by using the refined 

grid. The microphone is at the same position as that used in Fig. 4.20. The fall-off 

frequency, after using the refined grid, is delayed from 2 kHz to 4 kHz approximately. 

Figure 4.22 shows additional PSD plots from two other microphones: one at the far field 

sideline arc (140°) and the other at the center of the sideline array, respectively. In 

general, the calculated PSD levels from the refined grid agree well with the 

measurement over a frequency range up to approximately 4 kHz. The tonal frequency 

peaks are also accurately predicted as shown in Fig. 4.22(b).  

 

 

Figure 4.21: PSD comparison on the far field flyover microphone arc at 140°. 
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Figure 4.22: PSD comparisons: a) on the far field sideline microphone arc at 140°; b) at 

the center of the sideline microphone array. 

 

It is shown that the current methodology and grid used offers accurate acoustic 

prediction up to a frequency of about 4 kHz. It is necessary to investigate on the effect 

of the energy fall-off at 4 kHz in the spectrum on the accuracy of overall sound pressure 

level (OASPL) prediction, i.e. as to whether the energy in the frequency spectrum above 

4 kHz contributes significantly to the OASPL. Figure 4.23 shows the comparison of 

OASPL profiles obtained by the current prediction and the reference measurement 

across a range of different microphone locations. It can be seen from Fig. 4.23 that the 

far field OASPL prediction is generally in good agreement with the measurement, 

within 2 dB of deviation. This suggests that most of the noise source is prevalent up to 4 

kHz and the energy fall-off at the frequency does not make a significant impact on the 

overall sound prediction. It should be noted that the OASPL agreement seems to get 

better towards the upstream direction as shown in Fig. 4.23. 

 

a) b) 
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Figure 4.23: Far field OASPL comparisons on a) flyover and b) sideline microphone 

arcs. 

 

4.5.2. Noise Sources Identification 

 

In this work, noise contribution from each individual gear component is investigated by 

applying the on-body FW-H surface to axle, strut and wheel separately in an 

independent manner. This approach does not take into account the effect of interference 

from the other components that are excluded from the FH-W surface used for one 

a) 

b) 
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component. Therefore, there exists a certain level of uncertainty in this approach but it 

may well be used as a reasonable tool to compare noise contribution from different parts 

of the landing gear. Figure 4.24 shows the locations at which the far field OASPL of 

each component is calculated in flyover and spanwise directions, 20 diameters away 

from the landing gear axle center. 

 

 

Figure 4.24: Far field observer positions in a) flyover and b) spanwise directions. 

 

Figure 4.25 presents the contribution of each individual landing gear component 

to OASPL at various azimuthal locations indicated in Fig. 4.24. The individual 

contributions are compared with the original OASPL that included all the components. 

The wheels, which have the largest exposed area to the incoming flow, turn out to be 

prevalent as expected in almost all directions except around 90 degrees where the axle 

becomes dominant over the wheels by 2 to 3 dB. It is believed that the strong axle noise 

is attributed to the high intensity of pressure fluctuations on the axle surface discovered 

at the end of section 4.4 (Fig. 4.18). The contribution of the strut is generally weaker 

than the other components; however it radiates relatively strong noise towards 0 and 

180 degrees in Fig. 4.24-a) as well as -b) which indicates a typical dipole sound pattern 

due to its cylindrical shape. 

 

Flow 

b) 

0° 180° 

90° 

0° 180° 
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Figure 4.25: The noise contribution from landing gear component in a) flyover and b) 

spanwise directions. 

 

4.6. Summary 

 

The high-order computation of landing gear noise is presented in this chapter. It is 

demonstrated that a multi-block structured grid combined with high-order finite 

differencing schemes and a novel block-interface condition leads to reliable 

aeroacoustic solutions in such a highly complex geometry. Both aerodynamic and 

acoustic results compare well with the existing wind tunnel measurement data provided 

by Airbus France for the 1:2.5 scaled model of an A320 noise landing gear at the free-

stream Mach number of 0.23. Narrow band acoustic PSD (power spectral density) 

spectra are well predicted in a frequency range up to 4 kHz for this particular landing 

a) 

b) 
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gear model. Although the baseline grid with 3.5 million points was suitable for mean 

aerodynamics, the refined grid with 15.7 million points was required to increase the 

highest resolved frequency range in the acoustic PSD spectra from 2 to 4 kHz. The 

increased frequency range is shown to be sufficient for accurate prediction of OASPL 

(overall sound pressure level) within 2 dB deviation from the experimental 

measurement. The investigation of individual gear components suggests that the wheels 

emit most of the noise in general but the axle contributes significantly in the direction 

straight down to the ground (overhead direction from an observer). The axle noise, 

which is associated with strong surface pressure fluctuations due to impinging flows 

separated from the wheels, may be potentially higher than the wheel noise in that 

particular direction. 
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Chapter 5              

Landing Gear Noise Prediction Using Low-order 

CFD 

 

In this chapter, the commercial engineering simulation software FLUENT [120] is used 

for a conventional CFD study of the two-wheel generic landing gear model. The model 

is identical to that described in Chapter 4 so that the numerical comparison between the 

high-order SotonCAA code and the conventional CFD method can be performed.  The 

FLUENT CFD solver coupled with the built-in FW-H solver is used to calculate the 

sound radiation following the hybrid acoustic prediction strategy. The organization of 

the present chapter is as follows. In section 5.1, the computational setup is presented, in 

which the computing efficiencies are investigated by the comparison between 

SotonCAA and FLUENT. The details of the FLUENT-computed flow field are 

presented in section 5.2, compared with both experimental data and the results from 

SotonCAA. In section 5.3, the acoustic results are discussed, and the landing gear model 

is decomposed to individual components for noise sources identification. Finally, a 

summary is made in section 5.4.  

 

5.1. Computational Setup  

 

The grid in the FLUENT simulation is identical to the baseline (coarse) grid used in 

Chapter 4, which has approximately 3.5 million grid points with 122 cells distributed 

over the wheel circumference. The cell next to the wall has a thickness to wheel 

diameter ratio of 1×10
-4

 and is extruded using a growth ratio of 1.1. This wall-

surrounding layer consists of 16 cells normal to the wall which intends to capture the 

boundary layer and results in a y
+
 value mostly below 10, see Fig. 5.1. The red spots 

(high y
+
 value) at the junction of the axle and the wheel-inside wall are the result of the 

relatively coarse mesh distribution in the turbulent inactive area.  The red spots in the 

other areas indicate the high flow speed regions where flow accelerations and 
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separations occur. The flow conditions are initialized as the same as those used in 

Chapter 4, i.e. with freestream velocity of 78 m/s, the air density of 1.18 kg/m
3
 and the 

static temperature of 293.56 K. It should be mentioned that all the FLUENT/SotonCAA 

comparisons given in this chapter are based on the same baseline (coarse) grid. 

 

 

Figure 5.1: y
+
 distributions over the landing gear surface. 

 

FLUENT (version 6.3.26) is based on the finite volume methods and has various 

flow modeling capabilities and a separate module for acoustic calculations. The 

compressible Navier-stokes equations are solved by the three-dimensional, double 

precision, pressure-based unsteady solver with second-order accurate schemes in space 

and time, see Table 5.1. 

 

Table 5.1: Discretization schemes used in FLUENT. 

Variable Scheme 

Pressure Second order 

Momentum Second order upwind 

Modified turbulent viscosity  Bounded central differencing 

Energy Second order upwind 
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The turbulence model in the simulation is DES with S-A one equation model 

adopted in the RANS region. The velocity inflow condition specifies the incoming flow 

speed and temperature at the inflow boundary. The symmetry boundary conditions are 

applied on the top, bottom and side boundaries of the computational domain. The 

pressure far field boundary condition is used for the outflow, which uses characteristic 

information (Riemann invariants) to determine the flow variables at the outflow 

boundary.  

