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ABSTRACT

This paper presents an approach based on reduced
basis approximation concepts for static and dy-
In the
presented approach, scaling parameters are intro-
duced to increase the range of applicability of local
approximation techniques based on Taylor or ma-
trix perturbation series. The terms of the local
approximation series are used as basis vectors for
constructing an approximation of the perturbed re-
sponse quantities. The undetermined scalar quan-
tities are then estimated by solving the perturbed
equilibrium equations in the reduced basis. This
approach was earlier proposed in the context of
statics by Kirsch (1991). This paper presents in
brief the reanalysis procedure for statics and a new
method based on a similar line of approach is pro-
posed for approximate dynamic reanalysis. The
method is applied to approximate dynamic reanal-
ysis of a cantilevered beam structure. Preliminary
results for this example problem indicate that high
quality approximation of the natural frequencies
and mode shapes can be obtained for moderate
perturbations in the stiffness matrix elements of
the order of +40%.

namic reanalysis of structural systems.

1. INTRODUCTION

The development of approximate response models
of structural systems has been a topic of extensive
research over the last few decades. This has been
mainly due to the ever increasing requirement of
efficiently designing large scale structural systems
using variable complexity analytical models. Ap-
plications also exist in the area of structural iden-
tification involving the reconciliation of finite ele-
ment models with experimental data.

A detailed review of static reanalysis tech-
niques can be found in Topping (1987). More
recent reviews of the field have been presented
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by Barthelemy and Haftka (1991) and Grandhi
(1993). It is important to mention here that many
of the approximation concepts reported in the lit-
erature are valid only for small perturbations in
the structural parameters. The literature review
included in this paper is restricted to reanalysis
techniques which are valid for moderate to large
perturbations in the structural parameters.

Approximate reanalysis techniques can be
broadly classified in to global and local methods.
Global approximation methods either make use of
polynomial regression (response surface analysis)
or reduced basis approaches. The reduced basis
approaches (see, for example, Kapania and Byun,
1993) are also commonly referred to as model re-
duction in the literature. These methods essen-
tially seek to approximate the response throughout
the design space of interest. In contrast, the local
methods are based on Taylor or matrix perturba-
tion series around a nominal design point. Hence
the range of applicability is local in nature since
the series may not converge for moderate to large
perturbations in the structural parameters.

Kirsch (1991, 1995) proposed a method based
on reduced basis approximation concepts to static
reanalysis. This method can be thought of as
an combined approximation technique since it at-
tempts to give global characteristics to the con-
ventional local approximation. It was shown that
this approach can be used to compute high qual-
ity approximation of the static response quantities
for very large perturbations in the structural pa-
rameters. More recently, Kirsch and Liu (1997)
presented a formulation based on a similar line of
approach to static reanalysis of structures under-
going topological modifications. The approach de-
veloped in this paper has been primarily motivated
by the research of Kirsch.

Very few studies in the literature have ap-
proached the structural dynamic reanalysis prob-
lem for large perturbations in the structural pa-



rameters. High (1990) proposed an iterative modal
method to compute the perturbations in the fre-
quencies and mode shapes. This method was im-
plemented in version 66 of MSC NASTRAN. Later
studies by Eldred et. al (1992) indicated that
difficulties may arise in the convergence of High’s
method for moderate perturbations. They devel-
oped an improved scheme for normalization of the
eigenvector perturbations in order to improve the
convergence properties.

An interesting approach based on interpreting
the eigen parameter perturbation equations as dif-
ferential equations in terms of the perturbation
parameters was proposed by Inamura (1988). It
was shown via demonstration examples that this
procedure could lead to improvements over the
conventional local approximation. Pritchard and
Adelman (1991) developed a similar procedure us-
ing the sensitivity equations of the eigenvalues and
eigenvectors.

