AIAA-98-1912

COMBINING APPROXIMATION CONCEPTS WITH GENETIC ALGORITHM-BASED
STRUCTURAL OPTIMIZATION PROCEDURES

P. B. Nair*

and A.J. Keane!

University of Southampton, Highfield, Southampton SO17 1BJ, U.K

R. P. Shimpi?
Indian Institute of Technology, Mumbai 400 076, India

ABSTRACT

This paper presents an approach for combining ap-
proximation models with genetic algorithm-based
design optimization procedures. An important ob-
jective here is to develop an approach which empiri-
cally ensures that the GA converges asymptotically
to the optima of the original problem using a limited
number of exact analysis. It is shown that this prob-
lem may be posed as a dynamic optimization prob-
lem, wherein the fitness function changes over suc-
cessive generations. Criteria for selecting the design
points where exact analysis should be carried out are
proposed based on observations on the steady-state
behavior of simple GAs. Guidelines based on trust-
region methods are presented for controlling the gen-
eration delay before the approximation model is up-

dated. An adaptive selection operator is developed .

to efficiently navigate through such changing and un-
certain fitness landscapes. Results are presented for
the optimal design problem of a 10 bar truss struc-
ture. It is shown that, using the present approach,
the number of exact analysis required to reach the
optima of the original problem can be reduced by
more than 97 %.

1. INTRODUCTION

Genetic Algorithms (GAs) have shown considerable
potential in the solution of optimization problems
characterized by non-convex and disjoint solution
spaces. In the domain of structural optimization,
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GAs have been applied with fairly encouraging re-
sults. Currently, the advantages and flexibilities of-
fered by genetic search procedures for design opti-
mization problems are well understood. For large
design spaces, however, a GA typically requires
thousands of function evaluations to locate a near
optimal solution. Hence, for many large-scale design
problems of practical interest, the GA approach may
be computationally prohibitive.

A popular and widely followed practice for opti-
mal design is to make use of a gradient based opti-
mization module linked to an approximate analysis
routine, which is continuously updated at each de-
sign cycle based on the results of exact model analy-
sis. This practice leads to a computationally efficient
search procedure, and hence, the solution of large-
scale design problems is made possible in a tractable
amount of time. Since line search procedures are
utilized in gradient based optimization algorithms,
the issue of range of validity of the approximation
models or the control of approximation errors can
be directly addressed by using ad hoc move limits or
a trust region framework! in the line searches.

In contrast, most of the research work related
to GA-based optimization has involved the use of
problem specific knowledge to increase computa-
tional efficiency (see, for example, references?~3).
It has been shown that problem specific heuristics
can be effectively used to achieve performance im-
provements. However, there are finite limits to the
improvements achievable by using problem specific
knowledge alone. The history of theoretical develop-
ments and applications of gradient based optimiza-
tion techniques to design indicates that the most in-
fluential factor for their wide spread use has been the
ease with which approximation models can be incor-
porated to achieve substantial savings in the compu-
tation cost. The development of faster and more ef-
ficient optimization algorithms alone would not have
sufficed to make this possible. Taking this cue from
the evolution of classical design optimization pro-
cedures, the question of how to integrate approxi-

1741

American Institute of Aeronautics and Astronautics



mation models with genetic search procedures needs
to be addressed in order to study their practical
applicability for many large-scale design problems,
where computational cost is a critical issue. This
requirement for studies focusing on the extent to
which approximation concepts can be combined with
stochastic optimization techniques was also noted in
a recent survey of the state of the art in multidis-
ciplinary design optimization (MDO) methodologies
by Sobieszczanski-Sobieski and Haftka®.

A study of the literature reveals that there is a
dearth of formal methodologies for using approxi-
mation models in design procedures based on genetic
search. Since GAs make use of probabilistic recom-
bination operators, the control of step size of the de-
sign transitions is not straight forward. This leads to
difficulties in the integration of approximation con-
cepts, since most of the design transitions may result
in perturbations beyond the range of applicability
of conventional approximation techniques, which are
typically local in nature (e.g., Taylor series, matrix
power series, etc.). Hence, one of the major obsta-
cles toward achieving this goal appears to be the
non-availability of approximation techniques which
are valid for moderate to large changes in the design
variables. However, recent developments in approx-
imate reanalysis techniques for linear structural sys-
tems (see, for example, references®~%) may remedy
this situation to a good extent.