The FLUENT simulation is performed on the Spitfire cluster, utilizing a total of 

16 processors (restricted by the FLUENT user license). Initially, a steady-state 

computation is carried out to obtain a fully developed flow field and to investigate the 

grid quality for the turbulence model. Subsequently, the time-accurate computation is 

started with time step size of 3×10
-5

 second, during which a particle in the free-stream 

would travel a distance of one wheel diameter in about 130 time steps. Table 5.2 

compares the computing efficiencies between FLUENT simulation and the high-order 

SotonCAA simulation. For stability reasons, SotonCAA requires smaller time step size 

in the time advancement. Thus, it takes relatively longer computing time for the flow 

developing than that in FLUENT, though the computing cost for each time step is much 

smaller.  

 

Table 5.2: The computing efficiencies on the different platforms. 

 FLUENT SotonCAA 

Computing platforms Spitfire  Spitfire  IRIDIS3 

Total number of processors 16 48 256 

Time step size (second) 3×10
-5

  8.8×10
-7

 8.8×10
-7

 

physical time per step (hour) 0.1 0.005 0.001 

Computing cost for a particle traveling a 

distance of one wheel diameter (hour) 
15.4 21.7 4.3 

 

 

5.2. Aerodynamic Results 

 

In this section, the results of time-averaged pressure and velocity are compared with the 

measurement data for the validation of the FLUENT simulation. Instantaneous flow 
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characteristics are visualized and discussed afterwards in order to investigate the noise 

generation mechanism. 

 

5.2.1. Validation of Time-Averaged Flow Data 

 

The current surface pressure data are collected at the same locations of the 64 static 

pressure taps used in the F2 [71] wind tunnel test as shown in Fig. 4.6. Figure 5.2 shows 

the distribution of time-averaged pressure on the left wheel circumference from 120° to 

-120° (Nos. 1-37), with SotonCAA results plotted in blue and FLUENT results plotted 

in red. In general, the pressure levels calculated from FLUENT match very well with 

the experimental data. Slightly over predictions of the pressure levels can be spotted 

around the stagnation area (Nos. 15-24) of the left wheel surface, and under prediction 

of the pressure level occurs at -90° (No. 32) on the left wheel, which is around the top-

side of the left wheel.  

 

 

Figure 5.2: Time-averaged pressure distribution on the left wheel circumference. 
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Figure 5.3 shows the distribution of time-averaged pressure on the rest parts of the 

landing gear model (Nos. 38-64). Good agreement of pressure levels between FLUENT 

and measurement can be found at most of the positions. Over predictions occur 

consistently at the stagnation areas of the wheel surface (Nos. 49, 50) and of the strut 

surface (Nos. 60-64). We can notice that FLUENT makes a better prediction than 

SotonCAA at the tap No. 58, where potential flow separations happen. Overall, the 

time-averaged pressure on the landing gear surface calculated from SotonCAA has a 

relatively better agreement with the measurement than that from FLUENT. However, 

the better predictions from FLUENT near the flow separation regions suggest that 

FLUENT may have more solid performance on the no-slip wall condition and 

turbulence treatment close to the wall.  

 

 

Figure 5.3: Time-averaged pressure distribution on the rest of the landing gear model. 

 

Calculated mean velocities are compared with the PIV measurement [71] data on 

two different horizontal planes in Figs. 5.4 and 5.5. The streamwise velocity contours 

are plotted at the top of the figures and the spanwise velocity contours are at the bottom. 

Axle Strut Left wheel Right wheel 
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They show a good agreement on the time-averaged velocity field in the downstream 

wake region of the wheels. FLUENT velocity field does not have the larger merging 

region, with lower streamwise velocity and higher transverse velocity, which exists in 

the SotonCAA simulation shown in Fig. 4.10, and compares better with the 

measurement in the wake region of the wheels where the level of geometric complexity 

is very high. The difference in the velocity field between FLUENT and SotonCAA is 

believed to be the result of the varied performances of the finite volume and finite 

difference methods on complex geometries. The high-order CAA code is highly 

sensitive to the grid quality, especially to the grid with high level of geometric 

complexity. Therefore, the artificial dissipation and filtering schemes and low-order 

wall boundary treatments are adopted to maintain the numerical stability of the 

algorithms, which possibly induces strong numerical dissipation in the highly complex 

wake region. The finite volume based solver with the low-order discretizations is more 

adaptive and tolerant to complex geometries, and may have less stability requirement 

that introduces high numerical dissipations. 

 

 

Figure 5.4: Time-averaged velocity contour plots on a horizontal plane bisecting the 

axle: PIV measurements (left) and current calculation (right). 
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Figure 5.5: Time-averaged velocity contour plots on a horizontal plane crosscutting the 

strut: PIV measurements (left) and current calculation (right). 

 

5.2.2. Investigation of Unsteady Flow Field 

 

Landing gear aerodynamic noise is the result of the pressure fluctuations within the 

time-dependent unsteady flow. Therefore, investigating the unsteady flow field around 

the landing gear model can help understanding the flow related noise mechanism. 

Figure 5.6 and 5.7 show the instantaneous contour plots of velocity magnitudes and 

vorticity magnitudes on two different horizontal planes, respectively. The velocity 

magnitude is defined in Eq. (4.1). The vorticity measures the local rotation of fluid flow, 

the magnitude of which is defined 
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where u, v, and w denote velocity components in the x, y and z direction respectively. 

The right wheel of the landing gear has been removed for a clear view in between the 

wheels. Figure 5.6(a) and 5.7(a) visualize a large irregular wake generated by the two 
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wheels and the axle. Strong vortex structures can be spotted in the cavities between the 

wheels and the axle. Figures 5.6(b) and 5.7(b) show a rather regular vortex shedding 

from the strut (a circular cylinder). Figure 5.8 and 5.9 show instantaneous contour plots 

of velocity magnitudes and vorticity magnitudes on two different vertical planes, 

respectively. It is made clear in Fig 5.9 that strong wake turbulences are generated from 

the wheels and the axle, which may be the potential noise sources. The scale of wake 

turbulence from the wheels is larger than that from the axle, which may suggest that the 

wheels are the primary source of low frequency noise. Three-dimensional vortical 

structures of the flow are shown in Fig. 5.10, which indicates fully three-dimensional 

broadband noise generation of the complex geometry. 

 

 

Figure 5.6: Instantaneous contour plots of velocity magnitudes on two horizontal planes: 

a) bisecting the axle and b) crosscutting the strut. 

 

a) b) 
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Figure 5.7: Instantaneous contour plots of vorticity magnitudes on two horizontal planes: 

a) bisecting the axle and b) crosscutting the strut. 

 

 

Figure 5.8: Instantaneous contour plots of velocity magnitudes on two vertical planes: a) 

crosscutting the axle and b) bisecting the left wheel. 

 

a) b) 

a) b) 
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Figure 5.9: Instantaneous contour plots of vorticity magnitudes on two vertical planes: 

a) crosscutting the axle and b) bisecting the left wheel. 

 

 

Figure 5.10: Three-dimensional iso-vorticity contour-surfaces colored by velocity 

magnitude. 

 

Figure 5.11 shows an instantaneous plot of pressure coefficients and streamlines 

on a horizontal plane bisecting the axle and on the landing gear surface. Similar to the 

a) b) 
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findings in Chapter 4, the recirculation zone forming a large vortex inside the front area 

of the wheel cavity is observed to cause strong flow impingement onto the front surface 

of the axle. The flow separations and interactions after the impingement with 

unsteadiness in the vicinity may significantly contribute to the noise. 

 

 

Figure 5.11: Contour plots of pressure coefficients with streamlines around the landing 

gear. 

 

The levels of the unsteadiness of the flows are estimated by investigating the 

statistical measure of the flow velocity magnitude in the vicinity of the landing gear 

surfaces, shown by the root mean square of the velocity magnitude in Figs 5.12 and 5.13. 