An iterative procedure using the nonlinear form
of the eigenproblem perturbation equations was
developed by Eldred et al. (1992). It was shown
that this method converges to the exact solution
for moderate to large perturbations in the stiffness
matrix of the order of 150%. An exact method
based on the block Lanczos algorithm was pro-
posed by Carey et. al. (1994). Even though both
these procedures can provide exact results, the
computational effort involved is substantial com-
pared to conventional techniques based on first or-
der Taylor or matrix perturbation series approxi-
mation.

More recently, Balmes (1996) presented a novel
approach in which the finite element model is rep-
resented as a parametric family of reduced order.
The full order order finite element model is re-
duced using a transformation matrix composed of
Ritz vectors evaluated at different points in the de-
sign space. Excellent results were obtained for ap-
proximate static and dynamic reanalysis of a can-
tilevered box beam structure.

The approach developed in this paper is in spirit
similar to the approach of Balmes (1996). How-
ever the present method differs in the choice of
basis vectors used to construct the transforma-
tion matrix. In the present approach, the basis
vectors are chosen to be an implicit function of
the parametric perturbations. In particular, the
terms of the conventional Taylor or matrix pertur-
bation series are chosen as basis vectors. Hence
the present approach can also be viewed as an
improved local approximation procedure. In con-
trast, Balmes’s method uses a constant transfor-
mation matrix which is invariant with the para-
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metric perturbations. Furthermore, the approach
presented in this paper aims at building a reduced
basis approximation of each eigenmode indepen-
dently.

The long term objective of the present study
is to develop techniques which can be used for ob-
taining high quality approximation of the dynamic
response quantities for moderate to large pertur-
bations in the structural parameters.

This paper is organized as follows. Section 2
briefly describes Kirsch’s formulation for approxi-
mate static reanalysis. Based on Kirsch’s method
for statics, the extension of the theory to approx-
imate dynamic reanalysis is proposed. Some com-
ments on the computational aspects of the pro-
posed procedure and analogies with existing ap-
proximation concepts are briefly discussed in sec-
tion 3. Section 4 presents results for approximate
dynamic reanalysis of a cantilevered beam. Ap-
proximations are sought for the natural frequencies
and mode shapes for perturbations in the flexural
rigidities. The effects of both global and local per-
turbations in the structural parameters on the pro-
posed procedure is studied. Results indicate that
a reliable approximation of the natural frequencies
and mode shapes can be obtained for moderate
perturbations in the stiffness matrix of the order of
+40%. Comparison studies with the conventional
first order Taylor series approximation shows that
the accuracy has been considerably improved with
a relatively small computational effort. Section 5
summarizes the present work and future areas of
investigation are outlined.

2. THEORETICAL DEVELOPMENT

The equations of motion of a multi-degree of free-
dom linear structural system can be written as

Mx+Cx+Kx=F (1)
where M, C and K € R"*" are the structural
mass, damping and stiffness matrices respectively,
x is the vector of displacements corresponding to
the analytical degrees of freedom and F is the vec-
tor of external forces.

2.1 Approzimate Static Reanalysis

Consider the case of static analysis, wherein the
derivatives of the displacement vector x with re-
spect to time are zero. For this case, if the stiffness
matrix is perturbed by AK, the displacement at
the perturbed design point can be expressed as a



matrix series of the form

x=(I-B+B?-. )x° (2)
where B = K°"1AK. K° and x° are the stiff-
ness matrix and displacement vector at the nom-
inal design point respectively. Note here that
the above series will converge to the exact value
of the perturbed displacement vector only when
(K°"'AK)* — 0 as k — co. In general, for mod-
erate to large perturbations in the stiffness matrix,
the series will not converge.

Kirsch (1991) proposed the use of terms of the
above series as high quality basis vectors for con-
structing an approximation to the perturbed dis-
placement vector. It was shown via various demon-
stration examples that high quality approximation
of the static response quantities can be obtained
for very large perturbations in the stiffness matrix
of the order of 900%. In a sequel paper, Kirsch
(1995) showed that the use of Taylor series terms
can lead to similar results. More implementation
specific details including results for various bench-
mark structures can be found in the afore men-
tioned references.

