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Abstract

The use of response surface methods are well established in the global op-
timization of expensive functions, the response surface acting as a surrogate to
the expensive function objective.

In structural design however, the change in objective may vary little between
the two models: it is the constraints that change with models of varying fideli-
ty. Here approaches are described whereby the coarse model constraints are
mapped so that the mapped constraints more faithfully approximate the fine
model constraints. The shape optimization of a simple structure demonstrates
the approach.

1 Introduction

The design optimization of an engineering system typically requires hundreds
of analyses of that system. This process is computationally very expensive
and as a result approximation methods have become popular as a means of
reducing this cost. More recently, the use of models of varying fidelity have
been considered.

In the aero-engines industry there are two main types of analysis - low
precision whole engine modelling and high precision component modelling. Run
times are high and not well suited to optimization (personal communication
with McMillan, Wiseall, Rolls-Royce Plc [1]). The objective here is to develope
a third type of analysis specifically targeted at structural optimization. This
could incorporate models of varying degrees of complexity, and models which
are submodels of the whole. The present work is motivated by this industrial
need.

The selective use of models of varying fidelity throughout the design pro-
cess is considered. The approach combines the expensive model together with
approximations based on a cheaper surrogate.



Traditionally surrogate modelling approaches consider the multilevel opti-
mization of some response which differs slightly when considering models of
varying fidelity. In structural applications however, the change in response can
vary little if at all. More usually it is the constraints which change with chang-
ing model complexity. In this case it is suggested that the surrogate modelling
be applied to the relevant constraint and not to the response we wish to opti-
mize. Typically a constraint arises from ensuring the level of stress in a material
remains below some certain prescribed value.

The two main areas of interest considered here are response surface methods
and space mapping algorithms.

Response surface methods are a class of techniques which approximate the
value of some response at unsampled values of some independent variables based
on a limited number of responses given certain input values of the independent
variables. As a result, response surface methods are particularly applicable to
investigations where there are only a few observations available because the
evaluation of a response is computationally very expensive.

Large scale repetitive analysis of such computationally expensive problems
(e.g. optimization) may then be replaced by a large scale repetitive analysis of
the response surface which acts as a surrogate.

Examples of response surface approximations include polynomial regression
[2], Shepard weighting functions [3, 4] and more advanced statistical methods
such as kriging [5, 6]. In this paper we concentrate on kriging.

Space mapping algorithms [7, 8, 9, 10, 11] provide an alternative technique
to using surrogates throughout the optimization process. They concern the
selective use of models of varying fidelity. The basic idea is to optimize an
accurate, expensive, non-linear model by utilizing the approximate behaviour
of a less accurate but cheaper model through a parameter mapping.

The space mapping approach has been successfully applied to multilevel
optimization in microwave circuit design in {7, 8, 9, 10].

We consider approaches which aim to establish a mapping between con-
straints given a limited number of cheap and expensive model evaluations and
compare this to approaches based on kriging.

The constraint mapping approaches are applied to a simple structural prob-
lem where we wish to minimize the weight of a beam subject to constraints.
Two models are described with different mesh densities, here the weight remains
the same but the calculated stress (which forms one of the constraints) differs
in the two models. Initial results are encouraging.

2 Response surface methods

In a typical response surface method the relationship between observations
(responses) and independent variables is defined as

y=f(x) (1)
where y is the observed response, x is a vector of k independent variables

X = [.1?1,:(32,...,3%] (2)



and f(x) is some unknown function. The response surface of the unknown
function is defined as

9= fx), 3)
an approximation based here on kriging. A brief description of its implementa-

tion now follows.
The response is expressed as

y(x) = p + €(x) (4)

where u, a constant, is the mean of the input responses and e(x) is a Gaussian
random function with zero mean and variance 0?. The term e(x) is used to
build up localized deviations from a global model.

We do not assume that these errors e¢ are independent, as in regression,
but that the errors are correlated, the correlation between errors being related
to some distance measure between corresponding points. A popular distance
measure [6] is

k . ,
d(x(’),x(J)) = Z th:ljgb) - x;g)lph (Gh > Oa 1 < Ph < 2) (5)
h=1

where 65, and pj, are some as yet undetermined parameters. Using this distance
function the correlation between the errors at x(9 and x) is defined by the
exponential correlation function

R(x, x9) = exp[-d(x?, x)]. ©)

This particular function has the desirable property that the correlation is near
to one if x(¥ is close to x(). However, if x® and x() are far apart, then the
correlation will be small.