The root mean square of the velocity magnitude is defined as 
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where U is the velocity magnitude, and n is the sample number. 
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Figure 5.12: Contour plots of root mean square of the velocity magnitude on two 

horizontal planes: a) bisecting the axle and b) crosscutting the strut.  

 

 

Figure 5.13: Contour plots of root mean square of the velocity magnitude on two 

vertical planes: a) crosscutting the axle and b) bisecting the left wheel. 

 

The level of root mean square of the velocity magnitude is the highest in the 

vicinity of the impingement region mentioned in the above, which suggests that the axle 

may potentially be a major noise contributor to the landing gear noise. This is consistent 

with the findings in Chapter 4. A further investigation on acoustic field is followed in 

the next section.  

 

 

 

 

a) b) 

a) b) 
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5.3. Acoustic Results 

 

The FW-H calculations are performed and the radiated sound is discussed in this section. 

The resulting sound spectra are produced based on 5 groups of 2048 samples of surface 

pressure data (6144 samples in total with 50% overlapping). Each data group is treated 

by the same Hann’s window as used in Chapter 4 before FFT. The frequency bin width 

is 16 Hz. The results of the 5 data groups are then averaged to get a statistically 

converged spectrum.   

 

5.3.1. Sampling Frequency Effect 

 

As mentioned in section 5.1, the computations from FLUENT and SotonCAA have 

different time step sizes. This time step size difference therefore results in different 

sampling frequencies, which finally determine different frequency ranges resolved in 

the acoustic spectra. The acoustic signals are collected every step in FLUENT which 

has the sampling frequency of 33.3 kHz, and are collected every 100 steps from 

SotonCAA which has the sampling frequency of 11.4 kHz. In order to make a 

convictive comparison of the acoustic spectra with different sampling frequencies of 

each method, we have to evaluate the sampling effect on the final spectra. This effect is 

investigated by comparing the acoustic spectra from SotonCAA computations using two 

different sampling frequencies, 49.6 kHz vs. 11.4 kHz, shown in Fig. 5.14. We can 

notice that although the maximum resolvable frequency is increased by using higher 

sampling frequency, the major part of the PSD levels in the effective frequency range 

(which is more related to the numerical methods and grid density, refer to Fig. 4.21) are 

little affected. Therefore, the sampling frequency effect on the PSD levels is limited.  
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Figure 5.14: Sampling effect on the PSD levels. 

  

5.3.2. Comparison with Experiment 

 

Power spectral density (PSD) levels are compared among the measurement, FLUENT 

computation and SotonCAA computation in this section. Figures 5.15 and 5.16 compare 

the PSD levels between the computations and the measurement on the far field flyover 

microphone arc (shown in Fig. 4.19) and far field sideline microphone arc respectively. 

Both signals are collected at 140° of each arc in the azimuthal direction. The PSD 

predictions from FLUENT have the similar energy fall-off in the mid to high frequency 

range, which is consistent with the findings  that the energy fall-off is caused by the grid 

density and numerical methods. Given the same grid, FLUENT predicts relatively lower 

PSD levels than SotonCAA does, in the effective frequency range up to 4 kHz. The 

under predictions are possibly due to the low-order discretization characteristics of 

FLUENT solver, since the sound related pressure fluctuations are small and sensitive to 

the discretizaton scheme accuracy.   
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Figure 5.15: PSD comparison on the far field flyover microphone arc at 140°. 

 

 

Figure 5.16: PSD comparison on the far field sideline microphone arc at 140°. 
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Figure 5.17 shows the comparisons of OASPL profiles obtained by the two 

computations and the reference measurement across a range of different microphone 

locations. It is clear that SotonCAA performed consistently better on all microphone 

locations. The OASPL prediction from the low-order schemed FLUENT has 

approximately 4 dB deviation with the measurement; while the high-order schemed 

SotonCAA has a better OASPL prediction with deviation less than 2 dB. 

 

 

Figure 5.17: Far field OASPL comparisons on a) flyover and b) sideline microphone 

arcs. 

 

a) 

b) 
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5.3.3. Noise Sources Identification 

 

The FW-H surface in FLUENT is decomposed in the same manner as shown in 

SotonCAA simulation to investigate component’s contribution to the total noise. The 

surface divisions and observation positions are described in section 4.5.2. Figure 5.18 

presents the contribution of each individual landing gear component to OASPL at 

various azimuthal locations indicated in Fig. 4.24.  

 

 

Figure 5.18: Noise contribution of each landing gear component in a) flyover and b) 

spanwise directions. 

 

a) 

b) 
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Similar to the findings in Chapter 4, the wheels are the primary noise sources in 

almost all directions. The axle is another major noise contribution in the flyover 

direction, especially in the overhead direction where the noise level is the highest 

among the three major components. The strut generally contributes weaker noise than 

other landing gear components in the flyover direction. The cylinder shape of the strut 

radiates relatively strong noise energy in the spanwise direction.  The differences of 

noise directivity between FLUENT and SotonCAA computations are spotted at the 

wing sides in the spanwise direction, where the strut is the noisiest component of the 

landing gear from FLUENT; while the wheels are the dominant noise contributors from 

SotonCAA. 

 

5.4. Summary 

 

The comparison study of the landing gear noise prediction using FLUENT is presented 

in this chapter. The same baseline grid and flow conditions described in SotonCAA 

simulations are used in current simulation. The unsteady flow field is calculated by the 

FLUENT Navier-Stokes solver using second-order schemes. The time history of the 

unsteady surface pressure is collected to predict the far field noise with the FLUENT 

built-in FW-H solver. Both FLUENT and SotonCAA simulations obtain good 

agreements with the measurement on the time-averaged aerodynamic variables. The far 

field noise level predictions from SotonCAA are in good agreement with the 

measurement data with less than 2 dB deviation. However, the ability of FLUENT in 

predicting sound radiation is limited by the inherently low-order numerical 

discretizations, which under-predict the OASPL by approximately 4 dB. It is clearly 

shown that the CAA based method SotonCAA would be in preference to the 

conventional CFD method in predicting aerodynamic noise. By investigating the noise 

contribution from individual components, both computations agree that the wheels are 

the most significant noise sources, and the axle is another major noise source, around 

which the strong flow-body interaction noise is generated.  
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Chapter 6                    

Isolated Wheel Noise Prediction Using Low-order 

CFD 

 

In this chapter, the noise radiation from an isolated wheel with high level of details is 

computed using the FLUENT package. This study was performed before the two-wheel 

landing gear simulations, not only to provide experience in applying hybrid method to 

predict the far field noise generated by complex geometries, but also to investigate the 

noise generation mechanism from the major component of landing gears. In section 6.1, 

the model geometry and grid generation are described. Computational setup is presented 

in section 6.2. The aerodynamic flow field and the acoustic results are discussed in 

sections 6.3 and 6.4 respectively, followed by the summary in section 6.5.  

 

6.1. Model Description and Grid Generation 

 

The simulated model is a scaled (1:3) isolated undercarriage wheel with detailed hub 

configuration. The wheel model has a diameter of 480 mm and a depth of 186 mm, 

depicted in Fig. 6.1.  

 

Figure 6.1: Drawings of the current isolated wheel model. 

Hub 

Cavity 

Shoulder 

Sidewall 
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The entire single wheel model is surrounded by a multi-block structured grid, 

built in GRIDGEN [85]. A total number of 409 hexahedral blocks are generated to 

accommodate the wheel model in the centre of a  domain of 13.5D, 9.6D and 6.8D in 

the streamwise, vertical and spanwise directions respectively, as shown in Fig. 6.2. The 

wheel diameter (D) is used as a reference length, and the flow is following the Z axis. 

 

 

Figure 6.2: Schematic of the computational domain. 

