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The axial vibrations of two rods coupled together by a spring and viscous damper are
investigated using a modal analysis approach. Exact expressions describing various energy
flows are derived in terms of external forcing spectra. The effects of changes to coupling
parameters on the relevant power receptances are studied and attention forcused on
analysis of the coupling damper. The conditions when significant power is dissipated
within this damper are examined, thus highlighting when the nonconservative nature
of the coupling cannot be neglected without major error. Finally relationships between
the ensemble avarage energy flow and the average total energies of the subsystems are
recovered. The basic features of these various relationships are illustrated throughout by
the use of numerical examples.

1. Introduction

Statistical energy analysis (SEA) is a tool that may be used for the analysis of complex
svstems when the usual deterministic methods. such as finite element analysis, are no
longer practical. It is used mainly when dealing with complex systems at high frequen-
cies. where the large number of degrees of freedom required for finite element methods
lead to dramatically increased computing times and costs. even with powerful compu-
tational facilities. Moreover. at high frequencies, the results obtained by deterministic
methods suffer from some shortcomings. These arise because of uncertainties in material
properties plus the sensitivity of mode shapes and modal resonant frequencies to any
changes in boundary conditions or damping distribution. which lead to significant differ-
ences in the results obtained for nearly identical structures at such frequencies. It is these
uncertainties that require the treatment of high frequency dynamic response prediction
as a probabilistic problem. Usually, an ensemble of similar systems is considered which
differ in their parameters. and an ensemble average of the response is then predicted,
often that of the total energies of the subsystems. which are then used to represent the
responses of these subsystems. Engineering applications of SEA normally involve the
analysis of complex systems (e.g.. buildings designed against earthquakes, jet engines,
aerospace structures, ships. etc.). It is standard SEA practice to divide these systems
into sets of subsystems. often described by their gross dynamic properties, which receive,
dissipate and exchange energy. see for example, Norton (1989). The concept of using
energy flows to describe the interaction between such subsystems was first proposed by
Lyon and Maidanik (1962). see also Scharton and Lyon (1968) and Lyon (1975).
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In the traditional SEA approach. the system is modelled into subsystems with weak
conservative coupling, the aim being to estimate the total time-average distribution of
energy among the coupled subsystems. The evaluation of the coefficients that relate the
energy flows between subsystems to their energy levels thus lies at the heart of SEA. It
is extensively discussed by Lyon (1973), where the energy flow between two oscillators
coupled by a spring is analysed. leading to the basic principle of SEA. which states that
average energy flow is proportional to the difference between the total time averaged
energies of the coupled oscillators.

Since that time. extensive studies have focused on the analysis of two coupled multi-
modal systems. as many different types of structures may be idealized in this way. Energy
flows in beams have been studied by Crandall and Lotz (1971), Goyder ¢t al. (1956). Mace
(1993) and Fahy and Mohammed (1992) using wave propagation approaches. Reming-
ton and Manning (1975) studied the energy flow between two coupled rods using the
same approach and compared the results with exact solutions derived using Green func-
tions. Davies (1972b) used the modal approach for the analysis of two coupled beams,
Keane and Price (1991) and Keane (1988) used the same approach for the analysis
of coupled rods. Their results agree with those derived by Remington and Manning
(1975). In all these studies. the energy flow equations were derived assuming a conser-
vative coupling and it was found that. in general. the energy flow between two coupled
multi-modal subsystems is proportional to the difference in their modal energies {given
a number of assumptions which place limitations on the validity of SEA when dealing
with certain kinds of problems: these various assumptions and limitations are exten-
sively discussed in many of the cited works. see for example, Keane { 1988) or Fahy
(1974)).

When the coupling mechanism between two subsystems is nonconservative. it is clear
that the standard proportionality relationship is no longer valid. This problem appears
10 have been investigated first by Lyon (1975) for coupled oscillators. then by Fahy and
Yao (1987). Sun. Lalor and Richards (1987) and Chen and Soong (1991) where it was
shown that the energy flow between the two oscillators depends also on the sum of the
energy levels of the two oscillators. not just their difference.

In the work presented here. the axial vibrations of two rods coupled together by both a
spring and a viscous damper are investigated, using modal analysis. Following steps sim-
ilar to Davies (1972a) and Keane (1988), deterministic expressions for the input powers,
dissipated powers and energy flow between the subsystems are derived. By introducing
a complex coupling stiffness. 2, which includes both the spring and damper strengths, i
it is found that the results obtained agree with those derived by Keane (1988) for con- :
servative coupling, except that a complex coupling strength must be used in place of a
simple spring constant. Next. two forcing models are considered which allow the separa-
tion of frequency and spatial variables in the expressions of modal spectra. The effects
of changes in the coupling parameters Ol the various receptances are then considered,
and special attention paid to the power dissipated within the coupling. This is found to
remain at relatively low levels except for a specific range of values of the coupling param-
eters. Moreover, it is shown that the power dissipated within the coupling is relatively
small compared with the power transferred through it when dealing with couplings in
this range. which suggests that the nonconservative nature of the coupling can often be
ignored without introducing significant errors. Finally. a relationship linking the energy
flow between the subsystems and their total energy levels is recovered. As expected,
the energy flow between the two rods is dependent not only on the difference between
the average modal energies of the two subsystems. but also on the sum of their energy
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Figure 1. Two point-coupled axially vibrating rods.

levels. This result agrees with that derived by Chen and Soong (1991) for two coupled
oscillators. although the constants of proportionality are, of course. different.

