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Abstract

The non-linear post-buckling behaviour of a plate of any shape and support
conditions, subjected to loading parallel to its plane, can only be predicted by
numerical methods. Recent developments in formulations of this problem, based
on the boundary element method (BEM), are reviewed. A mew procedure is
proposed whereby BEM modelling is combined with domain models for the
lateral deflection and the stress function yielding the membrane forces. The non-
linear plate response to in-plane loading initiated by imperfections is determined
incrementally with the option of increasing accuracy through iterations within
each loading step. The curvature and membrane force distribution in the deformed
plate is approximated through non-linear interpolation models for the deflection
and stress function over domain cells.

1 Introduction

Although thin plates resist very effectively forces parallel to their
middle plane, their slenderness may cause instability at loads below
their ultimate strength. The possibility of this type of failure must be
envisaged in engineering practice. Since the first experimental
observation of the plate buckling phenomenon almost 150 years ago,
the problem has been extensively investigated both analytically and
experimentally.! Closed-form solutions for critical loads were
obtained for a number of special cases. Rigorous analyses, combined
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with computational techniques, provided very accurate numerical
answers for various plate shapes and a wide range of loading, material
as well as support conditions. More recently, approximate methods
implemented through computer codes have provided solutions of even
wider applicability.

The advantages of boundary element algorithms with regard to
computer memory requirements, speed of execution and simplicity of
input data structure have been demonstrated in a wide range of
applications. However, a genuine BEM formulation for plate stability
problems is not possible due to unavailability of closed form
fundamental solutions valid for any membrane stress distribution. The
approach most commonly adopted by analysts has been the use of the
fundamental solutions of the plate bending problem. The resulting
integral equations contain irreducible domain integrals arising from
in-plane loading and depending on the generated non-uniform
membrane stress distribution as well as the unknown curvatures of the
deflected plate. Thus the extension of BEM to plate stability problems
has not been achieved without penalties since such formulations
require domain discretization and modelling which reduce, to a certain
extent, the efficiency of the method.2~6 In addition, a post-buckling
analysis imposes the numerical complexities arising from geometric
non-linearity as well as coupling between flexural and membrane
behaviour.

The boundary element method had originally been applied to
the analysis of non-linear plate behaviour induced by lateral loads. A
general formulation based on the incremental form of the coupled
von Kérmén equations has been presented.” It was proposed that these
equations be solved either by iteration or directly through
complementary domain modelling. According to an alternative
scheme based solely on the Rayleigh-Green identity for the
biharmonic operator,® the plate curvatures and the membrane forces
are considered as additional unknowns at domain nodes and the
resulting non-linear algebraic problem is solved by iteration.

Other incremental and iterative analyses extended the scope of
BEM to predict the non-linear plate response to in-plane edge
loading. Such numerical simulation can either be initiated by
imperfections? or generated as a bifurcation path from critical
equilibrium.1%:11  An incremental scheme was adopted with the
deflection as the only domain unknown requiring modelling and a
domain discretization scheme.® In the present analysis, the domain
modelling is extended to the stress function. Following an earlier BEM
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plate buckling formulation, domain curvatures and membrane forces
are eliminated from the system of integral equations governing the
deflection and the stress function. The dependence of nodal
curvatures and membrane forces on domain unknowns is established
through non-linear interpolation functions over domain cells. Since
this scheme reduces the overall number of unknowns, it is expected to
increase the efficiency of the method without significant loss of
accuracy.

2 Plate post-buckling theory

Plates with initial imperfections loaded in their plane, undergo some
deflection before the theoretical critical buckling load is reached. In
fact, when these deflections are not negligible compared to the
thickness of the plate, the strains in the middle plane of the plate
cannot be ignored in the analysis. This coupling between bending and
membrane action is modelled by the well known von Kéarmén

equations:!2
Napp=0 (1)
DV4W = Naﬁ(w,a5+wi,aﬁ) 2)

where Nyp are the membrane forces, D the rigidity of the plate defined
by

ER3
D=—2
12(1- v2)

W is the plate deflection, W' the initial plate imperfection, E the
Young's modulus, v the Poisson's ratio and h the plate thickness.
Greek subscripts indicate mid-plane co-ordinates and a comma
denotes differentiation with respect to subscripts, with summation
implied over repeated indices.