 

The grid is technically split into a near-wall RANS region and the outer LES 

region. Within the near-wall RANS region, the cells next to the wall surface have a 

thickness to wheel diameter ratio of 2×10
-5

 and are stretched on a growth ratio of 1.1. 

This wall-surrounding layer consists of 16 grid points normal to the surface and has 

very high cell aspect ratio. In the LES region, cubic cells are used in as much area as 

possible. The blocks that enclose the wheel surface have 160 cells distributed over the 

circumference. The patched mesh structure is adopted to reduce the total number of grid 

points. Fine grid blocks are built near the wheel surface and in the wake region of the 

wheel, while relatively coarse grid blocks are used to fill the rest of the computational 

Flow 
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domain. The complete grid has approximately 3.9 million grid points. Figure 6.3 shows 

the surface meshes distributed over the solid wall of the wheel.  

 

Figure 6.3: Mesh distribution over the isolated wheel surface on a) hub-side and b) 

sidewall-side. 

 

6.2. Computational Setup 

 

The compressible Navier-stokes equations are solved by the three-dimensional, double 

precision, pressure-based unsteady solver in FLUENT (version 6.3.26) with second-

order accurate schemes in space and time, see Table 6.1. 

 

Table 6.1: Discretization schemes used in FLUENT. 

Variable Scheme 

Pressure Second order 

Density Second order upwind 

Momentum Second order upwind 

Modified turbulent viscosity  Bounded central differencing 

Energy Second order upwind 

 

The turbulence is simulated by using DES with S-A one equation model. The 

velocity inflow condition specifies the incoming flow speed and temperature at the 

inflow boundary, which are 85 m/s and 288 K respectively (It should be mentioned that 

there were no experimental data available when conducting this simulation. Therefore a 

typical aircraft landing speed was chosen in current study. Later experiments were 

a) b) 
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performed with lower incoming flow velocity up to 40m/s, which makes quantitative 

computation/measurement comparisons impossible.). The pressure far field boundary 

condition is used at the remaining boundaries of the computational domain. Current 

simulation is performed on the Spitfire cluster, utilizing a total of 16 processors. 

Initially, a steady-state computation is carried out to obtain a fully developed flow field 

and to investigate the grid quality for the turbulence model. As shown in Fig. 6.4, most 

parts of the wheel surface have considerably small y
+
 value of below 3, and the highest 

level of y
+
 value is less than 10.  

 

 

Figure 6.4: y
+
 distributions over the isolated wheel surface on a) hub-side and b) 

sidewall-side. 

 

The time-dependent unsteady computation is started with time step size of 3×10
-5

 

second, with which a particle in the freestream would travel a distance of one wheel 

diameter in about 190 time steps.  

 

6.3. Aerodynamic Results 

 

6.3.1. Mean Flow Features 

 

The aerodynamic forces on the isolated landing gear wheel are monitored during the 

simulation. The aerodynamic coefficients are determined by the dimensionless forces 

using the dynamic pressure 1/2ρU
2
 and a reference area A, where U denotes the free-

stream flow velocity and A is the product of the wheel diameter and the wheel depth, 

a) b) 
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which corresponds to the wheel projection area in streamwise direction. Figures 6.5 and 

6.6 show the time history of drag and lift forces during a computing period of 0.207 

second. The time-averaged drag and lift coefficients are 0.239 and 0.097 respectively. It 

is an interesting finding that positive lift force is generated from this isolated wheel 

surface, the geometry of which is symmetric in the lift direction. 

 

 

Figure 6.5: History of the drag coefficient. 
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Figure 6.6: History of the lift coefficient. 

 

Figure 6.7 shows the mean vertical velocity field on the median wheel plane. The 

asymmetry of the velocity field in the wake region is apparent, where the separated flow 

from the wheel upper shoulder has a larger recirculation zone than that from the lower 

shoulder. The corresponding asymmetric pressure distributions on the rear surface of the 

wheel, that pressure from the lower surface is higher than that from the upper surface,  

consequently contribute to upward lift force, shown in Fig. 6.8. 
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Figure 6.7: Mean vertical velocity field on the median wheel plane. 

 

 

Figure 6.8: Mean pressure distributions on the median wheel plane. 

The mean flow streamlines on the median wheel plane are plotted in Fig 6.9, and 

compared with the PIV measurement performed in the 2.1 m×1.7 m wind tunnel at 

University of Southampton [8], of which setup is demonstrated in Fig. 6.10. 
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Figure 6.9: Mean flow streamlines on the median wheel plane. 

 

 

 

Figure 6.10: A schematic of the PIV setup. 

Figure 6.11 and 6.12 show the PIV measurement results at two different flow 

speeds, 20 m/s and 40 m/s respectively. Good agreements of the asymmetry of the mean 

flow in the wake region have been obtained between the computation and the 

measurement. The distance, which the flow reattachment shifts from the wheel 

centerline, is relative to the flow speed: the higher the flow speed is the longer distance 
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the flow reattachment shifts. The mechanism of the flow asymmetry would be 

investigated in the next section. 

 

 

Figure 6.11: PIV mean flow streamlines in the wake region of the wheel at 20m/s. 

 

 

Figure 6.12: PIV mean flow streamlines in the wake region of the wheel at 40m/s. 

 

6.3.2. Instantaneous Flow Field 

 

The instantaneous pressure coefficients contours over the isolated wheel surface are 

shown in Fig. 6.13, viewed from different sides. The high level pressure at the front of 
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wheel surface represents the stagnation area of the flow. High pressure levels can also 

be spotted around the cavity-boundary and sidewall, which could be caused by the 

strong flow-body interactions in the downstream. The low pressure area at the edge of 

the wheel front shoulder indicates where the flow separations occur. 

 

 

Figure 6.13: Instantaneous pressure coefficient contours on a) hub-side and b) sidewall-

side. 

 

The geometrical asymmetry of the wheel in the spanwise direction has generated 

highly turbulent flow with a lot of small vortex features. Figure 6.14 visualizes these 

vortex structures on the horizontal plane bisecting the wheel. On the hub-side, the 

separated flow from the front shoulder  is obstructed by the extruded edge of the wheel 

inner cavity, where a small portion of the flows circulate in the small gap between the 

front shoulder and the edge, and the rest of the flows carry on with slight diversion off 

the wheel surface. Large scales of vortices are formed in the cavity when the slowed 

flows pass by and interact with the hub surface. On the sidewall-side, the upstream 

flows impinge on the sidewall, and generate strong vortices in the gap between the front 

shoulder and the sidewall. The attached flows on the sidewall surface separate later at 

the sidewall edge and reattach the wheel rear shoulder with high flow speed. The 

separated flows on the sidewall-side therefore possess higher velocity than that from the 

hub-side, and tend to roll towards the hub-side in the spanwise direction, see Fig. 6.15. 

 

b) a) 
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Figure 6.14: Vorticity contours on the horizontal plane bisecting the wheel. 

 

 

Figure 6.15: Contours of velocity magnitude on the horizontal plane bisecting the wheel. 

 

Figure 6.16 visualizes the three-dimensional flow features using instantaneous 

iso-vorticity contours colored by velocity magnitude. It is clear that strong vortices 

originate from the hub-side of the wheel due to the flow-hub-cavity interactions. These 

vortices further interact in the wake leading to highly unsteady flow field.  The 

asymmetric spanwise flow motions in the wake have complicated influence on the flow 
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features in the vertical direction, due to the three-dimensional characteristics of the 

turbulent flow, and therefore are possibly the reason that asymmetric flow features 

appear in the vertical direction.  

 

 

Figure 6.16: Instantaneous iso-vorticity contours colored by velocity magnitude: a) rear 

view; b) side view. 

