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SUMMARY

Simple, mesh/grid free, explicit and implicit numerical schemes for the solution of linear advection—diffusion
problems is developed and validated herein. Unlike the mesh or grid-based methods, these schemes use
well distributed quasi-random points and approximate the solution using global radial basis functions. The
schemes can be seen as generalized finite differences with random points instead of a regular grid sys-
tem. This allows the computation of problems with complex-shaped boundaries in higher dimensions with
no need for complex mesh/grid structure and with no extra implementation difficulties. Copyright © 2000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

As computer capabilities kept improving throughout the last three decades, it became possible to
solve more and more complex problems. The increase of possibilities for solving such complex
physical end engineering problems has also been due to advances in numerical methods and
the development of efficient algorithms. For instance, it became possible to simulate large-scale
problems such as fluid flow around ships and aircrafts, meteorology, turbulence and wide range of
computer intensive problems. Most of engineering and physical problems are solved using Finite
Differences Methods (FDM), Finite Elements Methods (FEM), Control Volume Methods (CVM)
or Boundary Element Methods (BEM). These numerical methods are all based on a mesh/grid
discretization that has to be generated in advance or dynamically modified as the solution progresses
(adaptive meshing). It is widely acknowledged that mesh generation remains one of the biggest
challenges in mesh-based methods. Given enough computer power, even the most computationally
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intensive problems, such as 3-D Navier—Stokes equations, can be computed accurately providing
an acceptable mesh is found. The generation of suitable mesh for such complex problems remains
the major task and can take most of the computational time and effort than the solution of the
governing partial differential equations themselves. Not only mesh-based methods can be very
complex, for many problems, in particular for those with moving boundaries or large deformations
(e.g. crack propagation, phase-change, explosion of stars etc.), they are acknowledged not to be
cost-effective for such dynamic processes.

During recent years, considerable effort has been devoted to the development of so-called mesh-
free methods, which are also referred to in the literature as meshless, element-free, gridless or
cloud methods. The aim of meshless methods is to eliminate at least the structure of the mesh and
approximate the solution entirely using the nodes/points as a quasi-random set of points rather than
nodes of an element/grid-based discretization [1, 2]. Amongst early attempts, one can mention the
generalized finite differences on an irregular (arbitrary) grid system [3—6]. Another type of meshless
named Smooth Particle Hydrodynamics (SPH), which uses a set of disordered particles and has
been used in computational astrophysics to model collision and explosion of stars [7-9]. This
method is well suited to these kind of problems with rapidly expanding computational domains.
Another class of these methods is the so-called Diffuse Element (DE) method, where only a set
of nodes and a boundary description is needed to derive the Galerkin equation. The interpolation
functions are polynomials associated with nodal values by weighted least-squares approximation.
Although no underlying structure for the nodes is required, an additional auxiliary grid is used
to numerically compute the integral resulting from the Galerkin approach [10]. Belytschko et al
[11, 12] extended the DE method by providing additional terms in the derivatives and a regular
cell structure for computing the integrals by means of higher order quadratures. This method is
usually referred to as the Element-Free Galerkin (EFG) method. This method can also be seen as
a subclass of the so-called Partition of Unity (PU) methods [13]. Liu et al. [14, 15] proposed a
different type of gridless based on reproducing kernels and wavelet analysis (Reproducing Kernel
Particle (RKP) method). For a comparative study on these methods, i.e. RKP, SPH, DE, EFG,
see Reference [16] for details.

For many years, radial basis functions have been synonymous with scattered data approximation,
especially in higher dimensions. However, recently there has been an increased interest in their
use in solving partial differential equations (PDEs). This approach, which approximates the whole
solution of the PDE directly using radial basis functions, is very attractive due to the fact that this
method is a truly mesh or grid free technique. Since the original work of Kansa [17], a series
of papers have appeared in this topic, see for instance Dubal ez al. [18], Moridis and Kansa [19]
and Sharan et al [20]. Despite their excellent results, earlier works related to the application of
radial basis functions for the numerical solution of PDEs have been based on intuition rather than
a formal mathematical analysis. However, since the paper of Kansa [17], substantial theoretical
advances have been established. For instance, Franke and Schaback [21, 22] were able to give
a convergence proof and error bounds of the numerical approach, at least for partial differential
equations with constant coefficients. For a substantial coverage, see Golberg and Chen [23] and
Fasshauer [24], for an extensive bibliography on the subject.

