
THr AEnoNAUTTcAL ]ounxnr Apru12001

ABSTRACT
A method is proposed by which a di rect  numerical  s imulat ion of  the
compressib le Navier-Stokes equat ions may be embeddecl  wi th in a
more general aeronautical cFD code. The methocl rray be applied to
any code which solvcs the Euler  eqLrat ions or  the Favre-averagecl
Navier-Stokes equat ic lns.  A fbrmal  decomposi t ion of  the f lowf ie l i l  is
Lrsed to der ive modi f ied equat ions tor  use wi th d i rect  numerical  s im-
Lr lat ion solvers.  Some prel iminary appl icat ions fbr  model  f lows wi th
transi t ional  separat ion bubbles are given.

1.0 INTRODUCTION
Applied careful ly. aeronauticul cornpr-rtat ional f- luicl  dynamics (cFD)
codes can deliver usefirl predictions of flow aroun<J aircrafi. The
r.nethods generally work well when the f-low is fLrlly tLrrbulent ancl
rcmains attached to the surface. The standard rnethods work much
less well  when transit ion to turbulcnce must be taken into accol lnr or
when the turbulenr f low is subjected to rapicl changes in the imposed
strain f ield. The rnodels are part icularly chal lengecl in regions where
I'low scperration or reattachment takes place. By contrasl direct nr_r-
merical simLrlat ions (DNS). whereby the governing equations are
solved in ful l ,  are too expensive fbr complete calcujat ions of f lows
with aeronar-rt ical appl icat ion, but can del iver accurate solut ions of
simpler problems withoLrt modell ing errors. The range of problems
that can be tackled by DNS is increasing as the po*.r of computers
increases and DNS and the relatecr approach o1' large-edcly simula-
t ion (LES) are bein-e appl ied to more ancr more complex -eeomerries
and f- low f ieldstr-r).  The ob,ject ive of the current research is to l ink
the two apprcaches by providing a framework whereby an aeronauti-
cal cFD code can provide the context fbr a i letai led DNS. which in
turn can automatical ly f 'eedback improved physical modell in-r of
Iocal phenomena to improve the quali ty of the overal l  predict ion.

As a model problern we consider thc case of a separation bLrbble.
irr i t ial ly laminar. but undergoing transit ion to turbulence ancl
reattaching as a turbulent boundary layer. In high l i f t  confi-surations
sLrch bubbles rnay form on the slat and a failure of the flow to
reattach ult irnately causes stal l  of the configuration. predict ion of the
conect f low with conventional cFD is irnpossible as typical ly a tran-
sit ion point must be f lxed close to the location where separation
takes place, in order to get a convergecl resr-rlt. However this fix
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precludes calculat ion of the maximum l i f i  coeff icient. a quanti ty fbr-
which accurate predict ions at 'e essential i1'clesign is to be optirnised.

Several direct simulat ions of complete separation bubbles hlve
been carr ied out recently. These simulat ions include the larninar sep-
aration, transit ion process. turbulent reattachment. and relaxation o1,
the turbulent boundary layer downstrearn of reattachment. Spalart
and Streletstat specif ied a f iee stream normal velocity prof i le and
simr-r lated a bubble with a length of approxirnately 300 t irnes the
momentum thickness at separation. Alam and Sandhllnr5r 11secl o
sirni lar Inethod fbr prescribing the f l 'ee stream velocity distr ibLrt ion
but focLrsed on shorter br-rbbles with lengths of the order of 40 t imes
the momentum thickness at separation. The bubble phenomena
reproduced in these simulat ions closely match earl ier experintental
work. Besides providin_u data f irr  understanding f low instabi l i ty
mechanisms (Alam and Sandham). comparisons with aergnaLrt ici i l
codes (Spalart and Strelets) and turbLrlence rnodell ing (Hatlzic alt i
Hanjal ictot,  Howard et ult l ))  the simr-r lat ions also demonstratc the f-ea-
sibi l i ty of simr-r lat ing f low phenomena at real ist ic Reynolds numbers
on modern computers. I t  is therefbre f-easible computational ly to
consider a direct simulat ion of a slat separation bubble (which may
only occupy lc/c of chord) and a simultaneous CFD simulat ion of the
rest of the f'low. The problern which we attempt to adclress in the
present work concerns the detai ls involved in coirpl in-u the twcr
approaches. In Section 2.0 we present the governing equation ancl their
Favre-averaged counterparts. such as mery be usecl in cFD cocles. In
Section 3.0 we introduce a f-low decomposition techniqtre using thc
Euler equations and the Favre-averaged equatior-rs as examples. This
technique is then applied in Section 5.0, usin-e cl irect simulat ion
numerical methods given in Section 4.0. Final ly in Section 6.0 we
present results fiom a calculation using a Favre-averagecl base f1ow.
All the equations and exanrple are presentecl fbr compressible 1low.

