Short Term Memory in Genetic Programming

K B'earpa.rk and A J Keane
School of Engineering Sciences, University of Southampton

Abstract. The recognition of useful information, its retention in
memory, and subsequent use plays an important part in the
behaviour of many biological species. Information gained by
experience in one generation can be propagated to subsequent
generations by some form of teaching. Each generation can then
supplement its taught learning by its own experience. In this paper
we explore the role of memorized information in the performance of
a Genetic Programming (GP) system that uses a tree structure as its
representation. Memory is implemented in the form of a set of sub-
trees derived from successful members of each generation. The
memory is used by a genetic operator ‘similar to the mutation
operator but with the following difference. In a tree-structured
system the mutation operator replaces randomly selected sub-trees
by new randomly-generated sub-trees. The memory operator
replaces randomly selected sub-trees by sub-trees randomly selected
from the memory. To study the memory operator’s impact a GP
system is used to evolve a well-known expression from classical
kinetics using fitness-based selection. The memory operator is used
together with the common crossover and mutation operators. It is
shown that the addition of a memory operator increases the
probability of a successful evolution for this particular problem. At
this stage we make no claim for its impact on other problems that
have been successfully addressed by Genetic Programming.

1. Introduction

Genetic Programming (GP) is one of the most recently developed fields in the
study of Evolutionary Computation (EC). Koza [1] has shown that GP can be
successfully applied to a wide range of problems across a number of technical and
social disciplines. Included in these problems is Symbolic Regression - finding a
function, in symbolic form, that fits a given finite sample of data. This paper is
concerned with the application of a short-term memory operator to symbolic

regression.

Genetic Programming uses a Genetic Algorithm (GA) to evolve a
progressively improving solution to a problem. In a conventional GA the solution
is represented in vector form with the simplest GAs operating on a binary string.

310

The main difference between the pure GA and the GA-based GP approaches lies
in the complexity of the representation. A GP representation generally has a
hierarchical rather than a linear structure. This hierarchical structure requires
some modification to the genetic operators defined for GA systems.

A typical GA operates in parallel on a set or population of solutions.
Each member of the population is a potential solution and must be represented in
such a way that its suitability, or fitness, as a solution can be measured. An initial
population is created by random selection from a pool of components to give the
first generation. Successive generations are produced by the application of genetic
operators that mirror those responsible for the evolution of biological species.
Individuals are selected to participate in the creation of the next generation
according to their fitness. Some selected individuals pass into the next generation
unchanged while others are subject to a crossover operation in which two parents
produce children by exchanging genes. A further operation may occur in which a
small amount of genetic material in a child is randomly mutated.

The three operations of selection, crossover and mutation occur in nature
.and in most GAs. Fitness-based selection ensures that highly fit individuals are
well represented in the mating pool for the next generation while individuals with
lower fitness tend to disappear. Crossover attempts to produce better individuals
by incorporating genes from each parent. Random mutation of some genes in a
child introduces new genetic material and extends the search for a solution to
different regions of the search space. Many GA and GP applications have shown
that all three operators, individually and in combination, are beneficial in
improving the average fitness of each generation and evolving better solutions to
the problem in hand or, in some cases, the best solution.

Evolution in nature or in EC relies on stochastic processes. The average
ability of members of a generation to perform a particular task in a given
environment tends to improve as the fitter members survive and reproduce at the
expense of the less fit members. This ability may also improve through
accumulated experience handed down from one generation to the next, i.e. if this
experience is recorded it may be used by future generations to augment their
development. In the GP system described here experience is recorded in the form
of a set of sub-trees derived from an analysis of the more successful members of
each generation. We call this set the ‘memory’. The memory is used in a
mutation-like process in which replacement material is selected randomly from
the memory as a complete sub-tree. This should be contrasted with the
conventional mutation operator that produces replacement sub-trees by randomly

selecting operators and operands.

The use of a memory operé.tor has some similarity to the encapsulation
operator defined by Koza [1], automatically defined functions (ADF), also defined
by Koza [2], and module acquisition, described by Angeline and Pollack [3].

311

Banzhaf etr. al.[4] point out that these modularization techniques essentially
preserve sub-sets of genetic material against the potential disruption of crossover.
On the other hand, the memory operator defined here is used after crossover has
occurred and as the final process in creating a new generation. It is akin to
children learning from their grandparents and earlier generations.

2. The Objective Function

An elementary result from classical kinetics states that the distance travelled by an
object in time ¢ subject to constant acceleration ¢ and with an initial velocity u is
given by the expression

ut + Yat’.

