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Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neu-
rons is analyzed in terms of spontaneous pattern formation. It is shown
how the ring bifurcates from a synchronous state to a non:phase-locked
state whose spike trains are characterized by clustered but irregular fluc-
tuations of the interspike intervals (ISIs). The separation of these clusters
in phase space results in a localized peak of activity as measured by the
time-averaged firing rate of the neurons. This generates a sharp orienta-
tion tuning curve that can lock to a slowly rotating, weakly tuned exter-
nal stimulus. Under certain conditions, the peak can slowly rotate even
to a fixed external stimulus. The ring also exhibits hysteresis due to the
subcritical nature of the bifurcation to sharp orientation tuning. Such be-
havior is shown to be consistent with a corresponding analog version of
the IF model in the limit of slow synaptic interactions. For fast synapses,
the deterministic fluctuations of the ISIs associated with the tuning curve
can support a coefficient of variation of order unity.

1 Introduction

Recent studies of the formation of localized spatial patterns in one- and
two-dimensional neural networks have been used to investigate a variety
of neuronal processes including orientation selectivity in primary visual
cortex (Ben-Yishai, Bar-Or, Lev, & Sompolinsky, 1995; Ben-Yishai, Hansel,
& Sompolinsky, 1997; Hansel & Sompolinsky, 1997; Mundel, Dimitrov, &
Cowan, 1997), the coding of arm movements in motor cortex (Lukashin &
Georgopolous, 1994a, 1994b; Georgopolous, 1995), and the control of sac-
cadic eye movements (Zhang, 1996). The networks considered in these stud-
ies are based on a simplified rate or analog model of a neuron, in which
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the state of each neuron is characterized by a single continuous variable
that determines its short-term average output activity (Cowan, 1968; Wil-
son & Cowan, 1972). All of these models involve the same basic dynamical
mechanism for the formation of localized patterns: spontaneous symmetry
‘breaking from a uniform resting state (Cowan, 1982). Localized structures
consisting of a single peak of high activity occur when the maximum (spa-
tial) Fourier component of the combination of excitatory and inhibitory
interactions between neurons has a wavelength comparable to the size of
the network. Typically such networks have periodic boundary conditions
so that unraveling the network results in a spatially periodic pattern of ac-
tivity, as studied previously by Ermentrout and Cowan (1979a, 1979b) (see
also the review by Ermentrout, 1998).

In contrast to mean firing-rate models, there has been relatively little
analytical work on pattern formation in more realistic spiking models. A
number of numerical studies have shown that localized activity profiles can
occur in networks of Hodgkin-Huxley neurons (Lukashin & Georgopolous,
1994a, 1994b; Hansel & Sompolinsky, 1996). Moreover, both local (Somers,
Nelson, & Sur, 1995) and global (Usher, Stemmler, Koch, & Olami, 1994)
patterns of activity have been found in integrate-and-fire (IF) networks.
Recently a dynamical theory of global pattern formation in IF networks
has been developed in terms of the nonlinear map of the neuronal firing
times (Bressloff & Coombes, 1998b, 2000). A linear stability analysis of this
map shows how, in the case of short-range excitation and long-range in-
hibition, a network that is synchronized in the weak coupling regime can
destabilize as the strength of coupling is increased, leading to a state char-
acterized by clustered but irregular fluctuations of the interspike intervals
(ISTs). The separation of these clusters in phase-space results in a spatially -
periodic pattern of mean (time-averaged) firing rate across the network,
which is modulated by deterministic fluctuations in the instantaneous fir-
ing rates.

In this article we apply the theory of Bressloff and Coombes (1998b, 2000)
to the analysis of localized pattern formation in an IF version of the model of
sharp orientation tuning developed by Hansel and Sompolinsky (1997) and
Ben-Yishai et al. (1995, 1997). We first study a corresponding analog model
in which the outputs of the neurons are taken to be mean firing rates. Since
the resulting firing-rate function is nonlinear rather than semilinear, it is not
possible to construct exact solutions for the orientation tuning curves along
the lines of Hansel and Sompolinsky (1997). Instead, we investigate the
existence and stability of such activity profiles using bifurcation theory. We
show how a uniform resting state destabilizes to a stable localized pattern
as the strength of neuronal recurrent interactions is increased. This localized
state consists of a single narrow peak of activity whose center can lock to
a slowly rotating, weakly tuned external stimulus. Interestingly, we find
that the bifurcation from the resting state is subcritical: the system jumps
to a localized activity profile on destabilization of the resting state, and
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hysteresis occurs in the sense that sharp orientation tuning can coexist with
a stable resting state.

We then turn to the full IF model and show how an analysis of the nonlin-
ear firing time map can serve as a basis for understanding orientation tuning
in networks of spiking neurons. We derive explicit criteria for the stability
of phase-locked solutions by considering the propagation of perturbations
of the firing times throughout the network. Our analysis identifies regions
in parameter space where instabilities in the firing times cause (subcritical)
bifurcations to non-phase-locked states that support localized patterns of
mean firing rates across the network similar to the sharp orientation tun-
ing curves found in the corresponding analog model. However, as found
in the case of global pattern formation (Bressloff & Coombes, 1998b, 2000),
the tuning curves are modulated by deterministic fluctuations of the ISIs
on closed quasiperiodic orbits, which grow with the speed of synapses. For
sufficiently fast synapses, the resulting coefficient of variation (Cy) can be
of order unity and the ISIs appear to exhibit chaotic motion due to breakup
of the quasiperiodic orbits.

2 The Model

We consider an IF version of the neural network model for orientation tun-
ing in a cortical hypercolumn developed by Hansel and Sompolinsky (1997)
and Ben-Yishai et al. (1997). This is a simplified version of the model studied
numerically by Somers et al. (1995). The network consists of two subpopu-
lations of neurons, one excitatory and the other inhibitory, which code for
the orientation of a visual stimulus appearing in a common visual field (see -
Figure 1). The index L = E, I'will be used to distinguish the two populations.
Each neuron is parameterized by an angle ¢, 0 < ¢ < &, which represents
its orientation preference. (The angle is restricted to be from 0 to 7 since
a bar that is oriented at an angle 0 is indistinguishable from one that has
an orientation x.) Let Ur(¢, t) denote the membrane potential at time t of a
neuron of type L and orientation preference ¢. The neurons are modeled as
IF oscillators evolving according to the set of equations

- aUL(¢, D)

T =l —U$, 0+ X1.0,  L=El @.1)

where hy is a constant external input or bias, 7g is a membrane time constant,
and X1 (¢, t) denotes the total synaptic input to a neuron ¢ of type L. Periodic
boundary conditions are assumed so that UL (0, t) = Up(r, ). Equation 2.1is
supplemented by the condition that whenever a neuron reaches a threshold
«, it fires a spike, and its membrane potential is immediately reset to zero.
In other words, ’

Ur(p, t7) =0 whenever Up(¢, 1) =«, L=E1I (2.2)
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Figure 1: Network archltecture of a ring model of a cortical hypercolumn (see
Hansel & Sompolmsky, 1997).

For concreteness, we set the threshold ¥ = 1 and take hy = 0.9 < «, so that
in the absence of any synaptic inputs, all neurons are quiescent. We also fix
the fundamental unit of time to be of the order 5-10 msec by setting 7o = 1.
(All results concerning firing rates or interspike intervals presented in this
article are in units of 1.

