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REDUCED MODELS FOR STATISTICALLY STATIONARY AND NON-STATIONARY
FLOWS

M. Tan*, B. Uzunoglu*f, W.G. Price* and E. Rogerst

ABSTRACT

Reduced modelling techniques, based on a Proper
Orthogonal Decomposition (POD) method, are ap-
plied to an investigation of the incompressible
Navier-Stokes equations with inputs. A circular
cylinder in uniform flow with and without inputs is
studied. Reduced dynamical models are created by
POD and by extended POD (EPOD) approaches for
the forced flow which is statistically non-stationary.
A direct control action is applied to the flow at par-
ticular points and this investigation provides insights
to the applications of the proposed approaches cou-
pled with a full solver.

INTRODUCTION

The study presented herein describes the con-
struction of explicit low-order models to design con-
trollers for distributed parameter systems which, in
this context, are fluid flows. Once a control de-
sign has been constructed using such a low order
model, it can be tested by comparing its perfor-
mance against a full high-order simulation.

The difference between modelling for control, and
modelling for analysis of dynamical behaviour is that
in the latter case the system behaviour is statisti-
cally stationary with no external inputs driving the
system. However for controlled systems, we are con-
cerned with preserving the relationship between the
system behaviour and the system inputs and out-
puts, or actuators and sensors.

One model reduction method which has been suc-
cessfully used for dynamical systems’ analysis is a
Proper Orthogonal Decomposition (POD) method? .
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This method has become popular as a means of ex-
tracting dominant energy-containing structures from
fow field data and by using these structures as ba-
sis functions, generating low order dynamical models
for the associated systems. The method has been ap-
plied to fluid problems by Sirovich! and many other
researchers®® to understand the important dynami-
cal features or coherent structures seen in fluid flows.

A full model of the dynamics of such a system is
normally represented by a set of high dimensional
nonlinear differential equations which can be solved
by numerical methods. In this study a cell viscous
boundary element method developed by Tan et al 4
is used to generate the required data for the reduced
model. The POD method describes the system be-
haviour as an attractor which is a point of evolution
for the state space in a subspace of higher dimen-
sions. A reduced solution can be obtained as a lin-
ear combination of an optimal set of empirical basis
functions using an integral equation method such as
the Galerkin projection method.

These bases are created by applying a POD
method for statistically stationary data. When a
fluid flow is subject to a time-dependent control,
the statistical properties of the flow are usually non-
stationary. In this case, an extended POD method
(EPOD) developed by Glezer et al® can be adopted.
Herein applications of the POD and EPOD methods
are investigated in order to derive a reasonable ap-
proximation to time-dependent fows associated with
vortex shedding.

Several model reduction methods have been pro-
posed and applied for statistically non-stationary
systems with control inputs. A control function
method has been applied by Ravindran® to channel
flows. Graham et al 78 have applied a control func-
tion method and penalty method for rotating cylin-
ders in uniform flow. Balanced truncation,? optimal
Hankel methods and Ott-Grebogi-Yorke (OGY)?
methods have been proposed to incorporate the con-
trol input into the model. Neural networks'! and re-
duced basis 12 methods can also be adopted to con-
struct reduced flow models with control inputs. The
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advantages and disadvantages of the applications of
some of these approaches in real-time applications
in flow control are discussed by Gillies™! .

This paper describes an investigation of POD and
EPOD methods to the flow generated by a circu-
lar cylinder in uniform flow and reduced dynamical
models are established for the non-stationary forced
flow.

FULL MODEL

Mathematical Model

A cell viscous boundary element method,* devel-
oped to solve Navier-Stokes equations, is employed
to generate the required data for POD and EPOD
analyses by conducting numerical flow simulations
for vortex shedding flows behind a circular cylin-
der. This numerical scheme of study is a hybrid
approach combining boundary element and finite el-
ement methods. The boundary element method is
applied to fluid cells idealising the fluid domain and
global equations are obtained by means of finite ele-
ment procedures. A brief description of the method
is included herein whereas, a detailed account is de-
scribed by Tan et al*.

The governing equations of the flow defined in
a body fixed coordinate system translating with a
given velocity 9;(t), in terms of a non-dimensional
velocity field v; and pressure p relative to a space
fixed coordinate system, can be written as

b; + (vjvr) e + D5 — [Ve(Vik + Vr,j)] 0 0 (1
vij = 0 (2)

where v, = 1/Re, vj, = v, — 9;(t) and Re is the
Reynolds number.

