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A multiparameter conformal mapping technique is presented which permits
the accurate description of realistic ship sections. The solution of a nonlinear set
of equations describing the transformation of a circle to the arbitrarily shaped
section is linearised using a new method which produces a monotonic relation-
ship between coordinates in the physical and reference planes. This feature
allows the mapping of reentrant sections such as large bulbous bows and the
inclusion of features such as bilge keels and shaft brackets. The assumed form
of the conformal mapping permits asymmetric sections to be represented. The
sections can be successfully transformed at different heel angles.

1 Introduction.

The prediction of ship response in a realistic seaway and the estimation of wave
loadings are some of the most important aspects of ship design. The wave
induced motions are capable of making the ships intended roles impossible,
whilst extreme wave loadings may have catastrophic consequences. The accurate
prediction of these quantities at the design stage, until recently, relied on model
tests which may not be immediately available or desirable.

A realistic seaway may be represented by the summation of unidirectional
sinusoidal waves and under the assumptions of linear theory, the ship response
to the irregular sea may be determined from the responses to each unidirectional
component as described by St Denis and Pierson(1953). Thus the ship seakeep-
ing problem reduces to the prediction of the response of a ship in a regular wave
system.

The equations describing the rigid body ship motions in the six possible
degrees of freedom are second order differential equations whose coefficients are
required in order to obtain the motion responses. The mass term consists of the
real mass (or first or second moment) plus the added mass (or added inertia),
this is referred to as the virtual mass. The added mass term represents the mass
of fluid surrounding the ship that is also accelerated with the ship. The damping



2

term represents the energy lost due to wave generation on the free surface due to
the motions of the ship. The stiffness term represents the hydrostatic restoring
forces acting on the ship due to the inbalance of buoyancy and weight. The six
equations are, in general, coupled together, that is, a displacement in one mode
of motion will produce a force/moment in a different mode and vice versa. For
instance, an asymmetric body experiencing heave will generate a sway force.
Therefore, in general, there are thirty six forms of each coefficient, although
under conditions of lateral symmetry many of these elements are zero, see Price
and Bishop(1974).

Therefore to obtain a prediction of a ship response in a regular wave system
requires the accurate estimation of the coefficients of the differential equations.
The derivation of the added mass and damping coefficients present significant
difficulties compared with other required terms. Strip theory simplifications re-
duce the determination of the added mass and damping coefficients to a two
dimensional problem, see Salvesen et al(1970). The coefficients are determined
for a number of longitudinal sections swaying, heaving and rolling harmonically
at the frequency of the incident wave in the free surface. A consequence of strip
theory assumptions is that the response calculated for each section is indepen-
dent of the disturbance created by other sections. The coefficients for the entire
ship are then obtained by integration.

The two dimensional coefficients are obtained using a potential flow solution,
the form of which is selected to satisfy Laplace’s equation, the free surface and
radiation conditions. The solution is composed of the linear combination of
a source and multipole potentials, the strengths of the multipoles being used
to enforce the boundary conditions on the body perimeter. Ursell(1949a,b)
derives the potential for a cylinder heaving and rolling in the free surface. The
extension of this method to elliptic, Lewis and arbitrarily shaped sections are
described by Wehausen(1971). Count(1977a,b) derives the velocity potential for
an asymmetric section which is utilised by Conceição et al(1984) to study the
effects of heel on the added mass and damping coefficients. Kobayashi(1975)
uses a different technique to examine the stability of heeled ships in beam seas.

The form of the multipole potential selected to satisfy the boundary condi-
tions on the perimeter of the arbitrarily shaped section contains coefficients used
in a conformal mapping which transforms the section in the physical plane to a
unit circle in the reference plane. This situation arises because the form of the
multipole potential used to represent the boundary conditions on the perimeter
of a circle is no longer applicable to the arbitrarily shaped section. A conformal
mapping is utilised to transform the section into a circle, for which the form of
the multipole potential is known. This representation is then transformed back
into the physical plane using the derived mapping.