The total synaptic input X,(¢, t) is taken to be of the form

X@ =3 / W Wi — ) Y@, O+ (@, 0, 23
M=E,I

where Wip(¢ — ¢’) denotes the interaction between a presynaptic neuron
¢’ of type M and a postsynaptic neuron ¢ of type L, and Ym(¢', t) is the
effective input at time t induced by the incoming spike train from the presy-
naptic neuron (also known as the synaptic drive; Pinto, Brumberg, Simons,
& Ermentrout, 1996). The term hy (¢, t) represents the inputs from the lateral
geniculate nucleus (LGN). The weight functions Wy are taken to be even
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and r-periodic in ¢ so that they have the Fourier expansions

Wie(p) = WEE+2) " WiF cos(2kg) > 0 (2.4)
k=1
o0
Wii(g) = —W§' — 2" Wil cos(2kg) < 0. (2.5)
k=1

Moreover, the interactions are assumed to depend on the degree of similarity
of the presynaptic and postsynaptic orientation preferences, and to be of
maximum strength when they have the same preference. In order to make
a direct comparison with the results of Hansel and Sompolinsky (1997},
almost all our numerical results will include only the first two harmonics
in equations 2.4 and 2.5. Higher harmonics (WLM, n > 2) generate similar-
looking tuning curves.
Finally, we take

Yo, ) = [0 dep(D) (. t— 1), (2.6)

where p(t) represents some delay distribution and fi(¢, t) is the output
spike train of a neuron ¢ of type L. Neglecting the pulse shape of an indi-
vidual action potential, we represent the output spike train as a sequence
of impulses,

fi@, 0= 8(t—TH$), @7

kez

where T¥(¢), integer k, denotes the kth firing time (threshold-crossing time)
of the given neuron. The delay distribution p(z) can incorporate a number
of possible sources of delay in neural systems: (1) discrete delays arising
from finite axonal transmission times, (2) synaptic processing delays asso-
ciated with the conversion of an incoming spike to a postsynaptic potential,
or (3) dendritic processing delays in which the effects of a postsynaptic po-
tential generated at a synapse located on the dendritic tree at some distance
from the soma are mediated by diffusion along the tree. For concreteness,
we shall restrict ourselves to synaptic delays and take p(t) to be an alpha
function (Jack, Noble, & Tsien, 1975; Destexhe, Mainen, & Sejnowsky, 1994},

0(7) = Pre" T O (1), (2.8)

where « is the inverse rise time of a postsynaptic potential, and @(z) = 1
if > 0 and is zero otherwise. We expect axonal delays to be small within
a given hypercolumn. (For a review of the dynamical effects of dendritic
structure, see Bressloff & Coombes, 1997.)
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It is important to see how the above spiking version of the ring model is
related to the rate models considered by Hansel and Sompolinsky (1997) and
Ben-Yishai et al. (1997). Suppose the synaptic interactions are sufficiently
slowthatthe output f1.(¢, t) of aneuron can be characterized reasonably well
by a mean (time-averaged) firing rate (see, for example, Amit & Tsodyks,
1991: Bressloff & Coombes, 2000). Let us consider the case in which p(t) is
given by the alpha function 2.8 with a synaptic rise time ™! significantly
Ionger than all other timescales in the system. The total synaptic input to
neuron ¢ of type L will then be described by a slowly time-varying function
Xr(¢, ), such that the actual firing rate will quickly relax to approximately
the steady-state value; as determined by equations 2.1 and 2.2. This implies
that * Dot

G = £, 1), (2.9

with the steady-state firing-rate function f given by
ho+X -

(For simplicity, we shall ignore the effects of refractory period, which is
reasonable when the system is operating well below its maximal firing rate.)
“Equation 2.9 relates the dynamics of the firing rate directly to the stimulus
dynamics X (¢, t) thro‘ugh the steady-state response function. In effect, the
use of a-slowly varying distribution p(z) allows a consistent definition of
the firing rate so that a dynamical network model can be based on the
steady-state properties of an isolated neuron.
Substitution of equations 2.6 and 2.9 into 2.3 yields the extended Wilson-
Cowan equations (Wilson & Cowan, 1973):

X =) /O %‘f~WLm¢~¢’) fo dep(e) F(Xu(@', t— 1))

M=E,I
+ hi (g, D). (2.11)

An alternative version of equation 2.11 may be obtained for the alpha func-
tion delay distribution, 2.8, by rewriting equation 2.6 as the differential
equation

1 82y, 23Y;
——= 4 =+ Y] = (X .
e t oo = oW, (2.12)
with X} given by equation 2.3 and Yi(¢, t),dY. (¢, £)/dt = O as t — —oo0.
Similarly, taking p () = we~** generates the particular version of the Wilson-
Cowan equations studied by Hansel and Sompolinsky (1997),
Y,

Ol_l*a'r + YL = f(XL) (213)
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There are a number of differences, however, between the interpretation of
Y, in equation 2.13 and the corresponding variable considered by Hansel
and Sompolinsky (1997). In the former case, Y1(¢, t) is the synaptic drive of a
single neuron with orientation preference ¢, and f is a time-averaged firing
rate, whereas in the latter case, Y] represents the activity of a population of
neurons forming an orientation column ¢, and f is some gain function. It
is possible to introduce the notion of an orientation column in our model
by partitioning the domain 0 < ¢ < & into N segments of length =/N such
that

wtDa/N

mp(gy, ) =N fr(@, 1), k=0,1,...,N—-1 (2.14)

kt/N i
represents the population-averaged firing rate within the kth orientation
column, ¢ = kr/N. (Alternatively, we could reinterpret the IF model as a
caricature of a synchronized column of spiking neurons.)

Hansel and Sompolinsky (1997) and Ben-Yishai et al. (1995, 1997) have
carried out a detailed investigation of orientation tuning in the mean firing-

‘rate version of the ring model defined by equations 2.3 and 2.13 with f a
semilinear gain function. They consider external inputs of the form

hi(p, & = CTL[1 = x + x cos(2(p — ¢o(D)))] (2.15)

for 0 < x < 0.5. This represents a tuned input from the LGN due to a
visual stimulus of orientation ¢y. The parameter C denotes the contrast
of the stimulus, I't, is the transfer function from the LGN to the cortex,
and x determines the angular anisotropy. In the case of a semilinear gain
function, f(x) = 0if x < 0, f(x) = xif x > 0,and f(x) = 1 for x > 1,
it is possible to derive self-consistency equations for the activity profile
of the network. Solving these equations shows that in certain parameter
regimes, local cortical feedback can generate sharp orientation tuning curves
in which only a fraction of neurons are active. The associated activity profile
consists of a single peak centered about ¢ (Hansel & Sompolinsky, 1997).
This activity peak can also lock to a rotating stimulus ¢g = Qt provided that
{2 is not too large; if the inhibitory feedback is sufficiently strong, then it is
possible for spontaneous wave propagation to occur even in the absence of
a rotating stimulus (Ben-Yishai et al., 1997).

The idea that local cortical interactions play a central role in generating
sharp orientation tuning curves is still controversial. The classical model
of Hubel and Wiesel (1962) proposes a very different mechanism, in which
the orientation preference of a cell arises primarily from the geometrical
alignment of the receptive fields of the LGN neurons projecting to it. A
number of recent experiments show a significant correlation between the
alignment of receptive fields of LGN neurons and the orientation prefer-
ence of simple cells functionally connected to them (Chapman, Zahs, &



2480 P. C. Bressloff, N. W. Bressloff, and J. D. Cowan

Stryker, 1991; Reid & Alonso, 1995). In addition, Ferster, Chung, and Wheat
(1997) have shown that cooling a patch of cortex and therefore presumably
- abolishing cortical feedback does not totally abolish the orientation tuning
exhibited by excitatory postsynaptic potentials (EPSPs) generated by LGN
- input. However ‘there is.also growing experimental evidence suggesting

. the importance of cortical feedback. For example, the blockage of extracel-

lular inhibition in cortex leads to considerably less sharp orientation tuning
(Sillito, Kemp, Milson, & Beradi, 1980; Ferster & Koch, 1987; Nelson, Toth,
Seth, & Mur, 1994). Moreover, intracellular measurements indicate that di-
rect inputs from the LGN to neurons in layer 4 of the primary visual cortex
provide only a fraction of the total excitatory inputs relevant to orientation
selectivity (Pei, Vidyasagar, Volgushev, & Creutzseldt, 1994; Douglas, Koch,
Mahowald, Martin, & Suarez, 1995; see also Somers et al., 1995). In addition,
there is evidence that orientation tuning takes about 50 to 60 msec to reach
its peak, and that the dynamics of tuning has a rather complex time course
(Ringach, Hawken, & Shapley, 1997), suggesting some cortical involvement.