An integral equation can be formulated from equa-
tions (1) and (2) following the methodology of the
boundary element method. That is,

CE)vs(£,1) + / vy (vl + B2 )dS

=

z Q

where C(£) is a constant, the value of which depends
on the location of the field point £. v}; and Rj; de-
note the fundamental solution and related function®?
respectively. R; is the traction force on the cell
boundary and f; is the resultant term derived from
the acceleration v; after a finite difference scheme is
introduced.

2

Figure 1: An unstructured mesh idealising the fluid
domain.

Discretisation

Integral equation (3) can be applied to each cell in
a mesh idealising the fluid domain as shown in fig.1.
This generates a set of algebraic equations represent-
ing the fluid dynamics on the cell. The application
of continuity conditions to fluid velocity and surface
traction force at cell interfaces allows a global sys-
tem of algebraic equations to be obtained. Their
solution yields the solutions of the flow velocity in
the whole domain.

This method features a high degree of dependence
on analytical solutions in the mathematical model,
allowing retention of accuracy of solution within
the numerical scheme of study. It incorporates a
primitive-variable formulation and applies to both
structured and unstructured meshes. Furthermore,
the use of velocity and surface traction force as the
basic unknowns provides a convenient way of ex-
pressing boundary conditions.

An extensive validation of this numerical method
has been carried out using a number of well doc-
umented flow solutions. Good agreement was
achieved against data produced from other sources,
including theoretical solutions, other numerical pre-
dictions, and experimental observations® 14717 .

Vortex Shedding Problem

Numerical calculations were performed to quantify
and describe the vortex shedding behaviour behind
a circular cylinder in a uniform current with or with-
out control actions. Forcing of the wake at particular
points in the flow is taken as an example of the con-
trol actions to be considered. The boundary con-
ditions and geometry description of this cylinder-
fluid interaction problem are defined in fig.2. Mixed
boundary conditions associated with both traction
and velocity are used.
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Figure 2: Computational domain definition and

boundary conditions for a cylinder in a uniform flow.
All the variables and quantities are nondimensional.

MODEL REDUCTION
FOR STATIONARY FLOWS

Model reduction methods are applied to the non-
linear stationary flow system which can be expressed
formally as,

o(z,t) = NS(v(z, 1)) (4)

where NS denotes the operator of Navier-Stokes
equations.

The approach adopted is essentially data based
and the type of data we wish to analyze are gener-
ated by a nonlinear flow system.

Proper Orthogonal Decomposition Method
for Stationary Flows

It is assumed that a velocity field o(x,t), described
by a set of spatio-temporal data #(z, t;):=7* obtained
at discrete time values ¢; and at fixed points in space,
is expressible in the form
o(z,t) = B(x)+v(z,t), (5)
where ©(z) is the temporal mean of the velocity field.
The components of ¥(z,t;) correspond to scalar
values taken at given points in space. Such spatio-
temporal data can be usually obtained from ei-
ther experimental measurements or numerical simu-
lations of the physical process under study.

3

There are a number of ways to determine quanti-
tatively the underlying spatial structure of a spatio-
temporal data set. For example, a simple approach
to analyze such data is to petform a Fourier decom-
position '®. This is successful if only a few dom-
inant peaks appear in the power spectrum of the
spatial modes, suggesting relatively simple spatial
structures. However, this would not be the best ap-
proach if there exists a coherent spatial structure
composed of many Fourier modes.

A proper orthogonal decomposition method com-
putes these coherent spatial structures directly. The
structures computed are optimal for a given data
set1’219  Once the major spatial structures are
known, their temporal behaviour can be analyzed
using dynamical system theoryh*1°.

The proper orthogonal decomposition method is
a well known analysis technique »'%!° with the
original concept traced to Pearson®®. Several dif-
ferent names including principal component analy-
sis, Karhunen-Loéve decomposition and total-least-
squares estimation have been given to the procedure.

To review briefly the approach, let us consider a
data set ¥(z,t) defined over a finite spatial domain
Q and a finite interval 0 < ¢t < T. To investigate the
structures of fluctuations in the data, the temporal
mean is removed from the velocity field. Thus, the
time average of v(z,t), written as (v(x,t)), is then
zero as can be seen from equation (5).

