15

A Brief Comparison of Some

Evolutionary Optimization
‘Methods

A.J. Keane

Abstract

The subject of evolutionary computing is a rapidly developing one where many new
search methods are being proposed all the time. Inevitably, some of these new methods
will not still be in current use in a few years as a small subset becomes the preferred
choice of the optimization community. A key part in this process is the back-to-back
testing of competing methods on test problems that simulate real problems. This brief
paper presents results for such a test, focusing on the robustness of four methods when
applied to a pair of high dimensional test functions. The work presented shows that
some modern search methods can be highly sensitive to mistuning of their control
parameters and, moreover, that different problems may well require radically different
settings of such parameters if the searches are to be effective.

15.1 Introduction

This paper briefly reviews the behaviour of four different evolutionary optimization
methods when applied to a pair of difficult, high dimension test functions. The methods
considered are the genetic algorithm (GA) [Gol89], evolutionary programming (EP)
[Fog93], evolution strategies (ES) [BHS91] and simulated annealing (SA) [KGV83].
The two problems considered are the royal road function proposed by Holland, here
called ‘jhrr’ [MFH92] and the fifty dimensional ‘bump’ problem introduced by Keane
[Kea95]. These two problems are very hard for most optimizers to deal with: ‘jhrr’
is highly discontinuous and very misleading for most methods. Conversely, ‘bump’ is
quite smooth but contains tens of thousands of peaks, all of similar heights. Moreover,
its optimal value is defined by the presence of a constraint boundary.

The purpose of the work presented is to see how well the different methods cope with
these tasks and, more importantly, to investigate what parameter settings are required

Modern Heuristic Search Methods
Editor V. J. Rayward-Smith, I. H. Osman, C. R. Reeves and G. D. Smith(©1996 John Wiley & Sons Ltd.

256 A.J. KEANE

for robust performance on these two very different problems. It should be stated at
the outset, however, that in terms of the sophistication with which each method is
implemented, the GA used is the most complex and to some extent should therefore be
expected to give the best results. Nonetheless, the comparisons are representative of
the kind of tests typically set for new optimization methods, i.e., comparison with the
best available alternatives. Still, the reader should be warned that more sophisticated
implementations of the other methods could be expected to improve their overall best
performance. Finally, in this introductory session, it must be remembered that for any
given problem it is always possible to produce a dedicated optimizer that will work
better than any other, more general purpose approach: thus comparisons between
methods should be treated with care.

15.2 The Optimization Problems

The optimization problems to be tackled here have already been discussed in the
literature and so will be only briefly outlined. The ‘bump’ problem is defined as

abs(3 -7, cost(z;) — 2 [T, cos?(z;)) (02)

maximize
V Zi:l 21322
for
0<z; <10, i=1,...,n (02)
subject to
n n 15n
H z; > 0.75 and Z 2 < == (02)
i=1 =1
starting from
z; =5, i=1,...,n (02)

where the z; are the variables (expressed in radians) and n is the number of dimensions.
This function gives a highly bumpy surface (Figure 15.1 shows the surface for n = 2)
where the true global optimum is usually defined by the product constraint. The
‘hrr’ problem takes a binary string as input and produces a real value which must
be maximized. There are no constraints to be satisfied. The string is composed of
2% non-overlapping contiguous regions, each of length b + g. With Holland’s defaults,
k=4,b=8,g =7, there are 16 regions of length 15, giving an overall string length of
240. Each region is divided into two non-overlapping pieces. The first, of length b, is
called the block and the second of length g the gap. In the fitness calculation only the
bits in the block part of each region are considered. The calculation consists of two
steps. The part calculation adds to the block’s fitness by v for every 1 it contains up
to a limit of m*. If a block contains more than m* 1’s but less than b 1’s it receives
—y for each 1 over the limit. The default settings are v = 0.02 and m* = 4, so a block
with six 1’s is assigned a fitness of (6 — 4) x —0.02 = —0.04. Lastly, if a block consists

A COMPARISON OF EVOLUTIONARY METHODS 257

entirely of 1’s it receives nothing from the part calculation but it is then considered
complete. This then leads to the bonus calculation which rewards complete blocks.
The first complete block receives an additional u*, default 1.0, and each subsequent
block u, default 0.3. Next, adjacent pairs of complete blocks are rewarded in the same
way and then four complete blocks in a row and so on until all 16 blocks are complete.
This leads to the maximum objective value which is 1.0 + (1.0 + 0.3) + (1.0 + 3 x 0.3)
+(1.0+ 7 x 0.3) + (1.0 + 15 x 0.3) = 12.8. The presence of the gap regions, which do
not affect the calculation, ensures that there are a considerable number of strings that
have this maximal value.