The dynamical mechanism for sharp orientation tuning identified by
Hansel and Sompolinsky (1997) can be interpreted as a localized form of
spontaneous pattern formation (at least for strongly modulated cortical in-
teractions). For general spatially distributed systems, pattern formation con-
cerns the loss of stability of a spatially uniform state through a bifurcation
to a spatially periodic state (Murray, 1990). The latter may be stationary or
oscillatory (time periodic). Pattern formation in neural networks was first
studied in detail by Ermentrout and Cowan (1979a, 1979b). They showed
‘how competition between short-range excitation and long-range inhibition
in a two-dimensional Wilson-Cowan network can induce periodic striped
and hexagonal patterns of activity. These spontaneous patterns provided a
possible explanation for the generation of visual hallucinations. (See also
Cowan, 1982.) At first sight, the analysis of orientation tuning by Hansel and
Sompolinsky (1997) and Ben-Yishai et al. (1997) appears to involve a differ-
ent dynamical mechanism from this, since only a single peak of activity is
formed over the domain 0 < ¢ < x rather than a spatially repeating pattern.
This apparent difference vanishes, however, once it is realized that spatially
periodic patterns would be generated by “unraveling” the ring. Thus, the
one-dimensional stationary and propagating activity profiles that Wilson
and Cowan (1973) found correspond, respectively, to stationary and time-
periodic patterns on the 7 periodic ring. In the following sections, we study
orientation tuning in both the analog and IF models from the viewpoint of
spontaneous pattern formation.

3 Orientation Tuning in Analog Model

We first consider orientation tuning in the analog or rate model described
by equation 2.11 with the firing-rate function given by equation 2.10. This
may be viewed as the & — 0 limit of the IF model. We shall initially restrict
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ourselves to the case of time-independent external inputs hy(¢). Given a ¢-
independent input hi(¢) = Cy, the homogeneous equation 2.11 has at least
one spatially uniform solution Xj (¢, t) = X, where

Xi= ) WM&y +Cr. @.1)
M=E,I

The local stability of the homogeneous state is found by linearizing equa-

tion 2.11 about Xj. Setting x;.(¢, ) = X(¢, £) — X1 and expanding to first
order in xj, gives

™ dg’ N /
w@.0= 3 [ L -9) [ drom@.t- 0. 62

M=E,I
where ypy = F(Xp) and f = df/dX. Equation 3.2 has solutions of the form
xp(¢, t) = ZpeleTHm 3.3

For each n, the eigenvalues v and corresponding exgenvectors Z = (Zg Zp¥
satisfy the equation

Z=pmW.z, (34)
where
o vr d aZ
pv) = - = 3.5
) fo R (3.5)
for the élpha function 2.8, and
. }/EWEE _waEI
Wy = r1115 [111 (3.6)
vEWy  —vWy

The state X; will be stable if all eigenvalues v have a negative real part. It
follows that the stability of the homogeneous state depends on the partic-
ular choice of weight parameters WM and the external inputs Cy, which
determine the factors yz. On the other hand, stability is independent of the
inverse rise time «. (This « independence will no longer hold for the IF
model; see section 4.)

In order to simplify matters further, let us consider a symmemc two-
population model in which

Cr = C, WEE = WE = wE, wWE=wl=w. 3.7)
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Equation 3.1 then has a solution X; = X, where X is the unique solution of
the equation X = Wy f (% + C. We shall assume that C is superthreshold, -
“hy +. C > 1; otherwise X Csuch that f(X) = 0. Moreover, ¥ =.y = f'(X)

" for L= E, Isothat W, = yWn Equations 3.4 through 3.6 then reduce to the .
elgenvalue equat1on

(; + 1) =yr ' (3.8)

for integer n, where AL are the eigenvalues of the weight matrix W, with
corresponding eigenvectors Z:

_ 1 N
M= W= WE- WL g =0, z+=(1>, Z; = (1§WI) (3.9

It follows from equatlon 3 8 that X is stable with respect to excitation of
the (—) modes Zg, Z; cos(2kg), Z, sin(2kg). If y Wn < 1 for all n then X
is also stable with respect to excitation of the corresponding (+) modes
This implies that the effect of the superthreshold LGN input hr(¢) =

is to switch the network from an inactive state to a stable homogeneous
active state. In this parameter regime, sharp orientation tuning curves can
be generated only if there is a sufficient degree of angular anisotropy in
the afferent inputs to the cortex from the LGN, that is, x in equation 2.15
must be sufficiently large (Hansel & Sompolinsky, 1997). This is the classmal

- model of orientation tuning (Hubel & Wiesel, 1962).

‘An alternative mechanism for sharp orientation tuning can be obtamed
by having strongly modulated cortical interactions such that y W, <1 for
all n # 1'and yW; > 1. The homogeneous state then destabilizes due to
excitation of the first harmonic modes Z;f cos(2¢), Zf sin(2¢). Since these
modes have a single maximum in the interval (0, 7), we expect the network
to support an activity profile consisting of a solitary peak centered about
some angle ¢y, which is the same for both the excitatory and inhibitory
populations. For ¢-independent external inputs (x = 0), the location of this
center is arbitrary, which reflects the underlying translational invariance of
the network. Following Hansel and Sompolinsky (1997), we call such an ac-
tivity profile a marginal state. The presence of a small, angular anisotropy in
theinputs (0 < x « 1inequation 2.15) breaks the translational invariance of
the system and locks the location of the center to the orientation correspond-
ing to the peak of the stimulus (Hansel & Sompolinsky, 1997; Ben-Yishai et
al., 1997). In contrast to afferent mechanisms of sharp orientation tuning, x
can be arbitrarily small.

From the symmetries imposed by equations 3.7, we can restrict ourselves
to the class of solutions X () = X(t), L = E, I, such that equation 2.11 re-
duces to the effective one-population model

X(¢, 1) =/o %?W@ - ¢')/0 drp(@) (X, t—1)+C  (3.10)
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Figure 2: Phase boundary in the (W,, W;)-plane (solid curve) between a stable
homogeneous state (H) and a stable marginal state (M) of the analog model for
C = 1. Also shown are data points from a direct numerical simulation of a sym-
metric two-population network consisting of N' = 100 neurons per population
and sinusoidal-like weight kernel W(¢) = Wy + 2W, cos(2¢). (a) Critical cou-
pling for destabilization of homogeneous state (solid diamonds). (b) Lower crit-
ical coupling for persistence of stable marginal state due to hysteresis (crosses).

with W(¢) = Wp + 2372 ; Wycos(2ng) and W, fixed such that y W, < 1
for all n # 1. Treating W; as a bifurcation parameter, the critical coupling
at which the marginal state becomes excited is given by W, = Wi, where
Wic = 1/f(X) with X dependent on Wy and C. This generates a phase
boundary curve in the (W, W))-plane that separates a stable homoge-
neous state and a marginal state. (See the solid curve in Figure 2.) When
the phase boundary is crossed from below, the network jumps to a stable
marginal state consisting of a sharp orientation tuning curve whose width
(equal to 7 /2) is invariant across the parameter domain over which it ex-
ists. This reflects the fact that the underlying pattern-forming mechanism
selects out the first harmonic modes. On the other hand, the height and
shape of the tuning curve will depend on the particular choice of weight
coefficients W, as well as other parameters, such as the contrast C. Note
that sufficiently far from the bifurcation point, additional harmonic modes
will be excited, which may modify the width of the tuning curve, lead-
ing to a dependence on the weights Wy. Indeed, in the case of a semilin-
ear firing-rate function, the width of the sharp tuning curve is found to
be dependent on the weights W, (Hansel & Sompolinsky, 1997), reflect-
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ing the absence of an additional nonlinearity selecting out the fundamental
harmonic. '