A function ¢ () can be chosen such that the pro-
jection of the data set onto all possible functions of
¢, (z) is maximal with respect to a normalized form
of g(x) (ie. (@4, d%) = [ Gi(x) - Py (x)d = 1).
In some average sense, we are therefore trying to
maximize

1 ¢ l(v(m’ti)v¢)'2 _ (K¢1¢) —
m e e 9

where m stands for the number of solutions at dif-
ferent time steps.

In this way, an unique orthonormal set of func-
tions ¢y (x) can be found which are the eigenfunc-
tions of the Fredholm type integral equation,

/Q K(z,o) ¢(a)de’ = Ap(z)  (7)

where the kernel K (z, ') is the time averaged cor-
relation function

K(z,z') = (v(z,t)v(@’,1)). (8)

These functions (@y(z), k = 1,---) are called the
empirical eigenfunctions or the coherent structures.
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It can be shown! that any projection of the data
onto a finite set of ¢ (x) is given by

vn(w’t) = Zak(t)(bk(m)' (9)

k=1

A particular eigenvalue \; is used to denote the
variance of the data in the direction of the kth eigen-
function. The error is given by €, = [[v — v,||* and
it is a minimum over all possible sets of orthonormal
functions for any given n. Any sample vector using
the eigenfunctions can be reconstructed such that

B(2,t) = 3(2) + ) a(t)du() (10)

k=1

where coefficients a(t) are to be determined from the
reduced dynamical equations.

Since the building blocks of low dimensional at-
tractors need to be identified from spatio-temporally
complex data, a high resolution in space is usually
required and, to do so, the size of the spatial data
D > m. In this case, the practical approach to cal-
culate the correlation function is not to determine
the D x D correlation matrix but to use the dual
approach on the m snapshots' . This method is also
known as sample space setting*® . Here we consider
the snapshot vectors v(z,t;), ¢ = 1,...,m and de-
termine the empirical eigenfunctions ¢, (z) as a lin-
ear combination of the snapshots given by

bu(2) = alu(z, ) (11)

such that equation (7) holds. The corresponding
eigenvalue problem is to find the eigenvalues and
eigenfunctions of a symmetric m X m matrix defined

by,

Aa® = \al® (12)
where
1
Aij = — / ’U(il!,t,;) . 'U(:B,tj) dz (13)
m Ja -
and a® is a single column array with agk) intro-

duced in equation (11) as elements.

Since the trace of the matrix A represents the av-
eraged energy retained in the snapshots, the energy
corresponding to the velocity data is the sum of the
eigenvalues of the correlation function, in the sense

that
E=) X\

i=1

(14)
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An energy percentage can be assigned to each eigen-
function based on the eigenvalue associated with the
eigenfunction, such that

Ak
E

Under the assumption that the eigenvalues are ar-
ranged in descending order from the largest to the
smallest, we then have an ordering of the eigenfunc-
tions from most energetic to least energetic.

When the eigenvector a(*) of equation (12) is
scaled such that chz('“)H2 = (m/\k)_l, the eigenfunc-
tions ¢, (z),k = 1,--+,m form a set of orthonormal
functions. Namely,

E, = (15)

/Qq&k(a:) - ¢py(z)dz = dni- (16)

The coefficients a(t) at given discrete times ¢; can
be computed from a projection of the sample vector
onto an eigenfunction through the expression

an(ts) = /n o(@,t:) - du(z) dz

=miral®. (17)

%

This relationship can be used to determine the
initial conditions and projection data required in the
time integration of a(t).

Reduced Modelling Based on POD Method

To construct lower order mathematical models a
Galerkin projection®! was used. The objective of
this approach is to replace the given dynamics by
the dynamics of the subspace in the form

a(t) = f(a(t))

where a(t) is the time-dependent amplitude of the
basis functions.

For reduced modelling of the flow field, it is as-
sumed that

(18)

n

B(z,t) = B(x) + Y ax(t)dy(z)

k=1

(19)

with aj(t) determined from the Navier-Stokes equa-
tions given in equation (1).

