Gross modifications in structural dynamics via
interpolated modes.

Atul Bhaskar
School of Engineering Sciences,
Aeronautics & Astronautics, University of Southampton,
Highfield, Southampton, SO17 1BJ, U.K.

Abstract

Repeated analysis of a structure for a range of parameter values is
often encountered in engineering design and optimisation. In this pa-
per, the problem of approximately predicting the natural frequencies
of a system, when parameters undergo gross changes, is addressed. A
method of ‘interpolated modes’ is developed. It is shown that rea-
sonable estimates of the natural frequencies are obtained without a
recourse to exact calculations for each value of the system parameter.
Tlustrative examples are given.

INTRODUCTION

In many design situations, it is required to calculate the natural frequencies
of a mechanical vibratory system or a structure for a large set of parameter
values. A similar situation is encountered in structural optimisation studies
when the objective function is related to the natural frequencies of the system.
The problem becomes computationally more and more demanding as the
degrees-of-freedom involved in the system increase and as the dimensionality
of the parameter space increases. The parameters that describe the system
or the structure could be a geometrical dimension (e.g. thickness), a lumped
mass, a spring constant, modulus of elasticity etc.

Typically, complex engineering structures are analysed using a finite el-
ement (or another approximate) method and the equations of motion are
written in terms of second order ordinary differential equations. The natural
frequencies are associated with synchronous motion in free vibration; and
imposing this condition on the type of motion to be observed leads to the
following generalised eigenvalue problem

Ku = A\Mu. (1)



frequencies and the eigenvectors represent mode shapes of the system. In
a computational cycle of calculating natural frequencies, it is this step of
solving the eigenvalue problem (1) that is usually most expensive; setting-up
matrices K and M are relatively cheaper part of the calculations. Therefore,
whenever the eigenproblem (1) needs to be solved repeatedly for a large set
of parameter values, the required computational resources are substantially
increased. A commonly used approximation that avoids solving equation (1)
repeatedly is based on Rayleigh’s work [1] and is discussed now.

A change in the parameter p of the system leads to a change in the
inertia and the stiffness matrices. If these changes are denoted by AM and
AK respectively, then the perturbed eigenproblem is given by

Here, (X; + A),) and (W; + Aw;) are the changed eigensolutions. Expanding
the two sides of (2), making use of (1), premultiplying by (u; + Au;)? and
ignoring higher order terms in the expansion leads to

u/ (AK — \,AM)y,
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for the change in the i-th eigenvalue. Note that this expression uses eigenso-
lutions of the original (unperturbed) problem and the changes in the stiffness
and mass matrices due to parameter changes. We shall refer to this approx-
imation as the ‘classical perturbation’. Based on this expression the exact
rate of change of eigenvalue with respect to a parameter can be obtained.
While the chassical perturbation (1) gives reasonably good answers for small
perturbations, it provides poor approximations for large (or gross) changes
in the parameter. This is expected since the classical perturbation formula,
is based on ignoring higher order terms.

Although the basic idea of perturbation of an eigenvalue problem is quite
old (e.g. Rayleigh did not use the language of matrices), there have been
numerous studies on specific issues. Lancaster [2] and Fox and Kapoor [3]
were first to study the change in eigenvalues and eigenvectors of a matrix
when the matrix is a function of a parameter. A good review on the subject,
with structural dynamics as the main motivation, can be found in Brandon
[4]. The issue of sensitivity and derivatives of cigensolutions is a closely
related one (see, Haftka et al.,[5, 6] and other citations therein, for example).
Stetson et al. [7] and Nagaraj [8] have looked into design and engineering
aspects of the eigenvalue perturbation theory.




THE METHOD OF INTERPOLATED MODES

This paper is concerned with an approximation for eigenvalues (and, con-
sequently the natural frequencies) of a system whose parameters undergo
gross changes. In an earlier work, Sahu et al, [9] addressed this problem
and they proposed an approximation on an interval over which a parame-
ter takes different values. The strategy there is to interpolate between the
eigenvalues that are calculated as perturbations from the two ends taking
eigenvectors at the left end as the reference in the first instance; and then
taking eigenvectors at the right end as the reference in the second instance.
In this manner one has two estimates of the eigenvalue for each value of the
parameter on the parameter axis. The final estimate is made by calculat-
ing the weighted average such that the value calculated from the eigenvector
based on the end of the interval that is closer to the parameter value in ques-
tion receives more weight. The approach of the present work resembles that
of [9] in that it also attempts to develop an approximation for eigenvalues
based on eigensolutions at the two ends of an interval. The detajls of the
two approximations, however, are different. While [9] directly calculates an
average of two different estimates, the present work employs averaging the
eigenvectors themselves, The details of the procedure follow.