2. Derivation of modal summation results

Consider a multi-modal system comprising of two free-free rods coupled together at
r; = a, and To = ap by a spring of stiffness k. and a damper of strength ~. as is
illustrated in figure 1. The mass densities per unit length are py(r;) and p2(x2) and the
rigidities per unit length E Ay(zy) and EAy(x2), for rods 1 and 2. respectively. Damping
within the two subsystems is assumed proportional to the density per unit length, so
that the damping constants for the subsystems. ri(zy) and ra(xr2). are given by.

rl(xl) = clpl(:rl) and TQ(IQ) = Cgpg(l‘g). (2122)

The differential equations of motion which govern the dynamic behaviour of the rods are
then

{pl(x1)62/3t2 + T (Il)()at + Al}yl(IL t) = P]_(l‘l.t) (23)
and
{pg(.tz)az/ja‘fz + r2(r1)6,"'8t + i\g}yg(l‘g. t) = Pa(x2. t) (2.4)

where \;. A, are linear spatial differential operators on subsystems 1 and 2, and Py (z1,1)
and P,(z2.t) are the forcing functions on the subsystems. These are given by the expres-
sions

Pi(z1.t) = Fi(z1.t) + {kclya(az. t) — prlar. )] + vl t) = (e t)]}6(z1 —ar) (2.5)
and

Py(zrs.t) = Fy(za.t) + {kc{yl(al,t) — yolas. t)} +'y[y1(a1.t) - yz(ag.t)]}é(xz —as). (2.6)
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This problem may be solved using modal analysis where the characteristic equations of
the subsystems, when uncoupled, are given in terms of their mode shapes ¥; and natural
frequencies w; with

AT, (z) — plz) w2, (z) = 0. (2.7)

This classical eigenvalue problem is readily solved to gain the natural modes and natural
frequencies of the two subsystems, see for example Meirovitch (1975). The natural modes
are then normalised to satisfy the orthogonality conditions,

/\Iﬂi(xl)‘ll](zl)pl(zl)dxl = M6;; and /‘I’,(J;z)\lls(rg)pg(m)dwg = Msb,4
1 2

(2.8.2.9)
where M, and M, are the total masses of subsystems 1 and 2. respectively. In the
following analysis i, j refer to the first subsystem while r. s refer to the second subsystem.
According to the expansion theorem, the displacements of the two coupled subsystems

can be written as an expansion in terms of the natural modes with the modal components
W;(t) and W(t) so that:

<

vi(zy,t) =Y Ui(z)Wi(t) and ya(z2.t) = 3 Ur(z2)Wilt): (2.10.2.11)

i=1 =1

The modal components of the external forcing are given in terms of the natural modes
by the expressions:
Li(t) = /lFl(a:l.t)\Ili(zl)dxl and L.(t) = LFQ(:Z:Q, )P, (z2)dT2. (2.12.2.13)

and the modal components of the coupling forces are given by the expressions

Vit) = /1{’%@2(02?15) — plan. )} + lin(az.t) — frlar O} — a1) Vi(z1)dz (2.14)
and

Vi(t) = /Q{kc[yl(al’t) — yolaa.t)] + 7lin (a1, t) — olaz.t)]}6(z2 = a2) ¥, (z2)dzy (2:15)
so that the external forcing may be written in terms of their modal components as

Pznt) = Ziwxxo”—{i—ff)—;m(t) V()] (2.26)

and

Prizant) = 3 Wl 22 L (1) + V0] (2.17)

Considering equations(2.10-2.17) and substituting into the two equations of motion leads
to

pr(z1) 2 Uy (z0)[Wi(t) + e Wi(t) + w2 Wi(t)] = 2 W) "ﬁﬁfj) Lit) + Vi(®)] (2.18)

and

pa(z2) Z U, (22)[Wr () + W () + w7 Wo ()] = Z U, (z2) "‘(f) (L, () + Va(t)] (2.19)
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Multiplying both sides of equation (2.18) by ¥ ;(x1) and both sides of equation (2.19) by
W,(z,) and taking the integral over the range —oc t0 X yields:

MW, (8) + e W (1) + 205 ()] = Ly(8) + V3 ()] (2.20)
and
Mo[W,(t) + caWy(8) + S2W(8)] = (Ls(t) + Va(t)]- (2.21)

These last two equations are in the time domain: to proceed further in the analysis
both of them are written in the frequency domain by taking Fourier transforms of each
equation. Hence the first equation becomes

My(=? + P2 iciw)Wy(w) = Lyw) + k¥ (a1) [, U, (a2)Wilw) = 3, Uila)Wil2)]
+ivw,(a) Y Urla)Wele: — S Uila)Wile)l (2.22)
Defining ®,(w) and ®.{w) as
o; = (—w? ~ ‘u? +icw) and @, = (=u? +w? +icw) (2.23.2.24)
and the complex coupling strength as
Q =k, +ivw. (2.25)
the equations become

.\r[l(bj(d)“/}(uJ) = LJ(.u) + Q\IJJ (al)fz ‘If,-(az)w',-(.u‘) - Z ‘I'L-(al)Wi(w)] l226)

and

Mp® ()W (w) = Ly() + Q%s(a2)[Y_ Ui(a)Wilw) — S0 (a)W(w)].  (227)

Multiplying both sides of equation (2.26) by \—'ifcé—‘:% and both sides of equation (2.27)

{ . . - . .
by .\‘fqu;?(ll) and taking the summation over j and s. respectively, the two equations then

have the form

Ej:\p]—(al)wg‘(w) = ; JMl@j(w)