 

6.4. Acoustic Investigations 

 

6.4.1. Noise Sources Identification 

 

For convenience of investigating the noise sources of the isolated landing gear wheel, a 

total number of 6 probes are positioned on the hub-side of the wheel to monitor the 

unsteady surface pressure, of which the positions are described in Fig. 6.17. Probe a, is 

placed on the front shoulder of the wheel, where initial flow separations may occur. 

Probes b and c are located on the upper and lower shoulders of the wheel, respectively. 

Probes d and e are on the hub and cavity-boundary respectively, where the flow 

interactions with solid surface may happen. Probe f is located on the rear shoulder, 

where upstream flows would reattach the wheel surface. 

a) b) 
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Figure 6.17: Monitor positions over the isolated landing gear wheel surface. 

 

Figures 6.18-6.23 show the pressure fluctuations and corresponding frequency 

spectra at the monitor points. Although the unsteady fluctuation signal collected from 

each probe is generally broadband, several tonal peaks are still observable.  

 

 

Figure 6.18: Plots of pressure fluctuation (a) and corresponding spectrum (b) at Probe a. 

 

(a) 

(f) 

(c) 

(b) 

(e) 

(d) 

a) b) 
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Figure 6.19: Plots of pressure fluctuation (a) and corresponding spectrum (b) at Probe b. 

 

 

Figure 6.20: Plots of pressure fluctuation (a) and corresponding spectrum (b) at Probe c. 

 

 

Figure 6.21: Plots of pressure fluctuation (a) and corresponding spectrum (b) at Probe d. 

a) b) 

a) b) 

a) b) 
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Figure 6.22: Plots of pressure fluctuation (a) and corresponding spectrum (b) at Probe e. 

 

Figure 6.23: Plots of pressure fluctuation (a) and corresponding spectrum (b) at Probe f. 

 

The frequency spectrum at the front shoulder of the wheel (Probe a) shows clear 

peaks at frequencies of 355 Hz, 522 Hz, 1020 Hz and 1780 Hz approximately, which 

are consistent with the peaks in the frequency spectrum of drag force, shown in Fig. 

6.24. The other peaks at higher frequencies (multiples of the frequency of 1780 Hz) are 

believed to be numerical artifacts with resonance frequencies. The pressure fluctuations 

at upper and lower shoulders (Probe b and c) have similar frequency spectra with the 

same 522 Hz peak. The spectra at hub and cavity boundary (Probe d and e) suggest that 

the flow-hub-cavity interaction is associated with the tonal noise at 355 Hz and 522 Hz. 

The peaks at 522 Hz and 1020 Hz are dominant in the spectrum at the flow reattachment 

region on the rear shoulder. All the peak frequencies are associated with strong flow 

a) b) 

a) b) 
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alterations, such as flow separations and flow reattachment, which could be the potential 

tonal noise sources. 

 

Figure 6.24: The frequency spectra of aerodynamic forces: a) drag; b) lift. 

 

6.4.2. Far Field Noise 

 

The FW-H integration surface is placed on the solid wheel surface to predict the far 

field noise. The resulting sound spectra are produced based on 5 groups of 2048 

samples of surface pressure data (6144 samples in total with 50% overlapping). Each 

data group is treated by the Hann’s window before FFT. The frequency bin width is 16 

Hz. The results of the 5 data groups are then averaged to get a statistically converged 

spectrum. A total number of 72 receivers are evenly positioned around a circle of radius 

100 m on the vertical plane (cutting the free-stream), depicted in Fig. 6.25. 

 

 

Figure 6.25: Drawings of the far field receiver positions. 

Sidewall side 

Wheel position 

Hub side 
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b) a) 
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Figure 6.26 shows the noise radiations from the isolated wheel, in terms of sound 

pressure level (SPL), towards the hub side, ground side and side-wall side respectively. 

Strong tonal noises are observable at 355 Hz, 522 Hz, and 1780 Hz, the frequencies of 

which are highly relative to the aerodynamic forces especially the drag force. 1780 Hz 

seems to be the most significant component in the spanwise direction. The agreement 

with the peak frequency recorded in the pressure fluctuations at the front shoulder 

suggests that this 1780 Hz tonal noise is possibly related to the vortex shedding of the 

separated flows off the front shoulder of the wheel. 522 Hz is the dominant frequency as 

the noise radiates towards the ground, and is the second significant peak in the hub side 

spectrum. Consistent with the peak frequency in the pressure fluctuations at the hub and 

cavity boundary, this 522 Hz frequency is believed to be highly related with the 

complex flow-hub-cavity interactions. The other peaks at higher frequencies (multiples 

of the frequency of 1780 Hz) are believed to be numerical artifacts with resonance 

frequencies. The directivity pattern is depicted in Fig. 6.27, showing that the isolated 

landing gear wheel radiates relatively stronger noise in the spanwise direction, due to 

the generally thin shape and the existence of detailed structures (hub-cavity and sidewall) 

in the spanwise direction. 

 

 

Figure 6.26: SPL spectra at far field locations. 
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Figure 6.27: The directivity pattern of the far field noise from the isolated wheel. 

 

6.5. Summary 

 

The numerical study of the isolated wheel noise generation using FLUENT is presented 

in this chapter. The patched grid strategy is adopted in building the structured mesh for 

the 1:3 scaled isolated undercarriage wheel with detailed hub configuration. The hybrid 

approach is performed to predict the radiated far field noise from the wheel, combining 

the second-order Navier-Stokes solver which computes the unsteady flow in the near 

field and the FLUENT built-in FW-H solver which calculates the sound radiation in the 

far field.  The mean flow asymmetry is realized in the wake region of the wheel, and is 

believed to be relative to the existence of the asymmetric hub configuration. The 

monitored near field pressure fluctuations and the far field noise predictions show that 

tonal noise is generated from the isolated wheel and is strongly associated with the 

aerodynamic forces. The vortex shedding off the wheel front shoulder is believed to be 

responsible for the tonal noise of 1780 Hz and the flow-body interactions within the hub 

configuration is likely to contribute the tonal noise of 522 Hz. The far field noise 

directivity pattern on the vertical plane suggests that the isolated wheel radiates 
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relatively stronger noise to the sides compared to the ground, which could be related to 

the thin wheel shape and the hub configuration.  
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Chapter 7             

Conclusions 

 

In this final chapter the main results of current work are summarized and suggestions 

for future studies are made. 

 

7.1. Summary 

 

The aim of current research is to assess the application of the SotonCAA code with 

high-order finite difference schemes to a 1:2.5 two-wheel generic A320 nose landing 

gear, and to investigate the generation and radiation of noise from such a complex 

geometry at the industrial level. The main achievements of this work are summarized 

below. 

 High-order finite difference CAA code has been successfully applied in the 

computations of noise prediction from highly complex landing gear geometries. 

Building a fully structured mesh which is required by the finite difference CAA code, 

over the complex landing gear architecture, has proved to the first challenge of current 

research. The complete mesh consists of 1604 hexahedral blocks, which was built up 

manually from segments and surfaces. The grid distributions and stretching ratios are 

optimized in each block to satisfy the DES requirement for the grids, which prefers 

cubic cells in the LES region. The CAA methods are normally attempted with uniform 

grids of simple geometries, and highly sensitive with curvilinear grids of complex 

geometries. Therefore, the second challenge is how to maintain numerical stability 

when applying high-order CAA methods to highly complex geometries. Multi-block 

structured meshes make the CAA application even more challenging, because 

singularity problems occur at the mesh-size-change interfaces. The characteristics-based 

multi-block interface treatment was implemented in the code, and successfully avoids 

the discontinuity problems associated with the high-order finite difference schemes. 

Artificial damping technique as well as explicit filtering method was also implemented 

to remove the numerical errors caused by non-uniform grids, and to stabilize the 
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numerical algorithms in the long-run computations. An interim interpolation code was 

developed to cast the unsteady flow quantities onto a three-dimensional user defined 

integration surface with arbitrary shape, so that the extracted flow data coupled with 

integration surface coordinate information could be directly imported to the FW-H 

solver for the far field noise calculations.   