Examples of typical tuning curves are illustrated in Figure 3a, where we
show results of a direct numerical simulation of a symmetric two-population
analog network. The steady-state firing rate f(¢) of the marginal state is
plotted as a function of orientation preference ¢ in the case of a cosine weight
kernel W(¢) = Wy+2W, cos(2¢). It can be seen that the height of the activity
profile increases with the weight W;. Note, however, that if W becomes too
large; then the marginal state is itself destroyed by amplitude instabilities.
The height also. increases with contrast C. Consistent with the results of
Hansel and Sompolinsky (1997) and Ben-Yishai et al. (1997), the center of
the activity peak can lock to a slowly rotating, weakly tuned stimulus as
illustrated in Figure 3b. Also shown in Figure 3a is the tuning curve for a
Mexican hat weight kernel W(¢) = Ale‘¢2/ 20} _ Aze“¢2/ 2% over the range
—m/2 < ¢ < /2. The constants oy, A; are chosen so that the corresponding
Fourier coefficients satisfy y Wy > 1 and y W, < 1 for all n 3 1. The shape
of the tuning curve is very similar to that obtained using the simple cosine.
To reproduce more closely biological tuning curves, which have a sharper
peak and broader shoulders than obtained here, it is necessary to introduce
some noise into the system (Dimitrov & Cowan, 1998). This smooths.the
firing rate function, 2.10, to yield a sigmoid-like nonlinearity.

Interestingly, the marginal state is found to exhibit hysteresis in the sense
that sharp orientation tuning persists for a range of values of W; < Wi.
That is, over a certain parameter regime, a stable homogeneous state and
a stable marginal state coexist (see data points in Figure 2). This suggests
that the bifurcation is subcritical, which is indeed found to be the case, as
we now explain. In standard treatments of pattern formation, bifurcation
theory is used to derive nonlinear ordinary differential equations for the
amplitude of the excited modes from which existence and stability can be
determined, at least close to the bifurcation point (Cross & Hohenberg, 1993;
Ermentrout, 1998). Suppose that the firing-rate function f is expanded about
the (nonzero) fixed point X,

(X))~ fR=yX-X)+aX-X)+gX-3*+--, (311

where y = f'(X), g2 = "(X)/2, g3 = f”(X)/6. Introduce the small param-
eter € according to W; — Wi = €2 and substitute into equation 3.10 the
perturbation expansion,

X, ) — X = [Z(t)ez"m’ + Z*(t)e*z""‘ﬁ] + O, (3.12)

where Z(t), Z*(t) denote a complex conjugate pair of O(e) amplitudes.
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Figure 3: Sharp orientation tuning curves for a symmetric two-population ana-
log network (N = 100) with cosine weight kernel W(¢) = Wy + 2W, cos(2¢).
(a) The firing rate f(¢) is plotted as a function of orientation preference ¢ for
various W, with Wy = —0.1, C = 0.25 and o = 0.5. Also shown (solid curve) is
the corresponding tuning curve for a Mexican hat weight kernel with o, = 20
degrees, 03 = 60 degrees, and A; = A/,/2nof. (b) Locking of tuning curve to -
a slowly rotating, weakly tuned external stimulus. Here Wy = —0.1, W, = 1.5,
C = 0.25, @ = 1.0. The degree of angular anisotropy in the input is x = 0.1,
and the angular frequency of rotation is Q = 0.0017 (which corresponds to

approximately 10 degrees per second).
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A standard perturbatlon calculation (see appendix A and Ermentrout,
1998) shows that Z(t) evolves according to an equation of the form

dz "
E—Z(WI W15+A|Z|), (3.13)
where
3gs  2[ Wi zwo]
= 2. 4 =2e . 3.14
A=lz 2[1—)’W2 =7 W, (3.14)

Since W) and A are all real, the phase of Zis arbitrary (reflecting a marginal
state), whereas the amplitude is given by |Z| = /|W; — Wy |/A. It is clear
that a stable marginal state will bifurcate from the homogeneous state if
and only if A < 0. A quick numerical calculation shows that A > 0 for
all Wy, W,, and C. This implies that the bifurcation is subcritical, that is,
the resting state bifurcates to an unstable broadly tuned orientation curve
whose amplitude is O(e). Since the bifurcating tuning curve is unstable, it is
not observed in practice; rather, one finds that the system jumps to a stable,
large-amplitude, sharp tuning curve that coexists with the resting state and
leads to hysteresis effects as illustrated schematically in Figure 4a. Note that
in the case of sigmoidal firing-rate functions f(X), the bifurcation may be
either sub- or supercritical, depending on the relative strengths of recurrent
excitation and lateral inhibition (Ermentrout & Cowan, 1979b). If the latter
is sufficiently strong, then supercritical bifurcations can occur in which the
resting state changes smoothly into a sharply tuned state. However, in the
case studied here, the nonlinear firing-rate function f(X) of equation 2.10 is
such that the bifurcation is almost always subcritical.

The underlying translational invariance of the network means that the
center of the tuning curve remains undetermined for a ¢-independent LGN
input (marginal stability). The center can be selected by including a small
degree of angular anisotropy along the lines of equation 2.15. Suppose, in
particular, that we replace C on the right-hand side of equation 3.10 by an
LGN input of the form h(¢, t) = C[1 — x + x cos(2[¢ — wt])] for some slow
frequency o. If we take x = €, then the amplitude equation 3.13 becomes

dz . 2 —2iwt
= _Z(Wl ~ Wic + AlZ| )+Ce . (3.15)

Writing Z = re~?(@+¢0 (with the phase ¢ defined in a rotating frame), we
obtain the pair of equations:

= r(W; — Wic+ Ar®) + Ccos 20 (3.16)

. C .
0=0w-— é;sm(ze). (3.17)
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0 Wi

Figure 4: (a) Schematic diagram illustrating hysteresis effects in the analog
model. As the coupling parameter W, is slowly increased from zero, a critical
point ¢ is reached where the homogeneous resting state (H) becomes unstable,
and there is a subcritical bifurcation to an unstable, broadly tuned marginal state
(M_}. Beyond the bifurcation point, the system jumps to a stable, sharply tuned
marginal state (M), which coexists with the other solutions. If the coupling
W, is now slowly reduced, the marginal state M,. persists beyond the original
point ¢ so that there is a range of values Wi(d) < W; < W,(c¢) over which a
stable resting state coexists with a stable marginal state (bistability). At point d,
the states M, annihilate each other, and the system jumps back to the resting
state. (b) Illustration of an imperfect bifurcation in the presence of a small de-
gree of anisotropy in the LGN input. Thick solid (dashed) lines represent stable
(unstable) states.
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Thus, provided that w is sufficiently small, equation 3.17 will have a stable
fixed-point solution in which the phase ¢ of the pattern is entrained to the
signal. Another interesting consequence of the anisotropy is that it generates
animperfect bifurcation for the (real) amplitude r due to the presence of the
r-independent term § = Ccos(28) on the right-hand side of equation 3.16.
This is illustrated in Figure-4b.