U3 (a1) ] ]
+0 }; ’\?1_]5](17) {Z U, (az)Wi(w) - Z \Ili(al)W,-(w)j\ (2.28)

and
o Ls(@)¥s(a2)
Zs Vol W) = Z 58, (2)
23 (a2) . .
+0 zs: TII@—G%IS [Z ¥y (a)Wilw) - Z w,(ag)wr(w)] . (2:29)

These two simultaneous equations can be solved for the various summations to give

e e L) ¥ (@)
2;3 (@) Wj(w) = Z e

0 ¥3(ay) L.V, (az) Li(w)¥;(a1)
+K; uf@,-@-) { — Mp®,(w) —zi: My @4(w) (2:30)
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and

Ly{w)P,(
PR ACHLAMEDY ———————'lé}‘;fb (:‘f)

0 ¥ila) Li¥i(a1) Lo(w)¥,(az)
P 3 _ 5.
TR 50,w) |4 M) Z M, (2) (2.31)

;.‘/ ?

L]

where

¥2(ay) ¥2(az)
—_ J N AL
A=1+0Q EM&;(«')J' he,) | (2.32)

As these equations hold irrespective of the individual natural frequencies and modes
shapes, it is then possible to take just the jth term of the summation in equation (2.30)
to give

[y (w) + Lj(w).

Wil) = =318 ) (233)
where
_ Q\I'J(al) Lr(,u)‘llr(ag) L,«(u;)‘ll,-(al)
FETTA {Z Ma®, (@) 'Zi M ®;(w) } (2:34)

This result is equivalent to equation 7 of Davies’ work (1972a) and equation A29 of
Keane's work (1988).

3. Long term averages

In the following sections attention is focused on the calculation of energy flows which
involve the products of various time-varying functions {forces. displacements and veloc-
ities). Before proceeding to the derivation of the energy flows. it is useful to summerize
briefly the relations between the energy flow through the coupling and the power dissi-
pated within it.

The time-average energy flow from rod 1 into the coupling is here denoted by (II},}-
Since the coupling mechanism is not conservative, part of this power will be dissipated
within the coupling and this time-average dissipated power is denoted by (Ilg). The
power transferred to rod 2 is then simply calculated by subtracting the power dissipated
in the coupling from the total power that leaves rod 1, i.e.. the time-average power
transferred to rod 2 is given by

(Tha) = (o) — (e - (3.1)

Next the time-average power flow from rod 2 into the coupling is denoted by (IT5;)
and the time-average power flow transferred from rod 2 to rod 1 by (Il>1). The relation
between these two time-averages is similarly

(a1} = (Myy) — (Tae? (3:2)
and so it is obvious that
(o) = —(Iyy) and (I1) = —(Ma). (3.3.3.4)
The energy balance equation for the coupling is then

(Hrz) + (Ila) + (Tge) =0 (3.3)
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or
(Il + (T = (Mac- (3.6)
Also the energy balance equations for subsystems 1 and 2 are
<H11n> - (Hldus> - (H,12> = O a'nd /H21n> - (nlzdg,,> - (n'lzl> = 0 (3‘7'38)

Since all the processes considered here are assumed ergodic, the time averages taken for
any one system will be equal to the ensemble averages taken across an infinite set of
similar systems, i.e., all the time averages {, can be replaced by ensemble averages E].

(a) Energy flow

Consider now the energy flow I3, from rod 1 to rod 2. It is given in the time domain by
the expression

o (t) = /{kc[yz(az, t)—y(an b)) + ~[g2(az. t) — y1(ar. t)|}6(z1 — a1)y1(z1,t)dzy
1
= jnlay, t){kclyz(az,t) — yrlar ) + ~lja(ag,t) — in(ar,0)]}, (39

and the ensemble average of this energy is

E([ (t)] = Ellla1] = k{Elg1 (a1, t)y2(az, )] — Efgn(ar. hu (a1, t)]}
+v{E[j: (a1, t)ia(az. )] — E{#% (a1, 1)]}- (3.10)

Since E[g1(a1,t)y1(a1.t)] =0, see Newland (1975), this last expression becomes
E{llay] = ke{Elg1(ar, thya(az- )]} + 7{E s (ar, t)jalaz. )] - Ei(ar )]}, (311)

Inserting the modal expansions for the displacements leads to
Elly} =k 3.3 Wila1) (@) EW ()W ()] +7 S5 i) U (a2 EW (W)
i T ior
= Z Z T;(a1)P; (@) EIFUOW; (8] (3.12)
i

Writing this last equation in the frequency domain then gives

Moy (w) = ke 3 3 Uila) r(a2)Swow. (0) + 2 T,(a) ¥ (02)Swiw, ()

- “fz Z ¥i(a1)¥;(a1) Sy, (&) (3.13)
i
or

Moy (w) = ike 3 Y Wila1)¥r(02)Swiw () + 72 35 Wilar) Ur(a2) Swiw (<)

—w? Y Y Wi(a) ¥y(a) S (). (3.14)
ig
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Next, the spectral density of the derived process Sw,w, (w) can be replaced by its equiv-
alent in terms of the modal components of the driving forces acting on the subsystems,

. 2T (Li(w) + si(w)]"[Li(w) + ke(w)]] 27
= W)= = i il
Swow,(w) = fim (W)W (w)lF hmco{ 8.(0)] (M, ()] T

(3.15)
Multiplying these various terms and replacing limr_ L} (w)Lr(w ()% by Sir(w) and
making the necessary mathematical manipulations gives the desired power transmitted
to subsystem 1 as

