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Abstract

A formulation of the stability problem for tall unbraced frames, deformed beyond their elastic limit, has been
developed using transfer matrices. A linear incremental solution procedure allows the monitoring of plastic hinge
formation and the resulting reduction of the member stiffness until the critical load is located. The most important
second order effects arising from large deformation have been accounted for. Simple modeling of inelastic behaviour
has been adopted although further refinement of the formulation at no significant computational cost is indicated.
Extensive application of the developed computer algorithm and comparison of its predictions with other analytical

results confirms the validity of the proposed method of sol
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1. Introduction

Large axial forces in the stanchions of high-rise
buildings generate additional moments and displace-
ments, which may lead to yield, and plastic defor-
mation well before the elastic critical load is reached.
The simple plastic theory, based on rigid—perfectly-
plastic material behaviour, does not account for pre-
collapse deformation and axial forces, primarily sub-
jected to flexure. However, the ultimate load carrying
capacity of multi-storey buildings or any other slender
structure subjected to large compressive loads would
also depend on the geometric changes arising from de-
formation. A rational elastic—plastic stability analysis,
accounting for the formation of plastic hinges due to
yvielding and ductility of steel as well as the simul-
taneous deterioration of the elastic stiffness due to geo-
metric nonlinearity, should lead to a lower coilapse
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load than that predicted by rigid—plastic theory.
Experiments have shown that this is actually the case
for unbraced, rigidly or semi-rigidly connected tall
steel frames.

Extensions of full nonlinear elastic or plastic limit
analyses to elasto-plastic range were early proposed
and developed [11,16]. Jennings and Majid [6] based
their formulation of the overall stiffness matrix on the
displacement method. Parikh [14] obtained general
slope—deflection equations for different cases of hinge
formation in stanchions and girders. Advanced second-
order elastic—plastic analysis incorporated the effects of
axial deformation [10,14], bowing [9], as well as spread
of plastic zone and strain reversal [1]. McNames and
Lu [13] developed a formulation which relies on small
fictitious lateral force acting on the frame with the
buckling load obtained by extrapolation. Their predic-
tions were verified experimentally. Analyses based on
the concepts of minimum complementary energy [3]
and virtual work [2] incorporated the effects of axial
deformation and spread of plastic zone, respectively.
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Nomenclature

¢ stability function U station transfer matrix
d displacement vector u axial displacement
E Young’s taodulus v lateral displacement
G field transfer matrix z plastic section modulus
g external joint movement o small increment symbol
! second moment of cross sectional area A va=vy, storey (member) sway
K elasto-plastic stiffness coefficient 0 rotation (positive counter-clockwise)
L beam element length A load factor ,
M number of stanchions p ratio of lateral to vertical load
m moment
N number of storeys Subscripts
P member axial force (positive if compres- ¢ critical
sive) p plastic
P axial force
p force vector Superscripts
0 force vector in field equation 7 floor index
q shear force i storey index
R force vector in station equation J girder index
r external force vector j stanchion index
S state vector r reference stanchion
}_S stability function t transpose of a matrix

Other work has focused on the reduction of the plastic
moment of a section due to the presence of axial force
[5,7]. Finite element analyses [4,8,17] have accounted
for gradual yielding of cross section strain hardening,
residual stresses as well as connection flexibility.

The analysis and numerical algorithm presented in
this paper is sufficiently rigorous to vield accurate pre-
dictions of elasto-plastic frame behaviour without
excessive demands on computer time and memory. It
is based on the transfer matrix method, which is appli-
cable to structures modelled as single, nonbranching
chain members. Whereas classical stiffness matrix for-
mulation involves all the global degrees of freedom of
a structure, transfer matrix solutions on those of the
substructure generated by the modelling. Considerable
condensation of the problem is thus directly achieved.

A stability analysis of this type has already been devel-

oped for the elastic frames [15] which is here extended
to the elasto-plastic range by introducing sensible and
well tested models for the reduced stiffness of members
due to plastic hinge formation.