It is of interest to note here that some of the re-
cent studies on application of GAs to large-scale op-
timization problems have made use of function ap-
proximations (see, for example, reference’). How-
ever, no attempt was made to combine the use of
both the exact and approximate model. The use of
approximations based on linear regression analysis
combined with exact analysis was demonstrated re-
cently by Kodiyalam, et. al®. It was pointed out in
that paper that better computational efficiency will
require more sophisticated strategies and approxi-
mation methods. :

Eby et. aP addressed the problem of how to use
many analysis models of varying fidelity in the de-
sign optimization of a composite flywheel. The prob-
lem was approached using a parallel injection island
GA, wherein groups of populations are evolved in-
dependently, with each population using a differ-
ent analysis model for their fitness prediction. The
conjecture made there was that a GA population
evolved using a low-fidelity analysis model would
give useful building blocks for the population which
made use of a higher-fidelity model. This is indeed
a reasonable approach to tackle such problems, and
has been shown to give good performance improve-
ments for some cases. However, it is expected that
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the computational savings offered by this line of ap-
proach may not be that substantial. This is primar-
ily due to the fact that, in spite of injecting good
building blocks into the population, a GA would
typically require of the order of hundreds of exact
analyses (for a moderately sized problem), to fine
tune the building blocks so as to locate the optima
corresponding to the original problem. Furthermore,
it should be noted that this approach cannot be used
when local approximation models are used in the op-
timization procedure.

The present paper is concerned with the devel-
opment of an approach for combining approxima-
tion models with genetic search procedures. The
long term objective is.to reduce the computational
burden of GA search by reducing the number of
exact analysis required to converge to an optimal
solution. The approach developed here essentially
seeks to create successively improved approximation
models based on the results of exact model analysis
carried out at key representative points in the de-
sign space. The choice of the representative design
points at which exact analysis should be carried out
is based on observations on the steady-state behav-
ior of a simple GA. This leads to a dynamic opti-
mization problem in which the objective and con-
straint functions change during the course of the
evolution process. Ideas borrowed from the trust
region method for nonlinear programming are used
to suggest guidelines on when to update the approx-
imation model during the GA search. An adaptive
tournament selection procedure is developed for ef-
ficiently navigating through such changing and un-
certain fitness landscapes. Results are presented for
the optimal design problem of a 10 bar truss struc-
ture. It is shown that using the proposed approach,
the number of exact analysis required to reach the
optima of the original problem can be reduced by
more than 97 %. Also, it is shown that using the
present approach, the GA performance is consider-
ably improved, in terms of both convergence rate
and solution accuracy.

2. GENETIC ALGORITHMS

GAs attempt to simulate the phenomena of natural
evolution by continuously adapting a population of
candidate solutions so as to improve its performance
over successive generations. In the context of design
optimization, the process of adaptation is carried out
by operating on a population of design representa-
tions using a selection procedure, and probabilistic
operators such as crossover and mutation. The goal
of adaptation is to find the design with the highest
possible fitness, which is the pseudo-objective func-
tion expressed in maximization form. The basic GA
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used here is fairly standard and the reader is referred
to the seminal book by Goldberg!® for a full descrip-
tion. Some of the main advantages in using a GA
for design optimization are outlined below.

1. Gradient evaluations are not required in the
search, and hence robustness of the algorithm is
relatively unaffected in nonconvex and disjoint
solution spaces.

9. Problems with a mix of continuous, discrete
and integer variables, and variable complexity
design representation can be tackled.

3. There exists the possibility of generating the
Pareto optimal frontier for multiobjective de-
sign problems in a single run.

The GA used in this study makes use of a tour-
nament selection scheme. This selection scheme has
been shown to be robust for a wide variety of prob-
lem domains. In this selection scheme, a fitness
based tournament is held between s competitors, the
winner being the design with highest fitness. Since,
only the absolute fitness values are used, this selec-
tion scheme is particularly attractive for problems
where only the general fitness trends are available.
The size of the tournament, i.e., s determines the
selection pressure. Selection pressure can be inter-
preted as the degree to which better designs are
favoured in the selection procedure, and hence, the
convergence rate of genetic search is in a sense di-
rectly controlled by the selection pressure. In GA-
based optimization approaches, it is often necessary
to tradeoff between robustness and efficiency. Hence,
if s is high, even though a good solution will be found
quickly, there exists a greater risk of entrapment in
a suboptimal solution. In contrast, a low value of
s implies a low rate of convergence with increased
robustness due to a greater degree of potential al-
lowance for exploration.