—ikew + vw?] i(a1)¥,(a2)Sir(w)
Marfw) = =31 w; ZZ zw )

1

[—ikcw +7w2'§ Q'\Il2 al) ag) \Ifﬁ(ag)Ssr(w) _ \P?(al)sjr(w)
A Z Mo Z AT Z L0t (w) \; M8 ()

]
xkcw + yw?) az) (a1)S45(w) U, (a2)Sir(w)
Z My®: Z »11@* w) {Z iwlcp,»(i) ’Er: Ma®,(w)

[—ikow + w?] 0 ¥3(ay) QT2 (az2) lll)S-,,J(w
e Z A HE Z Ma®, () ZZ I2<I> )3, (w)

ag)‘l»‘ ap) Srs &) zr("") ‘Pz(al)wr(GQ)Sri(w)
ZZ ’\/122’@*(0})@3(.0 ZE{ \/111\112 (I’ (uJ * MIMQQ;(w)Qi(w) ]}

i )Si5(w)
\:})" ZZ al w‘)J

:

2 2 ‘
e B o Yi(a) | Be(02)Su@) 5o EnlenSil)
Ax }_; Mlqv Z M1®;(w) {2; Mp®3(w) Ej; M3, (w)

2(a1) ¥(a1) ¥, (a2)Sir(w) ‘I’jl(al)si'x(w‘)-l
Z wl@ ) Z VAH®) {Z Ma®. () 'ZJV_‘—; *\[1@11(]@')

-

‘/&)2 1t ‘I/ ai) Q\I’ (al) ; (al)‘p (a1)Si; (w)
R L IR )

U (a2)¥s(az) rs(.‘, T;(a1)¥ (a2) )Sir (W) \I',-(al)\l’r(ag)Sri(w)
ZZ M2PH(w) D, (w ZZ{ M ALE )8, (@) | MM (@)8i(w) H
(3.16)

Now this complex expression can be greatly simplified if the driving forces are assumed
statistically independent, so that the cross-spectral densities of their modal components

A 1
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Sir(w) =0, and also by recalling the definition of A to get

aZ)‘I’ az) rs(w)
Z ]Ug(b (W)Ps(w)

§ Q0o QU2 (az ‘Z 0¥} (as) ’
) - M®. (w Ma®,(w) a;;I' ap) S (‘-")
—ikcw ‘ A2 ZZ \[2(13 (w)®; (w)

’yu (a1) az )Srs(w)
lA 12 <Z A/Il@ (.u ) ZZ \*I%@‘ \.4))

Q‘I’Z( ) Sl(u_})
\ { (Z My®, T > }ZZ Uzq,, 3 ,(;) . (317)

Now, when evaluating energy flows. integration is taken over even ranges in the fre-
quency domain so that only the real and even part of the previous expression need be
retained. After the necessary mathematical manipulations. and reversing the subscnpts
the expression for the power transferred to subsystem 2 can then be recovered as

_ 620)2 | Q ;2 as al)\IJ Re{® ("" w)}Si' w)
m“““»eMﬁA2§:| )2232: DARDE
cw? | Q2 az Re{@rw)@ (w)}Srs(«)
CMME AR <1> ZZ (w) 2 @s(w) 2
*,wz (tb)‘l’ (0.2 Re{ r(w }Srs(
CMZiAR ZZ | @r(w) 2] Bs(w ) (319)

Notice that this is exactly as derived by Keane (1988) except that a complex coupling
stiffness is used, i.e., Q in place of k., and there is an additional term in yw? (in fact, if
the analysis presented by Keane (1988) is carried out starting with a complex coupling
stiffness, this expression is exactly recovered).

(b) Input Power
The energy flowing into subsystem 1 from the external forcing is given by the expression

Hm@=£ﬁhﬁﬂ%ﬂwy (3.19)

The ensemble average of this equation is

E:Hlm(t)] = E:Hlm‘, = /E[Z./l(.rl‘t)Fl(Il.t)dxl. (320)

1
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By inserting the modal expansions for displacements, the last equation becomes
¥, (z1)¥;(z1)p1(71)
f J
E(ll,,. (t)] = ZZE W / 7 dz;. (3.21)

Next, using the orthogonality property the last equation can be simplified to

E(lL,.] =Y EW()Li(1)] (3.22)

Taking spectral densities and Fourier transforms as before gives
W) =ZSW-J(.U) = —inSwii(w). (3.23)

Here Sw,; is the cross-spectral density of the modal displacement and the modal driving
force and is given by expression

27

Swii = Jim (W7 w)Li ()] 5 (3.24)

Substituting W;(w) from equation(2.33) gives

Then multiplying the various terms out gives

w 0*T;(ay) Sl w)
M, (@ “"Z (Mlé" (o) A0 (w) (Z M2<1>* Z ul '

(3 26)
Assuming that the driving forces acting on the subsystems are uncorrelated as before
gives

) —iw” al) al)SJ, -
I, (w) = 1w2 1[ + E _\‘Zq)* Z ) (3.27)

w

and taking only the real and even parts of the last expression leads to the desired ex-
pression for the input power as

Hlm ».U) .d Cl Z @u ) [2 + {ZZ al)‘l" Q)SAp( )} . (328)

(c) Dissipated power

The power dissipated by damping in subsystem 1 is given by the expression

M, (¢) = /191(1‘1-t)?‘l(rl)yl(xl,t)dm- (3.29)