2. Theory

The analysis is restricted to plane frames with buck-
ling oceurring in the plane of the frame, that is, any
out-of-plane movement inhibited. Members  are

assumed to be straight, prismatic, inextensible and
symmetric with respect to the x-y plane which co-
incides with the plane of the frame. The material is
assumed to be elastic—perfectly plastic, that is, strain
hardening is ignored. With both stanchions and girders
deforming in double curvature, plastic hinges are an-
ticipated at the ends of members. Furthermore, due to
gravity loading, plastic hinges are also expected to
form at some point within the span of girders. The
effect of spread of plasticity on the stability behaviour
has been found to be small for frames up to a certain
size [4,8]; therefore, within properly assessed limits,
localized plasticity can be applied with the confidence
that it would lead to sufficiently accurate results.

In the course of analytical formulation and its com-
puter implementation, it was found that, if plastic
hinges are not allowed to form at the ends of stan-
chions, the capacity of the method to predict the fail-
ure mode is reversly restricted. In order to avoid the
numerical difficulty which may arise from removing
this limitation, an assumption, not normally found in
conventional elastic—plastic analyses, is adopted here,
namely that a plastic hinge can form near the end of 2
stanchion at a small finite distance from the centre of
a joint.

According to the adopted notation, u, v, 0, p, g, m
represent the axial displacement, transverse displace-
ment, rotation, axial force, shear force and bending
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Fig. 1. Plastic hinge combinations in members.

moment of a cross section, respectively. Subscripts 1
and 2 indicate the respective ends of a member. Small
increments of these variables are related by the modi-
fied slope-deflection equations,

omy = K100, + K360, + K300 (1)
Omy = K400 + Ks60; + Koy 2
with

_ A _ V2 — V)
W= I="7 (3)

where 6 denotes increment of the prefixed quantity, L
is the length of the beam, while K, n =1, ..., 6, are
the stiffness coefficients depending on the axial force
intensity and the state of elasto-plastic deformation.

Various plastic hinge combinations considered in
both stanchions and girders are shown diagramatically
in Fig. 1. Slope—deflection equations for all those cases
have been derived following a procedure similar to
that adopted by Parikh [14]. Written in terms of incre-
mental quantities, they reduce to the form of Egs. (1)
and (2) assuming however that, within a small load
step, the variation of their coefficient due to nonlinear
deformation or to changes in axial forces is negligible
compared to that of the kinematics variables. It is
noted that K, always satisfies

Ky = —(Ky + K>) (4b)

Kg = —(Ky + Ks) (40)

thus allowing all subsequently derived expressions to
be written in terms of only K|, K, and K.

The required elasto-plastic stiffness coefficients for
stanchions and girders are assembled in Tables 1 and
2, respectively. The various geometric and material
parameters appearing in these tables are defined by

=1-¢ "=1l+c¢

El 1
k= — = e
g L’ S ksc’
El——L—a-, =172

D = &fi + Ef — PLE Eofifo

where P=p;=-—p, is the member axial force taken
positive if compressive, £ the Young’s modulus, J the
second moment of cross sectional area, while s(«), c(z)
are the familiar stability coefficients [12], depending on
the parameter

a = (PL/4K)'?

Subscripts 1 and 2, attached to the stiffness parameter
k, the flexibility parameter [ and the stability coeffi-
cients, indicate that these quantities are evaluated
using beam lengths L; and L,, respectively.

Egs. (1) and (2) are combined with incremental form
of the equations of equilibrium,

dq1 +0q2 =0 (%)

omy + omy — Léq) — pSA — SpA =0 (6)

It is noted that member axial and shear strain has
been neglected but the change in member geometry
has been accounted for. Through a series of algebraic
operations, it is possible to transform Egs. (1), (2), (5)

K=K, (4a) and (6) into

Table 1

Elasto-plastic stiffness coefficients for stanchions

Case K, K, Ks

1 ks Ks

2 and 3 $ @~ PLSf) $(& — PLES)
ZeLsa-g) Zhna-d)