The problem now becomes one of determining the parameters in the trans-
formation which map the arbitrary section to a unit circle. The earliest map-
ping using two parameters is due to Lewis(1929), these produce reasonable
representations of conventional sections but are unsuitable for very fine or full
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sections. Complex and reentrant sections may not be represented. Analyti-
cal expressions for the added mass and damping coefficients exist. Landweber
and Macagno(1959) extended the transformation to three parameters and gen-
eralised to N parameters, see Landweber and Macagno(1957). A bibliography
of conformal transformation techniques is provided in Conceição et al(1984)
and the various methods which exist to obtain the transform parameters are
discussed by Bishop et al(1979).

2 The conformal mapping technique.

The problem is posed with respect to Figure 1 where we locate the origin of
a rectangular coordinate system in the physical plane on the undisturbed free
surface. The x axis is horizontal, the y axis is positive downward. The angle φ
is defined to be positive anticlockwise from the positive y axis. The arbitrarily
shaped body is defined by P points, the first point located on the positive x
axis, the definition proceeding clockwise.

In the reference plane the origin is located at the centre of the unit circle on
the horizontal ξ axis. The η axis is positive vertically downward. The angle θ is
defined to be positive anticlockwise from the positive η axis. Using a conformal
mapping, z = f(ζ), the points (1, θp) in the ζ plane are mapped to the points
(xp, yp) in the z plane.
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Figure 1: Coordinate systems in the reference and physical planes.

The form of a suitable transformation mapping an arbitrarily shaped section
to a unit circle is now discussed.
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2.1 The multiparameter transformation.

An appropriate mapping takes the form, see de Jong(1973),

z = x + iy = ire−iφ =
n=∞∑
n=−1

cnζ−n (1)

where cn are the complex transformation parameters, cn = an + ibn.
As this analysis is only concerned with the region y ≥ 0 the transformation

may be simplified by assuming the x axis is a line of symmetry and the point
(xP , yP ) is now located on the negative x axis. The symmetry relation is

z(ζ) = z(ζ) (2)

where the overline indicates a conjugate operator. Using this relationship it
can be easily shown that the terms bn, n = −1, 0, 1, 2... are zero. The transfor-
mation may then be expressed as

x = a sin θ +
n=∞∑
n=0

(−1)n[a2n cos 2nθ + a2n+1 sin(2n + 1)θ]

y = a cos θ +
n=∞∑
n=0

(−1)n[a2n sin 2nθ − a2n+1 cos(2n + 1)θ]
(3)

where the term a−1 is renamed a and referred to as the scale factor. When the
ship section is circular the parameters a2n and a2n+1, n = 0, 1, 2... are zero and
only the scale factor is used to size the mapping.

When the ship sections are symmetric about the centreplane a further sim-
plification may be applied. This symmetry relation has the form

z(ζ) = −z(−ζ) (4)

Applying this condition in conjunction with the condition specified in equation 2
the parameters a2n are zero and transformation reduces to

x = a sin θ +
n=∞∑
n=0

(−1)na2n+1 sin(2n + 1)θ

y = a cos θ +
n=∞∑
n=0

(−1)n+1a2n+1 cos(2n + 1)θ
(5)

When the upper limit of the summation is reduced to unity the formulation
becomes the Lewis transformation.
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2.2 The Lewis transformation.

For a symmetric section the Lewis mapping may be applied to approximate ship
shaped sections. The transformation has the form, see Lewis(1929),

z = x + iy = ire−iφ = aζ +
a1

ζ
+

a3

ζ3
(6)

where the transform parameters are given by

a1 = 1
2 (b− t)

a3 = 1
4

[
−(b + t) +

√∣∣(b + t)2 + 8(bt− 4A
π )

∣∣
]

a = 1
2 (b + t)− a3

(7)

where b is the sectional half beam, t is the sectional draught and A is the
submerged area of the section. Mapping are only possible in the regions

3π
32 (2− λ) ≤ σ ≤ 3π

32 (3 + 1
4λ ) λ < 1

3π
32 (2− 1

λ ) ≤ σ ≤ 3π
32 (3 + λ

4 ) λ ≥ 1
(8)

where σ = A
2bT and λ = b

T . Sections outside of these ranges will not produce
suitable mappings as illustrated by von Kerczek and Tuck(1969) and it is usual
practice to use the nearest limit of the inequalities to produce a valid mapping.

