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Abstract

Eigenanalysis of the state vector transfer matrix has previously been employed to obtain Saint-Venant decay rates
and continuum beam properties of a repetitive pin-jointed framework. Decay eigenvalues occur as reciprocal pairs, the
transfer matrix being symplectic, and three of the unity, transmission, eigenvalues pertain to the trivial rigid body
displacements. By setting displacement or force components equal to zero at the remote right-hand end of the structure
and, through use of a recurrence relationship, new displacement transfer matrices, S or C, are derived for the generic
cell; these are one-half of the original size, well conditioned, and the redundant information is eliminated. The former,
S, requires a large value of the recurrence index, i, to achieve accurate eigenvalues while the latter, C, retains trivial
information pertaining to the rigid body displacements. An alternative force transfer matrix, M, derived from S, retains
the maximum amount of relevant information and converges quickly. The method suppresses the redundant right-to-
left decay eigenvectors, and calculation of the transmission vectors of tension, bending moment and shearing force is
simplified by the need to calculate just one principal vector rather than four for the original eigenproblem. Finally, these
transmission vectors are employed to determine the continuum beam properties of the framework. © 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Transfer matrix methods have received considerable recent interest as a means of dynamic analysis of repetitive
structures [1-5]. The method is attractive as the behaviour of the complete structures can be determined from a
knowledge of the transfer matrix of a single cell. For static analysis, the transfer matrix method has been employed by
Stephen and Wang [6] to determine both the Saint-Venant decay rates and the equivalent continuum beam properties of
a repetitive pin-jointed framework; the displacement and force components on one side of the cell form a state vector,
when left multiplication by the transfer matrix gives the state vector on the other side. Transmission or decay of the
state vector, according to whether the force components constitute a cross-sectional force or moment resultant, or are
self-equilibrating, is equivalent to a scalar multiplication (x 1) of the state vector, which leads immediately to an ei-
genvalue problem. For the plane framework considered in [6], the transfer matrix is of size (12 x 12); the decay ei-
genvalues occur as three reciprocal pairs according to whether decay is from left to right, or vice versa. The transmission
eigenvalue (A = 1) has a multiplicity of six, three of which pertain to the rigid body displacements, while the other three
pertain to the stress resultants of tension, shear and bending moment. (Torsion is, of course, excluded in this plane
case.) Eigenvectors for the rigid body displacements are coupled with principal vectors for the stress resultants, and the
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Nomenclature

cross-sectional area

displacement-transfer matrix, with boundary condition p, = 0
nodal-displacement vector

matrix of displacement eigen- and principal vectors

Young’s modulus of elasticity

nodal-force vector (according to the conventions of the finite element method)
shear modulus

state vector transfer matrix

(=12, index

second moment of area

identity matrix

index of cell, number of repeated cells in structure

stiffness matrix

stiffness matrix relating force and displacement on left side of restrained structure
bar length

bending moment

force transfer matrix, with boundary condition dy =0

order (of magnitude)

nodal-force vector (according to the conventions of the theory of elasticity)
matrix of eigen- and principal force vectors

shearing force

beam radius of curvature

rectangular reduction matrices

state vector

displacement transfer matrix, with boundary condition dy =0
tensile force

displacement components in x-, y-, and z-directions

cartesian coordinates

matrix of eigen- and principal state vectors

shear strain

direct strain

shear coefficient

decay factor, eigenvalue of transfer matrix

A4 27

Poisson’s ratio

cross-sectional rotation
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Superscript
T transpose of matrix or vector

Subscripts
L left
R right

similarity matrix of these vectors transforms the transfer matrix into Jordan canonical form, the transfer matrix being
both defective and derogatory. Consideration of the displacement and force components of the principal vectors allows
calculation of exact values for equivalent continuum beam properties of the framework, such as cross-sectional area,
second moment of area, shear coefficient, and Poisson’s ratio.