3. PROBLEM STATEMENT

Approximation models which are used in engineering
optimization can be broadly classified into two cat-
egories : (1) Local approximations and (2) Global
approximations. It is known that, using a scaling
or correction factor (also called the B-correlation
method), local characteristics can be imparted to
global approximation models (see, for example,
reference!!). This result is of great relevance for
the strategies developed here. In other words, any
global approximation model can be calibrated to be-
have like a local approximation model, i.e., thereis a
tendency for the approximation errors to increase as
one moves away from the design points where exact
analysis is carried out. Hence, a common strategy

ATA A-98-1912

for combining approximation models in GA-based
optimization becomes.applicable to both the classes
of models. The design point where exact analysis
is carried out is henceforth referred to as an anchor
point.

The general structural optimization problem can
be posed as a nonlinear programming problem of the
form :

Minimize F(X)
Subject to :
GX)=0
H(X) <0
where F(X) is the design objective function, and
G(X) and H(X) are the performance constraints.
Let X* denote the optimal solution to this problem,
and F*, G* and H* be the values of the objective
and constraint functions respectively, at the optimal
solution.

Consider the case where an approximation model
is available to compute the objective and constraint
functions as Fa(X), Ga(X) and Hx (X), respec-
tively. Further, let the approximation model be cal-
ibrated at the the anchor design point X4p. As men-
tioned earlier, the approximation model is exact only
at the anchor point, with the prediction error in-
creasing as one moves away from this point. Hence,
the anchor point could be viewed as a control pa-
rameter which decides the range of validity of the
approximate objective and constraint functions.

Approximate analysis can usually be carried out
at a fraction of the computational time required for
exact analysis. Hence, it is sought to develop an ap-
proach which makes minimal use of the exact model,
and instead uses a calibrated approximation model
to solve the original design problem. The major
point of concern in developing such an approach is
the guarantee that the modified nonlinear program-
ming problem converges in an asymptotic sense to
the optima of the original problem, i.e., X*.

The modified optimization problem can then be
posed as a bilevel optimization problem of the form

Level 1:

Find Xap

Such that : F) =+ F*
G, » G
H, - H*

Level 2 :

Minimize Fa(X)

Subject to :
Ga(X)=0
Ha(X) <0

where F%, G} and HJ, are the optimal values of
the objective and constraint functions, respectively,
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after solving the level 2 optimization problem.

It is to be noted here that F*, G* and H* are
unknown quantities. Hence, in practice the level
1 problem is terminated when no further improve-
ment in the level 2 search problem is possible, and
the objective and constraint function value predicted
by the approximation model at this converged state
agree with that obtained using the exact model. In
gradient based optimization, the updated value of
X,p is chosen as the converged optima of level 2.
However, it is not computationally feasible to solve
this bilevel problem directly in such a fashion using
a GA. Hence, in the present approach, a solution is
sought for the modified optimization problem using
a single level GA.

It can be seen from the modified problem state-
ment that it is the choice of X,, which dictates
whether the sequence of iterates converge to X*.
Hence, it is necessary to start with an initial choice
of the anchor point, say X3, calibrate the approxi-
mation model, use it for fitness predictions required
by the GA and then continuously adapt the anchor
point as the subsequent generations of designs are

evolved.
3.1 Some Important Issues

The development of an approach for combining
approximation concepts with genetic search proce-
dures involves addressing three fundamental issues

1. Given a set of design vectors in the solution
space (typically forming a generation), which
points should be chosen as anchor points ?

2. In a given generation, how many anchor points
should be chosen ?

3. When should the approximation model be re-
calibrated ?

The magnitude of error in an approximately eval-
uated objective/constraint function value at a cer-
tain design point depends on its closeness to the
anchor point where exact analysis was carried out.
When a number of points in the design space are
evaluated more exactly than the rest, the simulated
design space could be viewed as an uncertain or noisy
objective function. For example, if the anchor point
is changed, the predicted fitness value for a given
design vector would be different for each realization
of the calibrated approximation model.

It has been noted in earlier studies on GA func-
tion optimization that the GA is robust to certain
types and amounts of noise in the objective func-
tion. Detailed investigations and results for opti-
mization of noisy functions can be found in the dis-
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sertation of Miller'2. Since the GA makes use of
stochastic operators in the search procedure, it can
be expected that the uncertainties in the fitness pre-
dictions which arise due to the use of approximation
models can be ultimately overcome. Also, since the
expected value of the fitness function is implicitly
used to search for promising regions in the solution
space, the GA would tolerate uncertainties arising
from approximations. Hence, it is reasonable to ex-
pect that the uncertainty in fitness predictions could
be directly handled by the GA without an explicit
formulation for the expected value and bounds of
the uncertainties.