Although the royal road function was designed to be easy for a GA to deal with and
hard for other methods, it turns out that even GA’s find it difficult to solve [FM93].
It is therefore useful as an extreme example of a case where the relationship between
the variables in the function and its value are extremely non-linear, exhibiting many
step-like changes.

15.3 The Optimizers

Optimization problems of the sort discussed here are characterized by having many
variables, highly non-linear relationships between the variables, and an objective
function that has many peaks and troughs: in short they are difficult to deal with.
The search for methods that can cope with such problems has led to the subject of
evolutionary computation. Techniques in this field are characterized by a stochastic
approach to the search for improved solutions, guided by some kind of evolutionary
control strategy. There are four main methods in use today: (i) genetic algorithms
(GA) [Gol89], where the methods of Darwinian evolution are applied to the selection
of ‘fitter’ designs; (ii) evolutionary programming (EP) [Fog93], which is a more
heuristic approach to the problem based on ranked mutations; (iii) evolution strategies
(ES) [BHS91], where individual designs are mutated using adaptive mutation rates,
individually tuned to each variable in the problem and (iv) simulated annealing (SA)
[KGV83], where the control strategy is based on an understanding of the kinetics of
solidifying crystals and where changes are sometimes allowed even if they make the
solution worse. The first three of these methods work on groups of designs called
populations while the last deals with only one solution at a time.

The versions of the methods used here are fairly standard and as discussed in the
references but with the exceptions detailed below. All the methods are set up to use
either a one-pass external penalty function or an evolving Fiacco-McCormick internal
and external function that is made more severe as the search progresses [Kea94].
These are, of course, not used on the ‘jhrr’ problem, which is unconstrained. The
methods are also all set up to work with a binary encoding of the real valued design
variables using up to 16 bit accuracy (default 12 bit) except the ES which works
directly on the real valued quantities. This encoding is quite normal with a GA and
also allows a simple method for effectively randomizing the variables for the SA and
EP. Such a scheme helps the methods deal with the ‘jhrr’ problem, as there is then
a direct mapping between mutations and function value. The GA used encompasses
a number of new ideas that have proven well suited to engineering design problems
[Kea93] [Kea95]. It uses an elitist survival strategy which ensures that the best of

258 A.J. KEANE

each generation always enters the next generation and has optional niche forming to
prevent dominance by a few moderately successful designs preventing wide ranging
searches. The main parameters used to control the method may be summarized as:

1. Ngen the number of generations allowed (default 10);

2. Npop the population size or number of trials used per generation which
is therefore inversely related to the number of generations given a fixed
number of trials in total (default 100);

3. P[best] the proportion of the population that survive to the next
generation (default 0.8);

4. P[cross] the proportion of the surviving population that are allowed to
breed (default 0.8);

5. Plinvert] the proportion of this population that have their genetic
material re-ordered (default 0.5);

6. P[mutation| the proportion of the new generation’s genetic material that
is randomly changed (default 0.005);

7. a proportionality flag which selects whether the new generation is biased
in favour of the most successful members of the previous generation
or alternatively if all P[best] survivors are propagated equally (default
TRUE) and

8. the penalty function choice.

The niche forming method used here is based on MacQueen’s Adaptive KMEAN
algorithm [And75] which has recently been applied with some success to multi-peak
problems [YG93]. This algorithm subdivides the population into clusters that have
similar properties. The members of each cluster are then penalized according to how
many members the cluster has and how far it lies from the cluster centre. It also,
optionally, restricts the crossover process that forms the heart of the GA, so that large
successful clusters mix solely with themselves. This aids convergence of the method,
since radical new ideas are prevented from contaminating such sub-pools. The version
of the algorithm used here is controlled by:

1. Dpin the minimum non-dimensional Euclidean distance between cluster
centres, with clusters closer than this being collapsed (default 0.1);

2. Dpax the maximum non-dimensional Euclidean radius of a cluster,
beyond which clusters sub-divide (default 0.2);

3. N.ust the initial number of clusters into which a generation is divided
(default 25);

4. Npreeq the minimum number of members in a cluster before exclusive
inbreeding within the cluster takes place (default 5) and

5. a the penalising index for cluster members, which determines how
severely members sharing an over-crowded niche will suffer, with small
numbers giving less penalty (default 0.2), i.e., the objective functions
of members of a cluster of m solutions are scaled by m™in(®)[1 —
(E/Dmax)®] + (E/Dmax)®, where E is the Euclidean distance of the
member from its cluster centre (which is always less than Dmax).