2.3 Implementation of the mapping.

Normally the definition of a ship section takes the form of a set of discrete
points (xp, yp), p = 1..P . At each definition point in the z plane there exist a
corresponding unknown angle θp in the ζ plane which must be determined. Two
angles however are known at the outset, these correspond to the points on the
waterline. These are

x1 = bs at θ = π
2

xP = −bp at θ = −π
2

(9)

where bp and bs are the port(left) and starboard(right) waterline offsets. There-
fore there are P − 2 unknown angles.

In practice the summation present in the conformal conformal mapping given
by equation 3 is truncated at a suitable upper limit N and the total number of
unknown transform parameters is 2N + 3. Each definition point provides two
equations except at the waterline where y = 0, therefore the problem is only
solvable if the number of points, P, used to define the section is greater than
or equal to 2N + 3. Usually, the number of definition points exceeds this figure
and the problem is solved in a least square sense. Equation 3 becomes
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xp = a sin θp +
n=N∑
n=0

(−1)n[a2n cos 2nθp + a2n+1 sin(2n + 1)θp]

yp = a cos θp +
n=N∑
n=0

(−1)n[a2n sin 2nθp − a2n+1 cos(2n + 1)θp]





for p = 1..P

(10)
This set of nonlinear equations cannot be solved directly and it is necessary

to construct a solution using an iterative procedure. The starting point uses the
Lewis mapping to obtain the terms a, a1 and a3. Both sides of the arbitrarily
shaped section are mapped and the values of the parameters averaged. Also
substituting the conditions given by equation 9 into equation 10 with N = 0
we find that a0 = bs−bp

2 . These form the basis of the multiparameter mapping
which is used to accurately map the section perimeter. To complete the first
asymmetric mapping it is necessary to obtain a2. This is achieved using the
following procedure

1. A large number of points are defined in the ζ plane around the perimeter
of the semi circular contour, the angles θ associated with each point are
calculated.

2. Using the current completed mapping (in the first instance this will be the
Lewis mapping plus the a0 term) the points in the ζ plane are mapped to
the z plane.

3. The distance around the mapped section girth to each mapped point from
the first mapped point (the first mapped point will be the offset on the
starboard waterline) is then calculated. This creates a monotonic rela-
tionship between the assumed angles θ in the ζ plane and the distance
around the section girth in the z plane. The advantage of this approach
is that the relationship is always monotonic no matter what the shape of
the section is.

One popular method to obtain a relationship between the ζ and z planes
involves relating the assumed angles θ in the ζ plane to the angles φ
subtended by the mapped points in the z plane. However it is possible
in the z plane that one angle φ may correspond to more than one point
on the section perimeter. If this occurs the section may not be mapped.
This occurs with sections possessing large bulbous bows. The line length
method does not suffer from this restriction and in practice almost any
shape may be mapped.

4. The distance around the true section girth to each section definition point
from the first section definition point is calculated.

5. Using the relationship established in item 3 the angles θp in the ζ plane re-
lating to each section definition point may be determined. This is achieved
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by interpolating for an angle θp using the line length corresponding to each
definition point. The interpolation is completed using the data calculated
in item 3.
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6. As each definition point has a corresponding angle θp in the ζ plane the set
of simultaneous equations (10) becomes linear, the only unknowns are the
transform parameters an. Increasing the number of unknown parameters
by one (in the first instance this will be the a2 term) allows a new set of
parameters to be obtained. This is completed using a least square fit to
the definition data. The problem in matrix form becomes

NA = P (11)

where the matrix N is given by

N =




sin θ1 1 sin θ1 ..... (−1)n cos 2nθ1 (−1)n sin(2n + 1)θ1 ..... (−1)N cos 2Nθ1 (−1)N sin(2N + 1)θ1
. . .
. . .
. . .