4. PROPOSED APPROACH

This section details the elements of the approach
which is developed here to address the three funda-
mental issues raised in the previous section. For the
sake of simplicity only the case involving the use of
one approximation model is considered.

4.1 Selecting Representative Anchor points

The most simplistic approach that can be pro-
posed involves a static, random choice of the an-
chor points. However, initial numerical investiga-
tions and the considerations outlined earlier rule out
this approach due to potential lack of robustness and
poor overall performance. Moreover, such a choice
makes it difficult to explain empirically whether the
sequence of best solutions will converge to the op-
tima of the original problem.

Consider the convergence trends of a simple GA
which is used to optimize a static objective func-
tion. Here, as the number of generations increase,
the population tends to saturate with designs close
to the best value. From this observation, two state-
ments can be made for a GA which is approaching
steady-state :

1. The average or mean of all the design vectors
in a generation is close to the best design (as-
suming the effects of genetic drift to be low).

2. The niche count (i.e., the number of designs in
an arbitrary neighborhood) of the best design is
highest compared to the other designs present
in a generation.

The above observations suggest three possibilities
for choosing the anchor point at each generation :
(1) the average or mean of all the design vectors, (2)
the design point with highest niche count, and (3)
the design vector with highest fitness in the previous
generation. Once the exact model is evaluated at
the chosen anchor point, the result could be used
to calibrate the approximation model for predicting
the fitness of all the designs in that generation.
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At a first glance, choices 1 and 2 appear to be
better than choice 3 since these choices will result
in approximations which are unbiased to potential
performance. In order to make use of choice 3, in
the initialization phase, the anchor point could be
chosen randomly, and in the subsequent generations,
the best individual in the previous generation is se-
lected as the anchor point. However, it is consid-
ered that this choice could potentially lead to myopic
search, with a greater risk of entrapment in subop-
timal solutions due to fitness biased approximation
error trends.

Interestingly, all the three choices of anchor point
would result in the average approximation error in
a generation reducing as the GA approaches steady
state. Therefore all three choices would result in
a similar anchor point as the GA approach steady-
state. However, the search trajectory of the GA is
expected to be different for each of these choices.

4.2 Updating the Approximation Model

Due to computational cost considerations, it may
not always be feasible to evaluate the exact model
at each generation. Hence, it is of interest to investi-
gate whether it is possible to introduce a generation
delay before evaluating the exact model at a new
anchor point. Henceforth, the number of GA gen-
erations over a certain value of generation delay is
referred to as a design cycle. It is suggested that
ideas from trust-region frameworks could be used
for developing an efficient procedure for this pur-
pose. Initially one could choose a generation delay
arbitrarily, say 4. Then, at the fifth generation, the
approximate fitness of the best design found so far
or the current average design vector, could be com-
pared with the fitness value predicted by the exact
model. This information on how well the approxi-
mation model is predicting the trends of the exact
model could then be used to control the generation
delay. This would allow an adaptive procedure for
expanding and contracting the generation delay in
accordance with the performance of the approxima-
tion model.

Let fand f, denote the fitness function value pre-
dicted by the exact and approximation model, re-
spectively, for the best design or the average design
vector at the termination of a particular design cy-
cle. Let f° denote the corresponding exact fitness
value at the beginning of this design cycle. Define
Af = (f — f°)/(fa — f°), and let € and €2 be small
positive numbers satisfying the inequality e; < e€2.
The algorithm for controlling the value of the gen-
eration delay (based on the trust region framework
presented in reference!) for the next design cycle is
given below as :

ATAA-98-1912
Case 1 : Af > €;. This case corresponds to the
scenario where the approximation model is doing a
good job of finding improvement in fover the current
value of the generation delay, or there was more im-
provement in f, than that in £ Hence, the the gener-
ation delay can be increased since the approximation
model has proven its utility in finding improvement
in the exact fitness f over the current value of the
generation delay.

Case 2: Af < €. In this case, the approximation
model is doing a bad job of predicting the improve-
ment in f, i.e., the improvement in fitness predicted
by f, was far lower compared to that in for factually
increased . Hence, the generation delay is decreased
for the next design cycle.

Case 3 : € < Af < €. Here, the approxima-
tion model is doing an acceptable but not especially
noteworthy job of predicting the improvement in f.
Hence, the generation delay is kept unchanged.