The GP system described here uses symbolic regression to evolve this
expression given sets of terminals and arithmetic operators and conventional GP
techniques. The system is then used as a vehicle to explore the use of memory to
improve its performance.

The fitness of an individual test expression is measured by evaluating the
expression for values of # from 1 to 10, two values of u (20 and 200) and a single
value of a (980). All units are arbitrary. These values are compared with the
corresponding values of the true expression ut + Ysat® to give two error values

10
E20 = XABS(test (¢) - true (¢)) for u =20
=1
and
10 -
E200 = ZABS(test (¢) - true (¢)) for u = 200.
=1

If both E20 and E200 are zero the evolved expression is a ‘hit’ and is
given an error value of zero. Otherwise the expression is given the error value

(E20+E200)/2.

3. The GP System

The GP system makes use of largely standard techniques with the exception of the
memory operator. Its various components are described in the following sections.

312

3.1 The function and terminal sets

The functions available to the system are here restricted to the simple arithmetic
binary operators resulting in the set

{+,-,*%/}.

The implementation ensures that the division operator is protected against a zero
divisor.

The terminals are restricted to the variables u, a and ¢ and integer
constants from 1 to 9. The structure of the operand set has some bearing on the

success of the evolutionary process. All the results reported here were achieved
using the set

{u,1,0,2,t,3,u,4,a,5,1,6,u,7,02,8,1,9}.

These two sets are used in producing the first generation and in selecting
replacement sub-strings during mutation.

We have also explored the use of a terminal set from which integer
constants are removed thus relying on the emergence of rational numbers (e.g.
x/(x+x)) during evolution. Our conclusions still hold although the performance of
the system is reduced but can be restored by increasing the number of tests.

3.2 Representation

Expressions are represented as Reverse Polish (RP) strings except in the first
randomly produced generation where it is simpler to generate conventional
(unbracketed) arithmetic expressions and convert them to RP form. The string
length is controlled by imposing a limit of 5 functions (and hence a maximum
total string length of 11 characters) in the first generation and a maximum length
of 19 characters (or 9 functions) in subsequent generations. Modification of the
RP strings by genetic operators here makes use of a tree representation.

3.3 Production of the first generation

The first generation is produced by alternately selecting terminals and functions
from the respective sets subject to a maximum of 5 functions. Each expression is
converted to RP form and evaluated to give an error value as described earlier.

3.4 Fitness-based selection

The fitness of an expression when considering it for entry into the mating pool for
the next generation is given by

fitness; = maxerr/(error+1)

where fitness; and error; are respectively the fitness value and the error value of
the i™ expression and maxerr is the maximum error value in the generation.

The mating pool for the next generation is then populated by a
conventional roulette-wheel method. Generation n+I is evolved from the
generation n mating pool by applying the conventional genetic operators of
crossover and mutation and also the memory operator described below.

3.5 Crossover

Crossover is applied according to a probability between 0% (no sexual
reproduction) and 100% (full reproduction). Two members are selected at random
from the mating pool and crossover points randomly selected in each member.
The sub-trees anchored to these points are extracted and exchanged between the
two members to provide two children. Iteration of this operation produces an
interim generation of the same size as the previous generation which may then be
subject to further genetic modification. Crossover may result in an RP string that
exceeds the maximum length of 19 characters. If this occurs for a given pair of
parents, 3 further attempts are made with alternative parents. If an acceptable
string is still not obtained the crossover attempt is abandoned and the final pair of
parents copied directly from the mating pool to the interim generation before
proceeding to the next pair. The choice of 3 retry attempts is a compromise
between allowing crossover to occur and ensuring that the system does not require
excessive computing cycles.

314

3.6 Mutation

Mutation is also governed by a probability parameter. In common with most GP
systems, members of the interim generation are selected randomly with a given
probability and one randomly selected sub-tree in each selected member is
replaced by a sub-tree generated by random selection of functions and terminals
from the sets defined in Section 3.1. The length of the replacement and hence the
length of the mutated member is controlled so as not to exceed the maximum of
19 characters.

It should be noted that if a mutation probability of x% is quoted it means
that on average x% of the members of a generation are subject to mutation. The
limit on RP string length of 19 characters implies a limit of 9 functions and hence
9 sub-trees. On average an individual member has between 4 and 5 sub-trees and
a quoted mutation rate of x% translates to between x/4% and x/5% of the genetic
material in the generation.

3.7 The memory operator

In a conventional genetic algorithm the quality of a generation is reflected in the
next generation through the selection mechanism which ensures that highly fit
members are well represented in the mating pool. The best member of a
generation may also be copied one or more times into the next generation,
following genetic modification, by an elitist strategy. Both operations ensure that
good genetic material is available to succeeding generations. The memory
mechanism introduced here also ensures that good material is preserved by
keeping it in memory and explicitly introducing it into each generation as
evolution proceeds.