sin θp 1 sin θp ..... (−1)n cos 2nθp (−1)n sin(2n + 1)θp ..... (−1)N cos 2Nθp (−1)N sin(2N + 1)θp
. . .
. . .
. . .

sin θP 1 sin θP ..... (−1)n cos 2nθP (−1)n sin(2n + 1)θP ..... (−1)N cos 2NθP (−1)N sin(2N + 1)θP

cos θ1 0 − cos θ1 ..... (−1)n sin 2nθ1 −(−1)n cos(2n + 1)θ1 ..... (−1)N sin 2Nθ1 −(−1)N cos(2N + 1)θ1
. . .
. . .
. . .

cos θp 0 − cos θp ..... (−1)n sin 2nθp −(−1)n cos(2n + 1)θp ..... (−1)N sin 2Nθp −(−1)N cos(2N + 1)θp
. . .
. . .
. . .

cos θP 0 − cos θP ..... (−1)n sin 2nθP −(−1)n cos(2n + 1)θP ..... (−1)N sin 2NθP −(−1)N cos(2N + 1)θP




(12)

The matrices A and P are given by

A =




a
a0
a1
.
.
.

a2n
a2n+1

.

.

.
a2N

a2N+1




P =




x1
.
.
.

xp
.
.
.

xP
y1
.
.
.

yp
.
.
.

yP




(13)

The matrix N , in general, is not square and has the order 2P (2N +3). To
simplify the solution it is appropriate to multiply both sides of equation 11
by the transpose of N written here as NT .

NT NA = NT P (14)

This renders the product NT N square with the order (2N + 3)2. The
matrix NT N has the general form
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NT N =




P

p=P∑
p=1

(−1)n2 sin(2n2 + 1)θp −
p=P∑
p=1

(−1)n2 cos 2(n2 + 1)θp .....

p=P∑
p=1

(−1)n1 sin(2n1 + 1)θp

p=P∑
p=1

(−1)n1+n2 cos(n1 − n2)θp −
p=P∑
p=1

(−1)n1+n2 sin[2(n1 − n2) − 1]θp .....

−
p=P∑
p=1

(−1)n1 cos 2(n1 + 1)θp

p=P∑
p=1

(−1)n1+n2 sin[2(n1 − n2) + 1]θp

p=P∑
p=1

(−1)n1+n2 cos 2(n1 − n2)θp .....

. . . .....

. . . .....

. . . .....

. . . .....

. . . .....




(15)

The subscripts on the n terms relate to the horizontal line and vertical
column indexes. The first line is due to the scale factor a and only appears
in the position shown. It is composed of the term P and the following two
terms are repeated for different values of n2, 0 ≤ n2 ≤ N . The first column
is due to the scale factor a and only appears in the position shown. It
is composed of the term P and the following two terms are repeated for
different values of n1, 0 ≤ n1 ≤ N . The interior of the matrix is composed
of the remaining four terms repeating for various values of n1 and n2. The
matrix NT N is now obviously square. NT P is given by

NT P =




p=P∑
p=1

xp sin θp + yp cos θp

p=P∑
p=1

(−1)n1
[

xp cos 2n1θp + yp sin 2n1θp

]

p=P∑
p=1

(−1)n1
[

xp sin(2n1 + 1)θp − yp cos(2n1 + 1)θp

]

.

.

.

.

.




(16)

The first term appears only once, the remainder of the matrix consists of
the next two terms repeated for different values of n1, 0 ≤ n1 ≤ N .

The transform parameters can now be easily obtained using a standard
technique of matrix inversion.

7. A new set of transform parameters have been obtained using the pre-
ceeding method (in the first instance new values for a, a0, a1 and a3 are
obtained and an initial value for a2 is derived). The process is now re-
peated until the transformation adequately maps the section definition or
an upper limit of N is reached.