Consider an interval Po < p < ps, where p represents a parameter that
describes the system. The eigensolutions at the two ends can be found ex-
actly:

Kouo = )\Mouo, and Kfuf = )\Mfllf. (4)

Defining a non-dimensiona] parameter ¢ as
t = P — Do : (5)

Pr—po

we have 0 < ¢ < 1. Taking ¢ and (1—1¢) as the appropriate weighting factors
for interpolating mode shapes to be obtained from Uy and uy, we have the
following expression for the i-th interpolated mode (the subscript i has been
dropped):

U= (1=1)(wo) + (£)(uy). (6)

This interpolated mode is now taken as an approximation for the true mode-
shape. Finally, the approximate eigenvalue )\, is calculated from the Rayleigh
quotient

[ i (K + AK)u

;= 7
4 (M + AM)g, (7)




The natural frequencies can be calculated in the usual way by taking square
root of the eigenvalues, i.e. w;, = \/:\‘Z

It may be noted that eigenvalues are not interpolated linearly and that
the true non-linear dependence of the coefficient matrices K and M on the
parameter p is incorporated in the Rayleigh quotient. The trial eigenvectors
involved in the quotient are, however, linearly interpolated in the interval.
The results are expected to be relatively better at the two ends of the interval,
whereas the worst approximation errors are expected close to the centre of
the interval. In the limiting case of ¢ = 0 and # — 1, the values of ), are
exact, since the contribution in (6) is zero except due to the exact modes.

The method uses exact eigensolutions at the two end points of the inter-
val. For calculations at the intermediate points on the parameter axis, the
computational effort is considerably less: we need to set-up the coefficient
matrices (assemble the finite elements) and evaluate two quadratic forms.
With respect to the classical perturbation, the extra effort involved is in
solving an additional eigenvalue problem. This may well be worth the effort
if we require several evaluations within the interval. This would be typical
in a design search or optimisation setting.

The method outlined here can be readily extended to parameter spaces
that are multi-dimensional. For example, if we wish to explore the variations
in the natural frequencies simultaneously with respect to two parameters, say,
Pz and py; then the domain of interpoltion is a rectangle, say, 0 < p, < a,
0 < p, < b. Non-dimensional parameters 0 < ¢, < 1 and 0 <ty <1 can be
defined as » »

_ Pz _ by
tm*;’ and ¢, = =

The interpolated mode (eigenvector) is then calculated as

ﬁi(px,py) =(1- t)(1 — ty)ugy + (1 — ty) U0 + (1-— te)tyugy + Latyug,

(8)

where u,, = w;(p, = r, Py = s). The four eigenvectors at the corners of the
rectangle [0,a] x [0,5] need to be calculated exactly. It can be seen from
the above equation that everywhere inside the rectangle, the interpolation
is bilinear. The final step in the calculation: evaluation of the Rayleigh
quotient, remains identical to the previous expression of equation (7). The
approximate eigenvalues as calculated from equation (7) coincide with the
exact ones at the four corners of the rectangle because the contributions to
the interpolated mode from the eigenvectors of the other three corners is
exactly zero.
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Figure 1: Variation of the first natural frequency with the modification pa-
rameter « for the three-degree-of-freedom system (Example 1), @ = 2 corre-
sponds to 200 % change in the parameter.

EXAMPLES AND DISCUSSIONS

Two examples will be presented now to illustrate the method of interpolated
modes developed in the previous section. The first example is of a three-
degree-of-freedom discrete mechanical system: and the second example is a
finite element model of 2 cantilever beam with a mass and a stiffness at the
tip.