In the next section, extension of Kirsch’s
method to approximate dynamic reanalysis is de-
scribed. In particular, it is sought to develop a
procedure for approximation of the eigenvalues and
eigenvectors of perturbed eigensystems on a simi-
lar line of approach.

2.2 Approzimate Dynamic Reanalysis

Typically, modal analysis is used for computing
the dynamic response of large scale finite element
models of structural systems. This procedure es-
sentially involves computing the first few natural
frequencies and the corresponding mode shapes
and transforming the original equations of mo-
tion to the modal coordinates. This permits dy-
namic response analysis of the finite element model
in a computationally efficient fashion. This pa-
per is restricted to approximate reanalysis of the
eigen parameters for perturbations in the stiff-
ness and mass matrices. Once the eigen param-
eters have been approximated for the perturbed
system, computation of the dynamic response for
arbitrary time varying loading conditions is rela-
tively straight forward.

The free vibration undamped natural frequen-
cies and mode shapes of a structural system, whose
equilibrium equations can be expressed in the form
of equation (1), can be computed by solving the al-
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gebraic eigenvalue problem posed below.

K¢ = A\M¢ (3)
where ¢ denotes the mode shape of the structural
response and ) is the eigenvalue which is the square
of the natural frequency.

The original/baseline system matrices and the
response quantities are denoted by the superscript
0. The set of structural parameters or design vari-
ables are denoted by the vector X. Let AX de-
note the perturbation in the structural parame-
ters. Then the corresponding perturbation in the
system matrices and the response quantities can
be expressed as

A= N0+ AN
bi = @7 + Ag;
K=K°+AK
M =M°+ AM

The index i is used to denote the eigenmode
number. Typically, the eigenvalue and eigenvector
perturbations are calculated using first order sen-
sitivity information, i.e., the perturbation in the
eigenvalue and eigenvector for mode i can be ex-
pressed as
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and gf’- are the sensitivities of the eigen-
values and eigen‘j’ectors with respect to the struc-
tural parameters denoted by X = {x1,z2,...,2p}.
For many cases of practical interest, the eigenvalue
and eigenvector sensitivities may not be easy to
evaluate. Hence it may be more convenient to
compute the eigenvalue and eigenvector perturba-
tions using a first order matrix perturbation se-
ries. Note here that the first order approximation
of eigen parameters using matrix perturbation se-
ries are equivalent to the first order Taylor series
terms. A first order approximation of the eigenval-
ues and eigenvectors using a matrix perturbation
approach (Brandon, 1990) can be written as

_ ¢T[AK = )" AM]¢?

AN ST
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where

$T[AK — A°AM]¢?
(A:° — X;°) ¢ Mg

iy = (8)

Using these equations, a first order approxima-
tion of the eigenvalues and eigenvectors of the per-
turbed system can be calculated. Note here that in
order to compute the perturbation in the eigenvec-
tor, a modal summation approach is used which re-
quires all the eigenvectors of the original/baseline
system to be evaluated. This can prove to be com-
putationally prohibitive for large scale systems. In
order to circumvent this requirement, a truncated
set of baseline eigenvectors could be used. This
could potentially lead to reduced accuracy for large
perturbations in the structural parameters. The
other alternative could be to make use of iterative
schemes (see for example; Zhang and Zerva, 1997)
or Nelson’s method (Nelson, 1976) in order to com-
pute the eigenvector perturbations in a computa-
tionally efficient fashion.

The approximation procedure developed in the
present study is based on the proposition stated
below.