The high-order CAA application to the realistic landing gear geometry has 

achieved reliable aeroacoustic solutions up to 4 kHz, employing relatively cheaper 

structured grid compared to most large unstructured mesh (tens of millions cells) of 

similar geometries. Both aerodynamic and acoustic results compare well with the 

existing wind tunnel measurement data. Narrow band acoustic PSD spectra are well 

predicted in a frequency range up to 4 kHz for this particular landing gear model. The 

grid refinement study suggested that the energy fall-off in high frequency was grid 

density related and could be improved by finer mesh. The far field overall sound 

pressure levels are in good agreement between prediction and the measurement with 2 

dB deviation. By investigating the noise contribution from individual components, we 

find that the landing gear wheels are the major noise sources in general. The axle is the 

second primary noise source, and contributes significant noise energy in overhead 

direction (2-3 dB higher than wheels), which is recognized to be associated with the 

strong flow-body interaction around the axle.  

A comparison study using conventional CFD method Fluent is performed with the 

same landing gear model. Although conventional CFD can obtain good results on the 

time-averaged aerodynamic field, its ability of predicting sound radiation is limited by 

the inherent low-order numerical discretizations which under-predict the far field noise 

by approximately 4 dB. The conventional CFD method is still helpful in the noise 

source investigations, which has a good agreement with the high-order CAA method on 

the noise source identifications.  

The isolated wheel computation is also performed using FLUENT to investigate 

the noise generation mechanism from the major part of the landing gear. The 

asymmetric phenomenon in the mean flow realized in the wake region of the wheel, is 

believed to be relevant to the asymmetry of the wheel geometry in the spanwise 

direction. Because of the thin shape and the detailed geometry, the isolated wheel 

radiates relatively higher sound energy to the sides than that to the ground, with several 

strong tonal noises associated with strong flow alterations. The vortex shedding off the 

wheel front shoulder is believed to be responsible for the tonal noise of 1780 Hz and the 
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flow-body interactions within the hub configuration is likely to contribute the tonal 

noise of 522 Hz. 

 

7.2. Suggestions for Future Work 

 

The high-order SotonCAA code is highly sensitive to the grid quality, especially with 

high level of geometrical complexity. Therefore, the artificial dissipation and filtering 

schemes and low-order wall boundary treatments must be used to maintain the 

numerical stability of the algorithms, which possibly induces strong numerical 

dissipation in the highly complex flow regions. It would be desirable to design and 

examine a stable high-order no-slip wall boundary condition for current high-order 

schemes. The filtering schemes should be improved especially at the block boundaries 

with less dissipation errors. Patched grid technique would also be desirable, not only to 

make the mesh construction easier for complex geometry, but also to effectively reduce 

the number of unnecessary grid points in the computational domain. 

 The comparison in term of methodology (Finite Difference/ Finite Volume) and 

schemes orders (2/4) has been studied in current research based on the same grid (multi-

block structured). It is interesting to investigate the effect of mesh methodology 

(structured/unstructured) on the same numerical method. The straightforward way is to 

conduct FLUENT (Finite Volume) computations with both fully structured grid and 

fully unstructured grid of approximately the same resolution, and compare their 

performances on the landing gear computation.  

 The phenomenon discovered in the isolated wheel simulation, which the mean 

flow asymmetry in the spanwise direction causes the mean flow asymmetry in the 

vertical direction, might be further investigated using a more generic model, such as a 

circular cylinder with a cavity. Both numerical and experimental studies would be 

expected to investigate the mean flow features in the wake region. 
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Appendix  A           

Characteristic Interface Boundary Condition 

 

In this appendix, the characteristic interface boundary condition [104] implemented in 

the SotonCAA Navier-Stokes equation solver is validated by the computation of the 2D 

Gaussian pulse propagation on the 3-blocks structured mesh where abrupt changes in 

the slope of grid lines happen at the interface.   

 

A.1 Computational Setup 

 

In this case, an acoustic pulse is generated by an initial Gaussian pressure distribution, 

and converted downstream with a freestream velocity. The computational domain 

consists of three quadrilateral blocks with 200×200 uniform grids of each block, shown 

in Fig. A.1. All the variables in the computation are nondimensionalized by the 

following scales: Lref = 1, Uref = a0, Tref = 1/ a0, and Pref = ρ0a0
2
. When released at t =0, 

the Gaussian pulse is generated at (0, 0) by the pressure distribution 

 

2
1

1

r
ep

αε −= ,      (A.1) 

 

where ε1=0.01 is the pressure pulse amplitude. The parameter α1 is determined by the 

half width b of the Gaussian pulse by α1 = ln2/b
2
, where b = 3.0 in this case. r denotes 

the distance between the observer and the source. The Gaussian pulse is propagated 

downstream with the velocity 0.5 (freestream Mach number) following the x axis. The 

numerical simulations employ the 6th-order Hixon scheme [30] in space discretizations 

and 4-6 LDDRK scheme [33] in the time integrations. The time step size is 0.05, which 

corresponds to the CFL number of about 0.14. Two interface boundary conditions are 

tested in this case: traditional interface boundary conditions employing explicit central 

schemes, and characteristic interface conditions with biased schemes. Their 

performances in the 3-blocks Gaussian pulse propagation computations are discussed in 

the next section. 
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Figure A.1: The computational domain of the 2D Gaussian pulse propagation case. 

 

A.2 Results and Discussions 

 

Figure A.2 shows the initial pressure distribution of the Gaussian pulse at t = 0.  

 

 

Figure A.2: The initial pressure contours of the Gaussian pulse at t = 0. 

 

The abrupt changes in the slope of the grid lines at the block interface of the 3-blocks 

mesh, lead to the discontinuity of the grid matrices along the interface, which is known 
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as the singularity problem. In conventional interface conditions, the grid matrices at the 

singular points are often approximated to single values by averaging the left- and the 

right-hand limits, which certainly induces numerical errors. Figure A.3 depicts the 

Gaussian pulse propagation employing the conventional interface conditions, just before 

the occurrence of the computation blow-up. The computation blows up after 31 time 

steps, and the pressure field is contaminated by the numerical errors accumulated along 

the singular grid interface. 

 

 

Figure A.3: A demonstration of the singular problem using conventional interface 

conditions. 

 

The grid singularity can be successfully avoided by employing the characteristic 

interface boundary conditions. Figures A.4 and A.5 show the Gaussian pulse 

propagation after 300 and 900 time steps. We can see that the wave front of the 

Gaussian pulse expands radically with the freestream convection speed 0.5, and passes 

the grid interface lines smoothly.  
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Figure A.4: The pressure contours of Gaussian pulse after 300 time steps. 

 

 

Figure A.5: The pressure contours of Gaussian pulse after 900 time steps. 

 

The pressure distribution in the Gaussian pulse propagation can be analytically 

calculated by solving the linearized Euler equations, and the solution is given by 
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, M is the freestream Mach number, and J0 is the Bessel 

function of order one. Figure A.6 compares the pressure fluctuation (p – pref) between 

the numerical solution and the analytical solution at the observation point (15, 0). The 

excellent agreement between the numerical results and the exact solution confirms that 

the characteristic interface treatment is valid and performs well on complex multi-block 

structured grids with singular interfaces. 

 

 

Figure A.6: Comparison of the pressure fluctuation at the observation point (15, 0). 
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Appendix  B                    

Implementation of the Artificial Selective 

Damping Method  

 

In this appendix, the source Fortran code of the artificial selective damping function in 

x-direction is provided.  