Figure 2 illustrates the progression from the Lewis mapping plus the offset
parameter a0 (four parameter) to a five parameter mapping. The full line in the
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left hand diagram is the section perimeter obtained using the four parameter
mapping, the starred points correspond to the section definition points mapped
with the current completed mapping. The angles used to map the section def-
inition points are those obtained using the technique described in item 5. The
section definition points are indicated by an ×. The dotted line is the mapped
section perimeter obtained using the derived five parameter mapping. The small
circles represent the new positions of the starred points. Note how much the
mapped section has changed with the addition of one extra parameter. The
diagram on the right hand side illustrates the addition of another parameter,
i.e. the dotted line in the left hand diagram has become the full line in the right
hand diagram. The dotted line now represents the transformation with six pa-
rameters. Successive transformations gradually approach the section definition.
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Figure 2: Development of a fine section at 15o using the line length method.

2.4 Examples of the multiparameter mapping.

Various sections are considered demonstrating the versatility of the mapping.
The definitions and solutions are given for rectangular and fine sections in order
that the work is reproducible. Additionally, the solution after each iteration for
the rectangular section is detailed. These sections are those used by Bishop et
al(1979). Bulbous sections and those possessing bilge keels and shaft brackets
are also included.

Rectangular section. A rectangular section is outside the range applicable
to the Lewis transforms (σ = 1, λ = 1.5) as dictated by equation 8 and the first
approximation is started on the upper limit of the second inequality. The zero
heel section is defined by the coordinates
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x(m) 7.500 7.500 7.500 3.750 0.000 -3.750 -7.500 -7.500 -7.500
y(m) 0.000 3.750 7.500 7.500 7.500 7.500 7.500 3.750 0.000

Table 1: Offsets for the rectangular section at 0o.

and the final mapping using twelve parameters is shown in the left hand
diagram of Figure 3.
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Figure 3: Mappings using 12 transform parameters for a rectangular section at
0o and 15o.

The twelve parameter mapping is created using the following sequence of
transform parameters

N a a0 a1 a2 a3 a4
1 8.781 -1.520x10−15 1.723x10−3 5.618x10−16 -1.338 -
2 8.861 -4.357x10−15 3.506x10−3 -3.121x10−16 -1.469 1.731x10−15

2 8.887 1.711x10−16 3.345x10−3 -7.060x10−16 -1.509 9.520x10−16

3 8.894 -5.543x10−16 3.414x10−3 -1.666x10−16 -1.521 -3.754x10−16

3 8.903 3.785x10−15 1.721x10−3 -2.249x10−15 -1.551 1.521x10−15

4 8.895 1.145x10−15 5.015x10−4 -8.603x10−16 -1.540 -2.542x10−18

4 8.887 3.358x10−15 -2.223x10−4 -2.326x10−15 -1.528 1.554x10−15

5 8.882 -3.551x10−16 -5.979x10−4 3.530x10−16 -1.520 -6.308x10−16

N a5 a6 a7 a8 a9 a10
1 - - - - - -
2 - - - - - -
2 3.368x10−3 - - - - -
3 5.166x10−3 -6.059x10−17 - - - -
3 4.301x10−3 3.566x10−16 9.478x10−2 - - -
4 2.610x10−3 -3.898x10−16 0.135 2.471x10−16 - -
4 1.187x10−3 2.796x10−16 0.152 -1.022x10−16 -4.422x10−4 -
5 2.162x10−4 2.206x10−16 0.159 6.338x10−16 -8.571x10−4 -6.083x10−17

Table 2: The transform parameters for the rectangular section at 0o.

The even transform parameters have very small values due to the section
possessing symmetry, in theory these values should be zero. The coordinates
and the angles of the final mapped section are given in Table 3.
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θ(rads) 1.571 1.265 0.786 0.305 0.000 -0.305 -0.786 -1.265 -1.571
x(m) 7.520 7.461 7.467 3.740 0.000 -3.740 -7.467 -7.461 -7.520
y(m) 0.000 3.742 7.468 7.460 7.523 7.460 7.468 3.742 0.000

Table 3: Final mapped points for the rectangular section at 0o.