The method has been developed by Stephen and Wang [7] as a finite element-transfer matrix procedure for the
determination of Saint-Venant decay rates of an elastic prism of arbitrary cross-section subjected to self-equilibrated
end loading, and is found to provide excellent agreement with the few exact (according to the spirit of the mathematical
theory of elasticity) available solutions, such as the Papkovitch-Fadle solution for the plane strain strip [8], the rod of

solid circular section [9], and the rod of hollow circular section [10].
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While this transfer matrix approach is very simple, leading as it does to a standard eigenvalue problem, the question
arises whether there are preferable methods of implementing the eventual numerical solution. There are two clear
disadvantages in operating directly with the transfer matrix: first, difficulties exist in dealing with multiple eigenvalues, a
problem, which does not generally arise in dynamic analysis and, as has been pointed out by Golub and Van Loan [11],
the Jordan block structure of a defective matrix is very difficult to determine numerically; the second is that the transfer
matrix is ill-conditioned. The possibility that preferable numerical procedures may exist is also apparent: first, as the
transfer matrix is symplectic [12] and its eigenvalues occur in reciprocal pairs, half of the decay eigenvalues are effec-
tively redundant if one is concerned solely with decay from, say, left to right; second, there is the possibility of reducing
the multiplicity of the unity eigenvalue by removing the (trivial) three rigid body displacements if the cell (or structure)
can be restrained in some way. These two considerations lead to a potential reduction in size from the initial (12 x 12)
eigenproblem to one of (6 x 6); in consequence, the state vector of twelve elements would require trimming to six el-
ements, suggesting that one should redefine the state vector in terms of displacement or force components, but not both.

In this paper, two related approaches are presented, which achieve the above objective; both rely on the imposition
of boundary conditions of either zero displacement, or zero force, at some extreme Nth section at the right-hand end of
the structure, where N is assumed large, together with the use of a recurrence relationship, which allows one to work
back towards the left-hand end of the structure. This results in a (6 x 6) transfer matrix for either displacement, or force
components (but not both); the procedure ensures that the new transfer matrix is well conditioned. Although the Jordan
block structure cannot be avoided altogether — a shearing force is inevitably coupled to a bending moment, and a rigid
body rotation is coupled to a rigid displacement in the y-direction — the reduction in problem size does facilitate cal-
culation of the now single principal vector.

For completeness, a summary of the transfer matrix method is first provided, together with a brief description of the
approaches taken by other authors.

2. State vector transfer matrix

Consider the jth cell located between the (j — 1)th and jth sections of the plane framework in Fig. 1. The state vector
s consists of the displacement and force vectors, d and p, respectively; the state vectors at the left- and right-hand sides

ares; | = [d;lp/{]]T and s; = [d_]Tp]T]T, and are related by the transfer matrix G through the equation,
s; = Gs;_|, 1)
or in partitioned form
Bl e [ g
P, Gpa Gpp | [P
Setting
s; = AS;_1, 3)

where A is the decay factor equivalent to piecewise exponential decay, leads to the eigenvalue problem,
(G —A)s;; =0, (4)

in which I is the identity matrix.

Fiy Fay
1 iMcell %

Fip—e 1 4 e Fyy
2 Fay Fsy
i §

1 2 3 4 Fypmo 2 5 —u Fs, N—1 N

Fsy Fs,

Y Fj,_.f 3 6 o Fo,

0 1 2 3 4 . o N-2 N-1  N"section
I i-
x

Fig. 1. N cells of repetitive framework.
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The transfer matrix for the cell is readily obtained from its stiffness matrix K; referring to Fig. 1, the force and
displacement vectors F and d, are related by the stiffness matrix equation F = Kd, or in partitioned form

Fio] K K| fdi (5)

E; Kijo Ky JL 4 )
where the force vector F is, by convention, defined positive when the components are parallel to the coordinate di-
rections; thus, F; | = —p, |, F; = p;. Since all cells within the structure have identical stiffness matrix K, the subscripts

(j—1) and j within K are replaced by the subscript L and R for left- and right-hand side, respectively; they are,
however, retained as an index for the state vector. One then has

P | _ | Ko Kir | |diy (6)
p; Kri Krr d |
Expanding Eq. (6) and re-arranging in accordance with Eq. (2), gives
G = |:Gdd de} = { _KITIIQKLLI _Kil]{ 11 (7>
Gp Gy Kre — KK K1 —KrrKip

The reason for ill-conditioning of the transfer matrix G is apparent: the two blocks on the leading diagonal of
Eq. (7), Gag and Gy, are independent of Young’s modulus E, while the block G, and Gpq are proportional to E'and
E, respectively,

3. Previous approaches
A quadratic eigenvalue formulation involving the partitioned stiffness matrix can be found as follows: expand Eq. (6)
as
—p;o1 = Kidj + Kirdy, (8)
p;, = Krrd; 1 + Kgrd;.