The EP routine is exactly as per the references, except that, as already noted,
it works with a binary encoding and uses a choice of penalty function. It works by

A COMPARISON OF EVOLUTIONARY METHODS 259

forming a given number of random guesses and then attempts to improve on them,
maintaining a number of best guesses as the process continues (the population). In
this method evolution is carried out by forming a mutated child from each parent in
the population where mutation is related to the objective function so that successful
ideas are mutated less. The objective functions of the children are then formed and
a stochastic ranking process used to select the next parents from the combined set
of parents and children. The best of the solutions is kept unchanged at each pass to
ensure that only improvements are allowed. The mutation is controlled by a variable
which sets the order of the mutation process with ranking. In all cases the best parent
is not mutated and almost all bits in the worst are changed. The stochastic process for
deciding which elements survive involves jousting each member against a tournament
of other members selected at random (including possibly itself) with a score being
allocated for the number in the tournament worse than the case being examined.
Having scored all members of both parent and child generations the best half are kept
to form the next set of parents. The average number of solutions in the tournament
is set by a control variable. The ES routine used allows either the (1 + X) or the
(i, A) variants but does not use correlated mutations. It allows for either discrete or
intermediate recombination on both design variables and the mutation control vectors,
with the mutations being applied to non-dimensionalized versions of the design vectors.
The algorithm works by forming a given number of random guesses and then attempts
to improve on them, maintaining a number of best guesses as the process continues
(the population). Evolution is carried out by forming a child population from mating
pairs of parents, followed by mutation. The next generation is then made up from
good members of the old and child populations. Two methods can be used: either
the best from the combined and child populations are kept (i + A) or, alternatively,
only the best from the child population are used (i,), with any shortfall being made
up from the best of the parents. The mutations are controlled by vectors of standard
deviations which also evolve with the various population members. The rate at which
these S.D.’s change is controlled by a parameter of the method. Additionally, the
breeding of new children can be discrete and then individual design vector values are
taken from either parent randomly, or intermediate when the values are the average of
those of the parents. A similar interchange takes place between the vectors of S.D.’s
of the parent designs. The best of the solutions is remembered at each pass to ensure
that the final result is the best solution of all. The SA used has a logarithmic cooling
schedule which is based on the following strategy:

1. choose the total number of trials N;

2. set N =N P;

3. then for i = 1 to N let Tj = W((N1/C)=9) and do N/Nr tests at this
temperature.

Here there are three parameters: P, W and C : P lies between 0 and 1 with 0 implying
a random search at one temperature and 1 a single trial at each temperature. W is set
to lie in the range 1 to 10 and C 0.1 to 10, thus large values of W give a wide range of
temperatures, while large values of C bias this range to lower, colder values (W of 1.0
fixes all temperatures to be the same while C of 2.0 biases the temperatures equally
between hot and cold). Here the default values are 0.3333, 5.0 and 2.0 respectively.
Finally the ‘Boltzmann’ test is applied as follows:

260 A.J. KEANE

1. always keep a better result;

2. keep a worse result if exp(—(Unew — Uold)/(dUsstT:)) > R where Ugg
is the previous objective function value, Upey is the new (worse) value,
R is a random number between 0 and 1 and dUgs; is the magnitude of
the difference between the objective function of the starting point in the
search and the first trial at the highest temperature (and takes the place
of the Boltzmann constant).

The use of dUg; effectively non-dimensionalizes the annealing temperature and is
vital for the schedule to be general purpose. The method used here also allows the
user to control how big the changes are between the current point and the next point.
This is done by using a binary discretization of the design vector and then allowing a
given probability of a bit flip to get to the next trial (by default a 10% chance of each
and every bit being flipped). This method of choosing neighbours allows quite radical
changes to be proposed at all times and seems to help the search.