It can be seen that the mapping is able to accurately map sharp corners
without special consideration, see Landweber and Macagno(1975). The rectan-
gular section rotated about the origin through an angle of 15o is defined by the
coordinates

x(m) 7.765 7.244 6.274 5.303 1.681 0.000 -1.941 -5.563 -9.186 -8.215 -7.765
y(m) 0.000 1.941 5.563 9.186 8.215 7.765 7.244 6.274 5.303 1.681 0.000

Table 4: Offsets for the rectangular section at 15o.

The mapping using twelve parameters in shown in the right hand diagram
of Figure 3. It can be seen that additional centreline and waterline points have
been inserted. These are required at the start of the mapping process when
both sides of the asymmetric section are Lewis transformed. The final twelve
transform parameters are

a a0 a1 a2 a3 a4
8.854 -0.358 -5.222x10−2 -0.877 -0.875 0.763

a5 a6 a7 a8 a9 a10
-3.496x10−2 0.291 -7.135x10−2 7.969x10−3 -1.109x10−2 1.551x10−2

Table 5: Final transform parameters for the rectangular section at 15o.

and the coordinates and angles of the final mapped section are given in
Table 6.

θ(rads) 1.571 1.362 1.035 0.544 0.059 -0.084 -0.245 -0.549 -1.018 -1.455 -1.571
x(m) 7.652 7.315 6.213 5.271 1.666 -0.011 -1.931 -5.550 -9.136 -8.130 -7.967
y(m) 0.000 1.962 5.555 9.145 8.184 7.756 7.252 6.241 5.262 1.750 0.000

Table 6: Final mapped points for the rectangular section at 15o.
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Fine section. A fine section is also outside the range applicable to the Lewis
transforms (σ = 0.252, λ = 0.74) and the first approximation is started on the
lower limit of the first inequality given in equation 8. The zero heel section is
defined by the coordinates

x(m) 7.400 6.500 5.000 3.500 2.200 1.400 1.210 1.200 0.800 0.000
y(m) 0.000 0.150 0.550 1.200 2.100 4.300 6.100 8.400 9.700 10.000
x(m) -0.800 -1.200 -1.210 -1.400 -2.200 -3.500 -5.000 -6.500 -7.400
y(m) 9.700 8.400 6.100 4.300 2.100 1.200 0.550 0.150 0.000

Table 7: Offsets for the fine section at 0o.

The mapping for the zero heel section is shown in the left hand diagram of
Figure 4.
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Figure 4: Mappings using 20 transform parameters for a fine section at 0o and
15o.

The final twenty transform parameters are

a a0 a1 a2 a3
6.806 1.675x10−16 -2.163 2.731x10−15 1.897

a4 a5 a6 a7 a8
5.283x10−16 1.069 -5.645x10−16 3.110x10−2 -1.071x10−15

a9 a10 a11 a12 a13
-0.244 2.949x10−16 -0.143 4.176 3.213x10−2

a14 a15 a16 a17 a18
-1.972x10−15 7.884x10−2 -2.690x10−16 2.448x10−2 2.663x10−16

Table 8: Final transform parameters for the fine section at 0o.

Again the even transform parameters are effectively zero because the section
is symmetric. The coordinates and the angles of the final mapped section are
given by
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θ(rads) 1.571 1.333 1.181 1.085 1.007 0.894 0.786 0.547 0.269 0.000
x(m) 7.389 6.481 5.008 3.540 2.385 1.373 1.187 1.119 0.768 0.000
y(m) 0.000 0.175 0.493 1.179 2.258 4.342 6.103 8.378 9.651 9.951

θ(rads) -0.269 -0.547 -0.786 -0.894 -1.007 -1.085 -1.181 -1.333 -1.571
x(m) -0.768 -1.119 -1.187 -1.373 -2.385 -3.540 -5.008 -6.481 -7.389
y(m) 9.651 8.378 6.103 4.342 2.258 1.179 0.493 0.175 0.000

Table 9: Final mapped points for the fine section at 0o.