If the operator [ ¢;; () d, defined in a Hilbert
space, is applied to the Navier-Stokes equation, the
following reduced model can be obtained. That is,

da: N N N
dtz + b; +zc,~j a; +ZZdijk a; ag =0 (20)

ji=1 j=1k=1
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b = /Ve¢ji,k (Tjx + Trj)de
Q

+ /(ﬁj,’ Uk ﬁj,kdm-f- /¢jiRjd$, (21)
Q 5
/ S Uik PrjdT
Q
+ /¢li T P1jr de
Q
+ /Ve¢zi,k (1je + Frja)de, (22)
Q
dijr = /dm Omk®lj,m dz (23)
Q

where a tensor index notation with summation con-
vention is adopted in equations (21-23) to simplify
the expressions. Here the first subscript of ¢ refers
to the component of ¢ as a vector whereas the sec-
ond subscript denotes the order of ¢ as an eigen-
function. In the problems under examination the
boundary integral term in equation (21) is zero since
¢, R = 0 on the boundary X. Note also that
equation (2) is satisfied automatically since the ba-
sis functions created by the POD method are diver-
gence free because of their definition® .

MODEL REDUCTION
FOR NON-STATIONARY FLOWS

For problems associated with non-stationary flows
with forcing, the system under examination is of the
form

(e, t) = NS(v(z,t),
z(t) = h{v(z,1))

where ¢ denotes the control input and z represents
an output signal.

c(z, )
(24)

Proper Orthogonal Decomposition Method
for Non-Stationary Flows

If the fluid flow is time-periodically forced, phase
relationships may not be captured by statistically
stationary two-point correlations and therefore si-
multaneous measurements are required® .

The classical POD method is based on two-
point correlations of time series and is therefore
not the best approach to non-stationary flows. For
flows subject to time-dependent excitations, phase-
independent correlations may not exist. As a result

5

of the lack of stationarity, correlations therefore de-
pend on the initial and final points in the time series.

Because of the statistical non-stationarity of the
data, the computed eigensets derived from snapshots
of the velocity field depend on the initial and final
times of the portions of the time series under exam-
ination. For this purpose the POD method requires
extension as described by Glezer et al® in develop-
ing the EPOD method. This is an ensemble average
of two-point correlations of velocity. For statisti-
cally stationary data, the EPOD is equivalent to the
classical POD. However, in a suboptimal control ap-
proach as discussed in this paper, the basis of the
reduced model can be reset using the velocity field
generated from the full low solver determined from
previous iterations. This analysis is similar to the
one adopted in an EPOD method.

For a flow simulation subject to an external forc-
ing term F(z,t), the reduced model to determine
the time-dependent amplitude of the basis functions
ax(t) has a form similar to the one given in equa-
tion (20) with the right-hand-side zero term replaced
by the generalized forcing term of f;(t) given by

= / Flz,t)- ¢, dz. (25)
Q

If the continuous forcing is specified as combina-
tions of point forces acting at glven locations in the

fluid such that F(z,t) =Y, F g(l ) then
fi(t) can be expressed as
l)
Z FO1) 4:("). (26)

This forcing description may be typified by a simpli-
fied model of the effect of oscillating wires in a flow
field.

NUMERICAL RESULTS

Reduced Modelling for Stationary Flows

Using a cell viscous boundary element method, nu-
merical data were derived describing the character-
istics of vortex shedding in the wake of a circular
cylinder in uniform flow at Re=200. Forty snap-
shots per cycle were collected. Fig.3 shows the mag-
nitudes of the eigenvalues produced from this set of
data. It confirms the rapid decrease of the magni-
tudes of the eigenvalues of higher modes and since
they indicate the energy level in each mode, the re-
sults show that the first few modes contain most of
the energy associated with this steady vortex shed-
ding flow. Thus it is possible to capture the main

American Institute of Aeronautics and Astronautics
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Figure 3: Magnitudes of the eigenvalues associated
with different modes characterising the wake flow
behind a cylinder in uniform flow at Re=200.

features of the flow with a much reduced model as
long as the dominant modes capturing this energy
are included in the model.

Fig.4(a) shows the vector plots of a flow field
represented by the time averaged flow in one cycle
and fig.4(b,c) show the first two most energy domi-
nant dynamic modes. The main features of the vor-
tex shedding process can be constructed from these
modes involving a phase shift in time.

When these eigenfunctions are used as basis func-
tions in the POD method, their amplitudes can be
found by integrating equation (20). Here a 4th order
Runge-Kutta method is used for the time integra-
tion and the results are plotted in fig.5 for the first
6 functions. The good agreement between the pre-
dicted and projected amplitudes of these basis func-
tions confirms the validity and benefit of the POD
method to model the type of lows under examina-
tion using low order models. ‘

Table 1 illustrates the energy retained in the re-
duced model against the number of modes admitted
in the analysis as a percentage of the total energy of
all the dynamic modes. For the three cases exam-
ined, i.e. Reynolds number Re=100, 150 and 200,
more than 99.9% of energy is retained if only the
first 6 modes are adopted in the reduced models.