15.4 Initial Results

Application of the various optimizers to the two test problems using 150,000 trials
leads to the results of Tables 15.1 and 15.2, which are illustrated in Figures 15.2 to
15.9. For these runs a population size of 250 was used for the GA, while for the EP
and ES methods populations of 50 were taken. The (i, A) version of the ES was used
together with a child population size of 100, i.e., twice that of the parent population.
The large GA population size reflects the results of earlier studies using the clustering
method which show that it works better with bigger populations. Similar increases for
the EP and ES methods seem to reduce their efficiency on the functions optimized here.
The one pass penalty function was adopted for ‘bump’ in all cases. The figures show
the optimization traces for five runs in each case and it is seen that all the methods
find the two problems very difficult to deal with. It is notable that the searches all
tend to get stuck while dealing with the ‘jhrr’ problem. This is no doubt due to the
discrete, step-like nature of its objective function. The EP method in particular seems
to suffer in this respect. Also clearly visible are the ‘liquid’, ‘freezing’ and ‘frozen’
stages in the SA runs, indicating that the generic schedules used have spanned the
correct temperature ranges. It is also clear that the GA seems to work best and the
SA worst with the other two methods somewhere in between. It is, of course, to be
expected that all methods could be tuned to produce improved results (it is known,
for example, that a hand-coded annealing schedule allows the SA to perform at least
as well as the EP and ES methods on the problems studied here). A good optimizer
should, however, need little attention in this regard if it is to be widely useful. The
remainder of this paper addresses this aspect of optimization.

A COMPARISON OF EVOLUTIONARY METHODS 261

Table 15.1 Initial optimization results for ‘bump’, 150 000 trials

| method [1 2 | 3 4 5 avg.
GA 0.778 | 0.777 | 0.785 | 0.780 | 0.776 || 0.779
EP 0.706 | 0.706 | 0.634 | 0.617 | 0.703 || 0.673
ES 0.610 | 0.597 | 0.595 | 0.570 | 0.516 || 0.578
SA 0.389 | 0.423 | 0.357 | 0.423 | 0.384 || 0.395

Table 15.2 Initial optimization results for ‘jhrr’, 150 000 trials.

Imethod | T] 2 [3] 4 [5 [ave |
GA 7.30 | 8.02 | 7.08 | 10.68 | 10.66 || 8.75
EP 342 | 3.86 | 7.08 | 560 | 4.08 || 4.81
ES 748 | 5.60 | 740 | 5.24 | 5.74 || 6.29
SA 4.82 | 3.84 | 3.84 | 3.40 | 3.62 | 3.90

15.5 Optimizer Tuning

Having illustrated the difficulties the four methods find with the two test problems,
attention is next turned to tuning the parameters that control the actions of the
optimizers. Selecting these parameters represents an optimization problem in its own
right and a code has been developed to tackle this essentially recursive problem
[Kea95). It is, as might be expected, a difficult and time consuming problem to deal
with and is not pursued further here. Nonetheless, the GA used does reflect the results
of this earlier study on the ‘bump’ problem, which may go some way to explain its
good performance. It has not, however, been tuned to ‘jhrr’ and so its robustness
with this very different problem with the same parameter settings is encouraging (if
the mutation control rate P[mutation] is increased, the GA often achieves the true
optimum of 12.8 on this problem).

Having noted that a considerable amount of effort has been devoted in the past
to tuning the variant of the GA used, attention is next focused on the EP and ES
methods: is it possible to improve their performance by careful selection of their most
important control parameters 7 The EP method has two such parameters (aside from
the choice of penalty function, run length, population size and number of bits in the
encoding used here). These are the order of the mutation process with ranking (Inugnt
= 1 for linear, 2 for quadratic, etc.,) and the tournament size used in the selection
process as a fraction of the population size (fiourn). The ES method has slightly more

262 A.J. KEANE

controls, these being the size of the child population compared to the main or parent
population (fechila), the mutation vector evolution control rate (Ac), the choice of
intermediate or discrete crossover for both the design and mutation vectors and lastly
the distinction between the (u +) and (g, A) forms of the method.

Figures 15.10 and 15.11 show contour maps of the variation in the average objective
function for ‘bump’ and ‘jhrr’, respectively. In both cases these are averaged over
five runs and are plotted for changes in Imytnt and feourn using the EP method.
20000 evaluations have been allowed per run and all other parameters kept as per
the previous figures. Figures 15.12 and 15.13 show similar plots using the ES method
for variations in Ao and fenjd, using discrete variable crossover, intermediate mutation
vector crossover and the (u,) form of the method, as before and which trials have
shown best suit both these problems (n.b., as has already been noted, when the child
population is smaller than the parent population the shortfall is made up from the best
of the parents). In all cases the small square marker on the plots indicates the default
values used in producing Figures 15.2 to 15.9. The contour plots clearly illustrate how
strongly the control parameters can affect the performance of the two optimizers.