4

1-$1-¢2
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Table 2
Elasto-plastic stiffness coefficients for girders
Case K, Ky Ks
1 ks ksc Ks
2 0 0 7
3 } 0 0
4and 8 0 0 0 .
5 (& = PLES) = %(’fzp;’Pfof:)
i 0 pL 0 NGER25)
7 ~G=rLam 0 0
< Kl o 1 - K[ - Kl + KZ
00y = — 50, + — + — 15 7 By = — " 12¢
> Kz() 1+K20m1 <1+K3> ¥ (7N 2 5 (12¢)
X Ks . C=4+p (129)
Omy = AL(—36, + Sy + ?—()ml (8)
2 As has been pointed out [15], transfer matrices can be
assembled for the present problem using Egs. (MD-(11)
‘ 1 ) , ) ed t L . ) ons.
Sy = E.(Af)el +5q1 — Bom, — ysP) ©) applied to all individual girders and stanchions
Oq1 = ~400) + B\dm; + Cop + ysp (10) 3. Transfer matrices
In the present transfer matrix formulation, a mem-
g2 = —A50, + Bydmy + Co + 6P (1) ber is defined as the combination of ajl stanchions
between two successive floor levels while a joint con-
where sists of all interconnecting girders and their physical
2 connections to the stanchions at any floor level. Lower
K Ks — K3 . ;
A= Ik (12a) case superscripts denote the storey and stanchion num-
2 ber to which a stanchion element belongs while upper
case superscripts were used for the bay and floor num-
B = Ky + Ks 125 ber of a girder. The storey, bay floor and stanchion
= LK, (12b) numbering is clearly indicated in Fig. 2 where the

1 J j+1

Fig. 2. Structural discretization with frames of reference.

orientation of local and global frames of reference are
also shown.

According to these definitions and notations, the dis-
placement vector of member i would normally consist
of the displacement vectors of al] stanchions making
Up a member. The assumption however of neglecting
the axial strain of both stanchions and girders reduces
significantly the number of kinematic varijables and
hence the size of the problem as it leads to the con-
ditions,
W=0, Vi=yi (13)
foralli=1, .., Nand/j=1, ..., M, where ¥ is the
number of storeys and M the number of stanchions,
Hence, the deformation vector reduces to

=0 g g2 giMy (14)

where the superscript t denotes the transpose of an
array. By analogy, the force vector should also consist
of M + | elements
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pr=Ag ot o My (15)

with only one, termed the reference, column contribut-
ing a shear force component. This is indicated by the
superscript ‘r’ and is usually chosen to be the stiffest
column. With the transfer matrix solution performed
at each load step, the state vector

Sy=0d, (-1* sply (16)

is here defined in terms of the incremental deformation
and load vectors.

The next objective is to obtain one set of relations
between the state vectors at the two ends of a member
and then another between the state vectors at either
side of a joint. The first set is formulated by using re-
lations (7)~(10), applied to all individual stanchion seg-
ments making up member / and taking into account
the condition

AT = AT = A a7

. which is the consequence of neglecting axial defor-

mation in the girders. For the derivation of the second
set, the compatibility conditions and the equilibrium
equations at a typical joint 7 are combined with Egs.
(1) and (2), applied to all girders belonging to joint [.
The slope-deflection equations for girders are written
with zero lateral sway as a consequence of neglecting
axial deformation in the stanchions.

Apart from the internal forces and moments trans-
mitted by the adjacent beam elements, the external lat-
eral force and moment acting on junctions of ‘joint’ /
and stanchion j, denoted by r/ and g% receptively,
also contribute to equilibrium. It is noted that fixed-
end moments from girders with in-span loading, which
contribute to g” are affected by plastic hinge for-
mation. Their expressions have been derived in the
cases of uniformly distributed load and mid-point load
for all the hinge combinations of Fig. 1b. Since the
axial load in the girders does not increase significantly,
its effect on fixed-end moments has been ignored.

The process of derivation of the various relations
between the elements of the state vectors is very similar
to that applied in the purely elastic version of the pre-
sent analysis which has been described in detajl [15].
Hence, only the final form of these equations is given
in Appendix A. They are grouped into two systems the
matrix form of which is

L=Gisi— o (18)

St =U's, - /! (19)

where G' and U’ are the field and station transfer
matrices of the problem, respectively. Vector Q' is gen-

erated by the term yJP which also contributes to R’
the external force vector at joint /1.

4. Numerical algorithm

Due to the nonlinearity of the problem the solution
is performed in small steps. Each step comprises the
following numerical tasks:

L. At the beginning of a new step, the load factor is
increased by a small amount 5, and the current
properties of the structure as well as the axial forces
in all elements are assumed constant. The standard
transfer matrix procedure is then carried out using
Egs. (18) and (19) and the appropriate boundary
conditions [15]. This yields the incremental state vec-
tors at all levels but also, through further appli-
cation of the joint equilibrium conditions, the axial
forces in all members. On the very first application
of the method, the structure is assumed elastic and
the axial forces zero.