4 Orientation Tuning in IF Model

Our analysis of the analog model in section 3 ignored any details concerning
neural spike trains by taking the output of a neuron to be an average firing
rate. We now return to the more realistic IF model of equations 2.1 through
2.3 in which the firing times of individual spikes are specified. We wish to
identify the analogous mechanism for orientation tuning in the model with
spike coding. - : -

4.1 Existence and Stability of Synchronous State. The first step is to
specify what is meant by a homogeneous activity state. We define a phase-
locked solution to be one in which every oscillator resets or fires with the
same collective period Tthat must be determined self-consistently. The state
of each oscillator can then be characterized by a constant phase nr(¢) with
0 < n1(¢) < 1and 0 < ¢ < 7. The corresponding firing times satisfy T’L‘(zb) =
(k—n1(¢)) T, integer k. Integrating equation 2.1 between two successive firing
events and incorporating the reset condition 2.2 leads to the phase equations

1= (1-e hy+ Cr)

m d !
+ 5 [" EWiaeto - 9 Katom@) - m@). L=EI @)
M=E,1”0

A

where Wip(¢) is given by equations 2.4 and 2.5, and

T
ket =T [ dee Y pte+ (ke D, 2)

keZ

Note that for any phase-locked solution of equation 4.1, the distribution of
network output activity across the network, as specified by the ISIs

A () = T () — Th(@), 4.3)

ishomogeneous since A (¢) = Tforallke Z,0 < ¢ < x, L = (E, I). Inother
words, each phase-locked state plays an analogous role to the homogeneous
state X of the mean firing-rate model. To simplify our analysis, we shall
concentrate on instabilities of the synchronous state n1(¢) = 7, where 7 is
an arbitrary constant. In order to ensure such a solution exists, we impose
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Figure 5: Variation of collective period T of synchronous state as a function of
W, for different contrasts C and inverse rise times «. '

the conditions 3.7 so that equation 4.1 reduces to a single self-consistency
equation for the collective period T of the synchronous solution

1= (1-e"NCy + WoKr(0), (4.4)

where we have set Cp = hp+Cand Wy = WE— W1, Solutions of equation 4.4
are plotted in Figure 5.

The linear stability of the synchronous state can be determined by con-
sidering perturbations of the firing times (van Vreeswijk, 1996; Gerstner,
van Hemmen, & Cowan, 1996; Bressloff & Coombes, 1998a, 1998b, 2000):

T (@) = (k— T+ 54¢). (4.5)

Integrating equation 2.1 between two successive firing events yields a non-
linear mapping for the firing times that can be expanded as a power series
in the perturbations 8% (¢). This generates a linear difference equation of the
form

Ar[sf*' @) - 59)]
R T dg’ n [sk=lcary _ sk
=3 rt) [Z L Wi - [l -stw)] o

with

T
Gr(h = e~T /0 dt elp'(t+ IT) @)
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Ar=Co—1+Wo ) p(kD. (4.8)
keZ

Equation 4.6 has solutions of the form
k() =efets L=F,] (4.9)

where v € Cand 0 < Im v < 27. The eigenvalues v and associated eigen-
vectors Z = (8g, 87)" for each integer n satisfy the equation

Azle’ —1]Z = [ET(v)w,, - ET(O)D] vA (4.10)
’where
Grov) =Y Grbe™ (@.11)
k=0

and

WEE _WEI WEE _ WEI 0
wom (e i) (0" uplg) w2

In order to simplify the subsequent analysis, we impose the same sym-
metry conditions 3.7 as used in the study of the analog model in section 3.
We can then diagonalize equation 4.10 to obtain the result

Arle” = 1] = BrnE — Cr(0) W, 4.13)"

where AF are the eigenvalues of the weight matrix W, (see equation 3.9).
Note that one solution of equation 4.13 is v = 0 and n = 0 associated with
excitation of the uniform (+) mode. This reflects invariance of the system
with respect to uniform phase shifts in the firing times. The synchronous
state will be stable if all other solutions of equation 4.13 satisfy Re v < 0.
Following Bressloff and Coombes (2000), we investigate stability by first
looking at the weak coupling regime in which W, = O(e) for some ¢ « 1.
Performing a perturbation expansion in ¢, it can be established that the
stability of the synchronous state is determined by the nonzero eigenvalues
in a small neighborhood of the origin, and these satisfy the equation (to
first order in €} Apv = (\F — Wo)G1(0). For the alpha function 2.8, it can
be established that Ar > 0, whereas Gr(0) = K(0)/T < 0. Therefore,
the synchronous state is stable in the weak coupling regime provided that
Wyn > Wy for all n # 0 and Wy < 0. Assuming that these two conditions
are satisfied, we now investigate what happens as the strength of coupling
W, is increased for fixed Wy, n s 1. First, it is easy to establish that the
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synchronous state cannot destabilize due to a real eigenvalue v crossing the
origin. In particular, it is stable with respect to excitations of the (—) modes.
Thus, any instability will involve one or more complex conjugate pairs of
eigenvalues v = =iw crossing the imaginary axis, signaling (for & # =) the
onset of a discrete Hopf bifurcation (or Neimark-Sacker bifurcation) of the
firing times due to excitation of a (+) mode & (¢) = etioke®2¢ [ = E, I In
the special case w = 7, this reduces to a subharmonic or period doubling
bifurcation since e*" = —1.

4.2 Desynchronization Leading to Sharp Orientation Tuning. Inorder
to investigate the occurrence of a Hopf (or period-doubling) bifurcation in
the firing times, substitute v = iw into equation 4.13 for n = 1 with A} = W,
and equate real and imaginary parts to obtain the pair of equations

Arlcos(w) — 1] = Wi C(w) — WeC0), Arsin(w) = - WiS(w), (4.14)
where
C(w) = Re Gr(iv), S(w) = ~Im Gr(iw). (4.15)

Explicit expressions for C(w) and S(w) in the case of the alpha function
delay distribution 2.8 are given in appendix B. Suppose that «, W, and
Cy are fixed, with T = T(a, Wy, Cp) the unique self-consistent solution of
equation 4.4 (see Figure 5). The smallest value of the coupling parameter,
W, = W, for which a nonzero solution, w = wy # 0, of the simultaneous
equations 4.14 is then sought. This generates a phase boundary curve in
the (Wy, W) plane, as illustrated in Figure 6 for various C and «. Phase
boundaries in the (o, W;) plane and the (C, W;) plane are shown in Figures 7
and 8, respectively.

The cusps of the boundary curves in these figures correspond to points
where two separate solution branches of equation 4.14 cross; only the lower -
branch is shown since this determines the critical coupling for destabiliza-
tion of the synchronous state. The region below a given boundary curve
includes the origin. Weak coupling theory shows that in a neighborhood of
the origin, the synchronous state is stable. Therefore, the boundary curve
is a locus of bifurcation points separating a stable homogeneous state from
a marginal non-phase-locked state. It should also be noted that for each
boundary curve in Figures 6 and 7, the left-hand branch signals the onset
of a (subcritical) Hopf bifurcation (wgy # ), whereas the right-hand branch
signals the onset of a (subcritical) period doubling bifurcation (wy = 7); the
opposite holds true in Figure 8. However, there is no qualitative difference
in the observed behavior induced by these two types of instability.