The hyperparameters 0y, pp, h = 1,...,k come from maximizing the likeli-
hood of the sample. This is defined as

1 —(y—1p)TR Yy -1
L e (y — 1) d (y — 1p)
(2m) 2 (0?) 7 |R|2 20

(7)

where y is a vector of responses at the sampled points, 1 is a vector of ones and
R is the correlation matrix defined in (6).
The mean p is given by

1"R 1y
= Y 8
and the variance is given by
- 1) TRy -1
0_2 — (y /-L) ];{V (y ,LL). (9)

Note that the dependence on 6, py, is through the correlation matrix R.

Another term of interest is the correlation vector r(x) between the response
at a location x and the N previously sampled points xV), x®, .. x(™), This
correlation vector is expressed as

r(x) = R(x,x?) = [R(x,xV), ..., R(x, x(M)] (10)



and is important since it is used in the prediction of y at x.
The prediction at an unsampled point is given by

§(x) =p+r "Ry — 1p), (11)

and it is clear that this approximation interpolates the data.
The mean squared error of prediction

(1-1TR"1r)?

s2(x) = [1-rTR'r + ITR-11

(12)
gives a measure of accuracy in our approximation at x. This is obviously very
useful and could be used when we consider model fusion.

2.1 Applications to model fusion

As highlighted earlier, one approach is to use the response surface as an approx-
imation to the expensive model. However in many cases additional information
is available via cheaper models. Utilizing these cheaper models can yield im-
provements in prediction and it is to this approach that we now turn.

Model fusion concerns the selective use of models of varying fidelity through-
out the optimization process. For instance, we may be interested in minimizing
the values of a certain response in some finite element code. Various models can
exist, for example we may have a cheap model using beam or shell elements and
a low mesh density and an expensive model based on 3D elements and using
a high mesh density, or even combinations of the two. The cheap models are
computationally inexpensive but may lack accuracy, a key question is: when
can we trust them? On the other hand, expensive models are more accurate
but a minimization based on these models alone would prove too computation-
ally intensive. The obvious approach is to use the cheap model where the two
models agree and switch to the expensive model when required.

One way to do this was introduced by El-Beltagy [12], where the cheap
model response f, is included in the input data, that is, we input [x;, fo(x;)] , =
1,..., N, where we have N sampled points, and use this information to train our
model based on an expensive model output fe(x;) ,i=1,...,N.

The strategy used in this paper is to build a response surface of the dif-
ferences between the two models and add this to the cheap model in order to
approximate the expensive model, that is, we consider N expensive function
evaluations f.(x;) as well as N cheap function evaluations at the same inputs
fa(xi). We then form a difference

d(xi) = fe(xi) — fa(x:) (13)

and consider using a response surface d based on this difference. Throughout
the optimization process we consider

falx) +d(x) (14)

which approximates fe(x) and interpolates fe(x;).
Our interest here is in constrained optimization. Two possible approaches
may be considered:



e Include the constraints in the objective using penalty functions [13].
e Treat the objective and any constraints separately.

The penalty function approach seems appealing as it requires only one re-
sponse surface, however, this approach introduces sharp changes into the ob-
jective which are difficult to model using a limited amount of data.

The second approach uses separate response surfaces for the objective and
constraints. This adds some cost to the algorithm but may be worth it as the
gain in accuracy could outweigh the gain in cost. In any case, in a general
problem not all constraints will be active: we only need apply the response
surface to any active constraints. This of course requires some knowledge of
the problem. Such knowledge may come from the cheaper model. It is this
approach which interests use here.

The algorithm may be represented as

e Consider N sample points x;, ¢ = 1,..., N spread throughout the design
space

e Evaluate the expensive model objective f, and constraints o}, ...,07 (J is
the number of (active) constraints) at these points

e Evaluate the cheap model objective f, and constraints o}, ...,0 at these
points

e Evaluate the differences between the models dy, d,1,...,d,s at the sam-
pled points

A

e Calculate the response surfaces d Iz Czal,...,do.]

e Optimize using the response surfaces.

3 Space Mapping Algorithms

The space mapping algorithm was introduced by Bandler in [7]. In this section
we describe a simple implementation of this approach highlighting the principles
involved. We then go on to describe how the algorithm can be adapted to
include problems with constraints.