2. The bending moments at all locations whefe a plas-
tic hinge is expected to develop are calculated and
compared with the plastic moments of the respective
sections. If a plastic hinge is formed, the load incre-
ment is reduced by a certain factor and the member
stiffness is modified according to the relevant slope—
deflection relations.

3. The initial solution can be improved to reflect the
change in the axial forces and member stiffness
within the current step. This is achieved through an
iterative scheme whereby the transfer matrix sol-
ution is repeated until satisfactory convergence of
forces or displacements is reached. The standard
procedure is only slightly modified to account for
the non-vanishing vector Q appearing in Eq. (18).

4. The determinant of the coefficients of the solution
matrix is computed and compared with that
obtained at the end of the previous step. It is worth
noting that the order of this determinant s
M+ 1)xM+1).1Ifa change of sign is observed,
a singularity has been detected which can lead to
the critical load. If the current step is the first one,
then the solution moves directly to the second step.

5. If the solution determinant does not change sign,
the total current force and displacement components
are calculated by adding their increments, obtained
through tasks 1-3, to their previous values. The sol-
ution can then proceed to its next step.

The above procedure is repeated until the determinant
becomes singular as a consequence of loss of stability
or formation of a plastic collapse mechanism. At this
instant the analysis is terminated and the total applied
load is the failure load of the structure.
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Table 3
Properties of symmetric, single-bay frames
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Stanchions Girders

Frame no. Storey no. 7 (cm®) Z (em®) I (em®) Z (cm?) Depth (cm)
1 1 27,596 1926 21,561 1179 40.7

2-4 14,193 . 1207 51,561 1179 40.7
2 1 66,306 3977 69,706 3376 46.1

2 614,465 3702 56,404 3048 41.5

3 52,716 3212 50,888 2769 41.0

4 52,716 3212 38,643 2383 36.0

5 52,716 3212 35,430 2196 357

6 38,643 2383 33,165 2058 36.0

7 33,165 2058 26,701 1678 353

8 26,701 1678 26,701 1678 353

9 19,817 1418 22,564 1427 35.4

10 16,420 1190 14,601 1064 30.6

11 12,907 944 11,688 842 31.1

12 8728 770 11,688 842 311

13 8728 770 8495 623 30.4

14 4071 444 5544 483 25.6

15 2348 259 2880 313 20.7
5. Results load increments for accuracy. This implies constant

A FORTRAN code was developed for implementing
and testing the analysis. It allows for variation of
dimensions and loading with height as well as any type
of support condition. Lateral as well as gravity concen-
trated or distributed load can be applied to stanchions
and girders, respectively. The code does not include
iteration within each load step relying rather on small

axial load within each step and obviates the need to
include vectors O in the formulation. At this stage of
its development, the computer program has two more
limitations, namely that inelastic strain reversals caused
by unloading at plastic hinges are not anticipated and
that the reduction of plastic moment in stanchions due
to the presence of axial forces has not been taken into
account.

Table 4

Sectional properties of the double-bay frame
Stanchions Girders

Storey no. No. I (cm®) Z (cm?) Bay no. I (cm®) Z (em®) Depth (cm)

1 1 10,348 901 1 8495 623 30.4
2 19,817 1417 2 5544 484 25.6
3 5265 569

2 1 6089 654 1 3493 623 30.4
2 11,359 988 2 4425 395 25.1
3 4566 498

3 1 4566 498 1 8495 623 30.4
2 11,359 988 2 2880 313 20.7
3 2227 311

4 1 4566 498 - 1 8495 623 30.4
2 5265 569 2 2348 259 20.3
3 2227 311

5 1-3 2227 311 1 8495 623 30.4

2 2348 259 203
6 -3 2227 311 1 2880 313 20.7
2 2348 259 20.3
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Fig. 3. Example frame 1.

The elasto-plastic slope~deflection equations for
stanchions have been applied with the finite distance of
a hinge from the centre of a joint taken equal to the
adjacent girder half-depth. This choice can be justified
as accounting, to a certain extent, for the local stiffen-
ing of the stanchion arising from the finite size of its
connection with the girder. A more rational choice
should be based on a rigorous modeling of the particu-
lar connection used and the identification of the most
‘critical’ section in the stanchion. Provided however
that this finite distance is small relative to the storey
height, numerical results have shown little sensitivity to
its variation; the adopted rough approximation can
thus be considered acceptable.