Multiply the first of these by /, substitute [df p_,T]T = /“L[df,l p}{l]T in both to eliminate the jth state vector and add, to
give
(/12 Kir + 41 (KLL + KRR) + KRL) d,;] =0. (9)

A similar approach, which has been applied to the dynamic analysis of repetitive two-dimensional (plate-like) structures
[13] but which leads to an identical result for the present static case, is as follows: eliminate the right-hand displacement
vector, d;, through the introduction of a rectangular reduction matrix R, according to

{%;q::{é}@4::R¢4. (10)

The force relationship p, = Ap,_;, (which is a statement of equilibrium of force for the cell when 4 =1, or a re-
quirement that both load vectors p; and p;_; should be self-equilibrated when A # 1) may be expressed in the form,

R N R "

where R is the complement of R. Substitute Eq. (10) into Eq. (6), and pre-multiplying by R, leads to the result,
RKRd, , =0, (12)

which, on expansion, leads to Eq. (9); this can be tackled directly as a “lambda” matrix. While the above approaches do
result in a halving of the problem size, they have the disadvantage of losing the standard eigenvalue form, and it is
preferable to restore the standard form,

[A—)»I]bdé;l} =0, (13)
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where the matrix A is in the lower companion form,

0 I
A= _ _ . 14
{ ~KipKe  —Kig (Kio + Ker) } (14)

This reduction, together with effective methods for dealing with the non-symmetric eigenvalue problem, is also de-
scribed by Dong [14].

Zhong and Williams [4] exploited the symplectic properties of the transfer matrix to avoid the numerical ill-
conditioning, which occurs on matrix inversion, and re-cast Eq. (6) into the form,

[(KLR"‘K{R) _(KLL”FKRR)} [dj—l} :A[ 0 KLR] [dj—1:| (15)
(K +Krr)  (Kir —KfR) || 4 ~Kpe 0 d |’
where both matrices are skew symmetric, and 4 = 4 + 47", This form can be solved using the QZ algorithm, but these
authors show how the eigenvalue problem can be reduced to normal form, when the QR algorithm can be applied.
Finally, note that Lin [15] has exploited the symplectic structure to formulate an alternative to the QR algorithm,

resulting in a reduction in the storage requirement and the number of operations.

4. Displacement- and force-transfer matrices

In this new approach, the single cell stiffness matrix is employed to construct a banded global stiffness matrix
equation for the complete structure consisting of N identical cells, as shown in Fig. 1; boundary conditions at the
remote right-hand end of the structure are then imposed to derive a recurrence relationship from which a displacement
or force transfer matrix is obtained.

4.1. The global-stiffness equation of a repetitive structure

In order to see the banded chain nature of the global-stiffness matrix developing, consider the three adjacent cells at
the left-hand end of the structure, having j = 1-3 in Eq. (6), i.e.,

-—Po— _ Kip Kir ||do
| P1 | B _KRL KRR_ _dl_7 (16a)
—p ] _ [Ki Kig|[dy]
| P2 | B _KRL KRR‘ _dz_’ (16b)
[—p, ] [Kue Kz ][dr]
L Py [Kee Kre|ds] (16c)

Taking the second equation within Eq. (16a) and adding it to the first equation within Eq. (16b), eliminates the vector
p1, to give

0 = Krpdp + (Krr + Kpp)d; + Kpgds.
Similarly, the force vector p, can be eliminated from Eqgs. (16b) and (16¢) to give
0 = Kppd; + (Kgr + K1 )dy + Kirds.