This paper presents numerical schemes to solve the advection—diffusion equation on an
arbitrary/random collocation points system, by approximating directly the solution using global
radial basis functions. The schemes are similar to finite differences but with the advantage of arbi-
trary point locations. Due to the radial nature of the basis functions used, the schemes also make
no distinction regarding the dimension of the problem.
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2. RADIAL BASIS FUNCTIONS INTERPOLATION

The approximation of a function u(x), using radial basis functions, may be written as a linear
combination of N radial functions, viz.,

N
u(x) =~ S Ae(x,x;) +y(x) for xeQCR? (1)
j=1 :
where N is the number of data points, X = (x3,x2, . . . ,X4) is the vector position, d is the dimension

of the problem, A’s are coeflicients to be determined and ¢ is the radial basis function. Equation
(1) can be written without the additional polynomial y, see Reference [25] for details.

In a comparative study, Franke [26] compares an extensive number of techniques for
interpolation/approximation on a number of tests. The study found that overall the MultiQuadrics
(MQ) and Thin Plate Splines (TPS) Radial Basis Functions (RBF) are the most accurate techniques
for scattered data approximation. However, the accuracy of MQ depends on a shape parameter,
for which there is no mathematical theory yet as to how to choose its optimal value. Hence most
applications of MQ use experimental tuning parameters or expensive optimization techniques to
evaluate the optimum shape parameter [27]. In this paper, the TPS is used, as the radial basis
function for the schemes in Section 3, as it combines good accuracy without the additional burden
of computing a shape parameter. Furthermore, TPS is based on sound mathematical theory [28],
whereas for MQ, although it works well, its construction theory is yet to be established [29].

An mth-order TPS is defined as

(X, X)) = () =r"log(r;), m=123,..., 2)

where 7; = ||x — x;|| is the Euclidean norm. Since ¢ given by (2) is C?=1 continuous, a higher-
order thin plate splines must be used, for higher-order partial differential operators. For the problem
in Section 3, i.e. advection—diffusion PDEs (Second order), an m =2 is used (i.e. second-order
thin plate splines) to guarantee at least C? continuity for u.

If qu denotes the space of d-variate polynomials of order not exceeding ¢, and letting the
polynomials Py, ..., P, be the basis of &7 in R, then the polynomial y(x), in Equation (1), is
usually written in the following form:

Y(x)= ; LP(X) 3)

where m=(q — 1 +d)!/(d!(g — D)}).

To square the system of equations, in addition to the N equations resulting from collocating (1)
at the N points, an extra m equations are required. This is ensured by the m conditions for (1),
viz.,

N
Z:lﬂjB(Xj):O, i=l,...,m (4)
j:

To determine the coefficients (Ay,...,4x) and ({i,. .. ,{n), the collocation method is used.
The collocation method here simply means applying Equation (1) and the condition (4) at every
centre i=1,...,N where the solution {u;, i=1,N} is known. This gives rise to a square system
of equations with (N + m) equations and (N + m) unknowns {4;, i=1,N} and {({;, i=1,m},
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ie. {u}=A{A}, where {A}=[A,. .., 0. .., 0u]T ([ . T denotes matrix transpose). It is
worth mentioning that due to the fact that the interpolated solution using the coefficient vector {4}
corresponds to the exact solution at the nodes, hence, the interpolation here is an exact one rather
than an approximation, where the the interpolated values at the centres may not coincide with the
given solution.