2.0 GOVERNING EQUATIONS

2.1 Instantaneous equations

The governing equations fbr mass, momentl lnt and energy conserva_
tion ntay be writ ten in Cartesian tensor notat ion as:
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where Er = p @ + t/zLt1t), e bein-e the irlternill energy. The fluid is
assumed to fbllorv the perf'ect gas law with constant snecific heats
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where pt is the viscosity, -uiven by apower law tirnctictn of tempera-
ture, ancl r is the thermal condr-rct ivi ty. The Euler eqr-rat ions arise
when the terms involving viscclsity and thermal condr"rct ivi ty are
dropped f iom the r ight hand sides of Equations (2) and (3).

2.2 F avre-averaged equations

In Navier-Stokes calculat ions with a turbulence rnoclel a f low
decomposit ion into an average and a f- luctuuting conrptlnent is used.
For the compressible equations considered here. a convenient tbrrn
which preserves the original structure of the ecluations is thc Favre
method of mass-wei-qhted variables defined according to
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lt shoLrld be noted that fbr anv function l:

For low Mach number f lows the Favre decomposi t ion reduces to the
Lrsual  Reynolds-averagecl  form of  the equat ions.

The Favre-averased mass conservat ion euur"r t ion is

I

The momentLl ln equat ions are:

TIrc  ler rns ,  i  .  pu, ,  , ' t .p ,qr1,  , , td  p i , -  . , , , ,  hc  rnodel le t l
by vr. ui.  \ ,-r  (e u, le.r,) .  \ ,r  t iA/ i .r ,  )  and v r ( iel i .r , ;
respectively (see Vy' i  lcoxtst).

3.0 A DECOMPOSITION APPROACH
The basic idea of the present contr ibLrt ion is to perf irrm a direct
numericit l  simulat ion fclr phenonrena such as transit ion and turbu-
lence r-rsing as base f lows solut ions nhich mar arise f iom standard
aeronautical CFD calculat ions of cornpressiblc f low. A conceptr-ral ly
sirnple way of arran-uin-e this is to consider t l ie total f low to be a
superposit ion of a known base f low and an unknou n t inte-dependent
perturbation f iomthis to be deterntined bv direct nunterical simula-
t ion. In the fbl lowing subsections we derir e the relevant eqLrations
for a base f low which satisf ies either the ELrler equations or the
Favre-averaged eclr-rat ions f irr  turbulent f lor i .  Sint i lal  br-rt  sirnpler
ecluations can be derived fbr incompressible f- lou.