Proposition : The eigenvector of the perturbed sys-
tem can be approximated in the subspace spanned
by #;%and Ag,. i.e., an approximation to the per-
turbed eigenvector can be written as

¢i = (197 + (2Ag; 9

where (1 and (2 are the undetermined scalar quan-
tities in the approximate representation of the per-
turbed eigenvector. The assumption implicit in the
proposition is that even for moderate to large per-
turbations in the structural parameters, the first
order approximation yields a A¢; vector which
gives a reasonable indication of direction of change
of the baseline eigenvector, although the magni-
tude of change may be erroneous. It can also be
seen that for {(; = (2 = 1, the proposition re-
duces to the conventional first order approxima-
tion. Equation (9) can be expressed in matrix form
as

$; = TZ (10)
where T = {¢2, A¢;} € R**2 and ZT = {(4,(2} €
§R1><2

Substituting equation (10) in to equation (3)
and premultiplying by TT, the resulting set of
equations can be expressed as
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KrZ = \MrZ (11)
where K7 = TTKT € %2%2 and My = TTMT
€ R2%2 are the reduced stiffness and mass matri-
ces. Hence using the present approach, the origi-
nal n X n eigensystem is represented by a reduced
2% 2 eigensystem for each eigenmode to be approx-
imated.

A non-trivial solution to Z can be obtained
only when A is an eigenvalue of the matrix pair
(K7,Mr). Hence an approximation to the eigen-
value of the perturbed system (};) can be com-
puted by solving for the roots of the quadratic
given below.

a4+ bl +c=0 (12)
where a = mi11ma2 —m%z , b= 2k1omyo —k1imoa —
m11k22 and ¢ = k11k22 - k%z, k,‘j and m;; are the
elements of the reduced stiffness and mass matri-
ces (Kp and Mr) respectively. The elements of
K7 and My are given below as

ky = ¢ K¢y
k12 = ¢9T KA,
koo = APT KA,

myy = ¢¢T M¢?
mig = ¢fTMA¢i
mos = AdT MA;

Solution of the above quadratic give two val-
ues for the perturbed eigenvalue. Since the trans-
formed matrices K7 and M are real and symmet-
ric, the roots of equation (12) will be real. Now the
question arises regarding which root to choose as
the best approximation for the perturbed eigenvec-
tor. For the demonstration example considered, it
was confirmed via numerical experiments that the
root with the lowest magnitude gives the best ap-
proximation. The mathematical proof of this is in-
volved and is beyond the scope of this paper. Once
an approximation to the eigenvalue has been com-
puted, the approximate eigenvector can be evalu-
ated by calculating the values of ¢; and ¢z (i.e., the
eigenvectors of the reduced eigensystem given by
equation (11)) and using equation (9).

3. COMMENTS

It can be observed from the formulation that an
approximation to the eigenvalues and eigenvectors
of the perturbed system can be calculated by solv-
ing for the roots of an quadratic for each eigen-
mode of interest. The coefficients of the quadratic
equation can be easily calculated after the first
order approximation of the perturbed eigenvector
is computed. Hence the proposed procedure in-
volves only a few additional computations when



compared to the conventional first order local ap-
proximation.

For many large scale structures, the response is
dominated by the first few eigenmodes (typically
10-20 even for a structure with 10,000 degrees of
freedom). Hence using the proposed procedure,
the perturbations in the eigenvalues and eigenvec-
tors can be approximated by solving a few number
of quadratic equations which could lead to sub-
stantial savings in the computational time required
for dynamic response synthesis.

In order to improve the accuracy of the present
procedure, it may be desirable to make use of sec-
ond order approximation terms (i.e, three basis
vectors) at the cost of increased computations. It
will be shown in the subsequent section that using
the first order terms alone, a reliable approxima-
tion of the perturbed frequencies and mode shapes
can be computed for moderate perturbationsin the
structural parameters.

Variants of the proposed approach, for example;
using a common set of basis vectors for each eigen-
mode and solving a single reduced eigensystem also
merits consideration. This could potentially lead
to better accuracy in the approximation of eigen
parameters for many modally complex structural
systems. However, due to constraints on data pre-
sentation, results for these cases will not be pre-
sented in the present paper.