Consider a mathematical model f.(x) : R™ — R representing measure-
ments of some system under consideration. We wish to find the optimal set of
parameters x* which minimizes f.(x), that is, we wish to find

x* = arg min fe(x). (15)

The problem of interest again is the case when fe(x) is so expensive that solving
(15) is considered intractable.

A standard approach when confronted with a problem such as (15) is to
consider a cheaper model f,(z) which, while approximating f.(x), is faster
to evaluate but also less accurate. The coarse model f,(z) is used to gain



information about the expensive model f.(x), by obtaining a correspondence
between the parameters x and z.
Since f,(z) is cheap to evaluate,

" = argmin f,(2) (16)

is much easier to solve than (15). However z* is likely to be different to x* due
to the differences between the models.

Since fo(z) and f.(x) are approximating the same physical system, it is
reasonable to assume some similarity between the models. Therefore, it should
be possible to use the coarse model to gain information about the fine model.

A function mapping p between the two parameter spaces is sought, p relates
a set of fine model parameters x to a set of coarse model parameters z. This is
achieved by finding z such that we have the best similarity between the expen-
sive response f.(x) and the coarse response f,(z). The functional relationship
between the parameter spaces is z = p(x). The similarity is measured through
the residual

r(%,2) = [|fe(x) = fa(2)]]. (17)

The mapping function is defined as
p(x) = arg minr(x, z)?. (18)

Each evaluation of the mapping function requires at least one expensive function
evaluation, the principle of the mapping is sketched in figure 1.

Coarse model space Fine model space

Figure 1: A two dimensional mapping from x to z.

From the definition of the mapping function it follows that

fa(p(x)) = fe(x), (19)



that is, the coarse model with the mapped parameters approximates the fine
model. Thus minimizing f,(p(x)) provides an approximation to our problem
(15).

A perfect mapping is defined as the case where the optimal coarse model
parameters z* satisfy z* = p(x*).

4 Parameter Extraction

In the examples presented here, an approach using derivatives is used. This
approach is based on the fact that the cheap approximation is a relatively
faithful approximation to the expensive problem.

Here a term

V fe(x) _ V fa(2) I (20)
IVieE) Va2l
is added to the right side of equation (17) where w is some weight reflecting the
fact that it is more important to get the function values right. If it is the case
that the extracted parameter is not unique, then this derivative term identifies
the most likely contender.

The derivatives here are evaluated using finite differences, hence in this pa-
rameter extraction approach extra expensive function evaluations are required.
However, in severe cases this approach may not work.

Parameter extraction has also been addressed by Bakr et al. [14] who
consider the problem in the context of space mapping theory. Their approach,

multlpomt parameter extraction”, uses several points X—I-A:xZ around the point
of interest and essentially minimizes

r(x,2)? + Y or(x+ Axy,z 4 Az)? (21)

in order to obtain the correct parameter.
It must be noted that this approach adds expense to the algorithm as an n
point parameter extraction requires n expensive function evaluations.

5 Local Space Mapping Algorithms

In conventional space mapping algorithms the mapping p is sequentially approx-
imated using linear approximations py around the current set of parameters xy.
The approximation is given by

Pr(x) =z + Bi(x — xp). (22)

By, is an approximation to the unknown matrix B, the Jacobian of the mapping
function and is calculated using Broydens update [15]

Zgy1 — Zk — Brhy
hihy

Byt =B+ hj (23)

where hy = x511 — X,. The mapped parameters z; come from (18), that is,
they satisfy zx = p(x).



The algorithm initially starts with no information about the mapping, that
is, we set Bg = I(n,n) and zg = xq.

Since the linearization (22) is only valid in a neighbourhood of x; we define
a trust region in which the approximation error

Ip(x) — pe(x)l (24)

is acceptable.
The linearization py is only accepted for the set

{x: llx — xgl < 6k}, (25)

where ¢, is the size of the trust region at step k, which forms a confined region
around x. In its simplest form, the algorithm may be represented as (c.f. [11]):

Given xg, dg

By =1(n,n),z¢0 = x0,k =0

do until convergence
Xp4+1 = argming fo(px(x)) (subject to {x : |[|x — xx|| < dx})
evaluate fe(xg41)
perform a parameter extraction (18) to obtain zj;

update §, B
k=k+1
end do.