The ensemble average is

E[Hldx‘ss(t)] = E{Hldiss] = /]‘.E[y%(-tht)]rl(xl)dxl (330)

U
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so that by inserting modal expansions for the displacements the expression becomes
E(M,,.,.] }:}:E (W( /\Ill(zl)‘llj(xl)r;(xl)dxl. (3.31)
Now, since ri(z,) = c1p1(z;) and using the orthogonality property, this gives
E(ll,,,,] = M Y EW(Wi(t)). (3.32)
Taking the spectral densities and Fourier transforms leads to
M,,, W) = Mt Y Sypgpr (W) or Ty, () = Miciw? S S (W) (3.333.34)
i i
where Sy, i, is given by the expression
e = lim W) Wilw)) (3.35)
Wow, = I W z*)T- .
Now substituting for W;(.) from equation (2.33) gives

LL (-") +'€1(“").‘:Lz( )+K1(/ )] 2m /
My, (w) = Mic? Z le{ MB(o)  M18, (), T {3.36)

So multiplying out the various terms leads to

c _u zz JJ)
Hld:ss = : Z & (b

CM a1)¥jlar) [ Sulw) | QO Si(w)
ZZ ‘q; (w) 2 (A"I’;(#)-*_A'@j(w)

clw | Q 12 ‘112 a1 v (ag 0.2 S,-s(.u) 0.1)‘1’ ay) lj(u))
1\/[1 Z | A 2] &;(w) 2 ZZ M2d: w)<I> ZZ M2® (w)®;(~)
(3.37)
Again taking only the real and even components finally gives

Clw
Hldtss(‘u = Z @(.& ]2

Clw ¥, (al al QS;;(«)
vl ZZ X w)P e{A(I)J(u}

Q2 ¥¥(ay) ~(a2)¥ (a2) Sps(w)
M;[A]?}: | ®;(w) 121 {ZZ AVE e{Q:(W)@s(w)}

¥ Sijc
DR re{ e o3
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(d) Power dissipated within the coupling
The power dissipated within the coupling is given by the expression
Mac(t) = 7li1(ar.t) — ga(az.t)]* = —(M2(t) + M2 (2)] (3.39)
so that in the frequency domain
Mye(w) = —[Mi2(w) + a1 (w)]
U, (a1)¥; (al)Re{@ (W)®5 (W)} Sy ()

[2|Azzz )12‘@( ’2

ag)¥s (az2) Re{@ (u) ')}Srs(\"f')
12 z A 222 | &, (w) 2 2,00 ‘2 (340

(e) Energy levels

Here the energy level of a subsystem is taken to be twice its kinetic energy, which for
subsystem 1 is given by the expression

1
KEl(t) = ifyf(xl,t)pl(:cl)dzl (3.41)
1
so that
Ey(t) = / P21, py()dzy = Ty, (B)/e (3.42)
1

so that, in the frequency domain. the expression for the energy level is given by

W Sii(w)
B = 3L T P
az) 08;;(w)
»1222 ycb(u; )2 e{ J(w)}
Q‘ ‘112 a1 ‘12) Srs(w)
T g A 12 Z (ZZ Mo Re { Q:(w)‘bs(w)}

0) S,»-(w)
*ZZ Ml 1 e{Q:uJ)@j(w)}) (3.43)

4. Two forcing models

The relation between the modal spectrum S;;(w) and the subsystem forcing spectrum is
simply

//SF;FL('WVIi-Ij)\I’i(lfi)‘I}j(l'j)dl'ide = 5,](\44) (41)

It is convenient to consider forcing models that .allow the separation of frequency and
spatial variables in the expression of modal spectra. The first model considered is point
driving.
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(a) Point driving
When the driving forces are applied at a single point z; = b; on subsystem 1 and at
T2 = by on subsystem 2, the expression for the forcing spectrum of subsystem 1 becomes

SF’;F} (w.a:l,zl) = SF;F, (w)&(.n - bl)(S(.‘L'], - bl) (42)

Substituting in equation (4.1), the expression for the modal spectra of subsystem 1
becomes

Sij(w) = Sk F. (w)¥i(b1)¥;(b1). (4.3)

The expression for the energy flowing into subsystem 2 for this model of forcing is then

2

cow? 02 \Ilz(a
Mg(w) = —2od Z 2

Pi(a1)¥i(b1),
M MZ AP 3

|
®;(w) i

Sk r (w)

c1w2|Q |2 Z \112(01;
| @

2

@r(w)

m?

2
‘Pr(GZ)‘I’rUh)
CMZIA? )3

®, (W)

Skp, (W) (4.4)

that for the power dissipated in the coupling becomes

2
Y \Z (a9, (bl)

Hye(w) = T A 5.0 | SRR
2
e U, {a3)¥;(bs)
AT e | orel )

and the expression for the power input into subsystem 1 is

2
Hl ( w C1 Z i ®; ji)gsﬂ.lﬁ(l ) \/IQIm{i (Z %21.)(——\3_3(21-).> }SF}Fl(w)'
(4.6)

(b) Rain-on-the-roof model

In this model of forcing. the modal components of the driving forces are incoherent and
this implies that

Sij(w) = //Splpl(u) z;. 1) (z:) ¥ (x;)dridr; = Sij(w)éy;. (4.7)

In this case, the expression for the forcing spectrum for subsystem 1 is

P1

SFlFx (w:xlﬁx,l) = SF1F1 (“")5(31 ) :\/[1

(4.8)
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The expression for the energy ﬁowing into subsystem 2 for this model of forcing is

Wt |2 U2 (qs)
2{w) = MoMZ A2 E (@, () |2 Z ‘ q) ) ‘ZSFlFx( w)
c1w? | Q2 ¥2(ay)
AIM22‘ 22[@ w)PZiQ
‘[2 1 Al 2 Z ‘ (I) ) ‘2 SFze(w) (4.9)

and that for the power dlssxpated in the coupling becomes

02) SFze( )
r(““

[ye?