 

C***************************************************************** 

C Compute artificial dissipation in x-direction  

C***************************************************************** 

Subroutine dissipation_dx(blk, var) 

 

      USE constants 

      USE coefficients 

 USE num_params 

 USE grid_vars 

 USE working_vars 

 USE bc_vars 

 USE dissipation_vars 

 USE conserved_vars 

 

 IMPLICIT NONE 

  

 INTEGER (KIND=4)  :: blk, var 

 REAL    (KIND=8)  :: lamda_max, lamda_min, lamda_hat_max, lamda_hat_min 

 REAL    (KIND=8)  :: P_max, P_min, sigmma, alffa, betta, expo 

 REAL    (KIND=8)  :: alffa_hat, betta_hat, niu_max 

 REAL    (KIND=8)  :: slope_backward, slope_forward 

  

C********************************************************************* 

C extrapolate con_var out of boundary using 4th order standard scheme 

C*********************************************************************

  

 Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

 

   slope_backward = 3/2*con_var(2,j,k)-3/10*con_var(3,j,k)+ 

     &                          1/30*con_var(4,j,k)-37/30*con_var(1,j,k) 

 

   con_var(0,j,k) = con_var(1,j,k) - slope_backward 

   con_var(-1,j,k)= con_var(1,j,k) - 2*slope_backward 
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   con_var(-2,j,k)= con_var(1,j,k) - 3*slope_backward 

    

   slope_forward = 37/30*con_var(imax(blk),j,k)- 

     &                                     3/2*con_var(imax(blk)-1,j,k)+ 

     &                                    3/10*con_var(imax(blk)-2,j,k)- 

     &                                    1/30*con_var(imax(blk)-3,j,k) 

      

        con_var(imax(blk)+1,j,k)=con_var(imax(blk),j,k)+ slope_forward 

        con_var(imax(blk)+2,j,k)=con_var(imax(blk),j,k)+ 2*slope_forward 

   con_var(imax(blk)+3,j,k)=con_var(imax(blk),j,k)+ 3*slope_forward 

       

 

      End do 

      End do 

       

C********************************************************************* 

C     Calculate lamda and lamda_hat(lamda over metrics) at each point  

C     in x direction 

C********************************************************************* 

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

 Do i = imin(blk), imax(blk) 

  If (dims.eq.3) then 

       lamda(i,j,k)=Dabs(U(blk)%at(i,j,k))+Dsqrt(gamma*P(blk)%at(i,j,k)/ 

     &              rho_temp(blk)%at(i,j,k)* 

     &              (metrics(blk)%at(i,j,k,1)*metrics(blk)%at(i,j,k,1)+ 

     &               metrics(blk)%at(i,j,k,2)*metrics(blk)%at(i,j,k,2)+ 

     &               metrics(blk)%at(i,j,k,3)*metrics(blk)%at(i,j,k,3))) 

       lamda_hat(i,j,k)=lamda(i,j,k)/ 

     &         Dsqrt(metrics(blk)%at(i,j,k,1)*metrics(blk)%at(i,j,k,1)+ 

     &               metrics(blk)%at(i,j,k,2)*metrics(blk)%at(i,j,k,2)+ 

     &               metrics(blk)%at(i,j,k,3)*metrics(blk)%at(i,j,k,3)) 

       Else 

       lamda(i,j,k)=Dabs(U(blk)%at(i,j,k))+Dsqrt(gamma*P(blk)%at(i,j,k)/ 

     &              rho_temp(blk)%at(i,j,k)* 

     &              (metrics(blk)%at(i,j,k,1)*metrics(blk)%at(i,j,k,1)+ 

     &               metrics(blk)%at(i,j,k,2)*metrics(blk)%at(i,j,k,2))) 

       lamda_hat(i,j,k)=lamda(i,j,k)/ 

     &         Dsqrt(metrics(blk)%at(i,j,k,1)*metrics(blk)%at(i,j,k,1)+ 

     &               metrics(blk)%at(i,j,k,2)*metrics(blk)%at(i,j,k,2)) 

      End if    

 End do 

 End do 

 End do 

 

  

C************************************************************* 

C     Calculate lamda stencil plus in x direction 

C************************************************************* 

      Do k = kmin(blk), kmax(blk) 
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 Do j = jmin(blk), jmax(blk) 

C---------------------------------------------------------------------- 

   Do i = 3, imax(blk)- 3 

       lamda_max = 0.0d0 

       lamda_min = 1.0d9 

           Do m = -2, 3 

            If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

            If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

           End do 

       lamda_all_plus(i,j,k)=lamda_max-lamda_min      

        End do 

C----------------------------------------------------------------------- 

        i = 1 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = 0, 3 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

             If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

            End do 

         lamda_all_plus(i,j,k)=lamda_max-lamda_min 

C----------------------------------------------------------------------- 

        i = 2 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -1, 3 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

             If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

            End do 

         lamda_all_plus(i,j,k)=lamda_max-lamda_min 

C----------------------------------------------------------------------- 

        i = imax(blk) - 2 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -2, 2 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

             If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

            End do 

         lamda_all_plus(i,j,k)=lamda_max-lamda_min 

C-----------------------------------------------------------------------                                        

        i = imax(blk) - 1 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -2, 1 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

             If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

            End do 

         lamda_all_plus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------ 

        i = imax(blk)  

         lamda_max = 0.0d0 
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         lamda_min = 1.0d9 

            Do m = -2, 0 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

             If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

            End do 

         lamda_all_plus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------  

 End do 

 End do  

  

  

C************************************************************* 

C     Calculate lamda stencil minus in x direction 

C************************************************************* 

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

C------------------------------------------------------------------------ 

        Do i = 4, imax(blk) - 2 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -3, 2 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

        If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

       End do 

    lamda_all_minus(i,j,k)=lamda_max-lamda_min 

   End do 

C------------------------------------------------------------------------ 

        i = 3 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -2, 2 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

        If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

       End do 

    lamda_all_minus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------    

        i = 2 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -1, 2 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

        If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

       End do 

    lamda_all_minus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------ 

        i = 1 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = 0, 2 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 
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        If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

       End do 

    lamda_all_minus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------  

        i = imax(blk) - 1 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -3, 1 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

        If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

       End do 

    lamda_all_minus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------  

        i = imax(blk) 

         lamda_max = 0.0d0 

         lamda_min = 1.0d9 

            Do m = -3, 0 

             If (lamda(i+m,j,k) .GE. lamda_max) lamda_max=lamda(i+m,j,k) 

        If (lamda(i+m,j,k) .LE. lamda_min) lamda_min=lamda(i+m,j,k) 

       End do 

    lamda_all_minus(i,j,k)=lamda_max-lamda_min 

C------------------------------------------------------------------------    

      End do 

      End do 

       

C************************************************************ 

C     Calculate Jacobian plus 

C************************************************************      

 Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

   Do i = 1, imax(blk) - 1 

    Jacobian_plus(i,j,k) = 0.5d0*(metrics(blk)%at(i+1,j,k,10)+ 

     &                                 metrics(blk)%at(i,j,k,10)) 

        End do 

C------------------------------------------------------------------------ 

        i = imax(blk) 

         Jacobian_plus(i,j,k) = metrics(blk)%at(i,j,k,10) 

      End do 

      End do 

 

C************************************************************ 

C     Calculate Jacobian minus 

C************************************************************           

 Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

   Do i = 2, imax(blk) 

    Jacobian_minus(i,j,k) = 0.5d0*(metrics(blk)%at(i-1,j,k,10)+ 

     &                                  metrics(blk)%at(i,j,k,10)) 

        End do 

C------------------------------------------------------------------------ 
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        i = 1 

         Jacobian_minus(i,j,k) = metrics(blk)%at(i,j,k,10) 

      End do 

      End do 

 

C************************************************************ 

C     Calculate shock detector: niu 

C************************************************************ 

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

   Do i = 2, imax(blk) - 1 

       niu(i,j,k)=Dabs(P(blk)%at(i-1,j,k)*metrics(blk)%at(i-1,j,k,11) 