To prevent premature saturation of the popula-
tion, it is important to ensure that the generation
delay never exceeds a certain threshold value which
is fixed a priori. In the trust region approach, the
values of €; and € are usually chosen as chosen as
0.10 and 0.75, respectively. A conservative choice
of the increment in generation delay could be unity.
Note here that there also exists the possibility of
increasing the value of €; and €z as the number of
design cycles increase. This would allow fine tun-
ing or reduction of the generation delay as the GA
reaches the optimal solution.

It is of interest to note that the same guldehnes
could also suggest when an approximation model of
different fidelity could be used, i.e., one not only
controls the generation delay, but also the approx-
imation model used in the design cycle. This issue
of model management is important from the stand-
point of computational efficiency, and requires fur-
ther detailed studies.

4.3 Choosing the Number of Anchor Points

Clearly, the number of anchor design points at
which exact analysis should be carried out depends
on the expected error bounds or range of applicabil-
ity of the approximation procedure as well as com-
putational cost considerations. For cases in which
a low-fidelity approximation procedure is employed,
a domain decomposition procedure could be carried
out and the anchor points computed for each sub-
domain. This would serve the purpose of controlling
the errors in fitness prediction of the approximation
models. Note that in the case of parallel GA im-
plementations, to reduce inter-processor communi-
cation overhead due to the requirement of transmit-
ting calibration data to the approximation modules,
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it would be preferable to carry out the fitness evalu-
ation of each sub-domain independently at different
nodes. Hence, load balancing considerations could
dictate that the number of design vectors in each
sub-domain to be the same. One possible way to do
this would be to create clusters into which a design
vector is allocated based on the value of the Holder
norm (||X||n) defined below as :

p
Xl = (O X"
i=1

where p is the total number of design variables. The
value of n could be chosen so as to define the shape
of each domain.

An alternative to choosing more than one anchor
point is to create a database of the anchor points
generated as the search proceeds. Then the fitness
evaluation of a design vector in a generation could
be carried out using the approximation model cali-
brated at the anchor point closest to it, or by aver-
aging the fitness predictions of a family of calibrated
models. However, this is feasible only if the approx-
imation model uses a small amount of data for cali-
bration purposes, and further, convergence problems
due to the magnitude of approximation errors of the
low-fidelity model outweigh the computational bur-
den of database creation, storage and search. The
other foreseeable disadvantage of this approach is
the possible requirement of interprocessor commu-
nication for parallel GA implementations.

4.4 Counteracting the Detrimental Effects
of Reduced Selection Pressure

For any choice of the anchor point outlined earlier,
the errors in fitness predicted by the approximation
model will reduce gradually as the GA approaches
steady-state. For example, if the constraints are ap-
proximated, the constraint boundary dynamically
shifts from generation to generation, with equilib-
rium being achieved only at the theoretical steady-
state. This situation is analogous to genetic adapta-
tion in dynamic environments.

Currently, litle is known on how to guide adapta-
tion in such changing environments. However, it is
generally felt that the concepts of diploidy (dom-
inant and recessive genes) could be used to deal
with such problems. Alternatively, a measure of
the approximation error (e.g., the Eucledian dis-
tance of each design vector from the anchor point)
could be used along with the phenotype/fitness in-
formation in the selection procedure. The present
study does not explore these possibilities. Instead,
a simple adaptive selection scheme is developed to
address the problem of variable selection pressure
which arises due to the fitness uncertainties. In the
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present problem, the dynamic fitness landscape will
asymptotically tend to the static (exact) fitness, as
the GA approaches steady state. The important do-
main specific knowledge we have here is that the
variance of the design vectors indicates whether the
fitness landscape is going through a turbulent phase.
If the variance of the design vectors is high, the ap-
proximation errors are expected to be high. The
converse is true if the design vector variance in a
generation is low.

Consider a binary tournament selection scheme
in which a tournament is conducted between two
competing designs based on their fitness evaluated
at a certain generation. If approximation errors are
high at that generation, then the resultant selection
pressure is low, i.e., the true fitness of the winner
may not necessarily be higher than that of the loser.
This observation was originally made in the context
of GA optimization of noisy functions®. This reduc-
tion in the selection pressure could potentially lead
to a slow rate of convergence to an optimal solution.