The initial size of the trust region is problem dependent. An approach for
updating the trust region as the iteration proceeds can be found in [11]. In
[11] the algorithm is also modified to overcome potential problems with im-
perfect maps. In this approach the algorithm switches between space mapping
optimization and direct expensive optimization as the iteration proceeds.

5.1 Constrained Optimization

In many structural examples constraints relating to say maximum stress are also
present. We consider how these constraints could be treated in space mapping
optimization.

The first approach is through the use of penalty functions. The previous
strategy is employed with minor alterations: here the functions f, and f, are
replaced by penalty functions g, and g. incorporating any constraints. The
algorithm may thus be represented as:

Given xg, dg

By =1(n,n),z9 = x9,k =0

do until convergence
Xp41 = arg miny go(pe(x)) (subject to {x: [|lx — x4l < dx})
evaluate ge(Xg11)
perform a parameter extraction (18) to obtain zjq
update §,B



k=k+1
end do.

One problem here may be in the parameter extraction stage where the
penalty functions might increase the non-uniqueness of the solution of (18).
Another problem is that it introduces a sharp change into the mapping function
p(x).

The other possibility is to separately map the objective and any constraints,
this would simplify the parameter extraction stage but increase the number of
mappings required. In its simplest form the algorithm could be represented as:

Given xg, dg
ng] = I(n,n), B =I(n,n),...,BE™ =1I(n,n), 20 = x¢,k =0
do until convergence .
Xpt1 = arg minx fa(pzb (x)) subject to
mm <o ( conl(x)) <o ma:r
hin < DL (0) < b,
O < 0L (B () <
£+ x = i < o}
evaluate fo(Xpi1), Op(Xkt1)sns00 (Xpt1)
perform a parameter extraction (18) to obtain z2%,, z¢onl cont

mazr

k1 Zg+1s e ZEyq
update §, BoJ Beonl | Beont
k=k+1
end do.

Here f, represents the cheap objective, f. represents the expensive objec-
tive, o represents the ¢ cheap constraint and o? represents the i*» expensive
constraint. Each mapping function p°, pc™, ..., pc""‘] is approximated locally
as before and defined on a given trust region. § is then taken as the smallest
trust region, that is § = min{§°%, el .., §eon/},

6 Global Space Mapping Algorithms

Rather than a local approach where py(x) is linear about x and defined on a
given trust region, we could consider a global approach where p(x) is approxi-
mated by p(x), an approximation coming from an artificial neural network [9]
or some other response surface.

This global mapping approach can be defined as follows

e Given N training samples x1, X3, ..., Xy.
Obtain z1, zg,..., zy(= p(x1), p(x2),..., p(Xn)) by parameter extrac-
tion.

¢ Using this data form a response surface p.

o Then f,(P(x)) = fe(x), hence f4(P(x)) can be used for optimization.



The approach can again be applied to constrained optimization. One may
consider a penalty function approach whereby f. and f, in the above are re-
placed by their respective penalty functions incorporating any constraints. A-
gain this will probably increase the non-uniqueness of the parameter extraction
step as well as introducing a sharp change in the shifts which is difficult to
model - especially with a limited number of sampled points.

The alternative is to separately map the objective and constraints, in this
case, for an objective and N constraints, the following strategy is proposed:

e Given N training samples X1, Xa,..., Xn.
. bj b bj i i i
Obtain 217, 257, ..., 23’ (= p° (x1), p°(x2), ..., P (xn))
z‘ionl’ zgonl,m’ Z?\?nl(z pconl'(xl)7 pconl(x2),m, pconl(xN))
Zgl:onJ’ zgonJ,m, ZC]\?n‘](: pconJ(xl), pconJ(x2),m, pconJ(xN))

by parameter extraction.

e Using this data form the response surfaces p°7, peonl ..., peor’,

o Then fo(p™(x)) = feo(x), 0a(B"'(x)) = 04(x),..., 07 (B (x)) =
J
oy ().
Hence f,(p*(x)), ol (x)),..., o (p"’(x)) can be used for opti-
mization.

Because of the difficulty envisaged with the penalty function approach, the
approach considering a separate treatment of objective and constraints will only
be considered.

7 Results

Illustrative Example

A beam of length 20 mm , height & mm and width w mm is clamped at
one end (see figure 2) and is subjected to a uniformly distributed load of 0.05
N/mm. We wish to find the optimal values of h and w such that the weight is
minimized subject to

0z < 250 N/mm?, (26)

and
0.5 mm <h,w<1mm. (27)

The problem was solved using a simple finite element beam model. Two
levels of complexity were considered, a coarse model consisting of just 2 elements
and a fine model consisting of 100 elements. In these two models the objective V'
(volume is proportional to weight) remains the same whereas the stress, which
forms the constraint, varies. It is the variation in this constraint that is mapped
here.