In a similar representation as (1), for any linear partial differential operator %, %u can be
approximated by

N
Lu(x) ~ Zl LLo(X,X;) + LY(x) (5)
j=

3. ADVECTION-DIFFUSION EQUATION
Since the numerical scheme will be presented for a general three-dimensional case, let us consider
the following three-dimensional linear partial differential equation, given by

Ju(x,t)
ot

together with the general boundary and initial conditions

=xV2u(x,1) + v-Vu(x,1), Xx€QCR? >0 6)

cru(x, 1) + 2Vu(x, 1) = f(x,1), x€Q, t>0 (7)
u(x,ty=up(x), t=0 (8)

where u(X,?) is, let us say, the temperature at the position X at time #, V the gradient differen-
tial operator, () is a bounded domain in R3, dQ the boundary of €, x the diffusion coefficient,
v=[v, vy 0,17 the advection coefficient (or velocity) vector, ¢; and ¢, are real constants, and
f(x,t) and uy(x) are known functions.

3.1. Implicit scheme

First, let us discretize (6) according to the 0-weighted scheme giving

u(X,t + 0t) — u(x,1) = St0{1cVulr5 + v-Vlips} + 61(1 — O {xV?u|, 4 v-Vul,} 9)

where 0<0<1, and Jr is the time step size. Rearranging (9), using the notation u” = u(x,?")
where " =¢""! + ¢, we obtain

Mn+1 + aV2u"+l +ﬂ_vun+l :u}’l + WvZMn + é.vun (10‘)
where o= — 06, f=[Bx By B.]"= — 0dtv, n=xt(1 — 0) and E=[¢, &, &V =061(1 — O)v.
Assuming that there are a total of (N —4) collocation points or centres, u(x, ) = u(x, y,z,t") can
be approximated by
N—4
w'(x) = 30 A9() + Ay_sx + Aoy + Az + Ay (11)
j=1
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where (x, y,z) denotes the co-ordinates in the Cartesian space. To determine the interpolation
coeflicients (41, 42, ..., Av—1,4n), the collocation method is used by applying (11) at every point
i=1,...,N —4, giving

N—4
u'(xXi, yi,zi) 2 20 K o(ry) + Ay_sxi + Ay_oyi+ Az + Ay, i=1,.. N (12)
=1

where ry; = \/(x; —x;)> + (yi — ¥;)2 + (z; — z;)%. The additional conditions due to (4) are written
as

N—4
E/l” lexj Ziy] Z/l"zj—O (13)
Writing (12) together with (13) in a matrix form we have

{u}”=A{1}" (14)
where {u}” =[uf ... u}_, 0...01", {A}"=[A7... 451" and A=[ay, 1 <i,j<N] is given by

[ ou - -y x1oy1 oz 1
PN-4)1 *"* QN—-2)(N—4) XN—4 YN—-4 ZN—4 1
A — xl ... xN—4 0 .. .. O (15)
»1 YN—-4 : ) :
zZ| s ZN —4 . ool
R 1 0 v v 0]

Note that Micchelli [30] proved the non-singularity of the matrix A in (15) resulting from a
positive-definite radial basis function ¢. In other words, the solution of the system of equations
(14) always exists.

Assuming that there are p < (N —4) internal (domain) points and (N —4 — p) boundary points,
then the (N x N) matrix A can be split into A=[Ay + A, + A,.], where

Ay =[ay for (1<i<p,1<j<N) and 0 elsewhere]
Ap=[a; for (p <i<N —4,1<j<N) and 0 elsewhere] (16)
A, =[a; for (N —3<i<N,1<j<N) and 0 elsewhere]

Using the notation A to designate the matrix of the same dimension as A and containing the
elements d;;, where dj; = La;; (ie. LA=[ZLa;;,1<i,j<N]), then Equation (10) together with (7)
can be written, in a matrix form, as

[Cap + B+ AJ{AYH =[Cye + B + A J{A}" + {F}"*! (17)

where
B=ciAp + VA, Co=As+ aVzAd +pVAy, o=an, p=f¢& (18)
and {F}"+! = {F}"*+! — {F}", where {F}" = 0 fout fp42 -+ Si—qg 0...0]". Equation (17‘)

is obtained by combining (10), which apphes to the domain pomts P, whlle (7) applies to the
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boundary points (N — 4 — p). To better illustrate the physical meaning of A4, let us rewrite the
advective term in (18) as

- 0Ay 0As  0Ay
p-VA; = Pra +Py'5}“ + P

aAd oy, 0Aadry Ay lry
o o P 0y TP &

8&1 (37",] or arl_]
‘a?(f’xa o T

aA 6 a ij a l] ;
P {max (px . 0) + max <py 3y O) + max (pz pe O)} (19)

In fact, the term {max(p,dr;;/0x,0) +max(p,0dr;;/0y,0)+ max(p,0r;;/0z,0)} mimics an upwinding
finite difference type scheme, where for the advective term only the contribution of wupstream
points are taken into consideration. However, it must be emphasized that due to the local nature
of finite differences, the advective contributions of only the nmeighbouring points in the upstream
are considered, whereas, for the present scheme the advective contributions of all the points in
the upstream region are taken into account.