Consider first the EP method and Figures 15.10 and 15.11. These both show that the
tournament size does not strongly influence the method, with values in the range 0.1
to 0.3 being best for these test problems. The class of mutation has, by comparison,
a much greater effect. Moreover, linear mutation variations seem to suit the ‘jhrr’
problem while cubic changes are more suitable for ‘bump’. Thus no single setting of
this parameter can be proposed as providing a general purpose value: the quadratic
mutation variations used by default being clearly a compromise with variations around
this value resulting in £20% changes in performance on the test problems.

Turning next to the ES method and Figures 15.12 and 15.13, it is apparent that
both plots show a valley of poor performance when the child population is equal in
size to the parent population. Moreover, diametrically opposed values of both Ao and
fenila give the best results for the two test problems studied. Worse is the fact that the
range of performances spanned by the plots vary from —50% to +67% when compared
to the default values, indicating that the performance of the method is very sensitive
to these controls. It does, however, appear that, when correctly set up, the ES method
can give good performance on the ‘jhrr’ problem (i.e., with a high value of Ac and
small child populations).

Finally, consider SA: the method is tuned by modifying the cooling schedule. As
has already been set out, the SA schedule used here is a general purpose one that
can be controlled via three parameters affecting the ratio of trials per temperature
to number of temperatures, the width of the range of temperatures considered and
the bias of this range between high and low temperatures. Figures 15.5 and 15.9
demonstrate that the temperatures where most improvements take place lie in the
middle of those considered and so the parameters P and W were varied with C fixed.
This leads to the contour maps of Figures 15.14 and 15.15, again for ‘bump’ and ‘jhrr’,
respectively. Both figures indicate that, using the generic cooling schedule adopted
here, SA performs significantly worse than any of the three other methods, even for
quite broad changes in the two key control parameters of the schedule. Nonetheless,
the method seems to offer relatively consistent performance over a wide range of
controls. Such variation as there is does, however, tend in different directions for the
temperature range parameter W, with ‘bump’ being best handled with W = 1.2 and

A COMPARISON OF EVOLUTIONARY METHODS 263

‘jhrr’ with W = 7. Both methods seem to perform best with low values of P, i.e.,
few distinct annealing temperatures, although variations in this parameter do not
give such significant changes in performance. Finally, it should be noted, as has been
mentioned earlier, that hand-coded schedules allow the SA to perform at least as well
as EP and ES on these two problems.

15.6 Conclusion

This brief paper has shown that, although they have some advantages, basic
implementations of evolutionary programming, evolution strategies and simulated
annealing are still all outperformed by an up-to-date GA on the test functions
considered here. No doubt further refinements of these methods would allow their
performance to be improved. Such improvements would need, however, to go beyond
simple parameter tuning and address new mechanisms, such as the niche forming
adopted in the GA here. It should also be noted, however, that simple public domain
GA’s [Gre84] are not so robust against such problems [Kea94]. Perhaps less dependent
on the sophistication of the implementations is the robustness of the various methods.
The GA seems to be less sensitive to its control parameters than the other methods
used here and it is difficult to see how such robustness can be achieved with these
methods. So, in summary, it may be said that when comparing new optimizers with
existing methods described in the literature, care should be taken not to test simply
against readily available but rather simplistic public domain versions of existing
methods and then only to compare best results. Nonetheless, it remains true that
one of the difficulties of working in this field remains that of getting reliable test
results for up-to-date methods on functions of interest.

264 A.J. KEANE

X(2)

X1

Figure 15.1 Contour map of the two-dimensional ‘bump’ problem.

o
w

Objective Fn.
- 2 - - -
W - i P o

o
i

o

0.2E5 0.485 0.6E5 0.8ES 1.085 1.285 1.485
Evaluation No.

Figure 15.2 Optimization traces for ‘bump’ using the GA.

A COMPARISON OF EVOLUTIONARY METHODS 265

Objective Pn.
=

o

0.1

0.2E5 0.4E5 0.6E5 0.8E5 1.085 1.285 1.485
Evaluation No.

Figure 15.3 Optimization traces for ‘bump’ using EP.

- — —
0.2E5 0.485 0.6E5 0.8E5 1.0E5 1.285 1.4E5
Evaluation No.

Figure 15.4 Optimization traces for ‘bump’ using ES.

266 A.J. KEANE

)
-~

Objective Fn.

o

0.2

0.2E5 0.485 0.6E5 0.8E5 1.085 1.285 1.4E5
Evaluation No.