The use of the constitutive equations of plane stress elasticity and
the expressions for large strain transforms equations (1) and (2) into a
system of non-linear differential equations for the middle-plane
displacement V and the deflection.!%:11 Alternatively, the problem can
be formulated in terms of a stress function F such that

Nop = h[(V2F)dqp - Fapl (3)

-
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Then equilibrium equations (1) are identically satisfied and are
replaced by the compatibility condition for plane strain. The new
system of equations for F and W has the form

E A a 3 ")
VAF = -5 [Sap(W) Wiqp — Sap(W) Wigp] ®
DVAW = Nyg Wi )

where W is defined as the total deflection

A

W=W+Wi,
and tensor Sgp is derivable from the deflection according to
Sap(W) = (V2W)Bap - Wigp (6)

it may therefore be considered as a pseudo-stress satisfying identically
equilibrium equations (1). ‘

In the absence of imperfection, the obvious solution of (1) and
(2) is the pre-buckling, plane-stress state

Noﬂ,W=0

a

which bifurcates to the post-buckling solution Nog, W # 0 at critical
equilibrium. Numerical difficulties associated with this sudden
transition are side-stepped if imperfections are included in the
formulation. Modelling imperfect plates also makes BEM solutions
directly comparable to experimental measurements.

The various proposed methods of solution of the non-linear
problem adopt an incremental-iterative approach whereby the non-
linear equations in V and W or F and W are replaced by linear
equations in their respective increments v and w or fand w. In the case
of the more consistent F-W formulation, the differential equations
governing the incremental variables are derived from (4) and (5) as

Véf= - E[Sap(W) + 5 Sap()IWap Q)
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DVéw= Napwap + nop( W’aﬁ + Wap) (3)

where ngp are the increments of Nyp. It is noted that the quadratic
terms in the incremental quantities have been retained in equations (7)
and (8).

3 Integral equations

A BEM solution of (7) and (8) can be based on the Rayleigh-Green
identities for the biharmonic operator and the flexural plate theory:

ﬂf(u(V“f) ~AV4W)1d0 = I up )

B N R R SRR w20t i s e

D J‘ (VW) - w(V4)1dQ + IFum) = Juw) (10)

where Q is the plate domain, I its boundary, ¥ any weighting function
and

Eup = ﬂ le 5V V‘-ua Qg;fif]dr (11)

Fuw) = J.[u V) = & Moo + Moat) 22 Vaw]dr (12)

N,
J(uw)= z(utMm<w)1 WM @), (13)

Jj=1

My, My, V are operators for the bending moment, twisting moment,
effective shear, respectively, along a boundary with unit normal n and
unit tangent vector s. A bold-faced square bracket indicates the
difference in the enclosed quantity in the positive and negative
directions of s at the corner points of I'. Thus, the term J accounts for
the discontinuity jumps of the twisting moment at the Ny corners.
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The integral equations are derived from eqns (9) and (10) using the
following two fundamental solutions of the biharmonic operator:

re
u(Q) =gz lnr (14)
u2(Q) = - g=(2Inr+ I)cosa (15)

The physical interpretation of these solutions in the context of both
plane stress and plate bending analyses has been given in an earlier
account of a BEM solution of the general plate buckling problem.6
By accounting for eqns (7) and (8), governing f and w, and by
entering the fundamental solutions u;, (i=1,2) as weighting functions
in eqns (9) and (10), the following system of integral equations is
obtained:

Xfi + Ii(u,-j) + EId(u,-,ﬁ’,w) + g-ld(ui,w,w) =0 (16)

—kDw; + I (uiw) + IuiNw) + I(uin,W +w) = Juiw)  (17)

where
{0.5 ifPonl
**11 i#rina
9 ow
A=AP), fi=5H(P), wi=w(P), wy=ae(),
and

Igu,Ww) = (uSep(W)wpdQ

I uNW) = |uNgpwgpdQ

Using the identities
Ig(u,Ww) = Is(wWu) = L(u,Ww),

IguNW) = IqwNu) = L(u,Tw),




[

where T(s) is the edge traction and

RWe ow ou\ Wy ow ou
hu,Wow) = j[‘a?(“aﬁ—“az s Gy ]dl"’

r

L(uTw) = ﬂTn(ug,%- ng%) . T, (u%‘;—- w%‘;-)] ar,

integral equations (16) and (17) are transformed to
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W + Iyuis) + ElCus W ) + ELw W ) + 5 Lugow) = 0 (18)

—kDw; + I ;W) + Li(u, Tw) + I(ui, W )
+ IgwNu) + I W 33) + To(uinw) = Juzw) (19)

