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ABSTRACT

A method is proposed by which a direct numerical simulation of the
compressible Navier-Stokes equations may be embedded within a
more general aeronautical CFD code. The method may be applied to
any code which solves the Euler equations or the Favre-averaged
Navier-Stokes equations. A formal decomposition of the flowfield is
used to derive modified equations for use with direct numerical sim-
ulation solvers. Some preliminary applications for model flows with
transitional separation bubbles are given.

1.0 INTRODUCTION

Applied carefully, aeronautical computational fluid dynamics (CFD)
codes can deliver useful predictions of flow around aircraft. The
methods generally work well when the flow is fully turbulent and
remains attached to the surface. The standard methods work much
less well when transition to turbulence must be taken into account or
when the turbulent flow is subjected to rapid changes in the imposed
strain field. The models are particularly challenged in regions where
flow separation or reattachment takes place. By contrast direct nu-
merical simulations (DNS), whereby the governing equations are
solved in full, are too expensive for complete calculations of flows
with aeronautical application, but can deliver accurate solutions of
simpler problems without modelling errors. The range of problems
that can be tackled by DNS is increasing as the power of computers
increases and DNS and the related approach of large-eddy simula-
tion (LES) are being applied to more and more complex geometries
and flow fieldst!-*. The objective of the current research is to link
the two approaches by providing a framework whereby an aeronauti-
cal CFD code can provide the context for a detailed DNS. which in
turn can automatically feedback improved physical modelling of
local phenomena to improve the quality of the overall prediction.

As a model problem we consider the case of a separation bubble,
initially laminar, but undergoing transition to turbulence and
reattaching as a turbulent boundary layer. In high lift configurations
such bubbles may form on the slat and a failure of the flow to
reattach ultimately causes stall of the configuration. Prediction of the
correct flow with conventional CFD is impossible as typically a tran-
sition point must be fixed close to the location where separation
takes place, in order to get a converged result. However this fix

precludes calculation of the maximum lift coefficient. a quantity for-
which accurate predictions are essential if design is to be optimised.
Several direct simulations of complete separation bubbles have
been carried out recently. These simulations include the laminar sep-
aration, transition process, turbulent reattachment. and relaxation of
the turbulent boundary layer downstream of reattachment. Spalart
and Strelets® specified a free stream normal velocity profile and
simulated a bubble with a length of approximately 300 times the
momentum thickness at separation. Alam and Sandham'> used a
similar method for prescribing the free stream velocity distribution
but focused on shorter bubbles with lengths of the order of 40 times
the momentum thickness at separation. The bubble phenomena
reproduced in these simulations closely match earlier experimental
work. Besides providing data for understanding flow instability
mechanisms (Alam and Sandham), comparisons with aeronautical
codes (Spalart and Strelets) and turbulence modelling (Hadzic and
Hanjalic'®, Howard e al'D) the simulations also demonstrate the fea-
sibility of simulating flow phenomena at realistic Reynolds numbers
on modern computers. It is therefore feasible computationally to
consider a direct simulation of a slat separation bubble (which may
only occupy 1% of chord) and a simultaneous CFD simulation of the
rest of the flow. The problem which we attempt to address in the
present work concerns the details involved in coupling the two
approaches. In Section 2.0 we present the governing equation and their
Favre-averaged counterparts. such as may be used in CFD codes. In
Section 3.0 we introduce a flow decomposition technique using the
Euler equations and the Favre-averaged equations as examples. This
technique is then applied in Section 5.0, using direct simulation
numerical methods given in Section 4.0. Finally in Section 6.0 we
present results from a calculation using a Favre-averaged base flow.
All the equations and example are presented for compressible flow.