Example 1 Consider a three-degree-of-freedom system with the non-dimensional
mass and the stiffness matrices given by

100 2 -1 0
MO =10 1 0 5 and KO = -1 2 -1
0 01 0 -1 1

Suppose one of the stiffnesses is changed from 1 to (14 a) such that the
stiffness matrix changes to

2 -1 0
K=|-1 (2+a) ~(1+a)] .
0 —(1+a) (1+a)
The mass matrix remains unchanged. Therefore o can be treated as a pertur-
bation parameter. Clearly, oo = 1 corresponds to 100% change in the stiffness
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Figure 2: Variation of the second natural frequency with the modification

parameter « for the three-degree-of-freedom system (Example 1), a = 2

corresponds to 200 % change in the parameter.

parameter, ov = 2 corresponds to 200% change in the stiffness parameter, and
SO on.

Eigenvalues and eigenvectors were calculated exactly for o = 0 and o — 2.
Taking o = 0 as the “reference design’, frequencies were calculated using the
classical perturbation formula (3). Approximate frequencies were also cal-
culated using the interpolated modes as discussed in the previous section.
Finally, the exact frequencies were calculated by solving the eigenvalue prob-
lem (1) at each intermediate frequency in the range 0 < o < 2. Results
for the first natural frequency w; are presented in figure (1). Note that the
x-axis of the figure is chosen to be logarithmic, since the range of the mod-
ifications in the parameter o is reasonably large. It can be seen that the
classical perturbation provides excellent approximation to the first natural
frequency upto approximately 10% modification in the stiffness parameter
(ie. o = 0.1). Beyond this, the higher order terms in the expansion of e-
quation (2) take over and the classical perturbation formula rapidly deviates
away from the curve for the variation of the exact natural frequency with
respect to «.

The first natural frequency as calculated from the method of interpolat-
ed modes also starts deviating from the exact first natural frequency as o
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Figure 3: Variation of the third natural frequency with the modification
parameter « for the three-degree-of-freedom system (Example 1), a = 2
corresponds to 200 % change in the parameter.

increases beyond 15-20%. However, it is contained eventually as we come
close to the right side end of the interval corresponding to a = 200% The
errors at the intermediate values can be seen to be substantially less that
those obtained from the classical perturbation formula.

The second natural frequency as calculated from equation (7) shows a
similar improvement over that calculated from the classical perturbation for-
mula (3). The three curves are plotted in figure (2). Again it can be seen that
the values are exact at the two ends of the interval. The third natural fre-
quency as calculated from the perturbation formula (3) underestimates this
frequency and is presented as a function of « in figure (3). The discrepancy
increases with increase in the parameter . The performance of interpolat-
ed modes, on the other hand, is exceptionally good and the curve for exact
eigenvalue is almost indistinguishable from that of the frequencies calculated
from the interpolated modes. This indicates that the true mode-shapes, in
fact, vary linearly with « in the range shown.

Going back to figure (1), we note that the maximum absolute error in
estimating w; is only ~ 0.49 — 0.461 = 0.029. However, for a 200% change
in « the total change in w; is only 2 0.461 — 0.445 = 0.016. Therefore, to
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Figure 4: Normalised percentage error in estimating the three natural fre-
quencies as a function of the modification parameter.
represent error better, a normalised error is defined as

B Absolute error
wi(p = ps) — wilp = po)|”

€

This normalised error (in percentage) is plotted for the three modes in figure
(4). The general features of the three error profiles are fairly similar: errors
are negligible at the two ends, and are maximum close to the centre of the
interval around o = 80% — 90%. The maximum error for w, is less than 9%,
for wy it is less than 8%, and for wjy it is less than 2%.

To study the performance of the proposed method of interpolated modes
for extremely large modifications, o was varied in the range 0-500%. Again
exact calculations were carried out only at the two ends of interval. The
approximate calculations and the exact calculations are presented in figure
(5) for wi. The maximum error is observed around o = 200% and its value
equals approximately 40%. Elsewhere in the interval, it is substantially less.
This demonstrates the usefulness of the method developed here, when one is
interested only in rough estimates of natural frequencies. The possibility of
integrating the method with a design search tool, therefore, exists: one could
start with very rough estimates and scan a very large parameter space very
cheaply. This could be followed by increasingly more accurate calculations
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Figure 5: Variation of the first natural frequency with the modification pa-
rameter . Note that the maximum perturbation in « is 500%.