It is well known that the use of Rayleigh’s quo-
tient yields a better approximation to the lowest
natural frequency as compared to the conventional
first order approximation. The lowest eigenvalue
is typically approximated using the equation

¢0T K ¢o

Mg (s

rqa =

The assumption made here is that the mode
shapes are invariant to the parametric perturba-
tions. Earlier studies (see for example; Canfield,
1990) have conclusively shown that the modal
strain and kinetic energy (i.e., the numerator and
denominator of Rayleigh’s quotient) can be used
as intervening variables to approximate the natu-
ral frequency with better accuracy as compared to
the local first order approximation.

It can be checked that if A¢; is considered to be
a very small quantity, the approximation for the
first eigenmode using the present procedure tends
to the Rayleigh quotient approximation.
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4. DEMONSTRATION EXAMPLE, RE-
SULTS AND DISCUSSION

The proposed procedure is applied to approximate
structural dynamic reanalysis of a cantilevered
beam structure. The baseline values of the struc-
tural parameters are taken as : flexural rigidity
EI = 1.286 x 10*Nm?, mass per unit length m =
2.73kg/m and length of the beam L = 2.5m. The
beam is modeled using five finite elements with
each node constrained to have only two degrees
of freedom (translational and rotational). For this
example, the structural parameters which are per-
turbed correspond to the flexural rigidities of the
five elements, i.e, only perturbation in the stiffness
matrix is considered.

Results are presented for two cases. In the
first case, the approximate natural frequencies
and mode shapes are evaluated for simultaneous
(global) perturbations in the structural parame-
ters. In the second case, the effect of local pertur-
bations on the approximation procedure is studied.

In order to evaluate the accuracy of the approx-
imation, two error indices are defined. The first
error index is the Frobenius norm of the difference
between the exact mode shape (obtained using ex-
act reanalysis) and the approximate mode shape
using the present approach. The mode shape er-
ror index for eigenmode i is defined below as

MSE; = ||6; — ($i)ezacl 5 (14)
where ||.||s denotes the Frobenius norm of the vec-
tor {.}. The second index, henceforth referred to
as F'E; is the percentage error in approximation of
the natural frequency for eigenmode 1.

Case 1 : For this case five different parameter sets
were considered with perturbations in the flexural
rigidities ranging from £10% to £50%. The per-
centage perturbations in the flexural rigidities for
the five parameter sets are given in table 1.

Table 1: Percentage Perturbation in Flexural
Rigidities of the Elements for the Parameter
Sets

Parameter Perturbation in Parameters(%)
Set 1 2 3 4 5
Ps1 +5 +8 -9 +10 -5
PS2 +15 -18 -19 420 -12
pPs3 +15 -25 430 -27 422
PS4 -35 25 +25 40 +37
PS5 +40 -50 +45 -30 47




For each case, the flexural rigidities of the five
elements were perturbed from the baseline values
and the approximate frequencies and mode shapes
were evaluated using the proposed procedure. The
approximate results are compared with results ob-
tained via exact eigensolution of the perturbed sys-
tem. Table 2 summarizes the results for all the
parameter sets. The results using the present ap-
proach is compared with those obtained a first or-
der Taylor series approximation denoted by TS1.
Results are presented only for approximation of
the first three eigenmodes. The accuracy of the
approximation is evaluated using the two error in-
dices defined earlier.

It can be seen from the results that excellent
improvements have been obtained over the con-
ventional first order approximation for moderate
perturbations in the structural parameters of the
order of +30%. Deterioration in the approxima-
tion can be observed only when the perturbations
approach the order of +50%. It can also be seen
that for the range of perturbations considered in
this demonstration example, the errors in approx-
imation using first order Taylor series are substan-
tial.

The mode shape error index defined in this
study does not give a good indication of the ac-
curacy of the approximation. In general, it was
found that the mode shape can be approximated
with better precision as compared to the natural
frequency. Figure 1 compares the approximate and
exact mode shape of the third eigenmode for pa-
rameter set PS5. Note here that the transverse
displacement and rotation quantities alternate in
the mode shape vector. It can be seen from the
figure that using the present approach, the first
order approximation of the perturbed eigenvector
has been improved substantially.