2.0 GOVERNING EQUATIONS

2.1 Instantaneous equations

The governing equations for mass, momentum and energy conserva-
tion may be written in Cartesian tensor notation as:
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where E; = p (e + Yauu,), e being the internal energy. The fluid is
assumed to follow the perfect gas law with constant specific heats
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with v the ratio of spectic heats. Additionally we assume that the fluid
is Newtonian and follows Fourier’s law for heat conduction:
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where L is the viscosity, given by apower law function of tempera-
ture, and ¥ is the thermal conductivity. The Euler equations arise
when the terms involving viscosity and thermal conductivity are
dropped from the right hand sides of Equations (2) and (3).

2.2 Favre-averaged equations

In Navier-Stokes calculations with a turbulence mode! a flow
decomposition into an average and a fluctuating component is used.
For the compressible equations considered here, a convenient form
which preserves the original structure of the equations is the Favre
method of mass-weighted variables detined according to

u, =i 4l
p=p+p
T=T+T"
E,=E, +E,
p=p+p

where 17, = pTll./Band we can also write £, = pE with E=E + £"
It should be noted that for any tunction f:

pf"=0
7 =0 .8

For low Mach number flows the Favre decomposition reduces to the
usual Reynolds-averaged form of the equations.
The Favre-averaged mass conservation equation is

(9

The momentum equations are:
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The terms Tu',pu’, apuiu and pe”u can be  modelled
by Vv . Vi (Gl /Ex)), Vi (CK/Cx) and vy (CelCyy)
respectively (see Wilcox®).

3.0 A DECOMPOSITION APPROACH

The basic idea of the present contribution is to perform a direct
numerical simulation for phenomena such as transition and turbu-
lence using as base flows solutions which may arise from standard
aeronautical CFD calculations of compressible flow. A conceptually
simple way of arranging this is to consider the total flow to be a
superposition of a known base flow and an unknown time-dependent
perturbation fromthis to be determined by direct numerical simula-
tion. In the following subsections we derive the relevant equations
for a base flow which satisties either the Euler equations or the
Favre-averaged equations for turbulent tlow. Similar but simpler
equations can be derived for incompressible tlow.

3.1 Euler base flow decomposition

As a first example of the technique we consider a decomposition
into an Euler component pt.ul, £/ which is assumed to have been
computed from a separate Euler solver, and a deviation from this
which we label p2.u. E{. Inserting this decomposition into the gov-
erning equations and subtracting the Euler solution of the equations
leads to the following equations. For continuity we have:
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The momentum equation becomes:
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and the energy equation is:
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3.2 Favre base flow decomposition

A similar procedure leads to equations for the flow-field p?,u”, EP
Computed as a perturbation from a Favre-averaged base flow p#,u
¥ For the continuity equation we have:
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The momentum equation is:
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4.0 NUMERICAL METHOD FOR DNS

The new formulations of the governing equations for mass, momen-
tum and energy given in Section 3.0 are solved numerically using
techniques that are suitable for efficient calculation of flows with a
wide range of length and time scales. Time discretisation is achieved
with an explicit low-storage third-order Runge-Kutta scheme. The
time step is fixed to be well within the stability limit to ensure tem-
poral stability. Spatial discretisation is by means of compact Padé-
type high order schemes with ave-point stencil on the right hand side
and a three point stencil on the left hand side. These methods require
only a tridiagonal matrix solver. They achieve sixth order accuracy
in the inner part of the domain, reducing to third order at boundaries
and have good wave resolution properties (Lele®).

Non-reflecting characteristic boundary conditions are used at the
in flow and outflow boundaries. The methods used at the outflow
were originally proposed by Thompson (1987) and involve diagonal-
ising the Euler equations and zeroing out the rows containing char-
acteristic velocities that are pointing inwards into the computational
domain. At the in flow boundary we use a modification to this
approach from Sandhu and Sandham('® whereby the basic inflow is
fixed but with the outgoing characteristic added by integrating it
along with the rest of the Navier-Stokes equations. This provides a
method of fixing an inflow condition while allowing sound waves to
pass smoothly through the inflow boundary. For Navier-Stokes cal-
culations a boundary-layer profile is needed at the inflow. This is
found from a similarity solution of the compressible laminar bound-
ary-layer equations.