Figure 15.5 Optimization traces for ‘bump’ using SA.

12
10
8
. £ I
£ f i -
P [J
o6
3
8
4
2
7.285 0.455 0,685 0.8E5 1.085 1265 T.485
Evaluation No.

Figure 15.6 Optimization traces for ‘jhrr’ using the GA.

A COMPARISON OF EVOLUTIONARY METHODS

Objective Fn.

o

-

Ty

0.2E5 0.4E5 0.6E5 0.8E5 1.0E5 1.285 1.485
Evaluation No.

Figure 15.7 Optimization traces for ‘jhrr’ using EP.

Objective Pn.

o

-

/’_,_,—H_’l—’——,——
= L
L L -
0.2E5 0.4E5 0.6E5 0.8E5 1.085 1.2E5 1.485

Evaluation No.

Figure 15.8 Optimization traces for ‘jhrr’ using ES.

267

268

A.J. KEANE

o

Objective Fn.

-~

0.285 0.485 0.685 0.8E5 1.085 1.265
Evaluation No.

Figure 15.9 Optimization traces for ‘jhrr’ using SA.

0.8

0.2

Figure 15.10

Effect on ‘bump’ optimizations of variations in EP control parameters.

A COMPARISON OF EVOLUTIONARY METHODS 269

1.5 2.0 2.5 3.0 3.5 4.0
Imutnt

Figure 15.11 Effect on ‘jhrr’ optimizations of variations in EP control parameters.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
fchild

Figure 15.12 Effect on ‘bump’ optimizations of variations in ES control parameters.

270 A.J. KEANE

2.0 3.0 3.5 4.0 4.5 5.0

2.5
fchild

Figure 15.13 Effect on ‘jhrr’ optimizations of variations in ES control parameters.

Figure 15.14 Effect on ‘bump’ optimizations of variations in SA control parameters.

A COMPARISON OF EVOLUTIONARY METHODS

Figure 15.15 Effect on ‘jhrr’ optimizations of variations in SA control parameters.

REFERENCES

[And75] Anderberg M. (1975) Cluster Analysis for Applications. Academic Press,
New York.

[BHS91] Back T., Hoffmeister F., and Schwefel H.-P. (1991) A survey of evolution
strategies. In Belew R. and Booker L. (eds) Proceedings of the 4th International
Conference on Genetic Algorithms (ICGA IV), pages 2-9. Morgan Kaufman
Publishers, Inc., San Diego.

[Fog93] Fogel D. (1993) Applying evolutionary programming to selected traveling
salesman problems. Cybernetics and Systems 24(1): 27-36.

. [Gol89] Goldberg D. (1989) Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA.

[Gre84] Grefenstette J. (1984) A user’s guide to GENESIS.

[Kea93] Keane A. (1993) Structural design for enhanced noise performance
using genetic algorithm and other optimization techniques. In Albrecht R.,
Reeves C., and Steele N. (eds) Proceedings of the International Conference on
Artificial Neural Nets and Genetic Algorithms, pages 536-543. Springer-Verlag,
Innsbruck.

[Kea94] Keane A. (1994) Experiences with optimizers in structural design. In
Parmee I. (ed) Proceedings of the Conference on Adaptive Computing in
Engineering Design and Control 94, pages 14-27. P.E.D.C., Plymouth.

[Kea95] Keane A. (1995) Genetic algorithm optimization of multi-peak problems:
studies in convergence and robustness. Artificial Intelligence in Engineering
9(2): 75-83.

[KGV83] Kirkpatrick S., Gelatt C., and Vecchi M. (1983) Optimization by
simulated annealing. Science 220(4598): 671-680.

[MFH92] Mitchell M., Forrest S., and Holland J. (1992) The royal road for genetic
algorithms: Fitness landscapes and ga performance. In Proceedings of the First

271

272 A.J. KEANE

European Conference on Artificial Life. MIT Press, Cambridge, MA.

[FM93] Forrest S. and Mitchell M. (1993) Relative building-block fitness and
the building-block hypothesis. In Whitley L. (ed) Foundations of Genetic
Algorithms 2. Morgan Kaufman Publishers, Inc., San Mateo.

[YG93] Yin X. and Germay N. (1993) A fast genetic algorithm with sharing
scheme using cluster methods in multimodal function optimization. In Albrecht
R., Reeves C., and Steele N. (eds) Proceedings of the International Conference
on Artificial Neural Nets and Genetic Algorithms, pages 450-457. Springer-
Verlag, Innsbruck.