To counteract the detrimental effects of variable
selection pressure, a modified tournament selection
procedure is required in which the tournament size is
adaptively selected based on a quantitative estimate
of the approximation errors in that generation. This
is to ensure that the reduction in selection pressure
due to approximation errors do not slow down the
GA search considerably. As mentioned earlier, the
variance of the design vectors in a generation gives a
good idea of the likely magnitude of errors in using
the approximation model. Here, three possible val-
ues of the tournament size are arbitrarily chosen as
2, 3 and 4. Note that these choices for the tourna-
ment size have made based on past experiences, and
also to minimize the possibility of premature con-
vergence due to excessively high selection intensity.
Let Avg(AX) denote the average of the Eucledian
distance of each design vector from the anchor point
at a particular generation, i.e.,

1 = iyi
Avg(AX) = — 3 [1X* — Xapl|
i=1

where m is the population size.

The tournament selection size s is then chosen
using the rules given below.

If Avg(AX) is high
s=4

If Avg(AX) is medium
§s=3

If Avg(AX) is low
s=2
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The intervals for high, medium and low values of
Avg(AX) are problem dependent. Let us consider
the case wherein there are p design variables, each of
them normalized between 0 and 1. Here, for exam-
ple, one could choose the intervals for Avg(AX) as -
(1) High = Avg(AX) > &~ (2) Medium = £ <
Avg(AX) < B (3) Low = Avg(AX) < 2 Tt is
felt that the robustness of the GA would not be very
sensitive to the choice of this interval. In the worst
case, if the bounds on medium and high values are
widened, the resulting selection pressure (i.e., 3 or
4) is unlikely to lead to premature saturation for a
reasonable population size and fixed number of gen-
erations. Hence, regardless of the choice made for
this interval, the convergence speed and solution ac-
curacy using a adaptive tournament size is expected
to better than that achievable by employing a static
binary tournament selection operator.

4.5 Empirical Analysis of the Present Approach

This section presents an empirical explanation of
how the present approach affects the GA search
mechanisms, using analogies with natural evolution.
The two main points raised here are survival and
adaptation. In the present problem, survival is a
function of the fitness as well as the state of the en-
vironment. In contrast, for static function optimiza-
tion, survival depends on the fitness alone. Adap-
tation in the population occurs when the average
fitness increases over successive generations.

In the present approach, the risk of survival of any
individual is directly related to the closeness of its
genotype to that of the anchor point. Here, the an-
chor point could be interpreted as a representative
individual in a population. In this fitness landscape,
it is necessary for all the individuals to stay close
enough to the anchor point to ensure survival. If
individuals stray away from the the anchor point,
the turbulence in environmental payoff due to ap-
proximation errors could potentially drive the de-
viant individuals to extinction. The term potential
is used, since the fitness of deviant individuals could
be higher or lower than the true value (assuming a
sufficiently multimodal landscape). However, when
finding the optimum solution or the state with high-
est fitness, survival instincts have to be balanced by
adaptation, so that the average fitness of the popula-
tion increases over generations. The action of other
GA operators is to encourage adaptation. These are
two opposing forces, and for the GA to reach the op-
timum, these forces should co-evolve so as to reach a
state of equilibrium. The introduction of a genera-
tion delay is expected to help the adaptation process
since this procedure keeps the fitness function static
for a finite number of generations.

ATA A-98-1912

It is known that evolution of a single species
over a sufficiently large number of generations will
inevitably lead to homogeneity in the population.
Hence, it is hoped that in spite of turbulence in the
environmental payoff, the population will eventually
converge to a homogeneous state.

Next consider how the adaptive selection operator
acts on the evolution process. If there are many de-
viants from the representative individual in a genera-
tion, the selection pressure is kept high. This means
that in the selection process, there is a greater ten-
dency to favor the fittest individual. Herein there are
two possibilities : either the fitness of this individual
is close to its true value or it is undeserved. Now,
in the next generation, there will be a tendency for
the population to drift close to the genotype of this
individual. This implies that the genotype of the
representative individual of this generation is closer
to the genotype of the fittest individual of the pre-
vious generation. Because of this, the turbulence
in the environmental payoff for individuals with this
genotype will decrease, and hence, a better estimate
of the true fitness is achievable. The use of this bet-
ter estimate would serve the purpose of correcting
the search trajectory, if necessary, i.e., this mech-
anism ensures that the GA cannot be deceived for
long if approximation errors guide the search to er-
roneous regions of the solution space. In contrast, if
the selection pressure is kept static and low, it will
take a longer number of generations to discover if
the fitness of the best individual was undeserved or
not. This leads to a slow convergence rate for the
search procedure. When the number of deviants de-
crease, the adaptive selection operator will dictate
that a lower selection pressure be used for this gen-
eration. This means that exploration is encouraged
only when it is safer to do do, i.e., when the geno-
type of most of the individuals is similar to that of
the representative individual.