Proceeding in this way for the complete structure, i.e. all N cells, leads to the banded matrix equation,

O [Kw K 0 17 4 ]
0 Krp (Krr +Ki1) Kir 0 d;

0 Kre (Krr + K1) K 0 d;

- : o B (17)
0 ) '
0 0 Kpo (Kpr+Ki) Kir dy_
> . 0 KRL KRR_ L dN i
L Pw
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within the banded matrix 0, and the blanks out of the band, are the zero matrix having the same size as the sub-matrices
Ky, etc., ie. of size 6 x 6 for the plane framework; within the column vectors, 0 is a 6 x 1 zero matrix.

4.2. Displacement-transfer matrix: suppression of rigid-body displacements

To suppress the rigid-body displacements, one sets dy = 0. From the penultimate line of Eq. (17), the relationship
between the displacement vectors at the Nth, (N — 1)th, and (N — 2)th sections is
0 =Kgidy » + (Krr + Kpp)dy; + Kirdy,
and setting dy = 0 gives
dy_1 = —(Kgr + KLL)AIKRLdN~2
or
dy_; = (_SIIKRL)dN—L (18)

where S| = (Krr -+ Kr1).
Similarly, from the pen-penultimate line of Eq. (17), one has

0 =Krpdy_; + (Kpr + Krp)dy-2 + Kirdy-g,
and substituting for dy_; from Eq. (18) gives
dy_, = (*SQ_IKRL)dNa, (19)

where Sz = (KRR -+ KLL) - KLRSIIKRL.
Similar manipulations can be performed as one works ones way towards the left-hand end of the structure giving

di = (=S, Krr)do, (20)

where Sy_; = (Kgg + Kii) — KirSyKre-
Now, from the first line of matrix equation (17), one has
—po = Kirdy + Kirdy,
substituting for d; from Eq. (20), gives
dy = *SX/[POa (21)
where Sy = (Kip) — KLRSA’L]KRL. Eq. (21) is a recursive means by which the displacement vector at the left-hand end of

the structure, dy, can be obtained from a knowledge of the load vector, py, applied at that end; in effect, one has
constructed a ‘super element’ stiffness matrix (=Sy) for the complete structure under the assumption that dy = 0.

In general, if one takes Sy = [], such that S, = [0], then
So = [], (22a)
S: = (Krr + Kio) — KirS; " Kru, (22b)
dyv = (S 'Kpp)dy .y fori=1,23,...(N-1) (22¢)
dy = —S;'p,, (22d)
Sy = KiL — KirSy! Ker. (22¢)

Note the distinction between the general term S;, (Eq. (22b)), and the final term Sy (Eq. (22¢)), the latter is applicable
only at the (free) extreme left-hand end of the structure.
By writing in Eq. (22¢)

S = —SFIKRL (23)

together with j =N —iand j—1=N — (i+ 1) when d;, = dy_; and d,_; = dy_,—;, Eq. (22c) becomes
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dj = de—la (24)

where S is the displacement-transfer matrix under the assumption dy = 0.
An eigenvalue problem can now be obtained by setting
d; = d; 1, (25)
which leads to the standard form
[S—Mjd,.; =0. (26)
It should be noted that transfer matrix S depends on the recurrence index i, as may be seen from Eq. (23); a brief

discussion on the appropriate value for i is provided in Section 5.

4.3. Displacement-transfer matrix: suppression of force and moment transmission modes

An alternative end condition at the Nth section is to take the force vector p,, = 0, which has the effect of suppressing
the force and moment transmission modes, i.e., tension, shear and bending moment. Again a recursive relationship is
obtained, which may be summarised as

Co = Kgr; (27a)
C; = (Krr + Ki) — KLRC,-__llKRLa (27b)
dy; = (-C'Kpp)dy_, 1 fori=1,2,3,...(N-1) (27¢)
dy = —C'py, (27d)
Cy = Kip — Kir Gyl Kre- (27¢)

As with the previous analysis, an eigenvalue problem can now be obtained by writing
C = —C;lKRL, dj - j-dj—l (28)

to give the eigenequation
[C—d;— =0, (29)

where C is the displacement-transfer matrix under the assumption that p, = 0. Again, it should be noted that transfer
matrix C depends on the recurrence index i, as may be seen from Eq. (28).