Rewriting (17) in the form

{2y =H Hye {2} + H ) (Fy*! (20)

I|

where H,, =[C,, +B+A,] and making use of (14), the solution vector {u}"*! is computed from

{u}" as

{u}"*! = AH/H,: A" {u}" + AH_/ {F}"*! (21)
Putting (21) in a simpler form, viz.,
{u}"*! = D{u}" + {B}"*! (22)
where
D=AH/HA™" and {E}™' =AH_/{F}" (23)

Although H and D, in (23), look complicated, their computations are simple and straightforward
operations. Furthermore, if the same collocation points and a constant time-stepping scheme are
used throughout the computational process, H and D are computed only once, hence computing
{u}" from {u}”"~! is a simple operation of order O(N). Although Equation (22) is valid for any
value of 0 €[0, 1], we will use 0 =1/2 (i.e. the Crank—Nicholson scheme), hence C,p+C,: =2A,,
where n= — a=x(#/2) and &= — [ =(1/2)v.

It is worth mentioning that there were some question marks about the well-posedness of the
resulting system arising from the application of radial basis functions to partial differential equations
and the proof about the solvability of such a system, see the paper of Fasshauer [31] for details.
However, recently Franke and Schaback [21] gave the first theoretical foundations, concerning the
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convergence proof and error bound for the solution of partial differential equations with collocation
and radial basis functions. They showed that the radial basis function has to be much smoother than
the smoothness required for a weak solution of the differential operator. As far as the Laplace and
gradient operators and the thin plate splines are concerned, the requirements are met to guarantee
the positive definiteness of the resulting matrix and therefore insuring the solvability of the system,
see Reference [21] for details.

From engineering and application point of views, the implementation of such schemes are very
simple and straightforward, irrespective of the dimension of the problem or the shape of the domain
under consideration. These schemes are remarkably simple and, as our numerical results will show,
can achieve similar results as other more complicated grid/mesh methods such as finite differences
and finite elements methods.

To gain some insight into the stability of the implicit method (22), the matrix method is used
to analyse the method. Using Equation (22), it follows that a perturbation {z}"={u}" — {&}",
where {@}" is the computed solution, satisfies the equation

{z}"*' =D{z}" (24)

The global error in (24) will not grow as n — oo if the eigenvalues of the amplification matrix
D are less than unity in modulus. Substituting the matrix D in (23) into Equation (24) leads to,

HypA™ {2} =H,: A~ {z}" (25)

Substituting H,; and H,; by their values, and using the relations o= {6/(6 — 1)}y and f={0/
(0 — 1)}¢, Equation (25) leads to

[ — 05M{z}" ! =1 + (1 — 0)5tM]{z}" (26)

where M =[kV2Ay + V- VAzJA™! and I is the identity matrix.
The implicit method is stable if the eigenvalues of the matrix

[1— 05M] I+ (1 — 6)5tM]
are less than one in modulus, that is,

1+ (1 = 0)5t7
1 — 06tdy =

27

where A3 are the eigenvalues of the matrix M.

It can be seen from Equation (27) that when 6>1/2 and the eigenvalues /y are negative (or
complex with negative real parts), the implicit method (22) is unconditionally stable.

As the eigenvalues of the matrix M are not easy to find in closed form, a numerical approach
is used here to find the eigenvalues of the matrix M by solving the generalized eigenproblem
[KV2Ay + v - VAg){s} = lyrA{s}, where {s} is the eigenvector, using the NAG routine FO2BJF.
For the test examples considered in Section 4, it is found that the eigenvalues of the matrix M
are negative. Thus, the implicit method is unconditionally stable for those cases.