3.1 Euler base f low decomposit ion

As a f irst example of the techniqr-re we consider a clecorlposit i t ' rn
into an Er-r ler component p, ' . t i i ' ,  Ei:  which is i isslrrned to have been
computed from a separate Euler solver, and a der iat ion l i 'ont this
which we label pt, . t /1. Ef).  Insert in-e this clecornprosit ion into the -rov-
ernin-9 equations and subtracting the ELrlcr solut ion of the equations
leads to  the fo l lowing ec luat ions.  For  cont inu i ty  u  c  har  e :

The energy equat ion becomes
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and the energy equation is:
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3.2 Favre base flow decomposition

A similar procedure leads to equations fbr the f'low-fielcl p,t.,,,,'. Elt
computed as a perturbation fiom a Favre-averaged base flow pi',r|.
E.f. . For the continuity equation we have:

4.0 NUMERICAL METHOD FOR DNS
The new formulations of the governing equations for mass, momen-
tum and energy given in Section 3.0 are solved numerical ly using
techniques that are suitable fbr efficient calculation of f'lows with a
wide range of length and time scales. Time discretisation is achieved
with an explicit low-storage third-order Runge-Kutta scheme. The
time step is f ixed to be well  within the stabi l i ty l imit to ensure tem-
poral stability. Spatial discretisation is by means of compact pacld-
type high order schemes with ave-point stencil on the right hand side
and a three point stencil on the lefi hand side. These rnethocls require
only a tridiagonal matrix solver. They achieve sixth order accuracy
in the inner part of the domain, reducing to third order at boundaries
and have good wave resolution properties (Leleror;.

Non-ref'lecting characteristic boundary conditions are useiJ at the
in f-low and outf-low boundaries. The methods used at the outf'low
were original ly proposed by Thompson (19137) and invorve criagonal-
ising the Euler equations and zeroing out the rows containing char-
acteristic velocities that are pointing inwards into the computational
domain. At the in flow boundary we use a modification to this
approach fiom Sandhu and Sandham(tot whereby the basic inflow is
fixed but with the outgoing characteristic added by integrating it
along with the rest of the Navier-Stokes equations. This provides a
rnethod of fixing an inflow condition while allowing souncl waves to
pass smoothly through the inflow boundary. For Navier-Stokes cal-
culations a boundary-layer profile is needed at the infrow. This is
found fiom a similarity solution of the compressibre raminar bound-
ary-layer equations.

No slip conditions are used fbr the lower boundary to simulate a
smooth surf'ace. A mixed set of boundary conditions are used at the
upper boundary to maintain the flow fleld. A non-reflecting charac-
teristic boundary condition is used for density and a zero vorticity
boundary condition is implemented by settin-q
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It should be noted that the boundary conditions specil'ied here need
not be the same as those used fbr the base flow calculation which is
one of the strengths of the decomposition method. In the examples in
this paper we use Dirichlet conditions fbr the base f-row and mixed
Neumann-Dirichlet conditions fbr the full simulation. Alternative
ways of specitying the upper boundary are currently under review to
fully utilise the flexibility off-ered by the decomposition approach.

For al l  the simulat ions presented in the fbl lowing two sections the
computational box lengths are l0b* in the wall-normal direction and
120b" in the streamwise direction where 6" represents the displace-
ment thickness of the incoming boundary layer. The grid is stretched
in the wall-normal direction to cluster more points in the boundary
layer. The number of grid points used were 140 in the wail-normal
direct ion and 100 in the streamwise direct ion. For viscous calcula-
tions the Reynolds number was fixed to be -500. the prandtl number
to 0.72, and viscosity varied i1s 1,1 - f  t)67.

5.0 EULER-DNS SIMULATION OF A
SEPARATION BUBBLE

The f irst step in producing a simulat ion is to compute an Euler solu-
tion. In the anticipated applications this would conre from a standard
aeronautical Euler solver. Here we consider simpler rnodel problerns
to demonstrate the techniqr-res. An external velocity profile which
can be used to produce a separation bubble is
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U(.r) = A - B TanhlC(.r - D)l (26\

where A.  B,  C and D are constants.  which can be f ixed to detcrnl ine

the ratc ancl  s ize of  the drop in l ree-streant  veloci ty .  For the s imtt la-

t i ons  in  th i s  sec t ion  we  L tsc  A  =  0 '91 .  B  =0  09 .  C  =  0 '0u  and  D  =  40 .

which leacls to a f l 'ee stream drop of  18% conf ined wi th in the

doma in .
We compute the base E,uler  f ' low for  th is s i rnple case by solv ing

the fu l l  compressib le potent ia l  equat ion
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r,vhcre the sor, rnd speed a is  f ixed re lat ive to st l tgnrt i t t l t  condi t ions a.

by

2 C 4 C b

Streamwise velocity contours of a 2D self-excited bubble at
dif ferent t imes.