5. DEMONSTRATION EXAMPLES,
RESULTS AND DISCUSSIONS

This section demonstrates some aspects of the pro-
posed approach for the well documented 10-bar pla-
nar truss structure. The fixed parameters and design
variable bounds for this problem have been directly
taken from reference!*, where a GA was employed to
locate an optimal solution. Results are presented for
three problems. Problems 1 and 2 involve the use of
cross-sectional areas as design variab}es, i.e., a total
of ten variables. In problem 1, only stress constraints
are considered and in problem 2, both stress and
displacement constraints are considered. Problem 3
involves simultaneous optimization of the sizing and
geometry variables (a total of 18 variables) to mini-
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Figure 1: Comparison of Averaged Convergence
History of Different Approaches for Problem 1

mize weight subject to stress constraints. The joint
coordinates of the truss are allowed to move % 100"
from the original positions. The stress and displace-
ment constraints for all problems are approximated
using a first-order reduced basis method proposed
by Kirsch®. The pseudo-objective function is formu-
lated using an exterior extended penalty function
approach.

This paper presents results for three different vari-
ants of the approach outlined earlier :

Strategy 1 : Conventional binary tournament se-
lection.

Strategy 2 : Adaptive tournament selection oper-
ator.

Strategy 3 : The guidelines presented in section
4.2 are used for determining the generation delay
‘before the exact model is evaluated. The initial and
maximum possible value of the generation delay are
chosen as 4 and 8, respectively. An adaptive tour-
nament size is used in the selection procedure.

For all the results presented in this paper, the av-
erage design vector was chosen as the anchor point.
Further, only one anchor point is evaluated at a
given generation.

‘A population size of 40 was chosen for problems
1 and 2, whereas for problem 3 a larger population
size of 50 was used. The probabilities of uniform
crossover and bit mutation were kept constant at
0.6 and 0.01, respectively. Creep mutation was ap-
plied at a probability of 0.2. An elitist strategy was

ATAA-98-1912
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Figure 2: Comparison of Averaged Convergence
History of Different Approaches for Problem 2

used to prevent loss of the fittest design. The cross-
sectional areas and the joint coordinates were en-
coded using 6 bits and 10 bits, respectively. The
number of GA generations were kept constant for
all the runs at 250 and 300 for problems 1,2 and
problem 3, respectively. Simulations were carried
out for ten different initial populations to compare
the performance of the presented approach with a
conventional GA which makes use of exact analy-
sis throughout the search. Further, the same initial
population was used to run each strategy to ensure
a consistent comparison throughout.

Note that for optimization using strategy 1 and
2, exact analysis is carried out only once per gener-
ation, i.e, for the average design vector. For all the
design vectors in the population, the stress and dis-
placement constraints are approximated using the
results of this precise analysis. In contrast, strategy
3 uses a variable number of exact analysis which is
equal to the total number of design cycles.

The convergence trends of the GA search for prob-
lem 1 averaged over 10 runs for the three strategies
are compared with GA search using exact analysis
only in Figure 1. A statistical analysis of the GA
performance for this problem is summarized in Ta-
ble 1. The corresponding results for problem 2 are
shown in Figure 2 and Table 2. The convergencé
trends and optimal solution obtained by the diﬂ'efent
solution approaches for problem 3 are summ
in Figure 3 and Table 3, respectively.
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Figure 3: Comparison of Averaged Convergence
History of Different Approaches for Problem 3

Based on these results, the following observations

can be made :

1. Rather surprisingly it appears that the use of
approximation concepts seems to improve the
GA search accuracy instead of inhibiting con-
vergence to a near optimal solution. The main
reason for this lies in the fact that the GA
search procedure exploits the variable selection
pressure mechanism induced by the approxi-
mate fitness predictions to improve its search
efficiency and accuracy. This could also be at-
tributed to the nature of the genetic operators
of selection, crossover and mutation, which al-
low the individuals to adapt in varying fitness
landscapes.

. Strategy 2 and strategy 3 give the best results
for all the problems. The difference between
these two strategies do not appear to be very
significant for problem 2. Further, it can be
seen from Figures 1-3 that these strategies con-
verge to the vicinity of the optima faster than

" strategy 1. This demonstrates clearly how the
use of an adaptive tournament selection size
helps the GA procedure to tradeoff between ex-

" ploration and convergence speed in accordance

with the uncertainties in fitness predictions.