3.2. Explicit scheme

To derive the explicit scheme, we follow the procedure in Reference [32] by assuming that
u(x, 1) = p(x)o(t) (28)
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then (6) becomes

1
Vip+ —v-Vo 29)
300 @
Integrating (29) with respect to ¢ from fp to ¢, and making use of (28), the following can be
obtained:

1 do 1
o) & )

u(x,t)=u(x,t) exp { u(xt ZO)(KV2u(x, fo) + v Vu(x, to))} (30)
Let (12) be rewritten as
(s = 3 (X, (1)
j=1

where [27 ... 0 T=A""u} ... ufy_,0...0]" and
I N 1 N-—4

Xi, X fi '=1,N—4
MM&F{M x;) for j 32)

W(x;) for j=N-3,N

and assuming that ¢ ="+ ="+ ¢ and fy=1", then, the expression of u(x;, ") =t inside the
domain, x; €, i=1,..., p, as a function of the distribution at ¢ =1", is obtained from (30) as

or X -
utt =u! exp { ;;le}‘(icvzw(xi,xj) +v- Vw(xi,xj))}

ij=1

N ot
=u![] exp i;;;yij for x; €0} (33)
j=1 i

where

vy = KV @ (X1, X;) + V- VB(X;, X))

Oy Ory Gy dry 0By 0y
= 1 V2w(X. X + 7y + Y vy
* (0o %) + e or Ox " or dy Yo oz

0D, oryi or;; orjj
T s o), o Oy O
=kVw(x;, X;) + P {vx e + vy 3y + v, e }

0w oryj ory Oryj '
— 72 Cx. ij L) ij ij
=V o(x;, X)) + o {max <vx—ax ,0) + max (vy 3y ,O) + max (vz——az ,O)} (34)

The term {max(v,0r;;/0x,0) + max(v,dr;;/dy,0) + max(v,dr;/0z,0)} plays the same upwinding
role as in (19). For the boundary points, x;€09, i=p+1,... N -4 u?“ can be derived
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from (7) as
11 : +1 Y
uitt = o f(x, ) = 022_:‘ M V@ (X, X)) for x; € 0Q (35)
]:
For the explicit scheme, the following two explicit equations can be used
n+1 n o ¥ n
u; ' =u; eXp 72 /I/Vij (36)
wij=1 - '
or
. N
M;H' = u? + 5t21 /17'}/,, 37)
j=

Equation (37) is obtained by taking only the first two terms of the Taylor’s expansion of the
exponential in (36), ie. exp(x)=1 +x. It can also be verified that (37) is the same as that
obtained from (22) when 6=0.

To analyse the explicit scheme (37), as before, the matrix method is used. Using Equation (37),
it follows that a perturbation {z}" = {u}" — {a}" satisfies the equation "

(2} =[I + 51QA ™ {z}" (38)

where ) is a matrix with elements y;; given by Equation (34).
The explicit method is stable if

|1+ dthar| <1 (39)

where Ay are the eigenvalues of the matrix M = [k V2Ay +v-§71§d]A“1 (as in the implicit scheme).
From Equation (39), it can be seen that when the eigenvalues /iy are negative, the explicit
method (37) is stable provided :

5t <2/ A (40)

For the case when the eigenvalues are complex with negative real parts, the explicit method
(37) is stable provided

2Re(Ar) + Ot| A2 <0 (41)

As it can be seen, the analysis of the explicit method involves, knowledge of the eigenvalues of
the matrix M and, in particular, it requires the eigenvalue with greater modulus not to exceed 4
certain value. Thus, instead of calculating all the eigenvalues using the NAG routine FO2BJF, the
Power Method [33] can be used to find only the largest modulus eigenvalue of M (i.e. finding the
largest modulus eigenvalue, say Js, of the generalized eigenproblem [KVZA4+V VA s} = AA{s},
where {s} is the corresponding eigenvector). From computational point of view, the algorithm
(Power Method) for calculating the largest modulus eigenvalue of M is straightforward and fast.
Moreover, the computation of the largest modulus eigenvalue of the matrix M is performed only
once and can be seen as a pre-processing task for any given scattered points distribution.