(by reducing the interval successively) as we begin to be more and more
committed to a particular design.

Yet another point to note in figure (5) is the non-monotonic nature of
the curve corresponding to the interpolated modes. From one of the well-
known theorems of Rayleigh [1], it follows that it is impossible to observe
this trend. This is because increasing the parameter o means increasing the
stiffness of the system, and therefore, natural frequencies can only increase
or remain constant. Hence, it is possible to improve the performance of
the method of interpolated modes further by incorporating this information
that the true curve cannot cross the horizontal line passing through wi|y— .
Details of imposing this ceiling will not be discussed further and will be
presented elsewhere. This scheme of further improvement will work only
when a parameter affects either the mass properties or the stiffness properties.

Recall that the error for o = 200% was zero in figure (1) because it corre-
sponded to the right end of the interval. As the range increases it is expected
that the maximum error will also increase. This variation is presented in fig-
ure (6). On the x-axis, maximum value of o (which corresponds to the right
end of the interval) is plotted. On the y-axis, the maximum value of the
normalised error (maximum being taken over the relevant interval) is plot-
ted for the three natural frequencies. It is seen that the method performs
better for w, for relatively smaller values of Qmag than for wy. This trend,
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Figure 6: Maximum over interpolation range of the normalised error as a
function of oy

however, is reversed for higher values of a,,,,. The third natural frequency
is consistently calculated very accurately, the worst error being less than 5%
for a modification equal to 500%.

Example 2 Consider a clamped-free cantilever beam. The tip of the beam
has a concentrated mass mg and a spring ko. The beam is characterised by
three parameters: m, the mass per unit length of the beam; ET its bending
rigidity; and L the length. Non-dimensional parameters are defined as

mg =mo/(mL), ky=ko/(EI/L?), X =\/(EI/mLY).

We shall treat the two parameters mj and k¥ as modification over the refer-
ence structure which is a cantilever beam without any tip mass or tip spring.
The parameter space, therefore is two dimensional.

The beam was discretised using a finite element procedure using 10 el-
ements. Each node of an element possesses two degrees-of-freedom: one in
the transverse displacement direction and one for rotation (slope).

The four corners of the domain of interpolation are defined by the points:
(mg = 0,k5 = 0), (mj = 2,k = 0), (mg = 0,k = 2), and (m} = 2,k =
2). Percentage error is now defined as the ratio of the difference of exact
eigenvalue and the eigenvalue calculated via interpolated modes to the exact
value at each point in the parameter space. This error is plotted as a function
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Figure 7: Percentage error in A} as a function of m} and ky. Maximum
modification in both parameters is 200%.

of mg and kj for A} in figure (7). It is seen that this error is less than
1% throughout the domain when the parameters at the corner points are
modified by 200%. Note the values of error at the four corners which is
exactly zero, as expected. The same plot for A is shown in figure (8). This
time the maximum error is of the order of 35%.

Although the method discussed in this paper works quite well for the
examples presented here, there are some unresolved difficulties. F irstly, it is
recognised that eigenvectors showing sharp changes with respect to a param-
eter will not be properly interpolated. The results for natural frequencies
calculated from such interpolated modes are likely to be fairly inaccurate.
Secondly, when two eigenvalues cross each other in the the parameter space
leading to reversal of the mode order, extra care needs to be taken in automat-
ing the interpolation procedure. If this is not properly done, interpolation
with two different ‘types’ of modes will take place resulting in inaccurate
estimation of the corresponding natural frequencies. Finally, the procedure
needs to be adapted to systems that possess degeneracy, e.g. periodic struc-
tures. The present formulation is robust only for distinct eigenvalues.

CONCLUSIONS

A method of approximate calculation of natural frequecies of a mechanical
system based on interpolated modes was presented. This method offers sub-
stantial computational saving when one is interested in approximate values

11
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Figure 8: Percentage error in A} as a function of mj and kj. Maximum
modification in both parameters is 200%.

at a large number of points inside an interval. The interval could be multi-
dimensional. It was shown, through two simple examples, that reasonably
accurate estimates of the natural frequencies are obtained for fairly large
values of modification. It is believed that the method will give very use-
ful inputs to optimisation and search porblems associated with structural
dynamic design.
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