Although Reynolds number (i.e. v, = 1/Re) is one
of the parameters in the reduced model described
by equations (20-23), equation (20) cannot be used
to model flows at different Reynolds number with-
out modifying the modes involved as well. In some
cases, however, the snapshots of flows at different
Reynolds numbers may be combined to approximate

6

Figure 4: The vector plots of velocity of (a) mean
flow, (b) mode 1, (c) mode 2.
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Figure 5: Comparisons of predicted and projected
amplitudes of (a): first two modes; (b): modes 3-6.
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No. of Energy retained (%)

modes | Re=100 | Re=150 | Re=200
2 97.195 97.754 97.996
4 99.161 98.955 99.058
6 99.970 99.955 99.952
8 99.997 99.992 99.989

Table 1: Percentage of energy retained in the re-
duced models versus number of modes included.

Reynolds Strouhal number Relative
number | Predicted | Williamson®* | error (%)
100 0.1650 0.1643 0.4
110 0.1680 0.1690 0.6
120 0.1720 0.1731 0.6
130 0.1760 0.1768 0.5
140 0.1805 0.1802 0.2
150 0.1845 0.1834 0.6
160 0.1875 0.1864 0.6
170 0.1905 0.1892 0.7
180 0.1935 0.1919 0.8
190 0.1955 0.1945 0.5
200 0.1980 0.1970 0.5
Table 2: Predicted shedding frequencies versus

Reynolds number.

the snapshots at another Reynolds number which
then can be used to produce basis functions in the
POD method. As an example, 40 snapshots were
collected from each flow simulation at Re=100 and
Re=200. New snapshots at other Reynolds num-
bers (i.e. 100 <Re< 200) were generated by in-
terpolation of these snapshots and this information
was incorporated in the reduced models to predict
shedding frequencies. The results of the calculated
Strouhal number are presented in table 2 for a se-
ries of Reynolds numbers. Also included are data
generated by the universal empirical relationship
given by Williamson.?? The experimentally deter-
mined Strouhal values of Williamson have an accu-
racy claimed to the 1% level and the universal empir-
ical relationship was obtained through interpolation
of the observed data. As can be seen from table 2,
the agreement between the predicted Strouhal num-
bers and Williamson’s data is very good.

Reduced Modelling with Control Actions

Oscillatory body forces applied to the fluid are
treated as an example of control actions. In the case
considered, four oscillatory point forces are applied

American Institute of Aeronautics and Astronautics



at the four points (0.34, £0.43) and (1.05, £0.68) be-
hind the cylinder and their frequency of oscillation
is close to that observed in the vortex shedding pro-
cess.

Three ow simulations were carried out using the
reduced model with (a) no forcing included and (b)
forcing applied in the x-direction only and (c) forcing
applied in the y-direction only. The streakline pat-
terns of these simulations are shown in fig.6 which
illustrates clearly the effect of forcing on the vortex
shedding process.

Figure 6: The streakline patterns of lows with (a):
no forcing; (b): forcing in z direction; (c): forcing
in y direction.

In order to investigate further the effect of the con-
trol actions in the reduced model, calculations were
performed using forcing functions with different fre-
quencies and amplitudes. The power spectrum of
the velocity field generated by the reduced model
was studied under different forcing conditions and
data were obtained for the entrainment region de-
fined by Gillies!? . The data are illustrated in fig.7
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Figure 7: Forcing entrainment region'! with stars

(*) indicating points of calculation and the dash line
(= — —) as an interpolation of the data points.

and the best fit curve shows a familiar V shape sim-
ilar to Gillies’ results.

CONCLUDING REMARKS

A Proper Orthogonal Decomposition method is
used to investigate reduced flow modelling of the vor-
tex shedding wake exhibited behind a circular cylin-
der. The method is found very effective in creat-
ing reduced models to describe vortex shedding pro-
cesses. The method can also be applied for different
Reynolds number cases with modified snapshots or
data sets.

A reduced model has also been constructed where
forcing terms are treated as control actions in the
fuid domain and flow simulations with different forc-
ing descriptions have been conducted.

The method discussed herein can also be adopted
to the situation when the control action is the forced
oscillation of the cylinder. In this case the oscilla-
tion of the cylinder is treated as an inertial force
term in the Navier-Stokes equations, if the problem
is formulated in a body fixed reference system.
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