As mentioned previously, for efficiency purposes it is much more practical to keep the same
collocation points as well as maintaining a constant time step throughout, hence the computa-
tion of A=l and y=[yy,1 <4, j<N] is performed only once. This makes the computation of
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wt =t 0. 01T =T'(u", 6t) a simple operation which can also be highly vectorized
or parallelized due to the inherent parallelism in explicit formulae where, unlike implicit schemes,
recurrences are non-existent. The explicit equations are more suitable for vector and parallel pro-
cessing due to the fact that the unknown vector is dependent only from an already known data,
ideal process for a high locality and scalability. Similarly as in finite differences, Equation (33) is
conditionally stable. However, the stability of the scheme can easily be preserved by an automatic
and progressively discarded time sub-divisions as suggested in Reference [32]. This can be easily
illustrated by the following algorithm:

Sty =20/ | Ayt 1y = Int(3t/Sts) + 15 St = t/ny;
un+l — un.
doi=1,...,m

+1 I‘(u"“,étc)

end do

where 0<a<1. It is worth mentioning that the eigenvalues Ay are simply dependent on the
relative positions of the centres or collocation points. Hence, the check for stability criteria can be
performed only once before the time-marching scheme. This would allow stability to be maintained
without additional computations from one time step to another.

In general, the way in which the collocation points are distributed is similar to that for
mesh/element distribution. Generally, a fair distribution with increased density around hot-spots is
the norm, see Belytschko ez al. [1] and Onate et al. [2] for details. Hot-spots are usually sub-
regions of sharp variations or of complex geometry. Well-distributed points can be achieved either
by generating a regular type grid points with increased density around the hot-spots or simply
using a quasi-random generator with a variable density depending on the sub-region, for which
the points are generated. In order to have well-distributed quasi-random points in the domain of
interest, hence avoiding the chance of unnecessary clustering, the variant of Sobol quasi-random
sequences suggested by Antonov and Saleev, are used as a basis for well-distributed point gener-
ation algorithm [34]. Furthermore, for more evenly improved distribution, more than the desired
points can be generated by the quasi-random generator, then trimmed out using the thinning algo-
rithm [25], which removes the points that are too close to each other (i.e. do not satisfy certain
minimum distance).

4. TEST EXAMPLES

4.1. Example 1: one-dimensional case

For validation, a simple 1-D problem which has an analytical solution is considered in this example.
It consists of a Dirichlet problem defined as

ou  Pu au
n —-:c-@—z- +v 0<x<l1, >0 (42)
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Table 1. Comparison of EULTPS, EXPTPS and ICNTPS with the analytical solution for Example 1. u(x,t)
is tabulated at some random locations x at different times ¢ = 0.2, 0.6, and 1. n. = 11 (random points),
k=01 b=01, ¢ =161803, a= 1.0, 6r=0.01, and v =0.1, Pe =v/x = 1.

¢ x=025000 x=031250 x =0.37500 x = 0.50000 x = 0.62500 x = 0.75000 x = 0.8750  &(¢)

0.68591 0.61921 0.55865 0.45441 0.36973 030102  0.24495 0.00231
02 0.68592 0.61922 0.55866 0.45442 0.36973 0.30102 24495 0.00231

0.68585 0.61917 0.55863 0.45443 0.36976 0.30105  0.24498 0.00228

0.68079 0.61531 0.55612 0.45429 0.37110 030315 0.24764 —_

0.71720 0.64761 0.58406 0.47392 0.38420 031195  0.25393 0.00392

0.71721 0.64763 0.58408 0.47393 0.38421 0.31196  0.25393 0.00392
0.6 071718 0.64759 0.58405 0.47392 0.38422 0.31198  0.25395 0.00390

0.70857 0.64042 0.57882 0.47283 0.38625 0.31552  0.25775 —

0.74738 0.67499 0.60881 0.49390 0.40017 0.32472  0.26425 0.00441
1.0 0.74740 0.67501 0.60883 0.49392 0.40019 032474  0.26426 0.00442