Direct numerical simulations confirm that when a phase boundary curve
is crossed from below, the IF network jumps to a stable marginal state con-
sisting of a sharp orientation tuning curve as determined by the spatial
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Figure 6: Phase boundary in the (W;, W)) plane between a stable synchronous
state and a marginal state of a symmetric two-population IF network. Boundary
curves-are shown for C = 1 and various values of the inverse rise time «. In each
case, the synchronous state is stable below a given boundary curve.

distribution of the mean (time-averaged) firing rates a(¢). The latter are
defined according to a(¢) = A(p)~! where

M

"A(p) = lim ; Y A™g), (4.16)

m=—M

with A™(¢) given by equation 4.3. (We do not distinguish between excitatory
and inhibitory neurons here since they behave identically in a symmetric
two-population network.) The resulting long-term average behavior of the
IF network for W; > W, is illustrated in Figure 9a. For the given choice of
parameter values, the activity profile is in good quantitative agreement with
the corresponding profile obtained in the analog version of the network (see
Figure 3). Moreover, as in the case of the analog network, (1) the marginal
state exhibits hysteresis (suggesting that the bifurcation is subcritical), and
(2) the center of the sharp orientation tuning curve is able to lock to a slowly
rotating, weakly tuned external stimulus (see Figure 9b).

Comparison of the phase diagrams of the IF model (Figures 6-8) and
the corresponding analog model (Figure 2) shows a major difference in
the predicted value of the critical coupling Wy, in the two models. The
critical coupling Wy, in the IF model converges to the corresponding analog
result (which is a-independent) in the limit « — 0. This is particularly
clear in Figure 8. However, for nonzero «, we expect good quantitative
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Figure 7: Phase boundary in the (¢, W,) plane between a stable homogeneous
state and a marginal state of a symmetric two-population IF network. Boundary
curves are shown for C = 0.25 and various values of Wp.

agreement between the two models only when (1) there is an approximate
balance between the mean excitatory and inhibitory coupling (Wp ~ 0) and
(2) synaptic interactions are sufficiently slow (& < 1). Both conditions hold
in Figures 9. Outside this parameter regime, the higher value of Wi, for the
IF model leads to relatively high levels of mean firing rates in the activity
profile of the marginal state, since large values of W, imply strong short-
range excitation. The condition Wy ~ 0 can be understood in terms of the
self-consistency condition for the collective period T of the synchronous
state given by equation 4.4. As Wy becomes more negative, the period T
increases (see Figure 5) so that «T > 1 and the reduction to the analog
model is no longer a good approximation. (In Bressloff & Coombes, 2000,
the period T is kept fixed by varying the external input.)

4.3 Quasiperiodicity and Interspike Interval Variability. We now ex-
plore in more detail the nature of the spatiotemporal dynamics of the ISIs
occurring in the marginal state of the IF model. For concreteness, we con-
sider a symmetric two-population network with W, = 0 for all n > 2. We
shall proceed by fixing the parameters Wy, W;, and C such that a sharp
orientation tuning curve exists and considering what happens as « is in-
creased. In Figure 10 we plot the ISI pairs (A1 (¢), A"(¢)), integer n, for
all the excitatory neurons in the ring. It can be seen from Figure 10a that
for relatively slow synapses (¢ = 2), the temporal fluctuations in the ISIs
are negligible. There exists a set of spatially separated points reflecting the
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Figure 8: Phase boundary in the (C, W,) plane between a stable synchronous
state and a marginal state of a symmetric two-population IF network: Boundary
curves are shown for W, = —0.1 and various values of the inverse rise time «.
The solid curve corresponds to the analog maodel, whereas the dashed curves
correspond to the IF model.

#-dependent variations in the mean firing rates a(¢), as shown in Figure 9.
However, as « is increased, the system bifurcates to a state with periodic or
quasiperiodic fluctuations of the ISIs on spatially separated invariant cir-
cles (see Figure 10b). Although the average behavior is still consistent with
that found in the corresponding analog model, the additional fine structure
associated with these orbits is not resolved by the analog model. In order
to characterize the size of the ISI fluctuations, we define a deterministic
coefficient of variation Cy(¢) for a neuron ¢ according to

oo (A(p) — B(9)) )
O =Tz '

with averages defined by equation 4.16.

The Cy(¢) is plotted as a function of ¢ for various values of « in Figure 11a.
This shows that the relative size of the deterministic fluctuations in the
mean firing rate is an increasing function of . For slow synapses (@ — 0),
the Cy is very small, indicating an excellent match between the IF and
analog models. However, the fluctuations become much more significant
when the synapses are fast. This is further illustrated in Figure 11b, where
we plot the variance of the ISIs against the mean. The variance increases
monotonically with the mean, which shows why groups of neurons close
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Figure 9: Sharp orientation tuning curves for a symmetric two-population IF
network (N = 100) and cosine weight kernel. (a) The mean firing rate a(¢) is
plotted as a function of orientation preference ¢ and various W,. Same parameter

values as Figure 3a. (b) Locking to a slowly rotating, weakly tuned external
stimulus. Same parameters as Figure 3b.

to the edge of the activity profile in Figure 11a (so that the mean firing rate
is relatively small) have a larger Cy . An interpretation of this behavior is
that neurons with a low firing rate are close to threshold (i.e., there is an
approximate balance between excitation and inhibition), which means that
these neurons are more sensitive to fluctuations. Another observation from
Figure 11b is that the fluctuations decrease with the size of the network: this

appears to be a finite-size effect since there is only a weak dependence on
Nfor N > 200. ‘

2495
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Figure 10: Separation of the ISI orbits for a symmetric two-population IF net-
work (N = 100) with Wy = —0.5, W, = 2.0, C =0.25. @) o = 2. (b) = 5.
The (projected) attractors of the ISI pairs with coordinates (A" (¢), A"(¢)) are
shown for all excitatory neurons.

In Figure 12 we plot (A™"1(¢), A™(¢)) for two selected neurons: one with
a low Cy/fast firing rate and the other with a high Cy/low firing rate. Re-
sults are shown for @ = 8 and &« = 20. Corresponding ISI histograms are
presented in Figure 13. These figures establish that for fast synapses, the ISIs
display highly irregular orbits with the invariant circles of Figure 10b no
longer present. An interesting question that we hope to pursue elsewhere
concerns whether the underlying attractor for the ISIs supports chaotic dy-
namics, for it is well known that the breakup of invariant circles is one
possible route to chaos, as has previously been demonstrated in a num-
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Figure 11: (a) Plot of the coefficient of variation Cyv(¢) as a function of ¢ for
various values of the inverse rise time a. (b) Plot of variance against the mean of
the ISIs for various values of inverse rise time « and network size N. All other
parameter values are as in Figure 10,

ber of classical fluid dynamics experiments (Bergé, Dubois, & Vidal, 1986).
As partial evidence for chaotic ISI dynamics, we plot the power spectrum
{h(p)|? of a neuron with high Cy in Figure 14. We consider a sequence of ISIs
over M+ 1 firing events {Ay, k=1, ... M} and define

1 &
h(p) = — Y eZilop, 4.18
(p) «/I\_/Ige X (4.18)

where p=m/Mform=1,..., M. Although the numerical data are rather



2498 P. C. Bressloff, N. W. Bressloff, and J. D. Cowan

- 1.8
(a)
1.4
n : X .
A(¢) highCy gt |
1 . * ":i:":':':‘
0.6
, low Cy
© 0.2 0.6 1 1.4 1.8
A1)
1.8 ,
(b)
1.4
AN($)
1 .
s:,: .!:'?; K Lt ‘ high Cy
0.6 .;:;‘:"' bR N * .
2 % low Cy )
0.2 0.6 1 1.4 1.8

AnN-1(¢)

Figure 12: Same as Figure 10 except that (a) & = 8 and (b) « = 20. The attractor
is shown for two excitatory neurons: one with a low Cy and the other with a

high Cy.

noisy, it does appear that there is a major difference between the quasiperi-
odic regime shown in Figure 10 and the high-Cy regime of Figure 12. The
latter possesses a broadband spectrum, which is indicative of (but not con-
clusive evidence for) chaos.