Once the eigenvalues and (displacement) eigenvectors have been found from either of Eq. (26) or Eq. (29), the force
vectors are determined as follows: form the column vector comprising the displacement eigenvectors d = [djT_l djT]T
when the force eigenvector p = [p/_; p;]" can be obtained from Eq. (6) as

Ky —Kir
= d. 30
P [ Ko Ker } (30)

The complete state vectors may then be formed as

S I
/! _Pj_1J —(KvL + KirC) b
(31)
d; C
Sj: / =|: }dj_l
| P Kgry + KrrC

under the assumption that p, = 0. The alternative end condition, dy = 0, leads to similar expressions, but with matrix C
replaced by matrix S.
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4.4. Force-transfer matrix
The approaches described in the above sections result in a reduced displacement-transfer matrix S or C according to

the two different end conditions at the Nth section of the structure. In this section, an alternative force-transfer matrix is
derived in which case the appropriate end condition is dy = 0. Expanding Eq. (30) and employing Eq. (24), gives

P = —Kiid; — Kird, = —(Kww + KLRS)d;—l, (32)
p; = Krrd; 1 + Krrd; = (Krr + KgrrS)d,_;.

Recalling j =N —iand j— 1 =N — (i + 1), and noting dy_;;1) =S~ dy-; gives

Py = — (KoL + KirS)dy 1) = ~(Kpp — KirS; 'Krp)dy— (1), (33)

Py = (KriS™' + Krp)dy—; = —(Kip — KirS; ' Kre)dv—s;

hence, in general, one can write

P = Kiidy, (34)
where

K1 =Ky = —(Kio — KiS; 'Kge) (35)

is the stiffness matrix relating the force and displacement vectors on the left-hand side of the cell. Let i=N —1 in
Eq. (35), and comparing with Eq. (22e) gives Ky = —Sy and p, = Kody, which is consistent with Eq. (22d).
Eliminating the displacement vector d;_, in Eq. (32) gives the required transfer equation,

pj = ij—l’ (36)
where the force-transfer matrix is
M - *(KRL + KRRS)(KLL + KLRS)fI. (37)

Alternatively, it can be derived from Eqgs. (34) and (35) as

B = Kid; =K;(Sd,.)) =K;S (K‘—llpj—l) = (KN—fSKﬁl-aﬂ))Pj—l» (38)

S
where the force-transfer matrix is accordingly defined as

M =K, _SK3!

N-(i+1)"

(39)
The assumption of piecewise decay of the force vector, i.e.,

P =Ap; (40)
leads to the eigenvalue problem for the force vector, as

M~ /llp, | =0. (41)

Again, note that the force-transfer matrix M is dependent on i.

€
The associated state vectors can be obtained as

|idj_l:[
S/—l = -
Pi-
d;
S = =
J P/-

under the assumption that the Nth end condition is dy = 0.

— (KL + KLRS)_l :‘
I pjvl)

~S(Ki + KieS)™ b
M !
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5. Example

Consider the plane framework shown in Fig. 1, which has the properties: Young’s modulus £ = 200 x 10° Nm2,
vertical and horizontal bars have length L = 1 m while diagonal bars have length /2 m; vertical and horizontal bars
have cross-sectional area 4 = 1 cm? while diagonal bars have 4 = 0.5 cm®. The objectives are threefold: first, to elu-
cidate the redundant information and the ill conditioning, which arise from the original eigenproblem formulation,
Eq. (4). Second, to apply the reduction procedures derived in Section 4, and to gauge the sensitivity of the eigenvalues to
the recurrence index i, and third, to demonstrate the advantage in calculation of the now single principal vector.

Employing the (12 x 12) state transfer matrix G, Eq. (7), the eigenvalue problem (4) gives the decay eigenvalues:

16.779756 3.5345841 —14.243501
0.0595956 |’ 0.2829187 | —0.0702075

occurring as reciprocal pairs; thus three of these are effectively redundant. The rigid body and transmission modes
should have an eigenvalue of exactly unity, but the MATLAB QR algorithm returns the values:

1.000145, 0.999855, 1.000000 + O(1074)i, 1.000000 & O(10~")i;
again, three of these eigenvalues are redundant, as they pertain to the rigid body displacements. The MATLAB
command recond(G) gives the reciprocal of the condition of G in 1-norm, and is close to unity (zero) if G is well (badly)
conditioned; for this example, recond(G) is O(10~'7), and the ill conditioning is clear.