No slip conditions are used for the lower boundary to simulate a
smooth surface. A mixed set of boundary conditions are used at the
upper boundary to maintain the flow field. A non-reflecting charac-
teristic boundary condition is used for density and a zero vorticity
boundary condition is implemented by setting

D D
a; - Gf L24)
y o Ox
and we set
vo =0 .. (25)

It should be noted that the boundary conditions specified here need
not be the same as those used for the base flow calculation which is
one of the strengths of the decomposition method. In the examples in
this paper we use Dirichlet conditions for the base flow and mixed
Neumann-Dirichlet conditions for the full simulation. Alternative
ways of specifying the upper boundary are currently under review to
fully utilise the flexibility offered by the decomposition approach.

For all the simulations presented in the following two sections the
computational box lengths are 106* in the wall-normal direction and
1208+ in the streamwise direction where & represents the displace-
ment thickness of the incoming boundary layer. The grid is stretched
in the wall-normal direction to cluster more points in the boundary
layer. The number of grid points used were 140 in the wall-normal
direction and 100 in the streamwise direction. For viscous calcula-
tions the Reynolds number was fixed to be 500, the Prandt] number
to 0-72, and viscosity varied as u ~ T 067,

5.0 EULER-DNS SIMULATION OF A
SEPARATION BUBBLE

The first step in producing a simulation is to compute an Euler solu-
tion. In the anticipated applications this would come from a standard
acronautical Euler solver. Here we consider simpler model problems
to demonstrate the techniques. An external velocity profile which
can be used to produce a separation bubble is
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U(x)=A - B Tanh[C(x - D)| ... (206)

where A, B, C and D are constants, which can be fixed to determine
the rate and size of the drop in free-stream velocity. For the simula-
tions in this section we use A =091, B =0:09. C = 0-08 and D = 40,
which leads to a free stream drop of 18% confined within the
domain.

We compute the base Euler flow for this simple case by solving
the full compressible potential equation

—t = 3
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where the sound speed « is fixed relative to stagnation conditions «
by
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At the subsonic Mach numbers used here the right hand side of
Equation (27) is sufticiently small that iterative numerical methods
suitable for Laplace’s equation still converge. We use a straightfor-
ward Gauss-Seidel procedure based on second-order finite differ-
ences. The solution is then interpolated onto the actual mesh to be
used in the direct numerical simulations.

The simulation using the Euler base flow decomposition from
Section 2.1 was run up to time 7 = 500. Instantaneous snapshots of
the total velocity field (i.e. it = ul+ u?) for i and v are shown on Fig.
1 (a) and (d) together with the streamwise variation of skin friction
(b) and the pressure field (¢). It can be seen that there is an unsteady
separation bubble with weak natural vortex shedding from behind
the bubble. A time series of the shedding. as it appears in the stream-
wise velocity field is shown on Fig. 2. The result that there is vortex
shedding for this ow condition is consistent withthe earlier simula-
tion of Rist et a/t'h. Additionally time series measurcments from
within the shedding region (Fig. 3) show a shedding in the form of
wave packets which is also consistent with the previous findings.

Figure 1. A 2D shedding bubble. Figures top to bottom showing: (a)
contours of streamwise velocity, (b) skin-friction, (c) contours of
pressure and (d) wall-normal velocity.
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Figure 2. Streamwise velocity contours of a 2D self-excited bubble at
different times.

|
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Figure 3. Time history of a wall normal velocity at various heights
showing unsteady shedding.

There have been suspicions in the past that shedding may be trig-
gered numerically so it is useful to have predictions of the same
phenomena with computer programs that use different methods. Fig-
ure 4 shows the time averaged bubble. Separated flow is found for
50 <x <70

6.0 EXAMPLE OF FAVRE-DNS SIMULATION

For the simulations in this section we use 4 = 094 B = 0-06.
C =0-08 and D = 40. which leads to a free stream drop of 12% con-
fined within the domain. This results in & marginally-separated flow
and we apply forcing at the inflow to trigger the vortex shedding in a
deterministic way. The forcing is given by

u' =« fiyv) Sin(wr) L (29)

where f{v) is a normalised funciton of v with « maximum value of
unity and a peak at y = 1 with the constants setas ¢ = 0015 and 0 =
0-12.