It can be seen that using twenty parameters an extremely good mapping
may be obtained. The fine section rotated about the origin through an angle of
15o is defined by the coordinates given in Table 10.

x(m) 9.986 9.694 8.952 7.148 6.240 4.687 3.070 1.582 0.239 0.000 -0.410
y(m) 0.000 0.527 1.363 1.915 1.827 1.825 2.065 2.598 4.516 5.139 6.205
x(m) -1.015 -1.738 -2.588 -3.283 -3.333 -2.748 -2.465 -2.669 -3.691 -4.011
y(m) 8.424 9.577 9.659 9.162 7.803 5.579 3.791 1.459 0.253 0.000

Table 10: Offsets for the fine section at 15o.

The mapped section is shown in the right hand diagram of Figure 4. The
final twenty transform parameters are

a a0 a1 a2 a3
7.191 0.859 -1.069 2.857 0.689

a4 a5 a6 a7 a8
-0.106 -0.434 -0.505 0.186 8.953x10−2

a9 a10 a11 a12 a13
0.294 -6.109x10−2 3.667x10−3 -0.160 2.029x10−2

a14 a15 a16 a17 a18
1.296x10−3 9.191x10−2 1.891x10−2 1.361x10−2 -2.552x10−2

Table 11: Final transform parameters for the fine section at 15o.

The coordinates and angles of the final mapped section are given by

θ(rads) 1.571 1.401 1.170 0.907 0.819 0.725 0.651 0.586 0.488 0.456 0.394
x(m) 9.981 9.632 8.920 7.131 6.260 4.731 3.148 1.769 0.216 -0.093 -0.480
y(m) 0.000 0.498 1.270 1.870 1.796 1.741 2.106 2.866 4.575 5.154 6.204

θ(rads) 0.181 -0.069 -0.324 -0.591 -0.871 -1.114 -1.236 -1.371 -1.496 -1.571
x(m) -1.092 -1.749 -2.577 -3.210 -3.205 -2.725 -2.421 -2.840 -3.774 -4.008
y(m) 8.363 9.518 9.595 9.092 7.796 5.593 3.863 1.592 0.305 0.000

Table 12: Final mapped points for the fine section at 15o.

Figure 5 illustrates the variation in the values of the first five transform
parameters to a heel angle of 45o for the fine section.
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Figure 5: Variation in the first five transform parameters with heel angle for
the fine section. Total number of parameters used is 20.

Bulbous section. Figure 6 demonstrates that the line length method is capa-
ble of mapping reentrant sections successfully. At all heel angles the number of
parameters used is forty eight. These Figures demonstrate a clear improvement
over previous methods.
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Figure 6: Mappings using 48 transform parameters for a bulbous section at 0o

and 15o.
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N = 36 N = 48

Figure 7: Development of a mapping for a large bulb section at a 15o angle of
heel.
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Figure 7 illustrates the development of the bulb section at 15o. Initially the
basic shape is formed, then with an increasing number of parameters the bulb
waist reduces. The actual number of parameters used to represent a section
is ascertained on a trial and error basis, although, the least square error may
provide a numerical indication of the accuracy of the mapping. Use of this figure
alone however may result in a poor mapping as it is possible to use too many
parameters which will provide an accurate fit at the section definition points
but a poor fit between them.

Other sections. Figures 8 illustrate a round bilge section including a bilge
keel. Figure 9 illustrates the same section with shaft brackets attached. These
mapping demonstrate that complicated features can be mapped accurately.
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Figure 8: Mappings for a section with bilge keels at 0o and 15o.
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Figure 9: Mappings for a section with shaft brackets at 0o and 15o.

3 Conclusions.

This new mapping technique provides a simple tool with which sections of ar-
bitrary shape may be conformally mapped to a circle. Using the transform
parameters present in the mapping the added mass and damping properties
of a section and hence a whole ship may be determined with increased accu-
racy. The mapping technique may be easily installed in ship motion prediction
programs which utilise strip theories.
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