Mae(w) I\/IZIAPZ Xt HQSRF;( w)+ \(Iz‘A.zle a2) 52p2( w). (4.10)

Finally, the expression for the power input into subsystem 1 becomes

2
Wl 1 w Q ¥;(a1) )
M, (w) = i, Z AP Sk (W) + Wlm {Z (Z —“—ﬂfb,’(w)) } Sk F (W)

(4.11)

(c) Power Receptances

The various expressions for the input power, coupling power and power dissipated within

the coupling can be written in terms of power receptances for the two cases of forcing as
follows:

I, (w) = Hu(w)Se p (<) (4.12)

Mo, (w) = Ha2(w)Sk Ry (w)- (4.13)

Tae(w) = Hae, (W) S 7 (w) + Haey (€)SFpa (W), (4.14)

ia(w) = Hi2(w)Sk k(W) = Ha1(W)SE, 7, (W) = Hae, (W) SEapa () (4.13)
Ty (w) = Ha1 () Sea (@) = Hi2(@) S, 7 (w) = Hae, («)SRiF (), (4.16)

where the expressions for the various receptances are

(i) point driving

2
Q ¥i(a1)¥i(b1)
Hulw w CIZIQ IC;?Im{S (z;_—_cg,(w) 1 ) },
2
w cz U2 (gy) Q U, (a2)¥,(b2)
Haalw Z | @, (w) Eh MﬁIm{S (Z @, (w) ) }

I 2
oW QP V2(az) i Ti(a1)¥i(by)
Hid®) = TR AT 2 Tor@) Z %:(w) ‘ ’

_oawWt QP U2 (a1) z U (a2)¥r(be)
HZI(W) = “Jl"\’-[g ‘ A !2 z; ‘ @i(w ‘2 Z r(u-)) ‘ y

oo
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Table 1. Parameters used in the ezamples

Parameter Rod 1 Rod 2 Units
Mass density(p) 4.156 4.156 kg/m
Length (1) 5.182 4.328 m
Rigidity (EA) 17.85 17.85 MN
Coupling Position (z/l)  0.1176 0.7042 -
Damping strength (c) 88.95 106.49 st

o2 ¥?(ay)
Hyc, (w) = M AP Z ®,(w)|?

i Vi(az)
Haealw) = M3 A2 2 [0, (w) 2

(ii) rain-on-the-roof driving

2
B ;4}201 1 LW QO ‘I/i(al)
Hy (w) = M, Zl 3 (w) 3T 1—1—12*1111 {S ( - Qi(w)) } '

2
2
_ weer 1 ) o5} Q \I/r((lg)
Hy(w) = M, Z L Bp(w) 2 lem A (Z &, (w)
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2 12 2 2
cow” | Q] U2 (aa) U2 (a1)
- {J; = e VT r 1
Hialw) MMZTA 2 Z @ (w) 2 D,(w) 12
2 2 2/ 2
PR Ciw ‘Q \Ili(al) ‘Pr(ag)
H‘Zl'\-’-’) - 4"[1‘\‘-[’3 ‘ A 2 ZL 'i (bi @) ] Z @r(w) ‘2‘
-2 ¥3(a1)
Hge, (w) = 32 A 32 Z B (w) %2'

~w? ¥3(az)
Hiel) = 37 AP 2 3io)

5. Variations in the coupling parameters

In the following examples rod 1 is loaded by unit forcing. so that the energy flow into
subsystem 2 is equal to Hyz(w) and the power dissipated within the coupling is equal
to Hyc, (w). The energy flow from rod 1 into the coupling is simply Hi2(w) + Hac, (W),
whereas that input into rod 1 is Hii(w). The properties of these various receptances are
{llustrated for the case of ‘rain-on-the-roof” forcing and light damping. To aid comparison
of the various results the parameters values adopted here are the same as those used in
several previous studies (Remington and Manning. 1975: Keane and Price, 1987, 1991).
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log (JAI)

log v

log £,
Figure 2. Variation in log({ A 2y with ~ and k. at » = 10000 rad/s.
(a) Coupling Strength
In the previous equations A may be written as
A=1+-07Z (5.1)

where Z is a complex quantity which is independent of the coupling parameters y and
k.. It is given by the expression

U3 la1) Tlaz!
= —t - T 5.2
2=2 a2 2 58,0 2
Weak coupling may be defined by the criterion

A%x1

which requires that ; Q | is small. Then. as the coupling strength | © | increases, | A2
also increases until the coupling becomes infinitely strong as | A 2 approaches infinity.
The variation of | A | with the coupling parameters ~ and k. is illustrated in figure 2.