Also, the standard deviation in the optimal so-

lution found by the GA is generally found to

decrease when approximate fitness predictions
are used.
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3. For problems 1 and 2, it was observed that ap-

proximation errors encountered during the ini-
tial GA generations were usually less than +
20%. These errors reduce rapidly to the or-
der of + 5%, which leads to the generation de-
lay in strategy 3 always increasing to 8, after
which it is kept fixed. These trends could be at-
tributed to the global characteristics of Kirsch’s
approximation method and the choice of the
anchor point. However, even such low approx-
imations errors were observed to lead to oscil-
lation of the best solution in the vicinity of the
constraint boundary, especially for problem 2,
where a displacement constraint is active at the
optima. This oscillatory behavior is to be ex-
pected when approximation models are used in
the search, and has been reported earlier for
gradient based optimization algorithms. Two
possible ways to alleviate this undesirable be-
havior are to either increase the number of an-
chor points in the final stages of the GA search
or use a fuzzy constraint handling strategy.

. In problem 3, the use of geometric design

variables lead to approximation errors as high
as 100%. Hence, this problem is representa-
tive of many practical applications where high-
fidelity approximation models are seldom avail-
able. This high magnitude of approximation
errors leads to difficulties in finding a feasible
solution for strategy 1, which primarily relies
on the steady-state hypothesis to converge to
the optima of the original problem. This is
mainly because the population size and num-
ber of generations used for this problem are not
high enough for the GA to reach steady-state.
In general, constraint violations of the order of
5-6% were observed for strategy 1. In contrast,
strategy 2 and strategy 3 had no difficulty in
finding a feasible solution. This can be primar-
ily attributed to the adaptive tournament selec-
tion operator which enforces a pseudo steady-
state. Also, strategy 3 performs better than
strategy 2 for this problem because of the gen-
eration delay which allow individuals a reason-
able number of generations to adapt to chang-
ing fitness environments.

. Substantial savings in the computational cost

have been achieved by using the proposed ap-
proach. For all the problems considered, the
number of exact analysis required to converge
to an optimal solution could be reduced by
more than 97%. In particular, for strategy 3
the reduction in number of exact analysis were
of the order of 99.6%.
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6. CONCLUDING REMARKS

An approach for combining approximation models
with genetic search procedures has been developed.
The important issues which arise in the development
of a computationally efficient framework for tack-
ling this problem are addressed. It is shown that
this problem can be posed as a bilevel optimization
problem, the solution of which involves adaptation
in a dynamic environment. Numerical results ob-
tained for a simple demonstration example provide
a good idea of the computational savings offered by
the presented approach. In general, the number of
exact analysis may be reduced by more than 97%.
Also, it is shown that both the GA search efficiency
and accuracy are improved by using approximation
models for fitness predictions.

Further work is required to study the performance
of the present approach, particularly when other ap-
proximation models of lower fidelity are used in the
search procedure. It is expected that the use of
the domain decomposition strategies outlined here
would be useful for controlling approximation errors
during the GA search. The possibility of using a
measure of the expected approximation errors (i.e.,
the Eucledian distance of the design vector from
an anchor point) along with the fitness information
in the selection procedure also merits consideration.
Development of efficient architectures for paralleliz-
ing the present approach is another research area
worthy of future investigations.

This research has several long-term ramifications.
Most importantly, it shows that approximation con-
cepts can indeed be combined with a great degree of
success in GA-based optimization procedures. Fur-
ther, this study also serves as a demonstration of the
inherent power of the approximation concepts being
employed, and the robustness of GAs in dynamic
and uncertain environments.
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Approach Exact  Strategy 1 Strategy 2 Strategy 3
Analysis

Average 1729 1718 1714 1694

Weight

Standard 22 12 14 10

Deviation :

Minimum 1698 1661 1655 1625

Weight

No. of Exact 10000 250 250 33

Analysis (Avg.)

Table 1: Comparison of Optimization Results for Problem 1

Approach Exact  Strategy 1 Strategy 2 Strategy 3
Analysis v

Average 1880 1862 1854 1861

Weight

Standard 9 7 2 2

Deviation

Minimum 1855 1823 1842 1854

Weight

No. of Exact 10000 250 250 33

Analysis (Avg.)

Table 2: Comparison of Optimization Results for Problem 2

Approach Exact  Strategy 1 Strategy 2 Strategy 3
Analysis

Average 1345 1407 1301 1279

Weight

Standard 21 15 19 16

Deviation

Minimum 1219 1342 1236 1185

Weight .

No. of Exact 15000 300 300 39

Analysis ‘ (Avg.)

Table 3: Comparison of Optimization Results for Problem 3
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