Case 2 : The effect of perturbations in the flex-
ural rigidity of element 3 on approximation of the
natural frequencies and the mode shapes are stud-
ied. Perturbations in the flexural rigidity of this
element is studied in the range of 10 — 100%.

Figure 2 depicts the variation of errors in ap-
proximation of the first three natural frequencies
for increasing perturbation in the flexural rigid-
ity of element 3. It can be seen from the figure
that even for large local perturbation in the flex-
ural rigidity of the order of 100%, the maximum
error in approximation of the first three frequencies
are of the order of 5%. It can also be noted that the
maximum error occurs in approximation of the sec-
ond eigenmode. Numerical experiments on cases
involving perturbation of other local parameters
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Figure 1: Comparison Between the Approx-
imate and Exact Mode Shape of the Third
Eigenmode for Parameter Set PS5

8 . . - K (
) |
— FE
FE2 v
J -- B |

o

Percentage Error in Frequency
w
L

% 2 w 4w o @ 1 @ 0 0
Perturbation in Fiexural Rigidity of Element 3 (%)

Figure 2: Variation of Frequency Errors with
Local Perturbation in the Structural Pa-
rameters

indicated that the eigenmode which is difficult to
approximate may change. It was found that when



Table 2: Comparison of Results using the Present Approach with Taylor Series Approxima-
tion for the Five Parameter Sets
*Negative Eigenvalue Approximation

Parameter Method FE1 FE2 FE3 MSE1 MSE2 MSE3

Set %) (%) (%)

Ps1 Present Approach 0.11 0.31 017 29x10°° 49x10°% 6.7 x 102
TS1 427 139 -316 1.2x107* 16x1073 88x10~3

PS2 Present Approach 1.09 1.05 09 16x107% 1.9x107% 95x 10-%
TS1 343 168 14 1.2x1072 61x1073 9.6 x 10~2

PS3 Present Approach 2.01 286 2.03 2x10°%7 53x10° 57x10-3
TS1 28.5 10.86 19.8 1.2x1072 1.6x 10~2 0.12

PS4 Present Approach 1.85 4.74 351 47x10% 69x10°% 9x 103
TS1 ¥ 392 37 5.2x1073 0.05 0.26

PS5 Present Approach 9.78 582 515 1 x 109 8x 1073 0.01
TS1 69.8 27.97 33.23 0.09 0.05 0.3

the flexural rigidity of element 3 is perturbed by
150%, the percentage errors in approximation of
the first three natural frequencies were 3.9, 9.2 and
1.3 respectively. Hence it can be concluded that
for this particular example, high quality approxi-
mation of the first eigenmode can be obtained for
large local perturbations in the structural param-
eters.

5. CONCLUDING REMARKS

An improved first order approximation procedure
for reanalysis of eigenvalues and eigenvectors of
modified structural systems was proposed. It has
been shown via a simple demonstration example
that the present approach can be used to estimate
a reliable approximation of the natural frequencies
and mode shapes for simultaneous perturbation in
the structural parameters of the order of +£40%.
It was also demonstrated that the proposed proce-
dure can be used for arriving at high quality ap-
proximation of the eigen parameters for large local
perturbations in the structural parameters.

It is expected that the present formulation may
find applications in the area of structural optimiza-
tion and identification. It is important to note here
that extension of the present approach to approxi-
mate eigensensitivity is relatively straight forward
and could lead to computationally efficient proce-
dures for structural design with dynamic response
constraints.

In the form presented in this paper, the formu-
lations lack mathematical rigor. It would be more
useful if a formal theoretical background could
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be established which would enable one to study
the numerical characteristics of the approximation
procedure and possibly arrive at bounds on the
estimates of the perturbed eigen parameters.

Further studies are also required to examine is-
sues related to the effect of mode swapping on
the proposed approximation procedure. It is ex-
pected that for modally complex structures, mod-
erate perturbations in the structural parameters
could potentially lead to switching of the eigen-
modes. It may be required to make use of more
basis vectors in order to capture the mode switch
accurately.