0.74738 0.67500 0.60881 0.49391 0.40019 032474  0.26426 0.00441

0.73749 0.66655 0.60244 0.49213 0.40201 0.32840  0.26827 —

Note: For every ¢, the first, second, third and the fourth row of data correspond to the EULTPS, EXPTPS, ICNTPS and
ne—2
j=1

analytical solutions, respectively. The average error &(f) = [1/(nc — 1)] Z [uCxj, Dnumerical —#(Xj, ©anatytical |

w0, 1) =aexp(bt), w(l,f)=aexp(bt —c), t>0 (43)

u(x,0) = a exp(—cx) (44)

The analytical solution is given by

u(x, 1) =aexp(bt —cx) and c:?_:_i:_zz)zx_—l—ilx_b>0 (45)
For simplicity, the numerical scheme described in Section 3.1 will be referred to as ICNTPS
(Implicit Crank—Nicholson Thin Plate Spline), while that of Section 3.2 will be referred to as
EXPTPS (Explicit Thin Plate Spline) when Equation (36) is used and as EULTPS (Euler Thin
Plate Spline) when Equation (37) is used.

Table 1 compares the solutions due to ICNTPS, EXPTPS, EULTPS and the analytical solution
for the example given by (42)—(44) when the flow is in the positive direction (v>0), using n,
quasi-random collocation points. It has to be noted that 7. is the total number of collocation points.
Using an additional polynomial with degree 1 in (1) and constructing A in a way to obtain an
N x N system of equations, n. =(N —d — 1) for a d-dimensional problem. It can be seen from
Table I that all the schemes have a good agreement with the analytical solution, with ICNTPS
as the most efficient scheme since it requires less cpu-time by comparison, due to the fact that it
does not need sub-time step divisions for stability constraints.

From stability point of view, it is found that the implicit method ICNTPS is unconditionally sta-
ble, whereas the explicit methods EULTPS and EXPTPS are stable for 6t <2/|4s| = 0.0165, where
Js is the largest modulus eigenvalue of the matrix M= [KVZAy + V - VAJA™Y
Js =—121.544 < Jr <0. Furthermore, several tests were carried out by choosing different values
of &t which lie within the stability condition (40) are found to always give a stable numerical
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Table II. Comparison of the different schemes with the analytical solution for Example 1. n. = 21, x = 0.1,
b=02, c=561553, a= 10, 6t = 0.001, and v = —0.3, Pe = -3.

t x =0.06250 x=025000 x=046875 x=056250 x=0.75000 x = 0.96875 &(t)

1.04577 0.94095 0.83264 0.79054 0.71302 0.62963 0.00082
0.4 1.04577 0.94096 0.83265 0.79055 0.71302 0.62963 0.00082
1.04577 0.94096 0.83265 0.79055 0.71302 0.62963 0.00082
1.04593 0.94140 0.83258 0.78988 0.71094 0.62876 —_
1.13286 1.01934 0.90222 0.85674 0.77285 0.68215 0.00105
1.13286 1.01935 0.90224 0.85675 0.77286 0.68215 0.00105
0.8 1.13286 1.01935 0.90224 0.85675 0.77286 0.68215 0.00105
1.13304 1.01981 0.90192 0.85567 0.77015 0.68113 —
1.17910 1.06097 0.93913 0.89180 0.80449 0.71000 0.00112
1.0 1.17910 1.06098 0.93914 0.89182 0.80450 0.71000 0.00112
1.17910 1.06098 0.93914 0.89182 0.80450 0.71000 0.00112 ~
1.17928 1.06142 0.93873 0.89059 0.80158 0.70893 —

See footnote of Table I for explanatory notes.

solution, whereas by choosing ¢ outside the stability condition, it is found that the solution be-
comes unbounded after a few time steps. '

Table II shows a comparison between the analytical, ICNTPS, EXPTPS, and EULTPS solutions
for the case of v<0. It can be seen that again the schemes are in good agreement with the exact
solution, irrespective of the velocity direction. It can be noticed that the effect of an opposite
advection has contributed in maintaining higher values of u(x,¢) for the second half x>0.5 by
comparison with Table I. Further tests were carried out which show that both the explicit and
implicit methods also work equally well using regular finite-difference type grid points. Figure 1
compares the solutions for an advective-dominated case with large Peclet number Pe =uv/x = 10.
It can be seen that the good accuracy of the schemes is still preserved. For stability analysis
of this case, it is found that the implicit method ICNTPS is unconditionally stable, whereas the
explicit methods EULTPS and EXPTPS are stable for ¢ <2/|4s|=0.0043; As=—466.971 (as
expected from the stability condition (40)). It can be seen, as expected, that the high Peclet
number increases the stability constraints with comparison to the case in Table I