There is currently considerable interest in possible mechanisms for the
generation of high Cys in networks of cortical neurons. This follows the
recent observation by Softky and Koch (1993) of high variability of the ISIs
in data from cat V1 and MT neurons. Such variability is inconsistent with
the standard notion that a neuron integrates over a large number of small
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Figure 13: Histograms of 1000 firing events for selected excitatory neurons in a
symmetric two-population IF network: (a) & = 8, low Cy. (b) = 8, high Cy.
(© a=20,low Cy. @) o = 20, high Cy. All other parameter values are as in
Figure 10.

(excitatory) inputs, since this would lead to a regular firing pattern (as a
consequence of the law of large numbers). Two alternative approaches to
resolving this dilemma have been proposed. The first treats cortical neurons
as coincidence detectors that fire in response to a relatively small number of
excitatory inputs arriving simultaneously at the (sub)millisecond level—a
suggested mechanism for the amplification of a neuron's response is active
dendrites (Softky & Koch, 1993). The second approach retains the picture
of a neuron as a synaptic integrator by incorporating a large number of
inhibitory inputs to balance the effects of excitation so that a neuron oper-
ates close to threshold (Usher et al., 1994: ‘Tsodyks & Sejnowski, 1995; van
Vreeswijk & Sompolinsky, 1996, 1998). These latter studies incorporate a de-
gree of randomness into a network either in the form of quenched disorder
in the coupling or through synaptic noise (see also Lin, Pawelzik, Ernst, &
Sejnowski, 1998). We have shown that even an ordered network evolving
deterministically can support large fluctuations in the ISIs provided that the
synapses are sufficiently fast. For the activity profile shown in Figure 11a,
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Figure 14: (a) Spectrum of a neuron in the quasiperiodic regime (& = 5). (b) Spec-
trum of a high-Cy neuron with & = 20. All other parameter values are as in
Figure 10.

only a subset of neurons have a Cy close to unity. In order to achieve a con-
sistently high Cy across the whole network, it is likely that one would need
to take into account various sources of disorder present in real biological
networks.

5 Intrinsic Traveling Wave Profiles

So far we have restricted our analysis of orientation tuning to the case of
a symmetric two-population model in which the excitatory and inhibitory
populations behave identically. Sharp orientation tuning can still occur if
the symmetry conditions 3.8 are no longer imposed, provided that the first
harmonic eigenmodes are excited when the homogeneous resting state is
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destabilized (n = 1 in equation 3.3 or 4.9). Now, however, the heights of
the excitatory and inhibitory activity profiles will generally differ. More
significant, it is possible for traveling wave profiles to occur even in the
absence of a rotating external stimulus (Ben Yishai et al., 1997). In order
to illustrate this phenomenon, suppose that equation 3.7 is replaced by the
conditions

wE -w) W —K
CL=C Wo=(W _wi) Wl=(K _w) (5.1)

Sy

with K > Wand WIM = 0 for all n > 2. First consider the analog model
analyzed in section 3. Under the conditions 5.1, the fixed-point equation 3.1
has solutions X = X, L = E, I, where X = W f(X) + C with Wo = WE - Wi,
Linearization about this fixed point again yields the eigenvalue equation 3.8,
with the eigenvalues of the weight matrices W, of equation 5.1 now given

by
A =Wo, Ay =0, AF=siw, W =VEE- We (5.2)
0 0 1

Equations 3.8 and 5.2 imply that the fixed point X is stable with respect to
excitation of the n = 0 modes provided that yWo < 1. On the other hand,
substituting for AZ* using equation 5.2 shows that there exist solutions for v
of the form

LA ALV (6.3)
o 2

Hence, at a critical coupling Wy = Wy, = 2/y, the fixed point undergoes a
Hopf bifurcation due to the occurrence of a pair of pure imaginary eigenval-
ues v = io. The excited modes take the form Z*e/@e \where Z* are the
eigenvectors associated with Azi and correspond to traveling wave activity
profiles with rotation frequency .

Let us now turn to the case of the IF model analyzed in section 4. Linear
stability analysis of the synchronous state generates the eigenvalue equa-
tion 4.13 with A¥ given by equation 5.2. Following similar arguments to
section 3, it can be established that the synchronous state is stable in the
weak coupling regime provided that Wy < 0. It is also stable with respect
to excitations of the n = 0 modes for arbitrary coupling strength. Therefore,
we look for strong coupling instabilities of the synchronous state by substi-
tuting v = iw in equation 4.13 for n = 2. Equating real and imaginary parts
then leads to the pair of equations

Arleos(w) — 1] = WiS(@) — WoC(0), Arsin(w) = W, C(w). (5.4)
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Figure 15: Phase boundary in the (W, W}) plane between a stable synchronous
state and a traveling marginal state of an asymmetric two-population IF net-
work. Boundary curves are shown for C = 0.25 and various values of the inverse
rise time o. For each « there are two solution branches, the lower one of which
determines the point of instability of the synchronous state. The boundary curve
for the analog model is also shown (thick line).

Examples of boundary curves are shown in Figure 15 for W; as a function
of Wy with « fixed. For each «, there are two solution branches, the lower
one of which determines the point at which the synchronous state desta-
bilizes. At first sight it would appear that there is a discrepancy between
the IF and analog models, for the lower boundary curves of the IF model
do not coincide with the phase boundary of the analog model even in the
limit « — 0 and Wy — 0. (Contrast Figure 15 with Figure 8, for exam-
ple.) However, numerical simulations reveal that as the lower boundary
curve of the IF model is crossed from below, the synchronous state desta-
bilizes to a state consisting of two distinct synchronized populations—one
excitatory and the other inhibitory. The latter state itself destabilizes for
values of W, beyond the upper boundary curve, leading to the formation
of an intrinsically rotating orientation tuning curve. In Figure 16 we plot
the spike train of one of the IF neurons associated with such a state. The
neuron clearly exhibits approximately periodic bursts at an angular fre-
quency &~ m /61y, where the time constant 7y is the fundamental unit of
time. This implies that orientation selectivity can shift over a few tens of
milliseconds, an effect that has recently been observed by Ringach et al.
(1997).
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Figure 16: Oscillating spike train of an excitaiory neuron in a traveling marginal
state of an asymmetric two-population IF network. Here Wy = —1.0, W, = 4.2,
WEE =425, WEE = 200 = J, N =50, C= 1.0, and & = 2.0,

6 Discussion

Most analytical treatments of network dynamics in computational neuro-
science are based on analog models in which the output of a neuron is taken
to be a mean firing rate (interpreted in terms of either population or time
averaging). Techniques such as linear stability analysis and bifurcation the-
ory are used to investigate strong coupling instabilities in these networks,
which induce transitions to states with complex spatiotemporal activity pat-
terns (see Ermentrout, 1998, for a review). Often a numerical comparison
is made with the behavior of a corresponding network of spiking neurons
based on the IF model or, perhaps, a more detailed biophysical model such
as Hodgkin-Huxley. Recently Bressloff and Coombes (2000) developed an-
alytical techniques for studying strong coupling instabilities in IF networks
allowing a more direct comparison with analog networks to be made. We
have applied this dynamical theory of strongly coupled spiking neurons to
a simple computational model of sharp orientation tuning in a cortical hy-
percolumn. A number of specific results were obtained that raise interesting
issues for further consideration.

e Just as in the analog model, bifurcation theory can be used to study
orientation tuning in the IF model. The main results are similar in that
the coefficients of the interaction function W(¢) = Wp + 2W; cos(2¢)
play a key role in determining orientation tuning. If the cortical in-
teraction is weak—both Wy and Wi small—then, as may be expected,
only biases in the geniculocortical map can give rise to orientation
tuning. However, if W is sufficiently large, then only a weak genicu-
locortical bias is needed to produce sharp orientation tuning at a given
orientation.
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e Such a tuning is produced via a subcritical bifurcation, which im-
plies that the switching on and off of cortical cells should exhibit
hysteresis (Wilson & Cowan, 1972, 1973). Thus, both tuned and un-
tuned states could coexist under certain circumstances, in both the
analog and the IF model. It is of interest that contrast and orientation-
dependent hysteresis has been observed in simple cells by Bonds
(1991).