T ime

Figure 3. Time history oJ a wall  normal velocity at various heights
showing unsteady shedding.

There havc been susl-r icions in the past that shedtl ir tg t t tav be tr ig-

-Uerc-d nunterical ly so i t  is rtsel ' l t l  to havc pt 'ecl ict iot ls ol '  t l tc sl t t l lc
phcnotlena wit lr  c()ntpLlter progri lnrs that use cl i l ' lcrcrtt  r t tcthttcls. Fig-
ture rl shows the tinre avcraged bLrbble. Scpanttetl I'lori is fttttttcl fitr

-50 <. r  <70.

6.0 EXAMPLE OF FAVRE-DNS SIMULATION
For the s inrul l t ior- rs in t l - r is  scct ion \ \c  u\L- .1 = () ' t ) -1.  l l  = 0 '0( t .

C = 0.0U and l )  = :10.  which leads to a f t 'c-c \ t rcr t r l l  drop ol '  l l% con-

f i ncd  w i th in  the  doma in .  Th is  resu l t s  i n  a  nu rg in rL l l r  - scpuru tec l  f l ou '

and wc apply t i r rc iu-u at  the in l - lo$ '  to t r iggcl '  thc \  ot ' te r  s l ledding in a

cleterminist ic  way.  The forc in-s is  g iven br

s ' = 4 , . 1 ( . r ' )  S i n ( t ' r r )  . . .  ( 1 9 )

wlrerc / ( r ' )  is  i t  norr la l isccl  f ' r - rnci ton of  . r  u i t l t  r t  I t t r l r i t t ' t t t t . t t  ra l t tc  of

un i t y  a r ,d  a  peak  i l t - \ ' =  I  w i th  the  c t ' r l l s ta t l t \  \ e l  . l \ , ,  =  ( ) ' 01 -5  a t l c l  t ' r  =

0 . 1  2 .
To gencrate a Favre basc l ' low u 'e f i r : t  o1 ' r i l l  nrn rLn ELt let ' -c lecot t . t -

pos i t i on  ca lcu la t i on  t i r r  t l t e  p resc r ibcc l  [ l ( ) t cn t r i . r ]  I ' l r r r t .  [ l c : t t l t s  l k r r t t

t h i s  ca l c r r l l t t i t l n  a re  shown o l l  F ig '  5 '  Aga i r l  uc ' ] l ' t t '  \ ( ) l . l c \  she t ld ing '

bu t  th i s  t i n te  i t  i s  r cgu la r  anc l  p rec l i c tab lc .  l - hc  r . c . tL l l .  t r ( )n t  t l t i s  s i t t - t t t -

l a t i t l t l  a re  the t l  avc ragec l  ove r  o l l e  cvc l c  t l l ' t l l e  1 r ;1 ' i . , r ' 11 '  shc t l c l i t l g  t t l

c lc tentr ine t l re I - -avrc- l rveragecl  ntean lncl  l ' lL te t tL. t l t , )n ta l ' l l \ .  r \ t  th is-

p o i n t  w ' c  h a v c  t h e  s t a t i s t i c l l l  e r l u i v r t l e n t  o l ' i t . r L l . L t l . r l i l t t  i r l  t l l c  F a r " r c -
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Figure 2 .
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At the subsonic Mach numbers used here the r ight  hancl  s ide of

Equat ion (27) is  suf f ic ient ly  sr-nal l  that  i terat i r , 'c  nut ler icul  methocls

sLr i table for  Laplace's ecluut ion st i l l  c t tnver ' -uc.  We t tse a stra i -Qhtfbr-

ward Gauss-Seidel  proccdure based on sect tncl -order f in i te d i t tcr-

cnces.  The solut ion is  then interpolatecl  onto the act l la l  mesh t t l  be

Lrsed in the di rect  numcr ical  s imulat ions.