ACKNOWLEDGMENTS

This work was partly carried out during the au-
thor’s stay at the Indian Institute of Technology,
Bombay as a postgraduate student funded by a
Government of India Scholarship. The author
would like to thank Prof. P. M. Mujumdar at IIT
Bombay for valuable discussions and suggestions
on this topic and for his encouragement. The au-
thor would also like to acknowledge the Faculty
of Engineering and Applied Sciences at the Uni-
versity of Southampton for financial and compu-
tational support towards this work.

REFERENCES

Abu Kassim, A. M., and Topping, B. H. V.,
1987, ”Static Reanalysis of Structures : A Re-
view,” Journal of Structural Engineering, ASCE,
Vol. 113, pp. 1029-1045.



Balmes, E., 1996, ”"Parametric Families of Re-
duced Finite Element Models. Theory and Appli-
cations,” Mechanical Systems and Signal Process-
ing, Vol. 10, pp. 381-394.

Barthelemy, J. -F. M., and Haftka, R. T., 1991,
"Recent Advances in Approximation Concepts
for Optimum Structural Design,” Proceedings of
NATO/DFG ASI on Optimization of Large Struc-
tural Systems, Berchtesgaden, Germany, pp. 235-
256.

Brandon, J.A., 1990, ” Strategies for Structural Dy-
namic Modification,” Wiley, New York.

Canfield, R. A., 1990, "High Quality Approxima-
tion of Eigenvalues in Structural Optimization,”
AIAA Journal, Vol. 28, pp. 1116-1122.

Carey, C. M. M., and Golub, G. H., and Law,
K. H., 1994, " A Lanczos-Based Method for Struc-
tural Dynamic Reanalysis Problems,” Interna-
tional Journal of Numerical Methods in Engineer-
ing, Vol. 37, pp. 2857-2883.

Eldred, M. S., Lerner, P. B., and Anderson, W.
J., 1992, "Higher Order Eigenpair Perturbations,”
AIAA Journal, Vol. 30, pp. 1870-1876.

Grandhi, R.V., 1993, "Structural Optimization
with Frequency Constraints - A Review,” ATAA
Journal, Vo. 31, pp. 2296-2303.

High, G.D., 1990, ” An Iterative Method for Eigen-
vector Derivatives,” Proceedings of 1990 MSC
World Users Conference, Paper 17, Los Angeles,
CA.

Inamura, T., 1988, ”Eigenvalue Reanalysis By Im-
proved Perturbations,” International Journal of
Numerical Methods in Engineering, Vol. 26, pp.
167-181.

Kapania, R. K., and Byun, C., 1993, "Reduction
Methods based on Eigenvectors and Ritz Vectors
for Nonlinear Transient Analysis,” Computational
Mechanics, Vol.11, pp. 65-82.

Kirsch, U., 1991, "Reduced Basis Approximation
of Structural Displacements for Optimal Design,”
AIAA Journal, Vol. 29, pp. 1751-1758.

Kirsch, U., 1995, "Improved Stiffness-Based First-
Order Approximations for Structural Optimiza-
tion,” ATAA Journal, Vol. 29, pp. 143-150.

Kirsch, U., and Liu, S., 1997, ”Structural Reanaly-
sis for General Layout Modifications,” AIAA Jour-
nal, Vol. 35, pp. 382-388.

Nelson, R. B., 1976, "Simplified Calculation of
Eigenvector Derivatives,” AIAA Journal, Vol. 14,
pp. 1201-1205.

Pritchard, J. 1., and Adelman, H. M., 1991, "Dif-
ferential Equation Based Method for Accurate
Modal Approximations,” AIAA Journal, Vol. 29,
pp. 484-486.

Zhang, O., and Zerva, A., 1997, ”Accelerated
Iterative Procedure for Calculating Eigenvector
Derivatives,” AIAA Journal, Vol. 35, pp. 340-348.

302