(b) Energy flow into rod 2

The cross-receptance Hia(

) for the two cases of forcing discussed above can be written
as

o)

Hips(w) = P2

|

(5.3)

|
i

L
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3

log H

Figure 3. Variation in log{ H12) with ~ and k. at w = 10000 rad/s.

where P, contains all the terms that are independent of the coupling parameters. For
the case of weak coupling it is clear that this reduces to

Hyp(w) = Py Q[ (5-4)

which implies that for weak coupling and a given magnitude of = |2, the energy flow
into rod 2 is independent of the ratio —“’ Then. as the coupling strength increases, the

energy flow into rod 2 increases until k — ~x or ¥ — x. when the energy flow reaches
a constant level given by

P
lim Hiplw) = lim_ Hia(w) = zl‘ (5.5)
Jm 2

(]}
Ot

This is illustrated in figure 3. which shows the variation of the cross-receptance Hja(w)
with respect to the two coupling parameters for a constant value of driving frequency
w. The variations of H;»(«) with respect to the driving frequency w and the coupling
damping ~ are illustrated in figure 4 for a fixed value of k.. For v = 0, the results are
identical to those illustrated in figure 10 of Keane and Price’s work (1991), which is plot-
ted for conservative coupling. Figure 4 clearly shows peaks at the natural frequencies of
both rods and marked dips between these frequencies. However. as the coupling damping
strength increases, although the curves show peaks and dips at the same frequencies. the
magnitude of Hys(w) increases. as expected. This figure is also consistent with figure 8 of
Chen and Soong’s work (1991). Similarly. the variations of Hy2(«) with respect to driving
frequency w and spring stiffness k.. for a fixed value of ~. is illustrated in figure 5. This
is very similar to figure 4. which is as expected. since the relation between His(w) and
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i
feed

log Hy

-15

Figure 4. Variation in log(Hi2) with v and » for k. = 10000 n/m.

k. is identical to that between Hi»(.) and ~w. Both figures show that as the coupling
becomes infinitely strong energy flow becomes independent of the coupling strength.

(c) Power dissipated within the coupling

For the case of conservative coupling. when ~ = 0. there is no power dissipation within the
coupling. However, even for a nonconservative coupling. when either k. — o> or v — <
the power dissipated within the coupling is also zero. This means that there must be
certain values of v and k. for which the dissipated power is maximized. Maximum power
is found to be dissipated within the coupling when

o 1+k2 L7 +2k.Re{Z} .
L = \1 EREAE ) (5.6)

——

Figure 6 clearly shows this behaviour. with the power dissipated within the coupling
staving at relatively low levels except for a specific range of values of ~ and k.. Moreover.
this behaviour is sensibly independent of k. until k. reaches sufficiently high levels that
the damping element becomes rigidly blocked and the dissipated power then falls to low
levels. It is straightforward to show that when the coupling is weak the power dissipated
within the coupling is independent of k. and takes the form

Hi i) =Cr. (5.7)

where C is independent only on the subsystem parameters. see figure 7. The variation
of Hy., (w) with driving frequency « and damping stiffness ~ for a specific value of k. is
further illustrated in figure 8 and that for fixed v with varying « and k. in figure 9. Both
of these figures show peaks at the natural frequencies of the directly-driven subsystem
and dips between these natural frequencies. Notice that figure 8 shows a maximum for
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Figure 5. Variation in log( H:. with k. and w for ~ =1 ns/m.

Figure 6. Variation in (Hs. with~and & at = 10000 rad/s.
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Figure 7. Variaticn in log' H..  with v and k. at » = 10000 rad/s.

000y

Figure 8. Variation in log H:., ) with v and « for k. = 1000 n/m.

given w at the same values of ~. while there are no maxima in figure 9 for variations in
k., i.e., as per figure 6.

(d) Energy dissipated within the coupling compared with that transferred to rod 2
The energy that leaves rod 1 may be divided into two parts: some of it is dissipated
within the coupling and the remainder is transferred to rod 2. It is of interest to see how
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7000 0

Figure 9. Variation in log(H.,) with k. and w for v =1 ns/m.

the ratio of these two quantities is affected by changes in the coupling parameters. This
ratio is given by the expression
Hye, (w) vB M

= = ; B - ——
Holw) - (G & her V2(as)
2T P

(5.8,5.9)

It is clear that the ratio is dependent only on the second rod and the coupling parameters,
i.e., the ratio is not affected by any changes in the first rod’s parameters. As the spring
strength k. increases, more power is transferred to rod 2 and less power is dissipated
within the coupling, so that the ratio R decreases. However, as the coupling damping
increases, R increases until it reaches a maximum value, when vy = k. Jw, after which it
begins to fall again, see figure 10. This figure also shows the contour for which | A 12=2,
i.e., where the strength of the coupling is transitional between weak and strong coupling,
and it is clear that large values of R (i.e.. those for which the losses in the coupling are a
significant fraction of the coupling power) arise both when the coupling is weak and as
it becomes strong.

A comparison of figure 6, which shows the absolute magnitude of the energy absorbed
in the coupling, and figure 10 (which further shows the locus of maximum Hgc, (w) taken
from figure 6) thus reveals that for moderate values of v and k.. the power dissipated
in the coupling is usually much larger than that transmitted and that when it is not,
this mostly arises because the coupling is essentially ‘short-circuited’ by either a very
stiff spring or a virtually rigid damper. It is also clear from the elliptical nature of the
K contours in figure 10, that it is possible to have low energy absorption in the damper
if it is made too weak. Thus, there is a strictly bounded region of values of the two
coupling parameters where the damper is absorbing both a significant proportion of the
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Figure 10. Variation in R with ~ and k. at «w = 10000 rad/s. also showing contour of | A 12=2
and locus of manimum Hyc, -
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Figure 11. Variation in log(H11) with ~ and k. for « = 8000 rad/s.
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log Hy,

7000 -4

Figure 14. Variation in log( Hy1) with ~ and - for ke = 1000 n/m.
k=] k=3

transmitted energy and an amount which is also a significant fraction of that injected
into the overall system. This kind of behaviour is well xnown to those who design shock
mounts for sensitive equipment. where the damping in the mount must not be either
too strong or too weak. In either case little energy is absorbed. in the first because the
damper is hardly deflected and in the second because. aithough it deflects, it is too weak
to have much effect.