The computer program has been validated through
its application to several frames of various sizes the
stability of which have been the object of previous in-
vestigations. Detailed results are presented here for the
three interesting, thoroughly and repeatedly analysed
cases providing reliable standards for comparison. The
cross sectional properties of these frames are given in
Tables 3 and 4 in which Z represents the plastic mod-
ulus of the member. Their dimensions and unfactored
loading are given in Figs. 3-5 in metres and kilonew-
tons, respectively. The same lateral and vertical load is
applied to all floor levels apart from the top one. A
Young's modulus £ of 201 GPa was specified for
frames 1 and 3 while £ = 207 GPa for frame 2. The
corresponding values of the yield stress were 236 and
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756 96 1sj0s) 4

77
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O]
14 (14)
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46.7 93.4 j46.7
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O]
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15x4.27

114(10)
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131(13)

A

(#) : Korn and Galambos 1968

Fig. 4. Example frame 2.

248 MPa. The present predictions of their failure load
factor A. for various values of 61 as well as the corre-
sponding published results are collected in Table 5.
The order of plastic hinge formation resulting from the
present transfer matrix as well as from previous ana-
lyses is shown in Figs. 3-5.

The nonlinear lateral deflection of all frames under
proportionally increased loading was also assessed and
compared to earlier predictions. Results are presented
for the extreme case of the 15-storey frame 2, the top
sway deflection of which, computed using a load factor
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Fig. 5. Example frame 3.

increment of 0.02, is shown in Fig. 6 together with
that obtained by Korn and Galambos {l1] neglecting
axial deformation. The effect of the latter is expected
to be significant in a tall, single-bay frame under con-
siderable lateral load. This was confirmed by Korn
and Galambos [11] and later by Kassimali {8]. Their
almost identical results using analyses that account for
axial deformation are also shown in Fig. 6. Omitted
second order effects as well as other simplifying
assumptions mentioned above may cause wider discre-
pancy in the elasto-plastic range.

Finally, the efficiency of the computer program was
assessed by noting the time for various frame sizes and
load factor increments. Run on a micro VAX 2, its
more demanding application was that on the 15-storey,
single-bay frame using a 4 of 0.01, which took about
11 min to run. For smaller frames and larger load
increments, the execution time was significantly less.

6. Discussion

The transfer matrix solution has been shown to pro-
vide satisfactory answers to the inelastic stability pro-
blem for plane rectangular frames. It was noted that
present and past results for the failure load and lateral
deflection were in very good agreement. The small dis-
crepancies may be attributed to the additional second
order effects considered by the previous and ignored
by the present analysis. As expected, the predictions of
the adopted linear incremental solution show some
sensitivity to the choice of load increment. For suffi-
ciently low values of the latter however, the failure
load converges to a stable limit. The value of the load
increment apparently also affects slightly the order of
plastic hinge formation at the stages of loading.
Referring, in particular, to the frame of Fig. 3, a better
agreement of the transfer matrix results with the pub-
lished predictions [8] was noted when a higher value
for 04 was used.

Discrepancies may also arise from the assumption
that the plastic chinge in the stanchion occurs at some
finite distance from the joint centre. This expected to
delay the prediction of failure but may represent more
closely the actual structural behaviour as it accounts
indirectly for the stiffening effect of the connection. It
is worth assessing the validity of this assumption ex-
perimentally or through a more elaborate numerical
approach such as a finite element analysis.

The full plastic moment of a section is reduced by
the presence of large axial forces in the stanchions.
This effects has been shown to be small on the critical
load of the analysed frames, but it could be more sig-
nificant in larger structures. It may also be more im-
portant in relation to the sequence of plastic hinge
formation and the final mode of failure. Thus, the pre-
sent analysis predicts a joint collapse mechanism in
frames 2 and 3 in contrast to the results of an earlier
analysis [11] which accounts for this effect. It was also
confirmed that the effect of axial deformation and
bowing on failure load and sway deflection is insignifi-
cant in low-rise wide frames [4,8,10] but, as already
indicated in the previous section, it could be more sig-
nificant on the sway deflection of tall, narrow frames.