For the reduced eigenproblems, Eqgs. (26), (29) and (41), various values of the recurrence index i within matrices S, C
and M are considered; the eigenvalues are shown in Table 1, where the first three in each cell are the eigenvalues of the
decay modes and the remaining three are the unity (or close to unity) eigenvalues associated with the rigid body or the
force transmission modes. First, it is noted that for all the above transfer matrices, the MATLAB command rcond
returns a value O(1072), indicating a much improved numerical condition. Second, it is seen from Table 1, that the right
to left decay modes (A > 1) have been eliminated, leaving just the left to right decay eigenvalues; thesc can be deter-
mined accurately with a recurrence index i as small as 10. On the other hand, in order to obtain accurately the unity
eigenvalues, a large recurrence index i is required if one employs the displacement-transfer matrix S, otherwise there is
the danger of misinterpreting what should be a transmission mode as a decay mode. However, a small recurrence index i
suffices if one employs the displacement-transfer matrix C, or the force-transfer matrix M; indeed, there is a loss of
accuracy if 7 is taken to be too large, as one might expect from the increased number of matrix multiplications. The
disadvantage of employing C is that the unity eigenvalues pertain to the trivial rigid body modes. Overall, the maximum
(non-trivial) information is retained if one employs the transfer matrices S or M, and the latter is preferable as it gives
the greater accuracy with less computational effort.

Now, consider the eigenvectors obtained from the force-transfer matrix M within which one has taken
S = —Sl’o1 Kgry; the matrix of force eigenvectors is

Table 1

Eigenvalues for the displacement and force-transfer matrices S, C and M

cig(S) = cig(~S," Kr) ¢ig(C) = cig(~C; " Ker) eig(M) = cig(~(Kxu + KnxS)
(K +KigS)™)

Value of index i

i=5 0.282916, 0.059596, —0.070207, 0.282921, 0.059596, —0.070207, 0.282921, 0.059596, —0.070207,
0.831935, 0.751161 £ 0.150334i 1.000000, 1.000000, 1.000000 1.000000, 1.000000, 1.000000
i=10 0.282919, 0.059596, —0.070207, 0.282919, 0.059596, ~0.070207, 0.282919, 0.059596, —0.070207,
0.908677, 0.839081 + 0.104987; 1.000000, 1.000000, 1.000000 1.000000, 1.000000, 1.000000
i=100 0.282919, 0.059596, —0.070207, 0.282919, 0.059596, —0.070207, 0.282919, 0.059596, —0.070207,
0.990094, 0.980230 4 0.013785i 1.000000, 1.000001, 0.999999 1.000000, 1.000001, 0.999999
i=1000 0.282919, 0.059596, —0.070207, 0.282919, 0.059596, —0.070207, 0.282919, 0.059596, —0.070207,
0.999001, 0.998002 +0.001411; 1.000000, 1.000009, 0.999991 1.000000, 1.000010, 0.999990
i=10,000 0.282919, 0.059596, —0.070207, 0.282919, 0.059596, —0.070207, 0.282920, 0.059594, —0.070207,

0.999900, 0.999801 + 0.000139i

1.000000, 1.000139, 0.999928

1.000000, 1.000115, 0.999922
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1 1 0 1 1 0.89645
—0.77990 —2.4351 1 O(107%) O(107) 0O(10°%)
P -2 -2 0 O(107%) 0(107) 1 (43)
=1 = 0 0 -2 O(107%) 0O(107) O(107'%) |
1 1 0 -1 -1 0.89645

0.77990 24351 1 O(10°%) O(10~7) 0O(10°%)

The first three columns pertain to the decay modes while column six is the transmission mode of tension; columns four
and five are (sensibly) identical, and describe the bending moment. The shear force (principal) vector is obtained from
the chain rule,

