The University of Southampton
University of Southampton Institutional Repository

The application of neural computing methods to the modelling of fatigue in Ni-base superalloys

Schooling, J.M. and Reed, P.A.S. (1996) The application of neural computing methods to the modelling of fatigue in Ni-base superalloys In, Kissinger, R.D., Deye, D.J., Anton, D.L., Cetel, A.D., Nathal, M.V., Pollock, T.M. and Woodford, D.A. (eds.) Superalloys 1996. Eighth International Symposium on Superalloys Warrendale, USA, TMS pp. 409-417.

Record type: Book Section

Abstract

The current financial climate is driving a move towards increased use of computer modelling techniques in alloy design and development in order to reduce cost. In this paper the potential for use of neural computing methods in the prediction of fatigue resistance in Ni-base superalloys is assessed. Initial work has been conducted on the Stage II (Paris regime) behaviour, as the literature indicates that this is the simplest region of the fatigue crack growth curve to predict, with an approximately linear relationship existing between log(da/dN and log(AK), and the crack growth rates being principally affected by temperature, Young’s modulus and yield strength. These three parameters were chosen for initial data collection and modelling. The predictions made are of fatigue life, calculated from the slope and intercept values of the linear portion of the log-log fatigue crack growth curve. A test dataset has been successfully predicted along with the trends in the data. The effect of adding ultimate tensile strength and electron valencies as inputs to the model is assessed. It is shown that validation of models produced against metallurgical experience, and careful construction of the database are important conditions for effective use of neural network models for fatigue life predictions

Full text not available from this repository.

More information

Published date: 1996
Venue - Dates: Eighth International Symposium on Superalloys, 1996-09-22 - 1996-09-26

Identifiers

Local EPrints ID: 21649
URI: http://eprints.soton.ac.uk/id/eprint/21649
ISBN: 087339352X
PURE UUID: 7619d983-0a16-4aa0-b102-5b7afa23a904
ORCID for P.A.S. Reed: ORCID iD orcid.org/0000-0002-2258-0347

Catalogue record

Date deposited: 14 Mar 2007
Last modified: 17 Jul 2017 16:25

Export record

Contributors

Author: J.M. Schooling
Author: P.A.S. Reed ORCID iD
Editor: R.D. Kissinger
Editor: D.J. Deye
Editor: D.L. Anton
Editor: A.D. Cetel
Editor: M.V. Nathal
Editor: T.M. Pollock
Editor: D.A. Woodford

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×