Fitness-based selection, elitism and the use of memory are Similar in that
they all contribute to the propagation of successful genetic material through the
generations. Selection ensures that highly-fit members of a population survive to
reproduction at the expense of less-fit members. Elitism counters the potential
disruptive impact of crossover, mutation and, indeed, the memory operator. The
use of memory provides a pool of component sub-trees by breaking down good
solutions in each generation. The memory is used as a source of replacement sub-
trees to improve fitness by the introduction of material previously shown to be
successful.

When the best member of generation n is an improvement on the best
member of generation n-/ (or when n=I) the best member of generation n,
together with all its sub-trees, is recorded in the memory. The memory is then
used as a source of replacement sub-trees during the memory operation by

315

randomly selecting the replacement from the memory. For example, if the
expression ut + at, represented by the Reverse Polish string ut*at*+, is the best-
so-far member of a generation, the strings ut*at*+, ut* and ar* are added to the
memory. The note relating to the meaning of a percentage probability in section
3.6 also applies to the memory operator. x% use of the memory operator means
that x% of members have one sub-tree replaced by one from the memory.

3.8 Elitism

An elitist strategy is employed whereby a single copy of the best member of
generation n replaces a randomly selected member of generation n+/ after all

genetic operations have been performed.

4. Results

In the presentation of results from the GP system, the following parameters are

used:

‘MAXGEN
the maximum number of generations in a run

MAXPOP
the maximum size of the population

MAXRUN
the maximum number of runs in a set

RXOVER
the crossover operator probability (%)

RMUTATE
the mutation operator probability (%)

RMEM
the memory operator probability (%)

4.1 Run parameters

A run consists of MAXGEN x MAXPOP individual tests. A set consists of
MAXRUN runs. Results for several combinations of these parameter, each
consisting of 1000 runs with 40000 tests per rum, are presented. The other
important parameters are the probabilities with which the 3 genetic operators are
applied and denoted by RXOVER for crossover, RMUTATE for mutation and

RMEM for memory.

A set of runs is characterised by these 6 parameters and represented. by the

notation

316

{1000,2000,20,95,20,20}
where

1000 = runs in the set

2000 = population size

20 = generations per run

95 = crossover probability (%)
20 = mutation probability (%)
20 = memory probability (%)

and the operator probabilities represent the percentage of the population that, on
average, have one sub-tree replaced. Note that the 3 genetic operators are listed in
the order in which they are applied.

4.2 Measuring the success of the system

The success of the system is measured by the number of runs in a set in which a
hit is achieved. When a hit is achieved the run is terminated and the system re-
initialised for the next run. In particular, the memory is emptied, i.e. the runs are
all statistically independent.

The number of runs in a set is a trade-off between statistical significance
and running time. Table 1 shows 3 sets of 100, 250 and 1000 runs, respectively,
with each set repeated 5 times with different random number generator seeds. A
single run has 40,000 tests. The spread is defined as standard deviation/mean and

expressed as a percentage.

Runs 100 250 1000
Seed Hits Seed Hits Seed Hits
12345 91 12345 214 12345 832
23456 73 23456 192 23456 782
34567 84 34567 194 34567 811
45678 78 45678 206 45678 824
56789 90 56789 204 56789 816
Mean 81.2 202 813
Spread 7.45% 4.01% 2.10%
- Table 1 The effect of different random seeds and numbers of runs

All results in this paper were produced on a 300MHz personal computer
capable of 40,000 tests/minute. A set of 1000 runs takes between 60 and 100
minutes depending on the number of hits. Taking these figures into account all
results presented here were accumulated with 1000 runs per set.

4.3 Preliminary scan of the parameter space

A series of 1000-run sets was made with a population of 2000, a maximum of 20
generations per run and a fixed mutation rate of 20%. The purpose of this series
- was to explore the effect of different combinations of crossover and memory rates.

The results are presented in Figure 1 which shows a contour map of this region of
the search space. The figure plots the number of runs with hits in 1000 runs at
different levels of crossover and memory use and a fixed level of mutation. The
data shows that the system performs best at high crossover (90%-95%) and
medium memory use (30%-40%). The gathering of the data for Figure 1
represents 148 hours of continuous running of the system.