Boundary element modelling leads to the solution of integral
equations (18) and (19) which govern the incremental plate post-
buckling behaviour. The quadratic terms in these equations are
initially omitted from the formulation. It is also assumed that the total
forces, moments, displacements and curvatures are known at the start
of a load step. Accounting for the specified support and loading
conditions, there are six unknown variable quantities in the boundary
integrals [:;(uiﬂ9 I;’(ui’w’ IQ(Ui,W,W), It(ui,T,W), It(ui,Wﬂ and the
jump term J(u;,w). More specifically, the boundary values of f and its
normal derivative are functions of the edge traction increment while
deflection-related boundary variables depend on the support
conditions.® The deflection, appearing in the domain integrals
Ig(w, W u;) and Ig(wNy;), and the stress function f appearing in the
domain integral Iqf,W u;), are additional unknown variables. For
consistency, two domain equations, obtained by setting k=1 and i=1 in
eqns (18) and (19), complement the formulation

£+ B + ERGuy,W ) + EluW ag) + o Iuy ww) = 0 (20)

~Dw + BXuy w) + L(uy,Tw) + I(uy W ) b
+ I§wNu1) + IgEW uy) + IgQupnm) = Juyw) (21)

-
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into the one-dimensional array {Z;} while those in I;,V(u,-,w) and
Iy(u;, W w) are grouped into {Z,}. Nodal deflection and stress function
values are assembled in {w} and {f}, respectively. The terms arising
from the known values of fand its normal derivative on the boundary
make up arrays {A} and {Ay}. Finally, {Qf} and {Qy} result from the
integration of the quadratic terms in eqns (18) and (19) and are
evaluated only if iteration is envisaged.

An additional system of 2Ny algebraic equations is obtained by
placing the source point on the Ny domain nodes and applying eqns
(20) and (21). The final result is matrix equations of the form

SAD){Z} + [D){Zu} + U} + [D)w) =57 (B + (R} (27)

(D1 + ND'D{Z} + DA + [DX1{w} = {Bu} + {Ru} (28)

where arrays {B} and {R} are defined in the same way as {A} and {Q},
respectively.

At the beginning of each load step the solution is carried out
without the arrays {Q}, and {R} containing the integrals of the
quadratic terms in the unknown increments. This results in a consistent
system of equations in the boundary and domain unknowns. It is
noted that several coefficient arrays in eqns (25)-(28) are fixed and
need to be calculated only once, at the beginning of the incremental
solution process. After incremental deflection and stress function
values are determined, the nodal curvatures and membrane stresses are
calculated using eqns (24). An alternative, more rigorous but also
more time consuming approach would be to differentiate the linear
parts of eqns (16) and (17) with x=i=1, then generate and solve a
coupled system of equations in {y} and {n}. The result may be further
corrected by including the integrals of the quadratic terms and solving
the system iteratively within the current load step. Finally, the total
values of all variables are calculated to be used in the next load step.

6 Discussion and Further Work

A new BEM formulation for plate post-buckling has been developed.
It is based on a neat set of integral equations, mathematically
symmetric relative to the domain variables, namely deflection and
stress function. Through thoughtful application of Green's theorem,
second derivatives of the unknown variables, representing curvatures
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and membrane stresses have been eliminated from the algebraic
system resulting from BEM and domain modelling.

This is an essentially incremental procedure whereby small
changes in the field variables are determined at each load step with the
option of performing iterations in order to enhance accuracy in the
case of large load steps or near bifurcation points. This contrasts with
other formulations which rely solely on iteration and, therefore, may
not be as numerically robust as the proposed method which has the
additional advantage of yielding directly all the important design
quantities as part of the solution process.

The proposed numerical procedure needs to be validated by
comparing its predictions with published experimental data or other
analytical results. The versatility of the method can also be
demonstrated by analysing plates with a variety of geometrical,
support or loading characteristics. The successful implementation of a
similar BEM solution? is a positive indicator for the effectiveness and
reliability of the new algorithm.

A disadvantage of the proposed scheme in its present form is that
it cannot admit in-plane edge constraints. In this respect, it compares
unfavourably with schemes which consider the in-plane displacements
rather than the stress function as field variables.!0:11 QOne aim of
further work would be the extension of the analysis to account for
such constraints through minor changes in the boundary integral
formulation. Other, more long term aims would be the development of
stability analysis for elastoplastic and stiffened plates.
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