MP/*1(1>4) = P/‘*l(:=4)a
(44)
MPJ'—1<:1 5) = P.fvl(ﬁ 5) + ijl(:74)
giving, P, 1(:,5) =[-8.7326 0.46935 —0.77786 1.0613 7.3380 0.46935]", which is a linear combination of

shear, bending moment and tension; subtracting multiples of columns four and six gives the new principal vector for
shear force as

P, i(5) =[0 046935 0 10613 0 0.46935]"

The final matrix of force eigen- and principal vectors is found by replacing the repeated column in Eq. (43) by the shear-
force vector, to give

1 1 0 1 0 0.89645
—0.77990 -2.4351 1 0 0.46935 0
-2 -2 0 0 0 1
Pir=1 "1 0 -2 0 10613 0 |’ (43)
1 1 0 -1 0 0.89645
0.77990 2.4351 1 0 0.46935 0
and this transforms the force-transfer matrix M into Jordan canonical form, as
0.2829187 0 0 0 0 O
0 0.0595956 0 0 0 0
i _ 0 0 —0.0702075 0 0 0
PaMP; = 0 0 0 110 (46)
0 0 0 010
0 0 0 0 0 1

A major advantage of the present procedure is now clear. The original eigenproblem required the calculation of four
principal vectors — tension coupled to rigid body displacement in the x-direction, rotation coupled to rigid body dis-
placement in the y-direction, bending moment coupled to rotation, and shearing force coupled to bending moment. In
the present method, only the latter is required.

Next, consider the determination of the equivalent “beam” properties of the framework based upon the force eigen-
and principal vectors associated with the unity eigenvalues, that is P;_;(:,4 : 6), columns four to six in Eq. (45). The
complete state vectors of displacement and force components on both sides of the cell are required; these are obtained
from Eq. (42) as

r b

X, (4 :6) = {“(KLL +IKLRS) jpj_l(:A . 6),
(47)
—S(KiL + KieS)™!
X(d:6)= | St LL;/I wS) " (4:6),

which results in the left-hand side state vector as
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[—~5.1585 x 1077
~2.8381 x 107¢
0
—-2.8319 x 107¢
5.1585 x 1077

_ -6
X, i(4:6) = 2.8381 x 10

—

ol coo~

and the right-hand side state vector as

[—4.6892 x 1077
—2.3457 x 107¢
0
—~2.3396 x 107°
4.6892 x 1077
—2.3457 x 107°

~2.8348 x 107°
—2.2286 x 1073
0
~2.2286 x 1073
2.8348 x 1076
—2.2286 x 1073
0
0.46935
0
1.0613
0
0.46935

~2.8113 x 106
~1.9324 x 1073
0
-1.9318 x 10-°
2.8113 x 1076
-1.9324 x 107°
1
0.46935
0
1.0613
-1
0.46935

—3.9546 x 1077 ]
—1.0355 x 1078
—3.9546 x 1077

—3.9546 x 1077

—4.3510 x 1077
—1.0355 x 1078
—4.3510 x 1077
0
—4.3510 x 1077
1.0355 x 1078
0.89645
0
1
0
0.89645

0

0

1.0355 x 1078
0.89645
0
1
0
0.89645
0

613

(48)

(49)

To illustrate the procedure, first determine the tensile properties of the framework, which requires X;_,(:,6) and
X;(:,6), the third columns in Egs. (48) and (49), respectively. These displacement and force components are shown in
Fig. 2, where it is seen that the force components are equal on either side; the only differences are the displacements:
axial elongation and the Poisson’s ratio contraction. The elongation of the cell is 4.3510 x 1077 — 3.9546 x
107 = 3.9645 x 1078, which is equal to the axial strain &, as the cell has unit length; the transverse strain g, =
—~1.0355 x 102, and hence the Poisson’s ratio is v = 0.2612. The total tensile force is 7 =1 42 x 0.89645 = 2.7929 N,
and hence the equivalent cross-sectional area is 4 = T/(Ee,) = 3.522386 x 10~* m”. It should be noted that, by virtue of
the symmetry of the cell about the mid-plane, there is no coupling between extensional and shear/bending displace-

ments.