The s imulat ion using the Euler  base 1 ' low decotnposi t ion l l 'o t l l

Sect ion 2.1 was r l ln  up t<t  t i tne /  =,500.  Instantanet)L ls snaP\h() ts ( ) f

the tcr ta l  veloci t l ,  f ie ld ( i .e.  u = ut)+ rr l l )  t i r r  t t  ancl  t 'are sht lwn on Fig.

I  (a)  and (d)  to-sether wi th the streumwise var iat ion of  sk in l l ' ic t ion

(b) and the pressure f ie ld (c) .  I t  can be seen that  there is  an Llnsteady

separat ion bLrbble wi th weak nat t t t 'a l  vor tex sheddin-e f rorn behind

the bubble.  A t i rne ser ies of  the s l iedding.  as i t  appears in the stre i ln l -

wise veloci ty  f ie ld is  shown on Fi-s.  2.  The resl t l t  that  there is  vot ' tex

sl redding f i r r  th is ow concl i t ion is  consistcnt  wi tht l ie  ear l ier  s i tnul i i -

t ion ol '  Rist  er  r11( l l ) .  Addi t ional ly  t inre ser ies nrei - rsLrrcnrcnts f rot- t - t

wi th in t l ie  shedding re-eion (Fi-s.3)  show i t  shecld ing in t l . re f i r r r t l  of

wave packets which is  a lso consistent  wi th the previot- ts  f inc l ings.

( o l

( b )

( . )

( d )

Figure '1 .  A 2D shedding bubble .  F igures top to  bot tom showing:  (a)
contours of streamwise velocity, (b) skin-fr ict ion, (c) contours of

pressure and (d) wall-normal velocity.

(y -1) [ fuo) '- ,  Lt&,
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I

/
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(a)  contours of  st reamwise veloci ty  and (b)
skin- f  r ic t ion.

i l

l =

197

less empir icism than is possible at present. I t  should be noted that the
techniques apply equally well  to large-eddy simularion (LES) as to
the direct simr-r lat ion approach nsed as an example here. Provided the
sub-grid models and LES techniqr-res are val idated for the cornplex
ow phenomena. this represent a cost-effect ive way of uett ing sintula-
t ion techniques into ereronautical appl icat ions.

Another techr-r ique which l inks simulat ion with conventional mod-
el l in-e approaches is the detached eddy simLrlarion (DES) approach
proposed by Spalartt l l ) .  The idea of this approach is to have a sintu-
lat ion techniqLre (LES) which reduces to a turbulence model as the
wall  is approached. As an example i f  we have ful ly separatecl f low
the LES would be used for cornputing al l  the vortex events awi.ry
f ion-r the surl-ace, while the conventional one- or two-eqLlat ion turbu-
lence models would pnrvicle reascxrablc wall  bounclary condit ions fbr
the LES. In many ways this techniclue is the oppositc of that pro-
posed here. where we propose to Llse DNS/LES near t lre wall  in dif-
f ' icult  regiclns. and use conventional methods clsewhere. Ranges of
val idity of the two approached rentain tcl  be identi f ied in tutr-rre
work.

In principle the tcchniques -{ iven here cor"r ld be applicd to other re-
gions of f low. An example might bc to trai l in-e-edge f- lows. where
the f-easibi l i ty of simulat ions has already been demonstrated(r).  An
addit ional problem here relates to the need to specify turbulent
inf low condit ions. A sirnr-r lat ion approach is of ien used when accu-
rate in f low data is required.but there is a need fbr cheap methods of
prescribin-e t irre-dependent turbLrlent boundary laryer data over a
range of Reynolds numbcrs and upstrearn strain histories.
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