{1000,2000,20,RXOVER,20,RMEM}
RUNS WITHHITS
100

INERP AR ank
N / .
O\ A L1 1,
S 800 / Aw
AN 1 | - RXOVER(%)
™
N

v 40

N
o 750 = // &

NS)

\650 ‘X | Lo

SINE=—

/
/
/
F——
|/
/]

é//
r
7

0
0 50 60 70 80 80 100

¢] 10 2

RMEM(%)

Figure 1 Runs with hits (out of 1000) at different crossover and memory probabilities and
fixed mutation probability

318

It is worth noting here that the parameter set
{1000,80000,1,*,* *

1.e. 1000 runs with a population size of 80000 for 1 generation, representing an
entirely random search over 80M tests yields no hits. The genetic operator
- probabilities (shown as ‘*’) are then not relevant since no run proceeds beyond the
first generation.

4.4 Variation of the genetic operators

In this section we present the results of applying the crossover, mutation and
memory operators, singly or together, for a number of population x generation
combinations each totalling 40000 tests per run. Table 2 and Figure 2 show the
following situations:

100% crossover alone :

100% crossover followed by 20% mutation

100% crossover followed by 35% memory

100% crossover followed by 20% mutation followed by 35% memory

for population x generation combinations ranging from 500 x 80 to 4000 x 10.
Table 2 shows the total number of hits in a set of 1000 runs.

4000x 10 | 2000x 20 | 1000x40 | 500 x 80
{100,0,0} 489 721 681 415
{100,20,0} 434 709 807 737
{100,0,35} 824 793 606 471
{100,20,35} 355 894 845 800

Table 2 Runs with hits (out of 1000) for different combinations of operators and different
population/generation values

100% xover: 20% mutation: 35% memory

B Xover B8 Xover+mem
C Xover+mu | E3 Xover+mu+mem
1000
800
[77]
E
I 60
E
£
@ 400
=2
[+
200

500x80 1000x40 2000x20 4000x10
POPULATION x GENERATIONS

Figure 2

The impact of the different operator combinations may be summarised as follows:

Crossover alone

Reasonably good for population sizes 1000 (681 hits) and 2000 (721 hits).
Falls off at population size 4000 (489 hits) because 10 generations are not

sufficient to achieve convergence.
Falls off at population size 500 (415 hits) because of insufficient genetic variety in

the initial population with no means of adding to this.

Crossover + mutation

Mutation improves the hit rate at the lower populations, when the initial genetic
material lacks variety, but has a slightly destructive effect at the higher population

levels where it is not needed.

Crossover + memory

The memory operator is better than crossover alone in 3 of the 4 cases. It is also
better than crossover + mutation at the two higher populations which are large
enough to ensure that the memory contains good material. At the lower
populations, with limited genetic diversity, the memory contents compete
unfavourably with the random sub-trees produced during mutation alone.

320

Crossover + mutation + memory

‘The 3 operators together achieve high hit rates in all cases with little dependence
on the population/generation mix. The reduced performance of the memory
operator at lower populations is balanced by the improved performance of the
mutation operator. The best result of 894 hits in 1000 runs was achieved with this
combination although we believe that detailed tuning of the parameters is capable
of a yielding a hit rate in excess of 90%.

These results show that the memory operator provides better performance than
conventional mutation if the population size is sufficient to provide good memory
material in the early generations. The two operators acting together further
improve the hit rate and provide good results in remarkably few generations. For
example 855 hits in 1000 runs result from a population size of 4000 evolved for

only 10 generations.

5. Summary

"We have proposed and investigated the use of a genetic operator based on short-
term memory. It is used either as an alternative to mutation or as a supplement to
mutation in restoring diversity in a population. When used instead of mutation it
improves the hit rate of the GP system provided that the population size is
sufficient to provide good genetic material for the memory . When used in
combination with mutation the system performance is further improved and is
maintained over a range of population sizes.

The objective function ut + %af’ used as a vehicle to demonstrate the memory
operator is a function of three variables and a non-trivial task for a symbolic
regression system. The paper shows that the use of a memory operator,
particularly when combined with crossover and mutation, improves the
performance of the GP system for this particular problem. We plan to examine the
generalization of this approach to other functions.

References

1. Koza J R, 1992. Genetic Programming: On the programming of computers by
means of natural selection. MIT Press, Cambridge, MA.

2. Koza J R, 1994. Genetic Programming II: Automatic discovery of reusable
programs. MIT Press, Cambridge, MA.

3. Angeline P J and Pollack J B, 1993. Proceedings of the 5™ International
Conference on Genetic Algorithms pp 264-270

4. Banzhaf W, Nordin P, Keller R E and Francone F D,1998. Genetic
Programming - an introduction Morgan Kaufmann, San Francisco, CA.