Results for the cheap model optimization, a response surface based on krig-
ing the expensive data points alone (RSM), a response surface method mapping
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0.05N/mm

L L 1 & O

20mm

Figure 2: The problem.

based on model fusion (MFRSM), a local space mapping constrained optimiza-
tion (LSMCO), global space mapping constrained optimization (GSMCO) and
expensive model optimization are shown in table 1. The expensive model result
is shown for comparison purposes only, in general this much information about
the fine model is unavailable.

The following figures represent the objective function (weight) as well as the
stress constraint. Figure 1 (a) represents the cheap model (coarse mesh), figure
1 (b) the expensive model (fine mesh) and figure 1 (c) the mapped model (using
the response surface approach - space mapping gives a very similar result).

The expensive model objective and constraint are included for comparison
purposes and are much more expensive to compute. The mapped model pro-
vides excellent agreement with the expensive model and this is achieved at a
fraction of the cost.

' Model H width || height H model stress “ actual stress || v ]

Cheap 0.5 0.67823 250.00 260.86 6.7823
RSM 0.5 0.71391 250.00 235.44 7.1391
MFRSM 0.5 0.69411 250.00 249.07 6.9411
LSMCO 0.5 0.69270 250.00 250.08 6.9270
GSMCO 0.5 0.69410 250.00 249.08 6.9410
Expensive | 0.5 0.69281 250.00 250.00 6.9281

Table 1: Results
The cheap model is very inexpensive but the approximation of the constraint
lacks accuracy. The minimum here produces an analytical stress > 250, and as
a result the design is infeasible.
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Objective function (volume) and coarse constraint
0.75 T T T T T T T T

0.74 B

0731 |

height

oz 1
0.54 0.55 0.56 0.57 0.58 0.59 0.6

(a)

Objective function (volume) and expensive constraint Objective function (volume) and mapped constraint
0.75 T T T T T T T T T 0.75 T T T

T T T

T T T

0.74- B

0.731 -

height
L
height

- ¢ i i i s I I
0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 059 0.6

0.58 0.59 0.6

Figure 3: Objective and constraint with optimum (*).
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The response surface methods use nine expensive function evaluations at the
points ((0.5,0.5), (0.75,0.5), (1,0.5), (0.5,0.75), (0.75,0.75), (1,0.75), (0.5,1),
(0.75,1), (1,1)). Kriging the expensive model alone (RSM) gives a feasible
design in this case, however, using the nine expensive function evaluations alone
does not supply accurate information on the constraint surface.

The fused model (MFRSM), by utilizing information from the cheap mod-
el, together with the nine expensive function evaluations has led to a much
improved approximation of the expensive model minima.

In the above, the LSMCO approach used x9 = zg = 1 and dy = 0.05.
The algorithm converged in eight iterations requiring a total of 24 calls to the
expensive model.

The GSMCO approach used the same nine data points as the response
surface methods thus requiring a total of 27 expensive function evaluations.

The results presented here highlight the fact that fusion strategies provide
an effective way of optimizing expensive models. At this stage we are not
suggesting that any fusion strategy is better than any other. Which of these
algorithms works best will generally be problem dependent. The purpose of the
work described here is to illustrate how response surface methods and space
mapping can be modified to incorporate constraints.

8 Conclusions

The use of models of varying fidelity throughout the optimization process pro-
vides an approach for optimizing computationally expensive problems. Usually
the response we wish to optimize is considered. Here approaches which map
the constraints are described. This is useful if the actual objective varies little
with the different models but the constraints alter significantly.

The use of response surfaces for fusing models of varying fidelity subject
to constraints is introduced. The problem of modeling constraints in the s-
pace mapping approach has also been addressed. The separate treatment of
objective function and constraints is suggested as a means of overcoming po-
tential problems with non-uniqueness of the parameter extraction stage and the
difficulty in modelling sharp changes in the mapping. In the simple example
given, encouraging results are obtained. They agree closely with the analytical
solution.

The strategies described here show how it is possible to make real gains in
computational efficiency through the use of surrogate modelling in engineering
design. Of course, the example described here is rather simple.
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