     &                 -2.0d0*P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11) 

     &                  +P(blk)%at(i+1,j,k)*metrics(blk)%at(i+1,j,k,11)) 

     &                  /(P(blk)%at(i-1,j,k)*metrics(blk)%at(i-1,j,k,11) 

     &                 +2.0d0*P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11) 

     &                  +P(blk)%at(i+1,j,k)*metrics(blk)%at(i+1,j,k,11)) 

        End do 

C------------------------------------------------------------------------ 

        i = 1 

          niu(i,j,k)=Dabs(P(blk)%at(i+1,j,k)*metrics(blk)%at(i+1,j,k,11) 

     &                      -P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11)) 

     &                /(3.0d0*P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11) 

     &                  +P(blk)%at(i+1,j,k)*metrics(blk)%at(i+1,j,k,11)) 

        i = imax(blk) 

          niu(i,j,k)=Dabs(P(blk)%at(i-1,j,k)*metrics(blk)%at(i-1,j,k,11) 

     &                      -P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11)) 

     &                  /(P(blk)%at(i-1,j,k)*metrics(blk)%at(i-1,j,k,11) 

     &                +3.0d0*P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11)) 

      End do 

      End do 

 

C************************************************************ 

C     Calculate kapa(j,k) 

C************************************************************       

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

C-------------------------------------------------------------------------             

        P_max = 0.0d0 

        P_min = 1.0d9 

        lamda_max = 0.0d0 

        lamda_min = 1.0d9 

        lamda_hat_max = 0.0d0 

        lamda_hat_min = 1.0d9      

        Do i = imin(blk), imax(blk) 

           If (P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11).GE.P_max) then 

                 P_max=P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11) 

           End if 

           If (P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11).LE.P_min) then  

                 P_min=P(blk)%at(i,j,k)*metrics(blk)%at(i,j,k,11) 
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           Endif 

                If (lamda(i,j,k).GE.lamda_max) lamda_max=lamda(i,j,k) 

                If (lamda(i,j,k).LE.lamda_min) lamda_min=lamda(i,j,k) 

                If (lamda_hat(i,j,k).GE.lamda_hat_max) Then 

                    lamda_hat_max=lamda_hat(i,j,k) 

                End if 

                If (lamda_hat(i,j,k).LE.lamda_hat_min) Then 

                    lamda_hat_min=lamda_hat(i,j,k) 

                End if 

         End do  

             sigmma = P_max/P_min 

             alffa  = lamda_max/lamda_min 

        if (alffa .eq. 1) alffa = 1.00000001 

             betta  = lamda_hat_max/lamda_hat_min 

        if (betta .eq. 1) betta = 1.00000001 

             expo   = 0.5d0*(alffa + betta)/(alffa * betta) 

             alffa_hat=(alffa+1.0d0)/(alffa-1.0d0)*Dtanh(alffa-1.0d0) 

             betta_hat=(betta+1.0d0)/(betta-1.0d0)*Dtanh(betta-1.0d0) 

c        kapa(j,k)=5 

        kapa(j,k)= (1.0d0+(sigmma-1.0d0)*Dtanh(alffa/betta-1.0d0))* 

     &  (Dsqrt(alffa_hat*betta_hat))**(1.0d0+Dtanh(sigmma-1.0d0))/ 

     &  (sigmma**expo)  

  

             

       End do 

       End do 

      

C************************************************************ 

C     Calculate epsilon2_plus, epsilon4_plus 

C************************************************************ 

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

C------------------------------------------------------------------------- 

        Do i = 3, imax(blk) - 3 

         niu_max = 0.0d0 

            Do m = -2, 3 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_plus(i,j,k)=kapa(j,k)*niu_max 

        End do 

C-------------------------------------------------------------------------          

        i = 2 

         niu_max = 0.0d0 

            Do m = -1, 3  

           If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_plus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

         i = 1 

         niu_max = 0.0d0 
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            Do m = 0, 3  

           If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_plus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

         i = imax(blk) - 2 

         niu_max = 0.0d0 

            Do m = -2, 2  

           If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_plus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

        i = imax(blk) - 1 

         niu_max = 0.0d0 

            Do m = -2, 1  

           If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_plus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

        i = imax(blk)  

         niu_max = 0.0d0 

            Do m = -2, 0  

           If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_plus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

      End do 

      End do 

       

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

 Do i = imin(blk), imax(blk) 

   epsilon4_plus(i,j,k)=Dmax1((kapa(j,k)-epsilon2_plus(i,j,k)), 0.0d0) 

 End do 

 End do 

 End do 

  

C**************************************************************** 

C     Calculate epsilon2_minus epsilon4_minus 

C**************************************************************** 

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

C-------------------------------------------------------------------------- 

        Do i = 4, imax(blk) - 2 

            niu_max = 0.0d0 

            Do m = -3, 2 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_minus(i,j,k)=kapa(j,k)*niu_max 

        End do 
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C------------------------------------------------------------------------- 

        i = 3 

            niu_max = 0.0d0 

            Do m = -2, 2 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_minus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

        i = 2 

            niu_max = 0.0d0 

            Do m = -1, 2 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_minus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

        i = 1 

            niu_max = 0.0d0 

            Do m = 0, 2 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_minus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

        i = imax(blk) - 1 

            niu_max = 0.0d0 

            Do m = -3, 1 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_minus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

        i = imax(blk)  

            niu_max = 0.0d0 

            Do m = -3, 0 

                If (niu(i+m,j,k) .GE. niu_max) niu_max=niu(i+m,j,k) 

            End do 

         epsilon2_minus(i,j,k)=kapa(j,k)*niu_max 

C------------------------------------------------------------------------- 

      End do 

      End do 

 

      Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

 Do i = imin(blk), imax(blk) 

   epsilon4_minus(i,j,k)=Dmax1((kapa(j,k)-epsilon2_minus(i,j,k)), 0.0d0) 

 End do 

 End do 

 End do 

  

C************************************************************* 

C     Calculate artificial damping term in x direction 

C*************************************************************  
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 Do k = kmin(blk), kmax(blk) 

 Do j = jmin(blk), jmax(blk) 

 Do i = imin(blk), imax(blk) !mihero 

   d_plus_dx(i,j,k)=lamda_all_plus(i,j,k)*Jacobian_plus(i,j,k)*  

     &      (epsilon2_plus(i,j,k)*(con_var(i+1,j,k)-con_var(i,j,k))+ 

     &     epsilon4_plus(i,j,k)*(b1*(con_var(i+1,j,k)-con_var(i,j,k))+ 

     &                          b2*(con_var(i+2,j,k)-con_var(i-1,j,k))+ 

     &                          b3*(con_var(i+3,j,k)-con_var(i-2,j,k)))) 

       

        d_minus_dx(i,j,k)=lamda_all_minus(i,j,k)*Jacobian_minus(i,j,k)*  

     &      (epsilon2_minus(i,j,k)*(con_var(i,j,k)-con_var(i-1,j,k))+ 

     &     epsilon4_minus(i,j,k)*(b1*(con_var(i,j,k)-con_var(i-1,j,k))+ 

     &                          b2*(con_var(i+1,j,k)-con_var(i-2,j,k))+ 

     &                          b3*(con_var(i+2,j,k)-con_var(i-3,j,k)))) 

      End do 

 

      End do 

      End do 

C************************************************************ 

C     aritificial dissipation term addition in x direction 

C************************************************************  

 DO k=1,nz(blk) 

 DO j=1,ny(blk) 

 DO i=1,nx(blk) !mihero  

        dF_by_dT(blk)%at(i,j,k,var) = 

     &  dF_by_dT(blk)%at(i,j,k,var)-d_plus_dx(i,j,k)+d_minus_dx(i,j,k) 

       

 END DO 

 END DO 

 END DO 

  

       

       

      End subroutine dissipation_dx 
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