To generate a Favre base flow we first of all run an Euler-decom-
position calculation for the prescribed potentiul flow. Results from
this calculation are shown on Fig. 5. Again we hwv ¢ vortex shedding.
but this time it is regular and predictable. The results from this simu-
lation are then averaged over one cycle of the pertodic shedding to
determine the Favre-averaged mean and (Tuctuation terms. At this-
point we have the statistical equivalent ol a culeulation of the Favre-
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Figure 4. Mean bubble: (a) contours of streamwise velocity and (b)
skin-friction.

Figure 5. A 2D forced bubble using Euler decomposition. Figures top
to bottom showing: (a) contours of streamwise velocity, (b) skin-fric-
tion, (c) contours of pressure and (d) wall-normal velocity.

averaged equations using a perfect turbulence model. This is then
stored and used as the base flow for a simulation with the
Favre/DNS decomposition equations(18-23,

Results from the Favre/DNS simulation are shown on Fig. 6. As
expected the flow phenomenon of shedding in response to upstream
forcing is reproduced by this method.

Boundary conditions are the main area that requires further work.
Ideally boundaries will allow specification of steady inflow profiles,
whilst simultaneously allowing waves generated within the simula-
tion to leave smoothly. The present characteristic-based methods
lead to a slight drift in the mean flow and we are experimenting with
new boundary conditions to overcome this problem.

7.0 DISCUSSION AND CONCLUSIONS

We have presented a new decomposition approach to solving acro-
nautical CFD problems. The philosophy of the method is to apply
the right methods to the right parts of the flow, using conventional
Euler and Favre-averaged—Reynolds-averaged methods for relatively
simple parts of the flow, but inserting a time-dependent simulation
when the flow phenomena are complex. In the example shown here
we consider the case of leading-edge separation bubbles where the
idea is for the simulation technique to treat the immediate vicinity of
the bubble, teeding back information to the Favre-averaged flow cal-
culation of the rest of the configuration. It is hoped in the future to
use the method to predict the overall flow near maximum C, with
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Figure 6. A 2D forced bubble using Favre decomposition. Figures top
to bottom showing: (a) contours of streamwise velocity, (b) skin-fric-
tion, (c) contours of pressure and (d) wall-normal velocity.

less empiricism than is possible at present. It should be noted that the
techniques apply equally well to large-eddy simulation (LES) as to
the direct simulation approach used as an example here. Provided the
sub-grid models and LES techniques are validated for the complex
ow phenomena, this represent a cost-effective way of getting simula-
tion techniques into aeronautical applications.

Another technique which links simulation with conventional mod-
elling approaches is the detached eddy simulation (DES) approach
proposed by Spalart!!. The idea of this approach is to have a simu-
lation technique (LES) which reduces to a turbulence model as the
wall is approached. As an example if we have fully separated flow
the LES would be used for computing all the vortex events away
from the surface, while the conventional one- or two-equation turbu-
lence models would provide reasonable wall boundary conditions for
the LES. In many ways this technique is the opposite of that pro-
posed here, where we propose to use DNS/LES near the wall in dif-
ficult regions. and use conventional methods elsewhere. Ranges of
validity of the two approached remain to be identified in future
work.

In principle the techniques given here could be applied to other re-
gions of tlow. An example might be to trailing-edge flows. where
the feasibility of simulations has already been demonstrated®. An
additional problem here relates to the need to specify turbulent
inflow conditions. A simulation approach is often used when accu-
rate in flow data is required.but there is a need for cheap methods of
prescribing time-dependent turbulent boundary layer data over a
range of Reynolds numbers and upstream strain histories.
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