4.2. Example 2: two-dimensional case

Let us consider the following PDE which is encountered in many transport phenomena such as
vorticity, advective, convective heat transfer, decay, species migration, and other diffusive-advective
processes

ou u u ou du
E:;cx@ +1cy5)—)-2- +Dx—8; +Uy@ on Q={(x,»)|0<x,y<1}, >0 (46)

with a Dirichlet boundary type condition
ux, y,t)=h(x,y)—gt on 0Q={(x,y)|x=0,1,y=0,1}, >0 47)
and the initial condition
u(x, y,t)=h(x,y) on ), t=0 (48)
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120 —

u{x,t=0.1)/a

000 020 040 0.60 0.80 1.00

Figure 1. The solution u(x,) at # = 0.1 using 21 random points (Example 1), n. = 21, x = 0.01, b =0.1,
¢ =10.099, « = 1000.0, 5t = 0.01 and v = 0.1, Pe = v/ = 10. )

where ¢ is a positive constant and A(x, y) is given by

h(x,y)zsexp{_(9";2)2 B (9y;2)2}+7exp{_(9x54:)1)2 B (9y1-(l)r 1)}

+4exp {—(9" ; 7 _ Oy 1’ 3)2} 2exp{—(9x — 42 — 9y = T¢}  (49)

Example 2 is solved using the present schemes with 121 quasi-random points and the finite differ-
ence method (FDM) with upwinding on an equivalent grid system of 11 x 11, see Figure 2. The
quasi-random points are generated using the variant of the Sobol sequence suggested by Antonov
and Saleev, see Reference [34] for details. Figure 3 shows a comparison of the solutions at dif-
ferent times using ICNTPS and FDM. It can be seen that both methods give more or less similar
solutions. Similar solutions to that due to ICNTPS are obtained using both EULTPS and EXPTPS.
As stability analysis is concerned, again it is found that the implicit method is unconditionally
stable, whereas the explicit methods are conditionally stable. However, the automatic subdivisions,
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Figure 2. Discretization and the initial condition for Example 2: (a) 121 quasi-random points, (b) 121 regular
type FDM grid points, (c) 3-D plot of initial distribution u(x, y,0), (d) contour of u(x, y,0).

based on the stability criteria, allow the explicit methods to be used for larger time steps without
stability failures and the need for large memory requirements.

5. CONCLUSIONS

The numerical results show that radial basis functions based meshless schemes achieve comparable
results as other mesh/grid-based methods. Furthermore, they are remarkably simple, especially for
complicated domains and higher dimensions.

The thin plate spline has been chosen due to the fact that it is as accurate as the multiquadrics,
but without the additional need to compute a shape parameter [25]. It has already been reported
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clsewhere that radial basis functions based schemes works well on both regular type grid or
quasi-random points distribution and with more or less similar results when different radial basis
functions are used [25]. This should remain valid here and certainly for most linear PDEs. For
instance, Zerroukat et al. [25] showed that for the heat equation both MQ and TPS achieve good
accuracy on problems with regular or complex shaped domains.

When using global radial functions, the resulting matrices are fully populated, which may give
rise to ill-conditioning, especially for large number of points. Although, the ill-conditioning problem
can be resolved using pre-conditioning techniques [35], one has to face the fact that the CPU-
time increases with the number of collocation points. This makes the computation of complex
problems, which necessitate large number of points, relatively expensive. One alternative is the
use of compactly supported radial basis functions [36—38]. This results in a sparse matrices and
avoids the above-mentioned problems related to global radial basis functions. Furthermore, the use
of compactly supported radial basis functions results in an acceptable loss of accuracy but a huge
saving in CPU-time by comparison to globally supported ones [38].
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