The proposed technique is based on a relatively
simple computational procedure, its implementation on
the computer follows a more or less standard program-
ming pattern and the resulting code can accept data
and yield results quickly. Moreover, a degree of effi-
ciency in computer storage and time is achieved. The
present formulation certainly lacks the versatility of a
finite element solution but the application of the more
widely accessible FE codes to buckling has its limi-
tations arising from the large number of elements
required to model nonlinearly deforming members
under high axial loads. In contrast, the transfer matrix
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Table 5
Failure loads of the analysed frames

Transfer matrices

Frame no. ) o4 Ao Published results
1 (p=0) 0.05 1.800 1.828%
0.02 1.828
0.01 1.838
1 (p=0.1) 0.05 1.687 1.687°
0.02 1.716
0.01 1.723
1 (p=0.24) 0.05 1.512 1.502°
0.02 1.548 1.501°
0.01 1.608 1.501°
1.5564
1(p=0.5 0.05 1.075 1.075*
0.02 1.099
0.01 1.109
2 0.05 1.389 1.395¢
0.02 1.400 1.403°
0.01 1.426
3 0.09 1.366 1.367°
0.05 1.395
0.01 1.431

* Kassimali, 1983..

® Korn and Galambos, 1968.

°Korn, 1981. .

4 Gharpuray and Aristizabal-Ochoa, 1989.

14+ _ e
1.2
g 1.0+
et
2
L 0.8+
Q
<
2 os
04 Transfer Matrices
<] Korn & Galambos 1968
0.2 With axial deformation:
- ——— Kassimali 1983
o Korn & Galambos {968
T T T T I T
0 20 40 80 80 100 120

DEFLECTION (cm)

Fig. 6. Top storey sway of frame 2.
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approach leads to a substantially lower number of
degrees of freedom as well as order of the solution
matrix, that is, number of simultaneous equations to
be solved. It is also worth noting that the size of the
transfer matrices and therefore of the solution matrix
remains unchanged even after plastic hinges are formed
in members. A limitation of the transfer matrix
method arises from accumulation of error due to
rounding numbers in the successive multiplications
leading to the solution matrix.

As a first step towards further development of the
presented numerical algorithm, the dependence of plas-
tic moment on axial force and residual stresses could
be accounted for. This can be achieved by substituting
the computed axial member forces into existing, re-
liable, approximate models [8] to update the plastic
moment at each load step. The analysis can be easily
expanded to include models for semi-rigid connections,
spread plasticity and the strain reversals caused by
unloading at plastic hinge. Modelling of strain harden-
ing is feasible, since however its effect on frame beha-
viour is expected to counter that of residual stresses, it
is reasonable to assume that accounting for both
effects would make a very small difference to the fail-
ure load [4]. There is considerable scope in improving
the numerical efficiency of the solution algorithm so
that it copes with a higher number of bays and stor-
eys.

Extension to more complex geometries that would
include bracing and uneven number of stanchions
would enhance the versatility of the method.
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Appendix A

The expanded form of matrix Eq. (18) is:

§vy = 8V, + Lisy'! (AD
567 = _[ ~K 9687 + om! + (K'Y + K Doy (A2)
dq; = ~oq] (A3)

Ks\’ '
(5m, = AyL(— 59” + o) + (K ) ()m" (A4)
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where
(A”(S()" + g7 + 3¢ — B om®

5w C i

— 5 P™ (A5)
The elements of the field transfer matrix G’ as well the
forcing vector Q' of the present formulation, can be

identified in Egs. (A1)~(A4). Similarly, the system of
equations represented in matrix form by Eq. (19) is

Svit! = 5l (A6)
SO = 507 (A7)
~Yi0g = (@ - a)oos + 7'0q5 + bomE
+ b omiT 4 3 14T — 4 )50] (A3)
i

— Biom] + B omit] — g1

—dm z+I/ KIJ—-I(Ser,/— (Kg’j_l + K{J)ég
(A9)
+K£J2i,j+l+mg‘_g,j
where
= .cY (A10a)
=
. ad
V=t (A10b)
) Air A
a ==z (Alla)
b, = gif' (Al1b)
and
5l = Z[(Sr/'j +1//l5PU _ l//H_l(SPH-I’j]
’ (A12)

+ yi+11l,i+l o‘PH—I,r _ ‘/il//i(SPir

The station transfer matrix U’ and the force vector R’
can be deduced from Egs. (A6)—(A9). It is understood
that moments at end 1 of member i + I, appearing
on the right-hand side of Eq. (AS8), are eliminated
using Eq. (A9).
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