(e) Input power

It can be seen from equation {4.11) that, for weak coupling. the first term in the expression
dominates so that the input power is constant for small changes in k. or ~. Since the
second term in the expression may have positive or negative values depending on w.
variation of the input power for larger changes in the coupling parameters shows a variety
of behaviours depending on the value of « chosen. see fgures 11-13. However. all these
figures show two sensibly constant power levels and a transition from one to the other
over roughly the same range of values of the coupling parameters. i.e.. those that separate
weak and strong coupling. The variation of Hii(w) with driving frequency and v for a
constant value of k. is illustrated in figure 14. and that with the driving frequency and
k, for constant value of ~ in figure 15. Both figures show peaks at the natural frequencies
of the directly-driven subsystem at low coupling strengths and shifts in these as the
coupling becomes strong. as expected.

6. Average energy flows and subsystem energies

In the previous sections exact expressicns for the various energy flows have been derived.
Assuming that deterministic knowledge of the subsystems is not available, the subsystems
characteristics can only be described probabilistically. All the previous equations are
then expressed as ensemble averages. which are taken across a supposedly infinite set
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log H;)
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Figure 15. Variation in log/ H11) with k. and for ~ = 1 ns/m.

of grossly similar systems. in which the individual members differ in some unpredictable
detail. Ensemble averages are denoted by E{] and are functions of the driving frequency
w. Thus,

E[Hlm(w)] = E-_Hll(V'-")]SF;SFl '~) E[HM:SS(“")} = ClEif‘:l(w')] ‘\61,62)

and
E(Il},(w)] = E[H12(< Sk, Sk () = E Hae, («)[ Sk Sh () = E Hn(«)Sk Sk (<) (6.3)

Also
(6.4)

E[Hdc<“‘ = E[Hdcl ('-‘)51:1 SFL (*"") - E:Hdcz (""SF’} SFz (‘*")
The energy balance equations can be written as follows:
(6.5)

ETh,, (), - ETlL,,,, ()] - Ella(e) = 0.

CEM(«) =0 and ET(e) - Eflly ()] = EMae(w)).
(6.6,6.7)

E{Hzi"(“;)} - E[HL-')
Rearranging these leads to
E()] = miEEy ()] = aaE[Ea(+)] + ZE E1(2)] (68)
(6.9)

and
EH’L(*):‘ = agEE:(wH - alE[El(\.u)] + ngEg(w‘ﬂ
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where

al - Cl E;HLZ(N)IE.HZZ(J)]Y QQ - czE[H2l(w)iE[Hll(d)] (610611)
D D
31 =¢ (E[ng(w)] - E[Hu(UJ)} - E[Hdcz (w)])E[Hdcl (JJ)] - E[HIZ("‘)E{Hdcz (“"")i
D .
(6.12)
3, = ¢, EHRW)] - E[H12(w)] — E[Hac, (w)))E[Huc, ()] — E[Ha1 () E{Hae, ()]
2 = C2 D ’
(6.13)

and
D = (E[H}\(w)] — E[Hae, (w))(E{Haz(w)] — E[Hye, («)]) — E[Hi2(x) (ElHac, (w)])

—EHoy ()] (ElH11 (w)] — E{Hae, ().

These equations are similar to those derived by Keane (1988). It is clear that the constants
a1, a2, 31 and 3- are frequency dependent, since these equations deal with energy flows
at a particular frequency. They also depend in a complicated way on both k. and ~. and it
is impossible to separate the expressions into distinct terms distinguishing the spring and
damper dominant terms. They do. however, show that the energy flows are not simply
related to the difference in the energy levels, even after taking ensemble averages.

7. Conclusions

Energy flow relationships for nonconservatively coupled rods have been established
using a modal approach. It has been shown that the expressions derived for the various
receptances are consistent with those for a conservative coupling when the stiffness is
replaced by a complex coupling stiffness which includes the contributions of both spring
and damper, but that additional terms proportional to the damper strength also arise (in
fact, if the analysis leading to the standard results for conservatively coupled systems is
carried out, but using a complex coupling stiffness, the extra terms are readily obtained).
The effects of changes in the coupling parameters on the various power receptances have
been illustrated through the use of numerical examples in which one rod is excited by
‘rain-on-the-roof" forcing.

It has further been shown that the energy transferred to rod 2 through the coupling has
a similar qualitative behaviour to that appertaining to the case of conservative coupling.
Additionally, it is seen that the power dissipated within the coupling takes relatively
low absolute levels except for a specific range of coupling damper rates. OQutside of this
range the damper is either so weak that it absorbs almost no power or is so strong that
it virtually locks the two subsystems rigidly together. Moreover. within this range it is
quite easy to arrange for almost no power to be transmitted through the coupling to the
undriven subsystem, as might be expected.

Finally, a relationship between the average energy flows and the average total energies
has been recovered. The results are consistent with those derived by Chen and Soong
(1991) for two coupled oscillators although the constants of proportionality are, of course,
different. They are seen to depend in a complicated way on the contributions from both
the stiffness and the damping within the coupling and cannot be readily separated into
distinct forms containing stiffness and damping dominant terms.
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