The first columns, X,_;(:,4) and X;(:,4), define bending of the cell with a bending moment of magnitude M = 2, as
shown in Fig. 3. The elongations on the top and at the bottom are

Attgop = —4.6892 x 1077 — (—5.1585 x 1077) = 4.6935 x 1075,
Attporiom = 4.6892 x 1077 — 5.1585 x 1077 = —4.6935 x 107%.

Then, the beam curvature is

0.89645

0.89645

Fig. 2. Nodal displacements and forces for tension.

j_ 1.0355¢~8 3.9546e—7
<—;- —= 0.89645
-—— —e 1.0
- —= 0.89645

4.3510e~7
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- 5.1585¢~7
4.6892¢-7
2.8381e-6 4'!‘ [2:3457¢-6

1.0 <
N
p
;
2,8319e—6—‘ -

4
8
O [233%6e=6

T T
28381e-6 2.3457e~6
0 L 1.0
L 4.6892¢-7

5.1585¢~7

Fig. 3. Nodal displacements and forces for bending.

1/R = (Attiop — Attiorion ) /2 = 4.6935 x 107%;
thus, the equivalent second moment of area is found to be
I=(MR)/E =2.13061 x 107* m*.

Finally, consider X;_,(:,5) and X(:,5), the second columns in Egs. (48) and (49), respectively, which define a
shearing force coupled with a bending moment and the associated displacement, as shown in Fig. 4, where the shearing
forces of magnitude two on both sides are balanced by a bending moment of magnitude two on the right hand side. The
shearing force Q and the shear angle y are related by

0 = kAGy, (50)

where x is the shear coefficient, 4 is the cross-sectional area, G is the shear modulus; and the shear angle has the
following relationship:

dv

where dv/dx is the centre-line slope And ¢ is the rotation of the cross-section. The cross-sectional rotations on
either side of the cell are different, and taking the average gives the rotational angle of the cell, y = 0.5 x (2.8348 x
1076 +2.8113 x 107°) = 2.823076 x 107, and the centre-line slope is dv/dx = —~1.9318 x 107° +2.2286 x 1075 =
2.96756 x 10~ hence the shear angle is y = — dv/dx = —1.44486 x 10~7. Employing Q = 2, the equivalent shear
modulus G = E/2(1 +v) = 79.2896 x 10° Nm™2 and taking the equivalent area as calculated above, the equivalent
shear coefficient is calculated as x = 0.4956.

The above continuum stiffness properties have been successfully employed in well-known continuum beam and rod
theories, suitably modified, in order to predict natural frequencies of vibration of the complete truss [16], wherein it is
shown that the present approach provides excellent agreement so long as the semi-wavelength of vibration exceeds the
depth of the beam. (Once the semi-wavelength approaches the beam depth, there is the possibility of depthwise modes
of vibration, and this defines the extent to which a one-dimensional approximation is useful for the prediction of natural

2.3348e—6.‘ o —‘ {v2.8113e—6
2.2286e~5 1.9324e-5
1 i . r
S 10 1
\\\//
0.46935
0.46935
2.2286¢-5 ! y [ 1831855
4 T
LE— 1
1.0613
1.0613 N
2.2286e-57 .~ NN r 1.9324e-5
\V 10 1
—
0.46935 L 0.46935
2.8348e—6 —| —~f }—2.8113e-6

Fig. 4. Nodal displacements and forces for shear coupled with bending.
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frequencies.) This accuracy appears to be better than, for example, the continuum models based upon energy equiv-
alence, which according to Lee [17] are expected to give good results when the wavelength of vibration spans many
repeating cells; however a full comparison of the merits of the various approaches is beyond the scope of the present

paper.

6. Conclusion

By imposing boundary conditions of either zero displacement or zero force at some extreme Nth section at the right-
hand end of a repetitive structure together with the use of a recurrence relationship, the nodal displacement or force
components on either side of the typical cell can be related by a transfer matrix of half the original size; calculation of
the left to right Saint-Venant decay rates is then reduced to a standard eigenvalue problem. A complete characterisation
of the framework, including its equivalent beam properties, is achieved most effectively using the force-transfer matrix
formulation. Besides the reduction in transfer matrix size, the procedure has the advantage of reducing the number of
principal vectors to just one, and results in a well-conditioned eigenproblem.
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