o Strong coupling instabilities in the IF model involve a discrete Hopf
or period doubling bifurcation in the firing times. This typically leads
to non-phase-locked behavior characterized by clustered but irreg-
ular variations of the ISIs. These clusters are spatially separated in
phase-space, which results in a localized activity pattern for the mean
firing rates across the network that is modulated by fluctuations in
the instantaneous firing rate. The latter can generate Cys of order
unity. Moreover, for fast synapses, the underlying attractor for the
ISIs as illustrated in Figure 12 appears to support chaotic dynam-
ics. Evidence for chaos in disordered (rather than ordered) balanced
networks has been presented elsewhere (van Vreeswijk & Sompolin-
sky, 1998), although caution has to be taken in ascribing chaotic be-
havior to potentially high-dimensional dynamical systems. Another
interesting question is to what extent the modulations of mean fir-
ing rate observed in the responses of some cat cortical neurons to
visual stimuli by Gray and Singer (1989) can be explained by dis-
crete bifurcations of the firing times in a network of spiking
neurons.

e In cases where the excitatory and inhibitory populations comprising
the ring are not identical, traveling wave profiles can occur in response
to a fixed stimulus. This implies that peak orientation selectivity can
shift over a few tens of milliseconds. Such an effect has been observed
by Ringach et al. (1997) and again occurs in both the analog and IF
models.

e Certain care has to be taken in identifying parameter regimes over
which particular forms of network operation occur, since phase dia-
grams constructed for analog networks differ considerably from those
of IF networks (see Figure 8). For example, good quantitative agree-
ment between the localized activity profiles of the IF and analog mod-
els holds only when there is an approximate balance in the mean
excitatory and inhibitory coupling and the synaptic interactions are
sufficiently slow.
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Appendix A

Let X(¢, ) = X be a homogeneous fixed point of the one-population model
described by equation 3.9, which we rewrite in the more convenient form:

1 #X@,0 | 20X@.0

w? 9t « ot TX@0

b4 d /
= fo L Wip — o) FX@, )+ C. A1)

Suppose that the weight distribution W(¢) is given by

W(g) = Wo+2 " Wycos(2ke). (A2)
k=1

Expand the nonlinear firing-rate function about the fixed point Xas in equa-
tion 3.11. Define the linear operator

132X 2
i X-}-—-a—)f—}-X—yW*X (A3)

Ix=—-"=
o 3« 9t

in terms of the convolution Wx X(¢) = [ W(¢—¢")X(¢')d¢' /. The opera-
tor L has a discrete spectrum with eigenvalues v satisfying (cf. equation 3.7)

2
(1+2) =vwi (A.4)
o
and corresponding eigenfunctions
X(9, t) = z, €%%¢ 4 7t e2s, (A.5)

Suppose that W, for some n s 0 is chosen as a bifurcation parameter
and y Wy < 1 for all k # n. Then W, = W, = y~! is a bifurcation point
for destabilization of the homogeneous state X due to excitation of the nth
modes. Set Wy — Wae = €%, We(¢) = W($)Iw,=w,., and perform the follow-
ing perturbation expansion:

X=X+4eX|+€eXp +--- (A.6)

Introduce a slow timescale t = €?t and collect terms with equal powers of
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€. This leads to a hierarchy of equations of the form

o) X=WofX+C A7)
O@): LXi=0 (A.8)
OE?): 1eXp = g Wex X2 (A.9)

. 2 38X,
O LXy=gW, X? + 28 W, x X1 X5 — [:a—é?l- —yfy % Xl] , (A.10)

where ic = X—y WexX and fp(¢) = cos(2n¢). The O(1) equation determines
the fixed point X. The O(¢) equation has solutions of the form

Xi(8, 0) = 2(z) €40 4 2*(r) 2%, (A11)
We shall determine a dynamical equation for the complex amplitude z(t)
by deriving so-called solvability conditions for the higher-order equations.

We proceed by taking the inner product of equations A.9 and A.10 with

the linear eigenmode A.11. We define the inner product of two periodic func-
tions U, V according to (U|V) = [i" U*(¢) V(¢)de/m. The O(e?) solvability
condition (X Iich) = ( is automatically satisfied since

(X1 We* XE) = 0. (A.12)
The O(e%) solvability condition (X;|L.X3) = 0 gives

(Xﬂé% = Wex Xi) = g(X|Wex X3) + 28X | W, % X1 Xz). (A.13)
First, we have

(ezj"q&ls{;—)?—yfn*xl) = 5————)/2 (A.19)
and

(€M W % X3y = Wi /0” (j[_qb (ze21n¢ i Z*e~21n¢>3 o=2ing

= 3W, czlz%. (A.15)
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The next step is to determine U,. From equation A.9 we have
n d¢/ , ,
V@) -7 [ Witp - 8 a9
T d /
& [ LW -9Ui@Y
0 T
e [zz Waneli® 1 22 Wype=4ind 4 2|72 Wo] . (A.16)
Let

Xa(¢) = Vet 1+ V_ e~ 4V + kX (9). (A.17)

The constant « remains undetermined at this order of perturbation but does
not appear in the amplitude equation for z(t). Substituting equation A.17
into A.16 yields

8222 Wap 8222 Way 25 Wy
= , L= 0 Y= . A.18
* 1 —yWap 1 —yWs, 0 1-yW ( )
Using equation A.18, we find that
n . .
(M | W, X1 Xy) = Wiy / do (ze2'"¢ + z*e-z’"¢)
0o T
x (v+e4’"¢ + Vo™t 4 Vo g X (¢)) o 2ine
= Wy, clZ*Vy + 2V0]
W 2Wo
= 2 - . A.19
G2 Wh,czl2| [1—}/W2n+1—‘}/W0:| ( )

Combining equations A.14, A.15, and A.19, we obtain the Stuart-Landau
equation,

dz _ z(1 + Ajz]?), (A.20)
dr

where we have absorbed a factor y«/2 into r and

3g3 2g§ [ Wzn ZWQ :I
A= -554 =L + . A.21
y: R [1—yWa  1—yWp (A.21)

After rescaling, €z = Z, © = €2t, this becomes

dZ
G = ZWa = Wae+ AIZP). (A.22)
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Appendix B

In this appendix we write explicit expressions for various quantities evalu-
ated in the particular case of the alpha function 2.8. First, the phase interac-
tion function defined by equation 4.2 becomes

2 1= -T
K1) = T T (D™ 4 Tpe ™ L ay(De ™| (B

Te—oT 1 1 1—eT

ah =11y D=1 1oer ®.2

Second, equations 2.8 and 4.7 give

= R Fy(T)e T~
GT(U) T {—e-oTv - (1 _ e—aT——u)2 ’ (B3)
wherek
Fo(T) = atel [(1 — aT+a2T)ed-oT - 1] (B.A)
0T T2 '
_ Ta3e—T A-a)T
FI(T) =T [e - 1] . (B.5)

Finally, setting v = iw in equation B.3 and taking real and imaginary parts
leads to the result

C(w) = a(w)C(w)
— b(w) (cos(a))[C(a))Z — S(w)?] — 2sin(w) C(w)S(a))) (B.6)

S(w) = a(w)S(w)
— b(w) (sin(w)[C(w)z — S(@)?] + 2 cos(w) C(cu)S(cu)) (B.7)

—~aT
Fy(T) Fi(T)e (B.9)

a(w) = m, b(w) =

T [Cw)? + S(w)?]?

and Cw) = 1 — e7*T cos(w), S(w) = e *T sin(w).
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